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An Integer Linear Programming Approach for 
the Analysis of DTM Strategies 
Tomer M. London, Uri C. Weiser, Aviad Cohen 

Abstract— As the number of cores in multicore processors and their operating frequency continue to grow, processor power 

consumption increases and leads to an escalation in chip temperatures. This escalation causes today’s multicore 

processors’ performance to be limited by chip thermal constraints rather than process technology or circuit design. As a result, 

Dynamic Thermal Management (DTM) has an increasingly significant role in the design of new microprocessors. 

We propose a new way to design and quantitatively analyze DTM strategies. Using Integer Linear Programming, we compute 

optimal offline DTM strategies that achieve maximal performance and meet thermal constraints. By analyzing the optimal 

strategies, we are able to calculate the upper bound on DTM performance, to identify optimal strategy patterns and to compare 

the thermal limitations of several microprocessor layout designs. 

We employ offline Optimal DTM analysis on the case of Multicore Task Scheduling DTM. We find that this analysis suggests 

that a layout of many small cores is more thermally efficient than a layout of several large cores. The analysis further suggests 

specific task scheduling algorithm guidelines that maximize performance under thermal constraints. In addition, we compute 

and analyze the optimal multicore task scheduling strategies for DVS/DFS-based mechanism and Stop&Go DTMs 

——————————   �   —————————— 

1. INTRODUCTION 

hile multicore processors leverage the parallelism 
of multi-threaded applications to achieve higher 

performance, the increased on-chip parallelism results in 
greater power densities that may lead to a dangerous in-
crease in chip temperatures  [1]. As high temperatures can 
cause functional failures, reliability reduction and 
changes in circuit timing  [5], today’s multicore processors' 
performance is most often limited by thermal constraints 
rather than process technology or circuit design con-
straints  [1].  

In order to mitigate the thermal problem, com-
puter architects design Dynamic Thermal Management 
(DTM)  [3] mechanisms that monitor and dynamically 
reduce the chip’s temperatures via regulation of the on-
chip power distribution. Several DTM techniques had 
been proposed such as Stop&Go (global clock toggling) 
 [3], local toggling  [5], activity migration  [4], thread migra-
tion, dynamic voltage/frequency scaling and multicore 
Temperature Aware Task Scheduling  [11]. In most cases, 
the DTM design process is rather empirical and involves 
using ‘trial and error’ with various simulators to fine-tune 
algorithm parameters. In general, this design process 
does not achieve the optimum performance. 

In this paper, we propose a new approach to de-
sign and quantitatively analyze DTM strategies and em-
ploy this approach on multicore task scheduling DTM. 
We use use Integer Linear Programming  [23] to compute 
offline optimal DTM strategies that achieve maximal per-

formance within chip temperature limits. We then ana-
lyze the behaviors of the optimal offline strategies and 
find specific strategy patterns that are desirable for DTM 
behavior. Finally, we use these patterns to formulize the 
on-line behavior of the DTM mechanism to be designed. 

In addition to formulating the desired behavior 
of online task scheduling, we compute its upper bounds 
on performance and devise a method to compare and 
identify the thermal limitations of microprocessor layout 
designs. We find that the multicore layout has a crucial 
effect on the thermal limitation of the microprocessor, and 
by comparing several multicore layouts we are able to 
identify several simple layout design guidelines in the 
case of multicore task scheduling. Besides its application 
to multicore task scheduling DTM, we show that our ap-
proach also suggests important design guidelines for oth-
er DTMs such as multicore DVS/DFS-based mechanism 
and Stop&Go (global clock toggling) DTMs. 

The rest of this paper is organized as follows: In 
section 2, we discuss previous work on DTM design and 
analysis, section 3 contains the formulation of the Ther-
mal Multicore Task Scheduling DTM optimization prob-
lem and the model we use. In section 4, we describe the 
methods we use to compute the optimal solution while in 
section 5 our results for Multicore task scheduling, multi-
core DVS/DFS-based mechanism and Stop&Go DTM 
mechanisms are presented. Finally, in section 6, we dis-
cuss our conclusions and future research directions. 

2. RELATED WORK 

Brooks et al. introduced Dynamic Thermal Man-
agement (DTM) as a solution for microprocessor thermal 

problems  [3]. Since then, several different DTM mechan-
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isms were proposed, such as Stop&Go (global clock tog-

gling)  [3], local toggling  [5], activity migration  [4], thread 
migration, dynamic voltage/frequency scaling and multi-

core Temperature Aware Task Scheduling  [11]. These 
mechanisms were shown to be applicable by Donald and 

Martonosi  [17] to both single core systems and multicore 
systems. 

In most of the above cases, the DTM design 
process includes using architectural and thermal simula-
tors and ‘trial and error’ to fine-tune algorithm parame-
ters. An alternative, more precise approach is to design 
the DTM by using optimization methods to compute the 
offline optimal algorithm that reaches maximal perfor-
mance and meets thermal constraints. This approach was 

used on Dynamic Voltage Scaling (DVS) DTM  [2] and on 

Dynamic Frequency (DFS) Scaling  [15]. There, it is pro-
posed to solve the DVS/DFS optimization problem using 
optimal control methods. In addition, an analysis of the 
optimal strategy of a simple single-block thermal model is 
given, but more complex scenarios remain unexplored. A 
similar approach to solve the multicore DFS offline opti-
mization problem, which is based on convex optimization 

rather than optimal control, was shown in  [20]. Another 
alternative approach to design DTM is the analytical ap-
proach that seeks to optimize online algorithm parame-
ters and formulate closed analytical solution for the DTM 
optimization problem. This approach was used on single-

core DFS in  [16] and on multicore DFS in  [19]. Mathemat-
ical optimization of single-core voltage scheduling was 
also used for purposes other than thermal controllers, 

such as energy minimization in  [13] and  [14]. 
Unlike previous work, our analysis of the optim-

al strategy relies on a multi-block layout rather then a 
single-block layout. This approach is more realistic and 
thermally accurate. Our optimization method relies on 
Integer Linear Programming as oppose to Convex Opti-
mization or Optimal Control. Because our problem is dis-
crete, the other optimization methods can not be applied. 
Finally, we also innovate by investigating the effects of 
optimal DTM on chip layout design.  

3. MULTICORE TASK SCHEDULING UNDER 
THERMAL CONSTRAINTS  

Multicore Task Scheduling is a DTM mechanism 
for multicore systems that schedules tasks to cores at giv-
en time intervals, according to the temperatures present 
in different regions of the chip  [11]. Our goal is to com-
pute the multicore task scheduling strategy that achieves 
maximal performance while meeting thermal constraints 
for a given workload. In order to compute an optimal 
offline strategy, we use Integer Linear Programming (ILP) 
optimization which requires the definition of a search 
space, a set of constraints and an objective function to 
maximize.  

In this section, we present the model we used to 
formulate the search space, constraints and objective 
function. The model is approximate and is derived from 
analytic formulas and simulation results. The model is 

simple and can be further expanded. 

3.1 Task Energy Model 

We define multicore task scheduling as the prob-
lem of determining the assignments of unit-tasks to spe-
cific cores in specific times, where each unit-task is iden-
tical in duration and energy consumption to the others. 
This model is derived from the idea that longer tasks can 
be broken into several shorter unit-tasks. We used a sim-
plified task energy model: 
The tasks: Tasks can be broken into different amounts of 
unit-tasks. We assume the system contains: 

 identical unit-tasks

Each unit-task consumes  [J]

T
n

E

→∞
 (1) 

The scheduler: Each core can handle only one unit-task at 
a time period. The assignments are done on a discrete 
time basis: each time period, assignments are being made. 
There are 

P
n  time periods, each with t∆  length. This is 

the scheduling partition: 

0 10, , ... ,
Pn Pt t t t n t= = ∆ = ⋅∆  (2) 

The multicore system: The system contains 
C
n  cores that 

are able to complete one unit-task in one time period t∆ . 
Performance metrics: Since unit-tasks are identical in 
duration, we define the objective function of our optimi-
zation to be the amount of unit-tasks completed in time 

throughout the scheduling period [0.. ]
Pn
t . 

Thermal constraints: The system is able to successfully 
complete tasks when its maximum junction temperature 
is below 

m ax
T . Thus, our constraints are that tempera-

tures do not cross 
m ax
T

 
in any scheduling time period 

0 1, ,...,
Pn

t t t . There is no need to calculate the chip tempera-

tures within the time periods because, for a given task 
assignment strategy and a time interval, the temperature 
function in respect to time is monotone within each time 
interval. 

3.2 Thermal Model 

In order to express the thermal constraints as 
analytic formulas of the task scheduling strategy, we use 
the RC-network thermal model  [5]  [10]. Our thermal 
model captures the following thermal scene: 
Heat is generated at the cores, in the junction area (the 
lowest vertical layer). Cooling is accomplished by isotrop-
ic 3D heat conduction towards a heat sink through a stack 
of thermal blocks. The thermal blocks represent the sili-
con chip, the Thermal Interface Material layer and a heat 
sink. 

The RC-network thermal model requires the sys-
tem to be divided into a number of

 
thermal blocks where 

each block is assigned a temperature in each time period. 
As an example, several divisions of a 4 cores system to 9 

thermal blocks are illustrated in Figure 6. The thermal 

model is based on the duality between heat-flow and elec-
trical current.  

In our thermal model, we use a 3-dimentional RC 
network and connect each thermal block through a capa-

citor iC  to the ground modeling its heat capacitance. We 
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only assign power sources to blocks of cores in order to 
model core activity. Between neighboring nodes, a ther-

mal resistance 
ij
R   is added to model the lateral and ver-

tical heat conduction path. We connected all the blocks in 
the top layer to the heat sink node. An example of a ther-

mal RC model is illustrated in Figure 1. A comprehensive 
analysis of RC thermal model is found in  [5]. 

3.3 Calculating Chip Temperatures 

By applying Ohm and Kirchoff laws to the net-
work, we are able to express the chip temperatures as a 
function of the power assignments. The application of the 
laws yields a first order differential equation in the fol-
lowing form:  

( ) ( ) ( )T t Q T t S P t= ⋅ + ⋅
r r r&

 

To prove this equation, we define capacitance matrix 

1 2
( , ,..., )

Bn
C diag C C C=  and conductance matrix: 

1

1
, if  

1
, if 

B

ij

ij n

k ik

i j
R

G

i j
R=

 ≠


= 
− =
∑

 

Then the application of the Ohm and Kirchoff laws yields: 
1 1T C G T C P− −= ⋅ + ⋅

r r r&
 

This means that for our purposes, we define:  
1 1 and Q C G S C− −= =  (3) 

And we finally get: 

( ) ( ) ( )T t Q T t S P t= ⋅ + ⋅
r r r&

 (4) 

This differential equation will later help us to
 
express the 

thermal constraints as analytical formulas of the task 
scheduling strategy. 

4. OFFLINE OPTIMIZATION OF MULTICORE TASK 
SCHEDULING 

In this section, we will use our model to formu-
late the optimization problem as an instance of Integer 
Linear Programming and then solve it using Integer Li-
near programming solvers. 

4.1 Integer Linear Programming 

Integer linear programming (ILP)  [23] is a class 
of optimization problems with a linear objective function, 
subject to linear equality and inequality constraints where 
the optimization variable is integer. Any ILP problem can 
be described by: 

max

, , , 

T

n

p x

Ax b

n mx p R b R A M
m n

⋅ →

≤

∈ ∈ ∈ ∈
×

Z

 (5) 

Where
Tp x  is the objective function which is linear in re-

spect to the optimization variable x. The inequality Ax b≤  
defines a set of m linear constraints that specify a convex 

polyhedron search space where the solution is to be 
sought. 

4.2 The Optimization Problem 

Our offline optimization problem is to find a 

multicore task scheduling strategy f̂  that maximizes 

performance for a given workload and complies with 

thermal constraints over time intervals 0 1, ,...,
Pn

t t t . For a 

multicore system with 
C
n  cores and 

B
n  thermal blocks, 

and given 
T
n → ∞  unit-tasks and a time partition made 

from 
P
n  time periods, we present the optimization prob-

lem as follows: 

Search space: The search space consists of all task sche-

duling strategies f̂ . f̂  is a binary vector of size 
C P
n n⋅ , 

where a ‘1’ on the 
C

i n j⋅ +  element means that a unit-

task is assigned at time period i , on core j  and ‘0’ means 

that no unit-task was assigned as illustrated in Figure 2. 

Objective function: The performance function ( )ˆPerf f  

gives the number of unit-tasks completed in the system 

after Pn  time periods. 

( )
1

0

ˆ ˆ
P C
n n

i

i

Perf f f

⋅ −

=

= ∑
 

Constraints: ( ),

ˆ
i j
B P

Temp f  is the temperature calculated 

for block i  at time period j . The temperatures are to be 

kept below 
Max
T at all times.  

It is now possible to define the above optimiza-
tion problem in a more compact form: 

1

0

ˆ max
P C
n n

i

i

f

⋅ −

=

→∑  (6) 

s.t. 

 

Power Source

Thermal Resistance

Node with Thermal

Capacitance

Ambient T

Core 0

Core 1Core 3

Core 2

 

Figure 1. Thermal RC-network model for a 4-cores microprocessor. 
The cores are located in the corner nodes of the lower layer. 

f̂ 1 0 1 1 0 1 1 1 0…

Time Period 0 Time Period 1

Core 

0

Core 

1

Core 

2

Core 

3

Core 

0

Core 

1

Core 

2

Core 

3  
Figure 2. Binary strategy vector for the case of a system with 4 cores. 
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( ),

ˆ
i j
B P Max

Temp f T≤  (7) 

ˆ {0,1} P C
� �

f
⋅∈  (8) 

4.3 Describing the Constraints in Linear Form 

In order to complete the formulation of our op-
timization problem to ILP form, we must also formulate 

the constraints ( ),

ˆ
i j
B P Max

Temp f T≤  in a linear form such 

as: ˆA f b⋅ ≤ . 

Previously in equations 3, 4 we showed that the 
RC-model gives us the following linear differential equa-
tion for the case of constant power in each interval: 

( ) ( ) ( )T t Q T t S P t= ⋅ + ⋅
r r r&

 

Where: 
 

1 1 and =Q C G S C− −=
  

After solving the differential equation for a constant pow-

er P
r

and start condition 
0

(0)T T=
r r

 we get: 

0
( ) ( ) ( )T t t T t P= Γ ⋅ + Φ ⋅

r r r
 

Where:  

1

( )

( ) ( )

Qt

Qt

t e

t e Q S
−

Γ =

Φ = − I
 

If we apply the constant power solution to each schedul-
ing partition interval, we will get that for interval i : 

( ) ( ) ( 1) ( ) ( )T i t T i t P i= Γ ⋅ − + Φ ⋅
r r r

, 1...
P

i n=  

This is a recurrence relation that can be extracted to the 
following formula: 

( )
1

( ) ( ) (0) ( ) ( ) ( )
i

i i k

k

T i t T t t P k
−

=

= Γ ⋅ + Γ ⋅Φ ⋅∑
r r r

, 1...
P

i n=  

This formula expresses the temperatures of each 
block at each time as a linear combination of the initial 
temperatures and the power assignments at all times. 
This is exactly what we wanted.  

To express the coefficients in a single matrix ra-
ther than the sum in the formula, we define recursively a 

sequence of matrices ( )iΛ : 

• (0)Λ  is a 
C C P
n n n×  zero matrix. 

• ( )iΛ , 0
P

i n≤ ≤ , is ( 1)iΓ ⋅ Λ −  with adding the 

C
n  columns of matrix Φ  to columns 

( ) ( )1 1,..., 1
C C C

i n i n n− ⋅ + − ⋅ + .  

Now we describe ( )T i
r

 in this matrix form: 

( ) (0) ( )
i

T i T i P= Γ ⋅ + Λ ⋅
r r r

 

This is a linear connection between the tempera-
tures in scheduling interval i and the power assignments 

vector P
r

. As said in section  3.1, within each interval of 
the scheduling partition, the task assignments are con-
stant and according to the definition of the unit-task in 
equation 1, the power assignments are also constant in 
each interval and consume E  Energy units. Thus the last 
equation is equivalent to: 

ˆ( ) (0) ( )
i

T i T i f E= Γ ⋅ + Λ ⋅ ⋅
r r

 

And if all blocks' temperatures are constrained to be be-

low 
maxT
r

, we formulate the linear constraints to be:  

max

ˆ( ) (0) ( )
i

T i T i f E T= Γ ⋅ + Λ ⋅ ⋅ ≤
r r

 

or: 

max

ˆ( ) (0)
i

E i f T T⋅ Λ ⋅ ≤ − Γ ⋅
r

 

 

And by defining 

(1)

...

( )
P

E

A

E n

⋅ Λ

=

⋅ Λ

 
 
  
 

  and 

1

max

(1) (0)

...

( ) (0)P
n

P

T

b T

n T

Γ ⋅

= −

Γ ⋅

  
  
  
  
  

r

r

r

, we finally get: ˆA f b⋅ ≤  

 
By this, we have completed the formulation of 

our optimization problem as an instance of ILP as shown 
in equation 6: 

1

0

ˆ ˆ[111...1] max
P C
n n

T

i

i

f f

⋅ −

=

= ⋅ →∑  (9) 

s.t. 

ˆA f b⋅ ≤  (10) 

ˆ {0,1}
P C

� �

f
⋅

∈  (11) 

4.4 Solving Integer Linear Programming Problems 

There is no general efficient algorithm for solving 
ILP and it is an NP-hard problem. Nevertheless, there are 
several useful heuristics for solving ILP. It should be 
noted that all of these approaches are still of non-
polynomial time complexity in the worst case, but they 
provide an efficient way to solve ILP in numerous cases.  

In this research we used the Branch and Bound al-
gorithm  [24] as implemented in the commercial Tomlab 
Optimization Toolbox for Matlab v.7.1  [25]. This ap-
proach was successful in solving our ILP problems. 

5. DTM OPTIMIZATION RESULTS AND ANALYSIS 

In this section we compute and analyze the op-
timal DTM strategies using ILP. By analyzing the perfor-
mance and behavior of the optimal strategies we not only 
calculate the upper bound on performance for the DTM, 
but also specify the desired behavior of the online DTM. 
In addition, by comparing the performance of optimal 
strategies in several different chip layouts, we conclude 
which layouts are more thermally efficient.  

5.1 Task scheduling in a single-core 
microprocessor 

To exemplify the concept of offline DTM optimi-
zation, we first introduce a simple scenario. In this DTM 
scenario, described in  [3] the DTM controller is able to 
stall all computation (e.g. by global clock gating) in the 
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microprocessor in order to let it cool. Essentially, single-
core Stop & Go is the single-core version of task schedul-

ing DTM. The layout of the system is shown in Figure 3 

We use a simplified thermal model where we di-
vide the junction area to a 3x3 grid of thermal blocks. The 
core resides in the active central thermal block while all 
the other blocks are non-active and model the much less 
power intensive cache and other subsystems. 
 The optimal strategy and the resulting tempera-

ture evolution are depicted in Figure 4. Observing the 

optimal solution over time, we divide it into two distinct 
parts. In the first part no stalling occurs for numerous 
time intervals (a task is assigned to core 0 in each schedul-
ing time interval) and the temperatures of the chip rise 
steadily, reaching close to 

m ax
T . In the second part, stal-

ling occurs periodically (there are intervals where no task 
is assigned to the core) and the temperatures oscillate 

closely to but never crossing 
m ax
T . In Figure 4, the first 

part takes place in time intervals 1-3 and the second part 
takes place in intervals 4-40. The optimal solution tries to 
keep the temperatures as high as possible without cross-
ing 

m ax
T . The optimal solution does not succeed in keep-

ing the temperatures steady at 
m ax
T . 

We can further formulate this optimal behavior 

as an online strategy: Define controlT  as the minimum chip 

temperature that when present in the system, loading the 
processor for one more scheduling interval will lead to 

crossing maxT  in the next interval. We see that the optimal 

strategy follows the following intuitive rule:  “Keep the 

microprocessor running until it reaches controlT , than halt 

the microprocessor until it cools down to below controlT  

and continue running again”. controlT
 
is easily computa-

ble and should be computed to match the thermal model 
and the task energy model of the optimized system when 
designing the online Stop&Go DTM. 

5.2 Multicore task scheduling in a 4-cores 
microprocessor 

In this DTM scenario, the controller may sche-
dule tasks or stall scheduling for each core separately in 
every scheduling time interval. We present the optimal 
strategy for multicore task scheduling in three different 4-

cores layouts illustrated in Figure 6.  
The optimal strategy and the resulting tempera-

ture evolution for Mid-Side layout are depicted in Figure 

7 Observing the optimal solution over time, we divide it 
to two distinct parts. In the first part no stalling occurs for 
numerous time intervals (tasks are assigned to all cores in 
each scheduling time interval) and the temperatures of 
the chip rise steadily, reaching close to 

m ax
T . In the 

second part, a periodic task scheduling pattern emerges 
in the cores. In this part, the temperatures oscillate closely 

to but never crossing 
m ax
T . In Figure 7, the first part 

takes place in time intervals 1-3 and the second takes 
place in time intervals 4-20.  

Several observations can be made: 

Core

0

 
Figure 3. The thermal model for the single-core Stop&Go scenario. 
The junction is divided into 3x3 blocks. The core resides in the cen-
tral block and it is the only active block in the thermal system. 

Chip’s task assignments

T
e

m
p

e
ra

tu
re

s 
[C

]

Scheduling time intervals

Core 0

Chip’s Temperature Evolution

Time
Scheduling time intervals

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 40

(A)

(B)

 

Figure 4. The optimal single-core Stop&Go strategy and temperatures evolution over time. Graph A shows the temperature curve of the core 
block. Graph B shows the core activation times 
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• It is natural for distant cores to work in parallel 
because it is more thermally efficient than having 
close cores to work in parallel. In our case, cores 

0 and 3 are distant across the chip (see Figure 6) 

and therefore form an assignment group. The 
second assignment group contains cores 1 and 2. 

• Switching periodically between assignment 
groups lowers the overall temperature of the 
chip. A scheduling strategy should use all the 
cores available. 

• There can arise a thermal opportunity to break 
the pattern and assign more tasks (see schedule 
intervals 5, 6). These opportunities can be identi-
fied by carefully inspecting the temperature 
curves. 

• The optimal solution does not succeed in keeping 

the temperatures steady at maxT . 

 When designing the online task scheduling DTM, 
one should consider the optimal assignment groups and 
the optimal periodic patterns that match the thermal 

model and the task energy model of the optimized sys-
tem. We have also calculated the optimal strategy for 4-
Corners layout and Grouped layout and found that the 
above analysis applies. 

The performance results of the optimal strategies 
give the upper bound on DTM performance. When com-
paring the performance of the optimal solution in each of 
the above layouts, we discover that Mid-Side layout gives 
the best results, 4-Corners layout comes second, and 
Grouped layout gives the worst results (see Table 1). This 
means that in terms of upper bound on DTM perfor-
mance, the Mid-Side layout is more thermally efficient 
than the other layouts. This result is consistent with the 
fact that in Mid-Side layout, the heat from the cores can 
be conducted through 3 surrounding thermal blocks, as 
opposed to just 2 in the case of 4-Corners layout. In the 

 

Figure 5. Chip layout of AMD Quad Core Shanghai. The 4 cores are 
positioned close together.  [22] 

Core 

0

Core 

1

Core 

3

Core 

2

Core 

0

Core 

1

Core 

3

Core 

2

Core 

0

Core 

1

Core 

3

Core 

2

4-Corners Layout Mid-side Layout Grouped Layout  

Figure 6. The thermal models for the 4-cores task scheduling scena-
rio. The junction is divided into 3x3 blocks. The cores’ corresponding 
thermal blocks are the only power-active blocks in the model. 

Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
75

80

85

90

95

100

105

Thermal time periods

T
e
m
p
e
ra
tu
re
s
 [
C
o
]

Temperatures evolution

 

 

core 0

core 1

core 2

core 3

T
max

Scheduling time intervals

(A)

(B)
Chip’s task assignments

Scheduling time intervals

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5

Core 0

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5

Core 1

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5

Core 2

Core 3

 

Figure 7. Mid-Side results. The optimal 4-cores task scheduling strategy and corresponding temperatures evolution for Mid-Side layout. Graph 
A - temperature curves of the cores’ thermal blocks, Graph B- optimal task assignments for each core (maximizes the total amount of com-
pleted tasks). 



 7 

 

case of Grouped layout, the cores are positioned close 
together to form a typical hot spot and thus give the 
poorer thermal results. Note that many current multipro-

cessors’ floor plans (see Figure 5) are similar to Grouped 

layout in the fact that the cores are positioned close to-

gether, forming a natural hot spot (see Figure 5). This fur-

ther stresses the fact that the performance of a system is 
heavily dependent on its geometrical layout because of 
thermal considerations.  

5.3 Multicore task scheduling in a 9-cores 
microprocessor 

The layout of the system is illustrated in Figure 9, the 

optimal strategy and the resulting temperature evolution 

are depicted in Figure 9. As in previous scenarios, the 

optimal solution can be divided over time to two distinct 
parts. The first "heating up" part takes place in scheduling 
time intervals 1-4 and the second "periodic scheduling 
patterns" part takes place in scheduling time intervals 5-
20. 

The conclusions of the 4-cores scenario also apply 

here with the following differences: 

• In this case, the 9 cores divide into two assign-
ment groups that work in parallel: the even-
numbered cores and the odd numbered cores. 

• The thermal opportunity to break the assignment 
pattern is depicted in schedule interval 17. 

• The optimal solution does not succeed in keeping 
the temperatures steady at 

m ax
T . However, the 

solution manages to oscillate closer to 
m ax
T

 
in 

respect to the 4-cores scenario. This implies that 
the 9-cores task scheduling DTM is more perfor-
mance efficient than the 4-cores task scheduling 
DTM. 

5.4 DVS/DFS-based power assignment mechanism 
results 

In this DTM scenario, the controller is able to 
change the voltage or the operating frequency of the mi-
croprocessor in order to change its power consumption 
and thus cool it down. In this analysis, we assume that 
the controller is able to use the voltage and frequency 
scaling in order to control the exact power consumption 
of the chip over time (e.g. by accurately predicting the 
capacitance of the tasks). Thus, in every scheduling time 
interval, the controller is able to assign exact power con-
sumptions to each core. Essentially, this DTM scenario is 
the "frictional task" version of multicore task scheduling, 
where a friction of the task's energy can be assigned to 
cores. The fact that the power assignments are frictional 

 
Figure 8. The thermal model of the 9-cores task scheduling scenario. 
The junction area is divided into 3x3 blocks. Each core resides in an 
active block. 
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Figure 9. 9-cores results. The optimal 9-cores task scheduling strategy in terms of the amount of completed tasks and corresponding tempera-
tures evolution. Graph A - temperature curves of the cores’ thermal blocks, Graph B- task assignments times for each core. 
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also means that the optimization variable is not obliged to 
be integer so the corresponding optimization problem is 
Linear Programming rather than Integer linear program-
ming. 

We use the 9-cores layout depicted in Figure 9 
and compute the optimal strategy and the resulting tem-

perature evolution as depicted in Figure 10. Examining 
the results, we see that optimal strategy assigns the same 
amount of power to all the cores. This can be explained 
by the fact that each individual core is heated by its 
neighboring active cores whether the core is active or not 
so it’s best for it to just as well be active under the power 
consumption that correspond to its neighboring tempera-
tures. 

We divide the optimal strategy into three distinct 
parts. First, maximal power assignments are made to all 
the cores and the temperatures of the chip rise steadily, 
reaching close to 

m ax
T . Secondly, the power assignments 

magnitude decline exponentially until they reach a cer-
tain constant assignment and the temperatures reduce 
their rising rate and settle exactly on 

m ax
T . In the third 

part, the power assignments and the resulting tempera-
tures remain constant. The first part takes place in Figure 

10in scheduling time intervals 1-4, while the second part 
takes place in intervals 5-10 and the third part takes place 
in time intervals 11-20. This optimal behavior is consistent 
with the analytical analysis done in  [2]. 

Several observations can be made: 

• All the cores are assigned the same power as-
signments in all times. All cores share the same 
temperature. 

• As seen in previous scenarios, the optimal solu-
tion seeks to reach and stay at 

m ax
T . 

• In contrast to previous DTM mechanisms, here 
the optimal solution succeeds in keeping the 
temperatures steady at 

m ax
T . The processor uses 

the entire thermal potential of the system and 
this will have the best performance among the 
DTMs we’ve observed. 

5.5 Performance Comparison 

We computed the performance of the above systems 
in terms of unit-tasks per interval. To make the compari-
son valid, we normalized the unit-task according to the 

number of cores 
C
n  

in each scenario in the following 

way: Each time a core is activated, it completes 1

C
n − unit-

task and consumes 1E−  energy units. The maximum per-
formance measurement of any system is 1. The results are 
shown in Table 1.  

Table 1. DTM performance results 

Task Scheduling 

Scenario 

Normalized 

Performance

DVS Scenario Normalized 

Performance 

Single Core TS 0.5 Single core DVS 0.62 

4-cores TS, 4-

Corners layout 

0.63 4-cores DVS, 4-

Corners layout 

0.68 

4-cores TS, Mid-

Side layout 

0.65 4-cores DVS, 

Mid-Side layout 

0.68 

4-cores TS, 

Grouped layout 

0.61 4-cores DVS, 

Grouped layout 

0.66 

9-cores TS 0.68 9-cores DVS 0.70 

The results indicate that the potential perfor-
mance of task scheduling and DVS rises with the number 
of cores in the system. In addition, the performance of the 
optimal continuous DVS-based mechanisms is superior to 
the performance of optimal task scheduling mechanisms. 
As said previously, the most thermally efficient 4-cores 
layout is Mid-Side layout and the worst is Grouped 
layout. Note that many current multiprocessors’ floor 
plans are similar to Grouped layout [10] in the fact that 
the cores are positioned close together, forming a natural 

hot spot (see Figure 5). 

5.6 The Integrality Gap 

We have seen that the best performing optimal 
DTM mechanism is the DVS/DFS-based power assign-
ment mechanism. Thus, it is interesting to calculate the 
performance gap between a given optimal multicore task 
scheduling mechanism and the DVS/DFS-based power 
assignment mechanism. This gap, in percentage, is called 
the Integrality Gap and essentially expresses how much 
performance a multicore task scheduling mechanism los-
es because it is discrete rather than continuous in nature. 

We compute the integrality gap in several multi-
core layouts and core power consumption values in order 
to test which core consumption is thermally more effi-

cient in terms of optimal DTM solutions. Figure 11 illu-
strates the results. 

 
Figure 10. The optimal 9-cores DVS/DFS based assignment strate-
gy and resulting temperatures evolution. 

Figure 11. The integrality gap and performance over core power 
consumption. 
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Our results show that systems with less power 
consumption per core (e.g. with many small cores) have 
lower integrality gaps and higher optimal strategy per-
formance. These low integrality gaps indicates that the 
optimal task scheduling strategy in these layouts achieves 
performance that is closer to the optimal DVS/DFS-based 
power assignment mechanism. This result is also consis-
tent with the fact that a multicore task scheduling me-
chanism with many small cores has more granularities in 
its control and is thus more flexible in nature. This con-
clusion is consistent with the work of Huang et al. in  [18]. 

6. SUMMARY AND CONCLUSIONS 

In this paper, we propose a new way to design 
and quantitatively analyze DTM strategies. First, we use 
Integer Linear Programming to compute offline optimal 
DTM strategies that achieve maximal performance and 
meet thermal constraints for a given workload. We then 
analyze the behaviors of the optimal offline strategies and 
find specific strategy patterns that are desirable for DTM 
behavior. Finally, we use these patterns to formulize the 
behavior of the online DTM mechanism to be designed. 

We apply offline Optimal DTM analysis on the case of 
multicore task scheduling, Stop&Go and DVS/DFS-based 
power assignment DTMs. Applying the analysis, we for-
mulate the desired behavior of online task scheduling 
mechanisms and compute upper bounds on performance 
for it. We also devise a method to compare and identify 
the thermal limitations of microprocessor layout designs. 
We find that the multicore layout has a crucial effect on 
the thermal limitation of the microprocessor, and by 
comparing several multicore layouts we are able to iden-
tify layout design guidelines in the case of multicore task 
scheduling DTM. 

We identify that optimal DTMs try to reach and keep 

chip's temperatures at MaxT . We also identify that in mul-

ticore systems, the optimal strategy uses assignment groups 
to have distant cores work in parallel and that pseudo-
periodic multicore scheduling patterns occur. We identify 
that direct DVS/DFS-based power assignment mechan-
ism DTM is the most efficient DTM and that it controls all 
of its cores identically. Using the definition of the inte-
grality gap, we also indentify that layouts with many 
smaller cores are thermally more efficient than a layout 
with few larger cores. 

The application of our methodology improves the de-
sign process of DTMs and multicore layout designs. Fur-
ther research directions include improving the accuracy 
of the thermal model, computing optimal online DTMs 
and computing thermally optimal layouts. 
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