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Abstract—We revisit and extend the physical interpretation temperature The corresponding large deviations rate function
recently given to a certain identity between large—deviatns rate—  js then identified with the entropy of the system.
functions (as well as applications of this identity to Infomation While this physical interpretation is fairly reasonable, i
Theory), as an instance of thermal equilibrium between seval ¢ t h in thi that it | it '
physical systems that are brought into contact. Our new inte urns ou ,_as we show in this pape_r, a '_ eaves q_U| € some
pretation, of mechanical equilibrium between these system is oom for improvement, and we will mention here just two
shown to have several advantages relative to that of thermal points. The first, is that this interpretation does not gelies
p p g
equilibrium. This physical point of view also provides a trigger  to rate functions of combinations of two or more rare events,
to the development of certain alternative representationsof the where the number of Chernoff parameters is as the number
rate—distortion function and channel capacity, which are rew to f ts. This is b th . | t t
the best knowledge of the author. of events. This is because there is only one temperature
o _ parameter in physics. The other point, which is on a more
_ Index Terms—Large deviations theory, Chemnoff bound, statis-  {ecppical level, is the following (more details and clagfic
tical physics, free energy mechanical equilibrium, rate—gtortion . . T - . -
theory. tions will follow in Subsection 2B below): while the log—
moment generating function, pertaining to the large déwest
rate function, naturally includes weighting by probaimi,
|. INTRODUCTION its physical analogue, which is theartition function does

. . t. If th babiliti bjected t timizatierg(,
ELATIONSHIPS between information theory and sta[]o ese probabilties are subjected to optimizatierg(

. . . ) . optimization of random coding distributions), they may eeg
tistical physics haye been widely recognized in thg la ‘S the Chernoff parameter, i.e., on the temperature, interat

few decades, from a wide spe_ctrum of aspects_. These 'nCILé (?‘nplicated manner, and then the resulting expression can n

conceptual aspects, of parallelisms and analogies bettheen longer really be viewed as a partition function

oretical principles in the two disciplines, as well as teichh In this paper, we propose to interpret the above—mentioned

aspects, of mapping between mathematical formalisms im b% '

field db . lvsis techni ¢ field entity of rate functions as an instance mmechanical equi-
lelds and borrowing analysis techniques from one field g, (i.e., balance between mechanical forces), rather than

the (;It_her. C;ne egampledof S#Ch z maplpingoi_ s bet\éveent Brmal equilibrium, and then the Chernoff parameter plays
paradigm of random codes for channel coding and certgly, physical role of an externdbrce or field, applied to

moddels_ of Imagnetic(:j rlnate;ials, molsé notzbly, Ising med e physical system in consideration. In this paradigm, the
?hn _smegdass .??O ei (c '.del.g.t; [I ] gr;h {nany relfr:enqg§ge deviations rate function has a natural interpretedi® the

: ereln).. oday, 1 Is quite widely believed that researcine (Helmholtz)free energyof the system, rather than as entropy.
Intersection between_mforman_o_n_theory an(_:i s_tat_sudqlspcs Accordingly, since the rate—distortion function (and darly,
may have the potential of fertilizing both disciplines. also channel capacity) can be thought of as a large devétion

This paper is more re_lated _to the former aspect mentlpnpéj[e function, it can also be interpreted as the free enefgy o
above, namely, the relationships between the two areasin H1certain system

conceptual level. In particular, we revisit results of aaetc

K d hat diff vechhi This interpretation has several advantages. First, it isiso
work [9], and propose a somewhat different perspectivecwhiye i it the analogy between the free energy in physics and

as we be“eYe' has certain advantages, that will be expdalrme Kullback—Leibler divergence in information theory €se
and shown in the sequel. e.g., [1],[11]), which is well known to play a role as a rate

More specifically, in [9], an identity between two forms ofy,ction when the large deviations analysis is approached b
the rate function of a certain large deviations event waatest i, method of types [4]. Second, it is free of the limitations

lished, with several applications in information theonspired ,antioned in the previous paragraph, as we will see in the

by a few earlier works (cf. e.g., [8], [12], [14]), this idétyt goqyel Third, it serves as a trigger to develop certainerepr
was interpreted athermal equilibriumbetween several many—gentations of the rate—distortion function (and analoyptise

particle physical systems that are brought in contact. li@a o, anne| capacity), which are new to the best knowledge of the
ular, the parameter that undergoes optimization of the @fer , hor.

bound, henceforth referred to as @hemoff parametemlays  gjince the rate-distortion function can be thought of as

arole that is intimately related to the equilibrium temi@re: o energy, as mentioned above, one of the representations
in fact, it is the reciprocal of the temperature, calleditherse ¢ the rate—distortion function expresses it as (the mimmu
o _ o achievable) mechanical work carried out by the aforemen-
N. Merhav is with the Department of Electrical Engineerinech- . d | | di ' that i di
nion — Israel Institute of Technology, Haifa, 32000, IsraBtmail: mer- UON€ eXtema} orce, along a Istance’ t .at IS measured |
hav@ee.technion.ac.il. terms of the distortion. Another representation, whichdiok
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from the first one, is as an integral that involves the single—The outline of the paper is as follows. In Section 2, we
letter minimum mean square error (MMSE) in estimating therovide some background in physics (Subsection 2A) and
distortion given the source symbol, according to a certagive a brief description of the physical interpretation poeed
joint distribution of these two random variables. The Ilatten [9] (Subsection 2B). Then, we develop the new proposed
representation may suggest a new route to the derivationptfysical interpretation, first for a generic large deviato
upper and lower bounds on the rate—distortion function amdte—function (Section 3), and then, in the context of the
channel capacity, using the plethora of upper and lower Gsurrate—distortion problem (Section 4). In Section 5, we pnése
on MMSE, available from estimation theory. In particular f the above mentioned alternative representations of thee-rat
upper bounds, one may examine the mean squared errodistortion function. Finally, in Section 6, we summarizésth
an arbitrary estimator, e.g., the best linear estimatowéro work and conclude.
bounds, like the Bayesian Cramér—Rao bound and numerous
others are available in the literature (cf. e.g., [15],[&8]d II. PRELIMINARIES
reference_s therein). We have not explored these dir_ectiog\s' Physics Background
however, in the framework of the work presented herein. ] ) i

An additional byproduct of the proposed perspective is Can|der a physical system V\{'th a Iarge numberof
the following: Given a source distribution and a distortio ‘ar_t|cles, Wh,'Ch can be in a va_rlety of microscopic _s_tates
measure, we can describe (at least conceptually) a conc %lcrostates), defined by comb!nanons of, e.g., p_osusp
physical system that emulates the rate—distortion problem momenta, angular_ momenta, spins, etc., of mlpartlcles.
the following manner (see Fig. 1): When no force is applied é)or.each SUCh mlcrOEtate of the s;;]stem, which we sr&all
the system, its total length isA, wheren is the number of eS|gnat§ y a vectar = (.xl’ L »7n), there is an assoclate
particles in the system (and also the block length in the-rat§"€"9Y: given by an Hamiltonian ((_anergy functiofif). For
distortion problem), and) is the distortion corresponding examp_le, ifz; = (p_i’hi)’ w_he_repi IS the momentu_m vector
to zero coding rate. If one applies to the system a contr@ctiﬂlc particle numbet and; is its height, then classically,
force, that increases from zero force to some final forcguch " ;)
that the length of the system shrinks#d\, where A < A, Ex) = Z ( + mghi) ’
is analogous a prescribed distortion level, then the fdhow =1
two facts hold true: (i) Arachievable lower boundn the total wherem is the mass of each particle agds the gravitation
amount of mechanical work that must be carried out by tf®nstant.

contracting force in order to shrink the system to length, One of the most fundamental results in statistical physics
is given by (based on the law of energy conservation and the basic

postulate that all microstates of the same energy level are
W 2 nkTR(A), equiprobable) is that when the system is in thermal equilibr

where & is Boltzmann's constantl” is the temperature, andW'th its environment, the probability of a microstatas given

R(A) is the rate—distortion function. (ii) The final forceis by the Boltzmann-Gibbslistribution

related toA according to\ = KTR/(A), where R'(-) is the e PE®)
- Plx)= ——

derivative of R(-). Z,(B)

i Tthus,twe lopsgrvfe tha‘?(A)trp])Iays abr?lelof a fu?]da.memalwhereﬁ = 1/(kT), T being temperature; being Boltzmann’s
'mit, not only in information theory, but &iSo In PAYSICS. - ¢ nstant, andz,,(0) is the normalization constant, called the
partition function which is given by

Zn(B) = Z e PEE)

xTr

Zn(B) = / dxe PEX@),

depending on whether is discrete or continuous. The role
of the partition function is by far deeper than just being a
normalization factor, as it is actually the key quantityrfro
which many macroscopic physical quantities can be derived,
for example, the Helmholtz free enefgis —5 In Z,,(5), the
average internal energy (i.e., the expectatior€¢t) where

x drawn is according (1)) is given by the negative derivative

2m

)

or

1The physical meaning of the Helmholtz free energy is theofuithg: The
f--—-—------ nAg— — ——— - —— - — > difference between the Helmholtz free energies of two dauiim states is
the minimum work that should be done on the system in any peooéfixed
temperature (isothermal process) in the passage betweme tivo states.

) ) ) The minimum is obtained when the process is reversible (stmasi—static
Fig. 1. Emulation ofR(A) by a physical system. changes in the system).




of In Z,,(8), the heat capacity is obtained from the second When the Hamiltonian is additive, that is,

derivative, etc. One of the ways to obtain eq. (1), is as B

the maximum entropy distribution under an energy constrain E(x) = Zg(xi)’

(owing to the second law of thermodynamics), whgrplays !

the role of a Lagrange multiplier that controls this enerel. then P(z) has a product form (the particles do not interact),
Under certain assumptions on the Hamiltonian functio@nd then the above mentioned physical quantities per fertic

the following relations are well-known to hold and cafan be extracted from the case= 1. In this additive case,

be found in any textbook on elementary statistical physiéde Legendre transform, that takegs) to S(E), is similar

(see, e.g., [2],[7],[10]): Defining the per—particle emyp O the Legendre transform that defines the rate function (the

S(E), associated with per—particle enerdy = £(z)/n, as €xponent of the Chernoff bound) pertaining to the probgpbili

limy,— oo [In Q(E)] /0,2 (provided that the limit exists), where Of the event n

Q(E) is the number of microstatesz} with energy level ZE(Ii) <nE,

E(x) = nkE, then similarly as in the method of types, one i—1

can evaluateZ, (§) defined above, as thus the parameter to be optimized in the Chernoff boundsplay

Zn(8) = Z Q(E)e PP the role pf inverse temperature in the corresponding sitzdls
- mechanical system.
Another look at this correspondence between large devia-
(in the discrete case), which is of the exponential order of tjons rate functions and thermal equilibrium is the follogi
exp{nmax[S(E) — BE]}. If P is the above mentioned Boltzmann-Gibbs distribution and
E @ is another probability distribution on the micorstates},

Defining then, as is shown e.g., in [1], the Kullback—Leibler divarge
o08) = 1 In Z, () between and P is given by
= lim —,
noeem D(Q|[P) = B(Fg — Fp),

and the Helmholtz free—energy per—particle as where Fp and F are, respectively, the Helmholtz free ener-

o(B) gies pertaining toP and . The rate function pertaining to
a large deviations event is normally given by the minimum
divergence under the constraints corresponding to thisiteve
(see, e.g., [3, Chap. 11]), and so, it is equivalent to mimmu
#(3) = max[S(E) — BE), free energy, i.e., thermal equilibrium by the second law.

E Consider next a system of non—interacting particles as
where hereE = E(j3) is the maximizer of[S(E) — gE]. before, except that now the Hamiltonian is shifted by a
For a giveng, the Boltzmann—Gibbs distribution has a sharguantity that is proportional to some parameferi.e., the
peak (for largen) at the level of E(3) Joules per—particle. Hamiltonian is redefined as

we obtain the Legendre relation

Assuming thatS(-) is concave (which is normally the case), "
the above Legendre relation can be inverted to obtain E(@,y) =Eolx) — X > _vi,
=1
S(E) = glzig[ﬁE + (3], where we have changed the notation of the (original)

, ) . ) _Hamiltonian to&y(x), and where{y;} are some additional
and both relations can be identified with the thermodynahmiGgyriaples used to describe the microstate. These new Vesiab
definition of the Helmholtz free energy as may either be dependent or independent of the original

F—E—_TS microstate variables{z;} (both cases are demonstrated
' in Example 1 below) and their numben, is here taken
In the latter relation, the minimizingg = 3(E) (the inverse to be the same as the number é&;}, primarily, for
function of E(3)) is the equilibrium inverse temperature assoeasons of convenienéeThe parameter\ is thought of
ciated with energy levely. The second law of thermodynamicsas an external control parameter, i.e.,deving force (or
asserts that in an isolated system (which does not exchamgea field) that acts on the system via the state variables
ergy with its environment), the total entropy cannot desega {y;}. The parameter\ can be a mechanical force (e.g.,
and hence in equilibrium, it reaches its maximum. When thgessure, elastic extraction/contraction force, gréaiaitel
system is allowed to exchange heat with the environmeiarce), an electric field (acting on an a charged particle or
(at constant volume and temperature), this maximum entropg electric dipole), a magnetic field (acting on a magnet
principle is replaced by theninimum free energyprinciple: or spin), or even a chemical driving force (chemical potati
The Helmholtz free energy cannot increase, and it reackes it
minimum in equilibrium. Example 1(may be skipped without loss of continuity).
Consider the following two systems. The first is the same

2Actually, the definition should also include a factor jaf which we will
omit in this discussion, thus considerisf E) as the per—particle entropy in  3In general, their number can be different, but then it id stisumed to
units of k. grow proportionally ton.



example as in the first paragraph of this subsection, namélyen, defining the partial partition function
non—interacting particles in motion under gravitation.eTh
gp g Zn(ﬁ’ Y) _ Z 6—550(112)7

Hamiltonian,
p:* (@y): =, v=ny}
2m the normalized Helmholtz free energy for a giviEn

kTInZ,(8,Y
can be thought of as being composed of the ‘original’ Hamil- F.(8,Y) = —%ﬁ),

tonian Y, [|p;[|?/(2m) (with {p,} replacing{z;}), and the . . .

‘shifting’ term, mg 3, h;, whose force parameters= —mg and the corresponding asymptotic normalized Helmholte fre
(gravitational force), acting on the height variablgs= h;. In energy, FBY) = lim F v

this example, the variables = p andy = h = (hq,..., h,) (B,Y) = P n(6,Y),

are independent. The second system consists: obne— e have (similarly as in the method of types):

dimensional harmonic oscillators (e.g., springs or peuihs),

i

Lo —BnGn(B,)) _ —BlE(T) =AY, v
where the Hamiltonian is e InanBN = N e AlE @AY v

Il Ky? <

S (B 5 = Y OB Y)e e
g E)Y

p; being the (one—dimensional) momentwn;- the displace- = Z enS(BY)=B(E=AY)]
ment of each oscillator from its equilibrium position, aid EY
is _the elqsticity constant_. Now, suppose _that_an extermakfo _ Zenmy Zen[s(Ey)_ﬁE]
A is applied to each spring, so the Hamiltonian becomes " —

i 2 K 2 _ nBAY

Z lIpil LBy i ) Ze Zn(8,Y)
- 2m 2 Y

— nBAY | ,—BnF,(,Y)
In this case, the variables of the original Hamiltonian= ;e €

(pi,y:) contain the variablegy;}, of the shifting term, as a ,
subset. We also see that the modified Hamiltonian is, within = exp{nf-max[\Y — F(5,Y)} (2)

an immaterial additive constant, identical to . . . . .
where = denotes asymptotic equivalence in the exponential

Z Ip: 12 . K (y A )2 scale® This results in the Legendre relation
1 G(B,A) = min[F(8,Y) - AY].

2m 2 K

This means that the forcg shifts the common mean of theassuming that#(3, Y) is convex inY for fixed 3, the inverse
RV's {y;}, which is equilibrium point of all oscillators, by | egendre relation is

Ay = \/K, as expected. This concludes Examplé1l.

Consider next the partition function F(B,Y) = max[G(B,A) +AY]

Za(B2) = 3 e PE@ ATl = max[\Y — kT
Ty 1 ]
; o ' lim =1 —BlEo(T)=A 3, il
The Gibbs free enerdyper particle is defined as non wz;/e
Gu(B2) = — kT In Znn(ﬁ, A) = kT- max [BAY —
and the asymptotic Gibbs free energy per particle is lim L In Z e~ BEA(T) | BAY; i
n—oo N
G(B,A) = lim G,(8,)\).
(8,2) n—00 (8,2) = kT -max[sY—
What is the relation between between the Helmholtz free
energy 6;1nd the bGibb? free energy? Ke(tI?,Y)r? ﬁ"s“”‘y’ lim Lo [ 3 eta@ oz | | (q)
enote the number of microstatége, y)} for whic n—oo n X
Zﬁo(:ci) =nFE and Zyl =nY. where in the last step, we changed the optimization variable
i i A to s = B for fixed 8. Sinces is proportional toX for fixed

. 8, and A designates force, we will henceforth refer 4also
The Gibbs free energy has a meaning similar to the of the Healmh ‘ ) i i i i ;
free energy (see footnote no. 1), but it refers to partialkwdhe difference as ‘force (althOUQh Its phySICal units are dlﬁerent)' wlw

between the Gibbs free energies of two equilibrium pointshis minimum g€t back to eq. (3) soon.

amount of work to be done on the systeother than work pertaining to )

changes in the variable$y; }, in an isothermal process with fixex in the SMore precisely,a, = by, for two positive sequence§a,} and {b,},
a

passage between these two points. means that% log 2 — 0, asn — oo.



B. A Brief Summary of [9] the real rate—distortion function?(A) = ming Rg(A), is
First, recall that in the previous subsection, we mention@ptained by optimization (of either expression) ovgrand

that the Legendre relation the optimur_nQ may, in general, depend qﬁ‘l((_)r equivalently_,
on A). In this situation can no longer be given the meaning
S(E) = Iﬁn>ilol[ﬁE + ¢(83)] of degeneracy, because in physics, degeneracy has nothing t

. i o do with temperature.

is similar to the rate .f.unct|on of the large deV|at|ons_event Another limitation of interpretings as temperature, is that
{22 €(xi) < nE} foriid. RV's {z;}, governed by a given it does not extend to two or more rare events at the same
distribution P. The difference is that in the latter, the log+time. For instance, the rate—distortion functidi (A1, As)

moment generating function W.r.t. two simultaneous distortion constraints, with disibn
lnz P(x)e_ﬁg(w)’ measured; andds, is given by the two—dimensional Legendre
- transform
that underg_qgs the Legendre transform, contains weighiyng Ro(A1,As) = —min min |B1A1 + Balg + Z P(z)x
the probabilities{ P(x)}, unlike the log—partition B1<0 B2<0 =

lnz 6_65(1), In <Z Q(jj)eﬁldl(m-,f)ﬁbdz(m-i)) . (4)

which does not. In [9] it was proposed to interpret the wesr;ghb
{P(x)} as being proportional to a factor of the multiplicity of
states{z} having the same energ}(x), i.e., as thelegeneracy
in the physics terminolog§.

When considering applications of large deviations theory ”I'_ L_ARG?DE_VIATION_S AND FREEENER(_;Y _
to information theory, one can view the rate—distortiondun  1he mainidea in this paper is that in order to give a physical
tion (and analogously, also channel capacity) as the largiierpretation to the rate function as the Legendre tramsfo
deviations rate function of the evef}" , d(x;,#:;) < nA}, of the log—moment generating function, we use the Legendre
wherez = (21,...,z,) is a given typical source Sequencéransform that relates the Helmholtz free energy to the &ibb
(i.e., its empirical distribution agrees with the sour& free energy,G(3,A) (cf. eq. (3)), rather than the one that
and {3;} are i.i.d. RV's drawn by a certain random codindelates the Helmholtz free energy to the entropyi). Thus,
distribution . As was observed in [9], there are two wayshe Chemoff variable would be the force(or s) rather than
to express the large deviations rate function of this evedfi€ inverse temperaturg. Also, considering the temperature
which is also the rate—distortion functioR,(A), for the s being fixed throughout, we can view the weight¥z)} (in
given random distributiorQ: The first is by considering all the rate—distortion application) as part of the Hamiltontg,
distortion variable{d(z;, #;)} together, on the same footing Which now may depend on the control parametethis also

ut this does not have any apparent physical interpretation
because there is only one temperature in physics.

resulting in the expression allows combinations of two or more large deviations events
since one may consider a system that is subjected to more
. o - than one force, e.g., two or three components of same force
I(A) = — A P(z)1 pd(e.2) o =90 T '
(4) 15121% pA+ Z (z) DZ Qz)e ’ or a superposition of different types of forces.
xr xT

) ) Specifically, let us first compare the Helmholtz free energy
which can also be obtained (see, e.g., [6, p. 90, Corollagypression (3) to the rate function [5] of the simple largeide

4.2.3]) using different considerations. The second wayois ktions even{>, y; > nY } w.r.t. some probability distribution
separate the distortion contributiong),}, allocated to the p.

various source letteréxz}, which results in

1
_ . I(Y) =max |sY — lim —1In (Z P(y)e’ ZU)
1a) = {A:}: ET%D)%z)AISA zm: Plo) éflz% [FA:+ ’ e Y
s which in the case wher¢y;} are i.i.d. P(y) = [[, P(v:)),
) Q(#)e == boils down to
The identity between these two expressions, as was proved in max sY — lnz P(y)esy] .
[9], means that the outer maximum in the second expression Yy

(maximum entropy) is achieved whei\ } are allocated in Fixing the temperatur@ to somel;, = 1/(kBo), takingy =
such a way that the minimizing temperature paramefgts and Eo(x) = Ely) = —kTyln P(y), we readily see that
are all the same, namely, thermal equilibrium between &t SU7(Y') coincides withF(5y, Y) up to the multiplicative constant
systems indexed by. Once again{Q(z)} can be interpreted factor of kT},, which is immaterial. We observe then that the
as degeneracy, which is fine as long(@ss fixed. However, |arge deviations rate function has a natural interpretatis

the Helmholtz free energy (in units &fl) of a system with
6Another approach, proposed in [13], was to absétbr) as part of the gy ( @ 0) y

Hamiltonian, but then the Hamiltonian becomes temperatigpendent, but Hamiltonian
this does not comply with the common paradigm in statistinachanics. Eo(y) = —kTyIn P(y)



and temperaturdy. As said, the Chernoff parameterhas of s, it is easy to show that any protocol of changifigrom
(again, within the factord,) the meaning of a driving force 0 to s, in a way that includes abrupt changes snwould

that acts on the displacement variablgg} (cf. e.g., the always yield an amount of work larger than or equalf(@)
above example of the one—dimensional harmonic oscillat¢which is consistent with the operative meaninngf) as the
which makes it explicit). For example, in the i.i.d. caseg thfree energy of the system — see footnote no. 1). Thus, for any
driving force s required to shift the expectation of eagh sequences,..., s, of numbers betweef and s, we can
(and hence also of 3", y;) towardsY’, which is the solution sandwichI(s) between two bounds

to the equation

0 sy =1 R -1
Y=o 1D§P<-v>e > sul(0)sy = 00) 1) €3 sl — 00,

or equivalently,
which become tighter and tighter as the partition of therirgke

= M [0, s], defined by{s;}_,, becomes more refined.

Zy P(y) - e For an alternative integral expression, one observes that
The Legendre transform relation between the log—partitiai(y) /ds = <y2>s - <y>§ 2 Var,{y}, namely, the variance of
function and(Y’) induces a one—to—one mapping betweepw.r.t. the probability distributionP,. Thus,

Y ands which is defined by the above equation. To empha-

size this dependency, we henceforth denote the valu¥,of . s

corresponding to a given, by (y),, which symbolizes the I(s) :/ § - Vars{y}ds

fact that it is the expectatidrof eachy;, denoted generically 0
by y, w.r.t. the probability distributionP, = {P,(y)}, where

Pu(y) = Py)e /(Y. P(y)e ),

Y

and

W) = (W)o + /OSVal'g{y}dé.

S P(y) - yesy ) Note that, by the same token, in the interpretation of [9],
= W = glnzp(y)esy- where the Chernoff parameter was the inverse temperature
v Yy 0, that is conjugate to the Hamiltonigh the corresponding

On substituting(y), instead ofY” in the expression defining integral could have been represented’iﬁd(&B =/ ‘,3—?, Q
1(Y), we can re-define the rate function as a function of (tHeeing heat, which is the change of entropy along a reversible

(Y)s

maximizing)s, i.e., process. The corresponding variance expressions woutd the
. . be related to the heat capacity at constant volume. In the mor
I(s) =s(y), — 1HZP(9)€ Y. general context considered here, this is a special caseeof th

Y

fluctuation—dissipation theorem in statistical physids écg.,
Note that I(s) can be represented in an integral form akl0, p. 32, eq. (2.44)]).

follows: We next discuss a physical example which will be directly
. s d(y), relevant for the rate—distortion problem.
I(s) = /0 ds- (<y>5 te ds (y>§> Example 2[7, p. 134, Problem 13]: Consider a physical
(y), system, modeled as a one—dimensional array: aflements
= / §-dy)s - (5) (depicted as small springs in Fig. 2), that are arrangedgalon
wo a straight line. Each element may independently be in one of
Now observe that the integrand is a product of the foke, two states,A or B (e.g., in stated the element is stretched
and an infinitesimal displacement that it works upofy)d = and in stateB, it is contracted, according to Fig. 2). The state

(Y): — (Y)s_qs (Which in turn is the response of the system tof the i—th element; = 1,2,...,n, is labeledz; € {A, B}.

a corresponding infinitesimal change in the force fremds When an element is at state its length isy; and its internal

to 5). In physical termss - d (y); is therefore an infinitesimal energy ise;. A stretching force\ > 0 (or a contracting force,
contribution of the averag&ork (in units of k7y) done by the if A < 0) is applied to one edge of the array, whereas the
driving force § on the displacement variabldg;}. Thus, the other edge is fixed to a wall. What is the expected (and most
integral, /(s) = J §-d(y), is the total amount of work (again, probable) total lengtl. = nY" of the array at temperatufg,?

in units of k7T,) carried out by the forces, as it increases

from zero tos during a slow process that allows the syste YA y5
| |

to equilibrate after every infinitesimally small change dn M
In thg Ianguage of physics, this isra\{ersible processor a L=ny !
guasi-static procesdJsing the concavity off" as a function

7In the sequel, we usg), to denote other moments gfw.r.t. Ps as well. Fig. 2. One-dimensional array of two-state elements.



Since the elements are independent, the boundary point between the two arrays would keep moving
7 A in either directiorf In other words, the equilibrium values of
’1‘(50’ ) Y, andY; are adjusted in a way that

— > exp {—ﬁo lz €z, — A Z y] } Fa(fo. Ya) = max[Ga(fo, A) + AYa]

£1=0 Zn=0 @
_ e—ﬁo(eA—)\yA) _i_e—Bo(EB—)\yB)]n’ (6) and

EFy(fo, Yp) = max[Gy(fo, A) + Y]

and so, would be both maximized by thesame value of A (or,

nGpn(Bo,A) = —kTpln Zn(ﬁo, A) equivalently,s). In this situation, the same value afwould
—  _nkTyln [e,ﬁo(EA,AyA) 4 e—Polen—Ayn) also achieve the maximum of the weighted sum:

«Ga (B0, \) + poGu(Bo, ) + AYo),
The expected length is milx[ (B0, A) + PoGiv(Bo, A) o

9G (Bo, \) which treats the entire system as a whole. The maximizing
ny = -n- # value of A is the one that corresponds to total length This
concludes Example 21

—Bo(ea—Aya) —Bo(es—AyB)
= nlyae +yse ) . (D In the next section, we will see how Example 2 (especially, it

- Y - Y i o
e—Bolea—Xya) 4 e—Bolen—Iyn) second part, with two connected arrays of elements) is lijrec
In terms of the foregoing discussion= 3, the force scaled applicable to the rate—distortion setting.

by 5y, controls the expected length per element which is

IV. RATE-DISTORTION
Y ={y), = yac AT + ype QOEBHyB- Let us consider now the rate—distortion codin bl
8 e—Pocatsya 4 ¢—Poes+syn g problem.
. We are given a source sequenge= (z1,...,x,) t0 be
The free energy per element is then compressed, whose lettefs;;} take on values in a finite
F(Bo,Y) = —kTyIn [e Pocatsva o o~focntsus] 4 kTsy  alphabetX of size K. We assume that the source has a
) _ given empirical distribution? = {P(z), = € X} (typically,
where s is related toY according to second to the lasigjpse to the real distribution), i.e., each letiee X' appears
equatiorj, which is also the value sfthat maximizes the last n(z) = nP(z) times inz. Next consider a random selection
expression. of a reproduction codeword: = (i1,...,4,), where each
Consider now two arrays as above, labelediby {a,b}, reproduction symboli; is drawn iid. from a distribution
which consist of two different types of elements. Arrayhas Q = {Q(2), & € X}, where X is a finite reproduction
n(z) elements, and as before, each element of this array mgihapet of size/. For the most part of our discussion, it will
be in one of two states/l or B. When an element of array e assumed that even if the desired distortion level vatiies,
x is at statez, its length isy;|, and its internal energy is random coding distribution) is nevertheless kept fixed, for the
€3|2- The two arrays are connected together to form a largggye of simplicity’ It is well known that the rate—distortion
system with a total ofr = n(a) + n(b) elements, and this fynction of the sourceP, w.r.t. a given distortion measure
larger system is stretched (or shrinked) so that its edges g7, ;) is given by the rate function of the large deviations
fixed at two points which are at distane& far apart. What event{>"" d(x, &) < nA}.

is the contribution of each individual array to the totaldém Occasioinally, instead of working with the reproduction

nY, and what is the force ‘felt’ by each one of them? symbols as our RV’s, we will sometimes work directly with
Denotingp, = n(a)/n andp, = n(b)/n, the total free the distortions{d(x;, ;)} incurred, which will be denoted by
energy per element is given by {6;} (playing the same role ag;} thus far). Accordingly, we
define
paFa(BmYa) +prb(BOaY27) R
Yo — paY, Q(5|I) = Z Q(I)
= paFu(Bo,Ys) + poly (60, T) ;o (8) (@ d(a,8)=5)

WhereFa ande are the Helmholtz free energles per element 8This is similar to the classical mechanical equilibrium vbetn two

.. . volumes of gas separated by a freely moving plate, whichileted at the
(cf. above) pertaining to the two arrays, respectively, arb(gim where the pressures from both sides equalize.

Y, andY; are their normalized lengths. At equilibriurp, 9A word of clarification is in order here: Earlier, we mentich¢hat the

minimizes this expression, and the minimizipg solves the optimumQ may depend om, or equivalently omA. In the sequel, we describe
certain processes along which the distortion level vaséating from a very

equation: high distortion levelAy, and ending at a given, desired distortion levAl,
To make a statement concerning the rate—distortion fumcttmmputed at
w = M . the latter distortion level,R(A), we can always pick the optimur@ for
oYy Y=Y, oYy Y =(Yo—paYa)/pt this target value ofA and keep it fixed, even when considering the above—

S mentioned higher distortion levels. Thus, in these proegs$or distortion
But the left—hand side i3, = kTys,, the force felt by array levels aboveA, we will, in general, ‘move’ along the curv&gq (-), which
(a), and similarly, the right—hand sidels = kTys,, the force is the rate—distortion function with an output distributiconstrained taQ,

. . . rather than the curve?(-). Of course, the two curves intersect at distortion
felt by array (b) The last equation tells us that in meChaln'CA. The analysis can be modified to alla@ depend ons along the process

equilibrium they are equal, which makes sense, as otherwiseé: comment no. 4 on this in Section 6).



Thus, we think of the distortiow as a RV drawn from expressions should coincide. This means, among otherghing
a distribution Q(d|«) indexed by the corresponding sourcehat the typical relative contribution of each source symbo
symbolz, rather than as a function af and a RVz, whose to the distortion behaves exactly like the relative lengtiis
distribution Q (&) does not depend an. The large deviations the individual arrays when they lie in mechanical equiliioni

event under consideration is the}_;_; & < nA}, where  Formally, the following proof is similar to that of [9,
{é:} are still independent, but no longer identically distrétit Theorem 1], but for completeness, we provide it here too. We

For eachu € X, n(z) = nP(x) of these RV’s are drawn from first prove that/(A) > I(A) and then the reversed inequality.
Q(d)z). The large deviations rate function, obtained when all

{4;} are handled as a whole, is given by

I(A) = . Zfex P(I)A < - Z P(z max [s2Ax
I(A) = max SA — Z P(z)In <Z Q(6|x)es‘s>] .
ceX 5 In (ZQ §|z)e )]
In analogy to the results of [9] (see also Subsection 2A), g
another look is the following: Consider the partial disionts, = min max [sg P(x) Ay —
sorted according to the underlying source symbols, i.e., fo (P Yuea P@)AcSA} I3 5020
eachz € X, >, . _, d; is the total distortion contributed by
x. Clearly, the large deviations event under discussion rsccu In (Z Q(0]z)e> )]
iff there exists a distortion allocatioR = {A,, = € X'} with
Swex P(@)A; < A such thaty, 6 < n(z)A, for > min max »  [sP(x)A,—
{D: X cx P(@)Ar<A} s<0

all z € X. Thus, it can be thought of as the union (over all zEX
possible distortion allocations) of the intersectionssfo¥) of

the independent events ", . _ v < n(z)A,}. As shown In (ZQ ol )]

in [9], since the effective number of distortion allocatiois

polynomial inn, the probability is dominated by the worst N Z A, P(x)
; ; ; min max | s +P(x)—
allocation, which yields T D T.ex Pa.<a) 520 |
I(A) = min P(z) x )
& {D: T,cn P(@)As<A} ; (@) > P(z)ln (Z Q(5|J:)655>
xEX i
— $a0 > A—
o Sca —In <;Q(6|x)e )1 © - (D zzgx Plo)As <A}I?33<[S
We argue thatf(A) = I(A) and hence both coincide with Z P(z)In (ZQ d|z)e’ )
the rate—distortion functioRg(A) w.r.t. the random coding TEX
distribution Q.
Before we prove it formally, we comment that the intuition = max sA—» P(z)n Z Q(d]z)e
comes from interpreting the expressions of the rate funstio TEX
the framework of the above example of stretching/contacti = I(4), (10)

concatenated one dimensional arrays of elements. Here, we

have|¥| = K different arrays at temperatui, concatenated \yhere we have used the fact that the sum of maxima is cannot
together to form one larger system with a totahoélements. o smaller than the maximum of a sum, as well as the fact
Each individual array is labeled by € A and it contains ihat the optimuns is to be sought in the range< 0, and so,

n(z) = nP(r) elements. Each such element may be in ong L P(x)A, <A impliessy, . P(x)A, > sA.

of J states, labeled by € X. The ‘length’ and the internal n the other_direction lets* ””Se the achi;ver off (A)
energy of an element of array at statez are 0;|, = d(x, %) namely, the solutions to the equation '

and e;, = —kTpInQ(#) (independent ofr), respectively.

Upon identifying this mapping between the rate—distortion

problem and the physical example, we immediately see that 0 5

their mathematical formalisms, and hence also their ptigser A= Z P(z)In Z Q(dlz)e
rzeEX

are precisely the same. Indeed, the expressiof(4) is the
Helmholtz free energy (in units &fI) per element (pertaining
to the entire system as a whole) when the total length @\d consider the distortion allocation

shrinked tonA. On the other hand, the expression Igf\)

describes theninimumHelmholtz free energy (again, in units

of kT,) across all partial length allocation§(z)A,}pex x = l— In <ZQ 8|z )]

that comply with a total length not exceedimg\. But this s=s*

minimum free energy is achieved when all individual arrays

‘feel’ the same force, i.e., the same valuespf Hence, the two which obviously complies with the overall distortion con-



straint. Thus, Upper and lower bounds can be obtained from

= -1
I(A) = min P(x) x
@ = o W zn 22 7@ S P)- Y sil(8),,, 0 — (0),)
zeX i=1
5 < Ro(A)
g%}é s:Az —In <ZQ d|z)e )] -
< Z P(z) - Zsi+1(<6>si+1|m —(0),2)-  (14)
< Z P(x - max Sz A Z (8]z)es0 TEX i=1
TEX 3 The integrated variance formula above can also be repredent
. a
= ) Pa)|s'A;—In <Z Q(d|x)e* 5)1 s
ceX s Ro(As) :/ ds- Z P(z)-Vary {0} = / ds-§-mmses),
0 zeX
_ * _ s*5
= 54 Z P(z)ln <Z Qe ) where mmsgs) is the minimum mean squared error (MMSE)
N vex 0 11 in estimating the RW based onz, when they are jointly dis-
= I(4). (1) yibuted according taP, (z,5) = P(x)Ps(6]z), with P, (5]z)
This completes the proof thd(A) = I(A). O being defined as
i - ion in thi - Py(3|z) = _ QQz)e”
Comment:As noted in [9], our discussion in this section, as S5 QU |z)esd

well as in the next section, applies to channel capacity too, _
provided thatP = { P(z)} is understood as the channel outpu@‘t the same time, the distortion itsel{y) , which we also
distribution, Q = {Q(@)} is the random (channel) codmgdenOte byA, can be represented using similar integrals, but

distribution, the distortion measure is taken to dfe;, #) = Without the factors at the integrand:
—InW(z|%), where W is the transition probability matrix A = (6
associated with the memoryless channel, and the “distortio ° s
level” is set toA = — 3" . Q(2)W (z|) In W (x|2). In this = > P {@01 +/ ds - Vargz{é}}
case, the maximizing is alwayss* = 1. TEX 0
= Ay +/ ds - mms€s). (15)
V. INTEGRAL REPRESENTATIONS 0

Example 3.Consider the binary symmetric source (BSS) and
the Hamming distortion measure. In this case, the optinjum
is also symmetric. Heré is a binary RV with P{§ = 1|z} =

(1 + e®) independently ofc. Thus, the MMSE estimator
0 based one is

In view of the observations made in Section 3, it is inter
esting to represent the rate—distortion function as mechan .
work carried out on the distortion variable along a revdesib
process, as well as in terms of the integrated variance of tﬁ

distortion: c e
ol 1+es’
Ro(A) = Y P(x)- /<5> §-d(0)g, regardless of;, and so the resulting MMSE is easily found to
zeEX Olz be
eS
= > P / ds- 5 Var, {6}, (12) mmsés) = Ate)
reX
) < ) ) Accordingly,
wheres is related toA via the relation .
A_1+/S e’ds e’
> P@)(8),,=A T2 ), Urer 1te
reX and
and where(s), . and Vag, {0} are defined in the spirit of S setds
the earlier definitions ofy)_ and Var{y} except thaty is R(A) = / —
I 2. . 0 (1 te )
replaced bys and P, now includes conditioning on. l.e., s6°
= In2+ —1In(1+¢°
By — SadQla)e AN ETTR
s|w S, Q(0|z)e? — 2 hy (1 e )
+e°
and = In2—hy(A), (16)
_ 2 s6
Var, {0} = 2500~ Ojo) Q(f|x)e wherehs(u) = —ulnu—(1—u)In(1—w) is the binary entropy
25 Q(6]w)e function. This concludes Example Bl
> 562Q(0|w)e? <6>2 (13) The integrated variance expression can be generalized as
N O (S 080 sla -

follows: Let § = t(z,%) be a given function ofr and z

225 Q(8lz)e
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and let(¢), denote the expectation ofx,z) w.r.t. the joint s; ands; may designate two different types of forces (e.g.,
distribution of x and & defined by a mechanical force and a magnetic force). Either way, our
derivations extend quite straightforwardly to this segtin

~\ ,sd(x,&
Py, 3) = L@ (< A})_
2 Q(@)esdl? 4) As mentioned before, we assumed throughout the derivatio
This characterizes the expected (and typical) value tifat the random coding distribution is fixed, independently
%Z?:l t(x;, &;), wherez = (i1, ..., %,) continues to be the of the distortion level, that is, independently ef This is
codeword that encodesfrom a rate—distortion code designedvhy we described?(A) as a process along the curd&,(-)
and operated with the metri¢1° Then, with the understanding thaf) is chosen to be optimum
s for the target distortionA. One can modify the analysis to
), = (0), +/ ds - Z P(z) - Covy|.{0, 6}, correspond to a process alorg(-). As mentioned earlier,

0 TEX however, in most cases, the optimuth depends ors, and
where Covyj,. {6, 6} is the covariance betweeh= t(z, &) and this dependency requires correction terms that depend on
§ = d(z, #), induced by the expected values of some derivativeslof)(z) w.r.t. s.

N sd(z.3) In the analogous physical interpretation proposed here,
Q.(3|z) = Q(“’)f — continues to be an external control parameter that afféets t
> Q(3)esd@a) Hamiltonian. The dependence of the Hamiltoniansawould

for fixed x. This is integral form is a somewhat more genDOW be non-linear, but this may still be physically relevant

eral version of the fluctuation—dissipation theorem, et o .
above. 5) This interpretation as free energy opens the door to new

points of view on the rate—distortion function, e.g., as kvor
done on the distortion variable along a slow process, or as

VI. SUMMARY AND CONCLUSION ) -
. integrated variance (or MMSE).
In this work, we have proposed another look at large

deviations rate functions (or Chernoff functions), where
the Chernoff parameter is viewed as ‘force’ rather than as

temperature. This leads to the interpretation of fundaalent!! G. B. Bagci, “The physical meaning of Renyi relative trepies,’
tities in information theory, like the rate—distortio ,, 2 \v:¢ond-may0703008vi, March 1, 2007.
quanti Y [2] A. H. W. Beck, Statistical Mechanics, Fluctuations and Nqigedward

function and channel capacity, as free energies of certain Amold Publishers, 1976.
physical systems. This interpretation has the followin§l T. M. Coverand J. A. Thoma&lements of Information Thearysecond
d tages relative to the one proposed in [9] edition), John Wiley & Sons, Inc., New York, 2005.
advantag prop : [4] I. Csiszar and J. Korner/nformation Theory: Coding Theorems for
Discrete Memoryless Systemdew York: Academic, 1981.
1) As explained in Subsection 2B, there is no need to intérpfel A. Dembo and O. ZeitouniLarge Deviations Techniques and Applica-
d dina distributions as degenerac tions, John and Bartlett Publishers, 1993.

random coding di g Y. [6] R. M. Gray, Source Coding TheonKluwer Academic Publishers, 1990.

[7] R. Kubo, Statistical MechanigsNorth Holland Publishing Company,

2) As a consequence of 1), we are able to construct an Amsterdam, 1961.

. . D. McAllester, “A statistical mechanics approach to der
example ofaphysmal system whose behavior is analo(-:loug%]odeviations theorems,” preprint, 2006. Available on-linet: a

that of the rate—distortion coding problem. The propertoés [http://citeseer.ist.psu.edu/443261.html].
this system were described in the second to the last paragrégh N- Merhav, "An identity of Chernoff bounds with an integgation in
f the Introducti statistical physics and applications in information thgotEEE Trans.
0 € Introducton. Inform. Theory vol. 54, no. 8, pp. 3710-3721, August 2008.
[10] M. Mézard and A. Montanarilnformation, Physics, and Computation
3) This interpretation generalizes to rate functions of ©Oxford University Press, 2009.

. . . .[11] H. Qian, “Relative entropy: free energy associatecheijuilibrium fluc-
combinations of rare events. In this case, the rate funcuBn tuations and nonequilibrium deviations?hys. Rev. Evol. 63, 042103,

involves several Chernoff variables (one per each event), 2001.

which may correspond to a system with several forces, eddfl K. Rose, "A mapping approach to rate-distortion conapion and
. . . . . analysis,”|IEEE Trans. Inform. Theoryvol. 40, no. 6, pp. 1939-1952,
one acting on its own variable (cR2(A;, A3) in Subsection November 1994.

2B). Our earlier physical example of a one—dimensionalyarrgia] 0. shental and I. Kanter, “Shannon meets Carnot: gémedasecond
can now be extended to two dimensions, where the elementsthermodynamic law,’
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are arranged in a rectangular latuce, and each elemen ?T. Shinzato, “Statistical physics and thermodynanaiodarge deviation,”
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i oAy T 0 e MM, 2 e i . 3 b Lo s on e s
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measure — although the codebook is designed and operatgt/aeio the
metric d, its performance can also be judged relative to an additioretric
t. If t(x, 2) depends orf: only, it may serve as a transmission power function
TI(2) (in joint source—channel coding) or it can be the length fiamcé(z)
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