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Abstract—We introduce Xampling, a design methodology for
sub-Nyquist sampling of continuous-time analog signals. The
main principles underlying this framework are the ability to
capture a broad signal model, low sampling rate, efficient analog
and digital implementation and lowrate baseband processing. The
main hypothesis of Xampling is that in order to break through
the Nyquist barrier, one has to combine classic methods and
results from sampling theory together with recent developments
from the literature of compressed sensing. In this paper, we
present the Xampling framework and examine several sub-
Nyquist approaches in light of the four Xampling principles. It is
shown that previous methods suffer from analog implementation
issues, large computational loads in the digital domain, and have
no baseband processing capabilities. An exception is the recently
proposed modulated wideband converter (MWC) which satisfies
the model, rate and implementation criteria, though lacking
the baseband processing capability. Here, we extend the MWC
by proposing a digital algorithm which extracts each band of
the signal from the compressed measurements, thus enabling
lowrate (baseband) processing. The converter with the proposed
algorithm conforms with the Xampling desiderata. In addition,
we describe two configurations of the converter for efficient
spectrum sensing in wideband cognitive radio receivers. In the
second part of this work we study theoretical aspects of rate and
stability of sub-Nyquist systems, following the pragmatic theme
of the Xampling methodology.

Index Terms—Baseband processing, cognitive radio, com-
pressed sensing, modulated wideband converter, sub-Nyquist
sampling, Xampling.

I. INTRODUCTION

S
IGNAL processing methods have changed substantially

over the last several decades. The number of operations

that are shifted from analog to digital is constantly increasing,

leaving amplifications and fine tunings to the traditional front-

end. In the chain of sampling, processing and reconstruction,

the conversion to digital has become a serious bottleneck.

While technology advances enable mass processing of huge

data streams, the acquisition capabilities do not scale suffi-

ciently fast [1]. For some applications, the maximal frequency

of the input signals, which dictates the Nyquist rate, already

exceeds the possible rates achievable with existing devices.

Sampling theory, the gate to the digital world, is needed to

break through the rate bottleneck.

Consider the scenario depicted in Fig. 1, which is prevalent

in communication systems. A few narrowband transmissions

are modulated onto carrier frequencies fi, which can take

on any value below fmax. This leads to a multiband spectral

support that occupies only a small portion of the wideband
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Fig. 1. Three RF transmissions with different carriers fi. The receiver
demodulates each transmission separately and samples the baseband version.

spectrum defined by fmax. The receiver converts each trans-

mission to digital by demodulating the carrier frequencies fi.

Once the transmission contents appear at baseband, that is

near the origin, they are lowpass filtered and sampled at a

low rate. In the example, the three concurrent transmissions

result in a signal x(t) which is supported on N = 6 frequency

intervals, or bands, each of width not greater than B Hz. This

approach leads to sampling at a rate that is proportional to

NB, rather than to the radio-frequency (RF) fmax, which can

be prohibitively large in modern applications. Depending on

the modulation technique, the information, either a bit steam

or an analog message, is extracted from the samples. Often,

this operation involves a matched filter.

Digital signal processing (DSP) is the crowning glory of

the chain of blocks in Fig. 1. The prime goal of analog to

digital conversion (ADC) is isolating the delicate interaction

with the continuous world, so that sophisticated algorithms

can be developed in a flexible software environment. Digital

filtering, channel equalization, system identification, blind

source separation, noise shaping and a rich variety of software

algorithms – all lie under the DSP block of Fig. 1. Besides

processing, reconstruction of the input x(t) can be obtained by

digital to analog conversion (DAC) and remodulating onto the

original carriers fi. This option is useful in relay stations that

re-transmit the input after local improvements to the signal. All

digital computations are carried out at the actual information

rate, which is referred to hereafter as baseband processing.

Utilizing the scheme of Fig. 1 requires knowing the carrier

frequencies fi. As explained in Section II, this approach can

tolerate only slight deviations from the prespecified carrier val-

ues fi and cannot extend to arbitrary spectral support. Classic

works in sampling theory [2]–[6] study periodic nonuniform

sampling as an alternative, though these solutions also rely

on knowledge of the carrier frequencies fi. The literature

describes several sub-Nyquist strategies, other than Fig. 1, that

have the potential to treat arbitrary carrier positions: multi-
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coset sampling [7], the Nyquist-folding ADC [8], the random

demodulator [9] and its parallel version [10], and the mod-

ulated wideband converter [11], [12]. The approaches differ

in the signal model they assume, in the sampling strategy and

in the recovery algorithms. Research on sub-Nyquist sampling

has so far focused on perfect recovery of the Nyquist-rate input

signal. The ability to process the information at baseband,

namely without involving Nyquist-rate computations, was not

addressed. In fact, as shown in this paper, none of the systems

proposed in [2]–[12] allow for baseband DSP, including the

previous works [7], [11] by the authors. Admittedly, whenever

x(t) can be recovered, DSP at the high Nyquist rate is possible.

However, this solution wastes the DSP resources and typically

results in impractical processing rates.

The main contribution of this two-part series is a design

methodology for sub-Nyquist systems, named Xampling. The

nomenclature we chose will be explained below. Part one, the

present paper, begins with the practical aspects of the Xam-

pling methodology. The framework consists of four criteria:

broad signal model, low sampling rate, efficient analog and

digital implementation and the baseband processing capability.

Our previous publications on multiband sampling incorporated

the model and the rate considerations [7], [13], whereas [11]

added the aspect of practical implementation. The Xampling

methodology has matured from these works and [12]. The

present paper capitalizes on the necessity of baseband process-

ing and on the digital input type that standard DSP packages

are designed to deal with. Section II elaborates more on these

properties, which we consider as ground rules for a successful

sub-Nyquist solution. In the same section, we address the

relation to compressed sensing (CS), an active research field

that was triggered by the works of [14], [15]. Mainstream CS

works study the problem of recovering a sparse vector from

an underdetermined linear system. In contrast, Xampling is a

broad framework for treating analog signals, which takes into

account considerations that are not treated in discrete CS.

Part two of Xampling [16] capitalizes on the difference be-

tween classic sampling theory and sub-Nyquist from a deeper

theoretical perspective. The former relies on a single subspace

model [17], whereas analog sparsity, such as multiband with

unknown carriers, fits the model of a union of subspaces

[12], [18]–[22]. Continuing the pragmatic theme of the present

paper, part two introduces additional Xampling criteria for the

theoretical study of rate and stability of sub-Nyquist systems.

The first part of the present paper is devoted to support the

proposed methodology and its design rules. We revisit [7]–[12]

in light of the four Xampling criteria. Our survey is inspective

rather than descriptive – each strategy is briefly overviewed,

after which we study various practical considerations, which

did not appear in the original publications. We begin with

pointwise strategies which are shown to suffer from practical

analog bandwidth limitations of existing hardware devices.

These limitations hold regardless of whether knowledge of

the carrier positions is available [2]–[6] or absent [7], and

become acute for wideband signals. The Nyquist-folding sys-

tem [8] also involves possible pointwise limitations. We then

proceed to examine in detail two state-of-the-art systems:

the random demodulator (RD) [9], [10] and the modulated

wideband converter (MWC), proposed by the authors in [11].

Our analysis relies on the viewpoint of equivalent systems,

explained in Section IV. The comparison reveals that the RD

relies on a sensitive signal model when dealing with analog

signals, the time-domain approach boils down to difficult im-

plementation requirements and the computational complexity

is severe, as discussed in detail in Section IV. In contrast, the

MWC naturally fits analog models, the implementation [23]

is based on the standard frequency-domain viewpoint and the

required computational complexity is by orders of magnitude

smaller compared with the RD. Unfortunately, we conclude

that all the methods we survey, including the MWC, do not

support baseband processing. Therefore, the impact of [2]–[12]

reduces to digital storage of the samples and reconstruction of

the input x(t). The prominent advantage of DSP at baseband,

which is the prime reason for shifting to digital, is not achieved

by these systems.

Our second contribution is a digital algorithm that translates

the MWC outputs to the required format for baseband pro-

cessing. We choose to treat the MWC system since it satisfies

all the other criteria of Xampling. Two ingredients that are

computed by [11] are prerequisites: a coarse estimate of the

spectral support and a set of lowrate sequences that together

capture the signal information. The algorithm consists of three

stages: refining the frequency support estimate, isolating the

transmissions, and finally a digital carrier recovery stage. The

last step utilizes the balanced quadricorrelator, a reliable fre-

quency detector which is suitable for many data transmission

techniques [24]. As a nice feature, we show that once the

algorithm is applied and the information is extracted from the

samples, the input x(t) can be reconstructed more efficiently

than the method proposed in [11]. Numerical simulations

demonstrate the algorithm accuracy in typical noisy wideband

scenarios. The consequence is that any existing DSP algorithm

of interest can smoothly interface with the MWC.

The third and final contribution of the paper applies the

MWC to spectrum sensing, one of the fundamental tasks

in cognitive radio systems [25]. The cognitive receiver uses

spectrum sensing to decide on available spectrum regions that

may be useful for transmissions, until the licensed owner

of those bands appear. We present two configurations of the

MWC for spectrum sensing which rely on the implementation

advantages of the MWC in the wideband regime, and on

our digital algorithm. Related works in the field [10], [26]–

[30] are discussed and compared within the unified Xampling

framework.

The paper is organized as follows. Section II introduces

the Xampling methodology, addresses the relation to CS and

explains the nomenclature. The three following sections are

dedicated to examine the validity of the methodology: lowrate

pointwise sampling in Section III; the RD in Section IV;

and the MWC in Section V. A mid-term summary is given

in Section VI. The digital algorithm that enables baseband

processing with the MWC is provided and simulated in

Section VII. Finally, in Section VIII, we explain how to apply

the MWC and the proposed algorithm to efficient spectrum

sensing in sub-Nyquist cognitive radio receivers.
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TABLE I
THE XAMPLING CRITERIA

Criterion Symbol Requirement

Signal model (X1) broad set of analog signals

Sampling rate (X2) approach the minimal

Implementation (X3)

existing analog devices,
light computational loads,
(preferably in realtime)

Processing (X4)
at baseband
(preferably in realtime)

II. XAMPLING

A. Methodology

This section introduces the Xampling framework and its

four design principles. The main theme of Xampling is that a

sub-Nyquist system should satisfy all four principles in order

to break through the Nyquist barrier. This claim is validated

by a thorough study of the practical aspects of a series of

sub-Nyquist methods, in the current section and in the ones to

follow. The Xampling rules are defined below, and are briefly

summarized in Table I for reference.

Signal model (X1). The system should be able to handle

a broad set of inputs with different spectral contents without

altering either the hardware or the digital software. Therefore,

when designing the sampling and the reconstruction stages,

the goal should be treating analog signals with arbitrary carrier

positions fi till fmax, as performed in Fig. 1 for the case of

known carrier locations. Extensions to other sparsity models

will be treated in future work [22]. Any such model should

gracefully approximate the continuous structure of analog

sparsity.

Sampling rate (X2). The conversion rate is the second

criterion, which should be as low as possible in sub-Nyquist

systems. Ultimately, one would like to approach the theoretical

minimal rate 2NB [7]. In practice, stability considerations

require higher rates. In that context, we say that (X2) is

satisfied if the theoretical lowest rate due to stability reasons

is proportional to NB (preferably with a small factor), and if

the system allows to approach that rate.

Efficient implementation (X3). This criterion refers to

the ability to realize the sampling strategy with a reasonable

number of existing analog devices. It also refers to the com-

putational burden in the digital domain, which should be as

light as possible.

Baseband processing (X4). A sub-Nyquist system should

enable processing of the information contents at a low rate.

Baseband processing at the low rate is perhaps the most

practical property of sub-Nyquist systems to consider, since

the theoretical interest in perfect reconstruction of the original

high-rate analog x(t) is often less useful. To define baseband

processing more precisely, we consider the standard quadrature

representation of communication signals [24]:

s(t) = I(t) cos(2πfct) +Q(t) sin(2πfct), (1)

where I(t), Q(t) are real-valued narrowband signals, referred

to as the information signals, and fc is a relatively high

carrier frequency. For example: in analog amplitude modu-

lation (AM), Q(t) = 0, and the information is carried out

in the amplitude of I(t). Phase- and frequency-modulation

(PM/FM) obey (1) when properly recasting their conventional

representation by I(t) = cos(g(t)), Q(t) = − sin(g(t)), such

that the analog message is g(t) = arctan(I(t)/Q(t)) [31].

Various digital techniques, such as frequency- or phase-shift

keying (FSK/PSK) also conform with (1). In digital modula-

tion techniques, a symbol encodes one or more information

bits. In the basic form, two bitstreams I[n], Q[n] ∈ {±1}
together encode 2 bits/symbol. The analog versions I(t), Q(t)
are pulse-shaped by some narrowband function p(t) according

to

I(t) = I[n]p(t− nTsym), Q(t) = I[n]p(t− nTsym), (2)

with Tsym being the symbol duration in time. In other dig-

ital methods, each I[n], Q[n] encodes more than a single

bit, e.g. in 256-quadrature amplitude modulation (256-QAM),

I[n], Q[n] ∈ {±1,±3,±5,±7}, encoding 8 bits per Tsym.

Therefore, we say that a sub-Nyquist system has the baseband

processing capability if I(t), Q(t) can be extracted from the

digital samples, using computation complexity that is propor-

tional to NB. In particular, there is no need to interpolate the

samples to the high Nyquist rate

fNYQ = 2fmax. (3)

In the sequel, we refer to the continuous format I(t), Q(t)
as the information signals, under the convention that the DSP

actually expects the uniformly-spaced versions of I(t), Q(t) at

rates corresponding to their actual bandwidths. Based on the

modulation-technique in use, the DSP device can converts the

uniform samples to the bit streams versions I[n], Q[n] of (2)

or the relevant analog message g(t). The baseband processing

capability is unnecessary when the sole purpose of the system

is to store the samples and later recover the analog input.

However, in many cases the conversion to digital is carried

out with the intention of shifting processing operations from

analog to digital, in which case baseband processing is an

important factor.

Realtime processing. In the border between (X3) and

(X4) lies another computational-related property, which is

termed realtime processing. This means that the delay, which

is introduced due to the computations involved in either recon-

struction of x(t) or when extracting the information contents

I(t), Q(t), is short. In such a setting, the throughput towards

the DSP device is not limited by the acquisition system. We do

not consider the realtime property essential for a sub-Nyquist

design, since offline applications do not require a short delay.

We shortly address the realtime properties of the systems we

survey in Section VI.

We point out that the Xampling criteria address the scenario

of carriers which are unknown but fixed. When the spectral

support changes in time, an intuitive requirement is to track the

band locations, a combination of (X1) and (X4). Here, realtime

processing is essential so as to return to signal acquisition

and processing as fast as possible after a support change

happens. Strictly speaking, a signal with time-varying support

is not multiband, and in fact not even a bandlimited signal.
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Neglecting this mathematical issue, a realtime system should

react gracefully to spectral changes.

Examples. Before proceeding, we examine two straightfor-

ward sampling solutions in light of the Xampling criteria.

Uniform sampling at fNYQ obviously contradicts (X2) and

cannot be considered as a sub-Nyquist system. Furthermore,

in wideband settings, the implementation may be impractical

since the rates of conventional Nyquist ADC devices are still

far below the wideband regime [32], contradicting (X3). Base-

band processing (X4) is also not possible, since by definition

the samples arrive at the high Nyquist rate, thus extracting

the information signals I(t), Q(t) must involve computational

complexity proportional to fNYQ.

The second approach utilizes the scheme of Fig. 1, by

searching for the carrier frequencies fi prior to sampling,

namely using analog components. The motivation for this

solution is two-fold. Standard receivers often compensate for

slight deviations from the prespecified carrier values fi, by

performing fine analog tunings to the local oscillator until its

frequency is locked to the actual carrier value [33], [34]. The

idea is therefore to use the same locking mechanism to search

for fi over the entire wideband regime. The fact that Fig. 1

satisfies all the four Xampling criteria, once the carriers fi are

known, is the second motivation.

Unfortunately, this solution is practically infeasible when

the carrier frequencies fi are unknown apriori and can lie

anywhere below fmax. Locking over the entire wideband

spectrum is time consuming; during this time the signal

cannot be acquired. To shorten this period, the sampling rate

must be increased much above the minimal, contradicting

(X2). Furthermore, such a locking stage is both hardware and

software excessive. A standard tunable oscillator can cover

only a narrow range of frequencies [35], which may require

hundreds of devices to cover the range until fmax. In addition,

when initializing the mechanism far away from the true carrier,

it may lock to a spurious frequency. Only high-level data-

aided algorithms can identify this situation and re-initialize

the hardware. This severely burdens the DSP, contradicting

also (X3). Furthermore, whenever the band positions change,

the locking needs to be reinitiated, and again the signal cannot

be acquired until this task is completed.

B. Xampling = Compressed sensing for analog signals

We now briefly describe the CS framework [14], [15], and

distinguish between CS and Xampling.

The majority of compressed sensing publications study

variants of the underdetermined sparse recovery problem. The

signal model assumes a vector x in the finite space R
n or C

n,

which has only a few nonzero entries. Sampling, referred to

as sensing in this framework, is carried out by computing the

linear projection

y = Ax, (4)

with A having far fewer rows than columns. Results from

this field [14], [15] show that under suitable conditions, the

linear sensing is stably invertible, even when the length of y
is proportional to the number of nonzeros in x, rather than the

ambient dimension n.

Sensing of sparse vectors is the discrete counterpart of

the sub-Nyquist problem illustrated in Fig. 1. However, it is

not straightforward to generalize the discrete CS formulation

to analog signals. The difficulty can be noticed immediately

in the signal model. Sparsity is defined in CS by count-

ing the number of nonzeros in x, while analog sparsity of

x(t) involves an uncountable number of zeros and nonzeros.

Another difference relates to the sensing matrix A. In the

analog context, A corresponds to generalized sampling, where

measurements are inner products with the input x(t) [17],

[36]–[38]. This leads to a structured and deterministic matrix

A, as it needs to be implemented in hardware. In contrast,

mainstream CS results are stated for random unstructured

sensing matrices. A final important difference is the issue of

recovery complexity. Naı̈ve extensions of CS-type algorithms

to the infinite dimensions, such as ℓ1 linear programming

min
x

‖x‖1 s.t. ‖y − Ax‖ ≤ ǫ, (5)

or greedy techniques, lead to undefined or difficult problems.

For example, an optimization over the continuous signal x(t)
[39]

min
x(t)

obj(x(t)) s.t. ‖y[n] −A(x(t))‖l2 ≤ ǫ, (6)

where the objective is a sparsity-promoting function L2(R) →
R and the constraint involves the infinite sample set y[n], the

sampling operator A : L2(R) → l2(R), and the continuous

signal. A program such as (6) is not a well-defined optimiza-

tion structure [39]. In turn, discretization methods result in

very large scale CS systems, which impose a severe burden

on the digital processing units. In contrast, continuous recon-

struction in sampling theory, though hypothetically involving

infinite sequences, is practically performed in realtime over a

well localized set of samples.

The baseband processing is another distinct aspect. Lately,

there has been growing interest in processing in the com-

pressed domain, e.g. machine learning and classifications [40],

or manifold learning [41], [42]. These works exploit the fact

that certain properties are approximately invariant under a

linear transformation. This allows, to some extent, learning and

classification tasks to be carried out directly on the short-length

vector y of (4). The methods [40]–[42] are specific to discrete

vectors. In contrast, sub-Nyquist methods, both classic [3]–

[6] and recent [7]–[12], are all based on spreading or aliasing

techniques which result in a mixture of the signal content. In

particular, the information contents I(t), Q(t) are not invariant

under the mixture, and a DSP algorithm cannot be carried out

directly on the samples. To emphasize, baseband processing

in Xampling means the ability to translate the seemingly-

corrupted samples to the original information bits or analog

message. Learning, classification, and other DSP algorithms

can then follow so that there is no need to approximate their

results in the compressed domain. The crucial requirement

of (X4) is that the information is to be extracted without

interpolating to the Nyquist grid.

The CS paradigm aims at avoiding high-rate redundant

sampling. The discrete CS framework [14], [15] initiated a

long line of highly influential works. However, it still remains

puzzling from the analog sampling viewpoint; sensing by
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(4) implicity assumes that x is the Nyquist rate samples of

some continuous signal x(t) on a specific time-interval. Recent

works [7]–[12], which are surveyed in this paper, attempt to

extend the formulations of CS in various ways, so as to render

them applicable to analog sub-Nyquist sampling. As we shall

review in the next sections, these approaches are quite different

from each other, especially in terms of signal model, rate and

implementation. We propose Xampling as a framework within

the various solutions can be compared according to the four

rules of Table I.

The nomenclature Xampling was chosen to highlight the im-

portant aspects of our framework. Sub-Nyquist systems rely on

the theory of sampling from a union of subspaces [12], [20]–

[22], whereas classic results were stated for single subspace

models [17]. The X prefix therefore distinguishes analog sub-

Nyquist systems from classic results in the sampling literature,

though Xampling still hints that our framework is only a sub-

field of generalized sampling theory [17], [36]–[38]. The nam-

ing has a symbolic interpretation as well. The X letter is widely

used to denote compression, e.g. the DivX format. Here, the

compression is carried out during the conversion from analog

to digital, conceptually using analog means rather than by

software algorithms. The fact that the prefix is integrated into

the noun symbolizes the integration between sampling and

compression. More importantly, Xampling conveys a guideline

for designers. As we shall observe in the next sections,

breaking-through the Nyquist barrier necessitates balancing

between CS and sampling by combining traditional concepts

from sampling theory together with recent developments from

the CS literature. When either is missing, one of the Xam-

pling criteria is prone to be violated. Xampling is literally

pronounced as CS-Sampling (phonetically /k"sæmplIN/), so as

to symbolize the necessity of this synergy in practice. Finally,

it was recently suggested to us [43] that X can stand for

extreme sampling, hinting at the very low rates.

III. POINTWISE SAMPLING

In this section we describe sampling methods which involve

pointwise sampling of the input signal x(t).

A. Periodic nonuniform sampling

Periodic nonuniform sampling (PNS) utilizes a set of un-

dersampling sequences with relative time-shifts. Specifically,

consider a signal x(t) with Nyquist rate fNYQ = 1/T . PNS

generates m lowrate sequences

yi[n] = x(nTs + φi), 1 ≤ i ≤ m, (7)

with a relatively long sampling interval Ts = MT . The

choice m = M coincides with Nyquist sampling for which

an efficient filter bank reconstruction scheme was proposed

in [44]. To reduce the rate, m < M is used. The shifts

φi ∈ [0, Ts] are chosen to be different from each other;

see Fig. 2(a). PNS was used in [3], [4] for known carrier

frequencies fi where the sampling rate may approach the

minimal value of NB as derived by Landau [45]. A multi-

coset version, in which φi can take on only the discrete values

t = nTs

x(t)

y1[n]∆t = φ1

Time shifts

t = nTs

ym[n]∆t = φm

Pointwise sampling

(a)

f
b

Analog Digital

r
samples/sec

Model of a practical ADC device

−b

(b)

Fig. 2. Schematic implementation of PNS (a) requires no filtering between
the time shifts and the actual sampling. However, the front-end of a practical
ADC has an inherent bandwidth limitation, which is modeled in (b) as a
lowpass preceding the uniform sampling.

φi ∈ {kT | 0 ≤ k ≤ M − 1}, was studied in [5], [6]. Multi-

coset has the advantage that the shifts φi can be set regardless

of the band locations, though in [5], [6] this information is

required for the reconstruction stage. Spectrum-blind sampling

and recovery, namely when fi are unknown, was analyzed in

detail in [7].

PNS and Xampling. In the blind setting, [7] considers

the analog multiband model, and proves that the minimal

rate for reconstruction in the case of unknown carriers is

2NB. This work also proposes a reconstruction algorithm that

theoretically requires no more than the minimal rate of 2NB
samples/sec. The results are immediately extended to PNS,

that is to arbitrary time-shifts φi ∈ [0, Ts]. Therefore, PNS

with spectrum-blind recovery satisfies (X1),(X2).

In terms of analog implementation, both the time shifts and

the ideal samplers are difficult, and may be even impossible,

to realize [11]. To understand these issues, we concentrate first

on the ideal sampler and ignore the time shifts for the moment.

Each PNS sequence (7) requires sampling a wideband input,

whose spectral contents reach fmax, at the low rate 1/Ts.

Existing ADCs devices, however, limit the input bandwidth

far below fmax. To account for the bandwidth limitation, [11]

proposed the model that is depicted in Fig. 2(b), in which

an ideal sampler of rate r samples/sec is preceded by a

lowpass filter with cutoff b. When adding the missing filter

to the PNS scheme of Fig. 7(a), we conclude that b = fmax

is required in order to obtain the sequences (7) without

distortion. Unfortunately, the achievable front-end of existing

ADC devices [32] has bandwidth which is still far behind the

possible frequency ranges of communication transmissions.

Consequently, pointwise sampling of a wideband input, even

at a low rate, cannot be implemented by standard ADCs.

Another limitation of PNS is maintaining accurate time-

shifts φi, which may be difficult to implement in high-speed

systems [44], [46], [47]. Evidently, time-shifts at the RF res-

olution fNYQ are another kind of bandwidth limitation. These

hardware issues stand against the requirement for efficient

implementation (X3). In addition, spectrum-blind reconstruc-

tion from PNS sequences [7], [48] requires interpolating the

samples to the RF rate before reconstruction or any kind of

processing can occur. Thus, (X4) is also not satisfied.

B. The Nyquist-Folding System

The Nyquist-folding system [8] is presented in Fig. 3.

In this method, the zero crossings of a time-varying sine
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waveform sin(φ(t)) define a set of time instances ti, where

φ(t) = ω1t + θ(t) is monotone increasing in time. The

signal x(t) is multiplied by a pulse train p(t − ti) generated

by all zero crossings ti. The product is filtered using an

interpolation kernel F (ω) and then sampled at an angular

frequency ω2. The relation between the samples and the analog

input was approximated in [8] for a single FM transmission,

x(t) = cos(ωct+ψ(t)) with angular carrier ωc and narrowband

information contents ψ(t). The pulse shape p(t) is required to

satisfy mild smoothness properties for the approximation to

hold. In addition, ω1 ≫ max |θ′(t)| is needed. Since ω2 ≪ ωc

the sampling rate is reduced below Nyquist.

Wideband
Filter H(ω)

Interpolation
F (ω)

ADC
(ω2)

x(t)

+
−0

sin(ω1t+ θ(t)) ti
∑

i

p(t− ti)

Fig. 3. Block diagram of the Nyquist-folding system.

The Nyquist-folding and Xampling. The experiments in

[8] report the folding effect for pure sinusoidal signals, that

is when the information ψ(t) = 0. In this case the width

B → 0, and there is no overlap between the sinusoids in

baseband. However, in practice, transmissions have B > 0
and the baseband contains aliasing from the entire spectrum,

in which case the folding effect is more complicated even for

a small set of FM signals. It appears that the typical setting

of B > 0, when the aliases at baseband are likely to overlap,

was not studied yet by [8]. Therefore, at this stage, it is not

clear whether (X1) is satisfied.

Mixing by the pulse train p(t−ti) is tantamount to pointwise

sampling of x(t) according to the zero crossings of sin(φ(t)),
and then filtering the samples with the pulse shape p(t). Con-

sequently, the bandwidth limitations of standard ADCs apply

here as well. Aligning the pulses p(t−ti) to the asynchronous

time instances ti may be as difficult to implement as realizing

the time-shifts of PNS. In addition, the pulses p(t − ti) may

need to overlap in time, since otherwise x(t) is multiplied

by zero between consecutive pulses. On the other hand, when

the pulses overlap the summation requires generating several

pulses in parallel, which may require additional hardware. In

addition, the results of [8] do not provide a reconstruction

algorithm. It is not clear how the analysis of the folding effect

for a single FM signal x(t) extends to a concrete recovery

algorithm for an arbitrary number of transmissions, with other

modulation techniques, so that (X3) is currently not satisfied.

Baseband processing (X4) is also not discussed.

So far, we examined systems which are designed based on

sampling theory principles, that is pointwise sampling (up to

pulse shaping in [8]) and analysis in the frequency-domain.

The works [3]–[6], [8] do not incorporate CS ideas, such as

sparse representations from underdetermined systems. As it

appears, when CS is missing the Xampling criteria are not

satisfied. An exception is our earlier work [7], which does

incorporate both CS and sampling. However, since it relies on

PNS, it suffers from the same practical limitations.

IV. THE RANDOM DEMODULATOR

We proceed to survey two methods that are based on CS: the

RD [9] (and its parallel version [10]) in the current section, and

the MWC [11] in Section V. To investigate these systems, we

propose to view their equivalent system, namely the one which

acquires the input at the high Nyquist rate, and then invokes

digital operations to yield the original sub-Nyquist samples.

The equivalent system viewpoint is an approach which was

not considered explicitly in [9]–[11], but turns out to reveal

various practical issues.

A. System overview

Fig. 4(a) presents the random demodulator of [9]. The input

signal f(t) is mixed by a pseudorandom sign waveform which

alternates at rate W . The mixed output is then integrated

and dumped at a constant rate R, resulting in the sequence

y[n], 1 ≤ n ≤ NR. The design parameters are the rates W, R
and the number of samples NR. For brevity, we study the

single channel RD, but address the extension to a bank of RD

channels [10] where relevant.

t = n
R

f(t) y[n]

Pseudorandom
±1 generator at

rate W

Seed

f(t) · pc(t)

pc(t)

∫ t

t− 1
R

(a)

t = k
W

f(t) y[n]

pc[k]

∫ t

t− 1
W

Sum & Dump
W
R → 1

x[k]

(b)

Fig. 4. Block diagram of the random demodulator (a), and the equivalent
system (b) for an integer ratio W/R.

The authors [9] describe the analog RD system of Fig. 4(a),

and then analyze a discrete CS system, eq. (13) below, which

requires the equivalence to Fig. 4(b) and certain time-domain

assumptions. The equivalent system integrates and dumps the

input at rate W , producing the sequence x[k]. Then, the sam-

ples x[k] are digitally multiplied by a discrete pseudorandom

sign stream pc[k]. It can be easily verified from the figure that

if R divides W , then every measurement y[n] corresponds to

the sum over W/R consecutive products x[k]pc[k].

To connect the input signal f(t) to x[k], a multitone model

is assumed:

f(t) =
∑

ω∈Ω

aωe
j2πωt, (8)

where Ω is a finite set of K out of an even number Q of

possible harmonics

Ω ⊂ {0,±∆,±2∆, · · · ,±(0.5Q− 1)∆, 0.5Q∆} . (9)
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We denote by N the set of signals obeying this model, whose

parameters are K, Q and the tone spacing ∆. For multitone

signals, the rate W sequence x[k] is given by

x[k] =

∫ k/W

(k−1)W

f(t)dt (10)

=
∑

ω∈Ω

aω

[
e−j2πω/W − 1

j2πω

]

︸ ︷︷ ︸

sω

e−j2πω(k−1)/W . (11)

Under an additional assumption that

W = Q∆, (12)

time-domain analysis in [9] shows that the vector x =
[x[1], . . . , x[Q]]T is the discrete Fourier transform (DFT) of

the coefficients sω, which relates to the unknowns aω by (11).

The input-output relation can then be expressed as

y = Φs = ΦHΦDΦF s, (13)

where y = [y[1], . . . , y[NR]]T is the vector of samples and

the unknown vector s, which collects the coefficients sω,

is K-sparse due to the model assumptions. Therefore, the

sampling matrix Φ has dimensions NR × Q. It consists of

a Q-square reordered DFT matrix ΦF , which accounts for the

relation (11), and a diagonal sign matrix ΦD that performs

the multiplication by pc[k]. The sum-and-dump is represented

by ΦH, having NR rows and NRW/R columns. For the

dimensions to match, (13) holds only if

Q = NR
W

R
= NR

Q∆

R
→ ∆ =

R

NR
. (14)

The normalization ∆ = 1 Hz is used in [9]. For this choice,

W = Q and NR = R, which means observing f(t) over the

time interval 0 ≤ t < 1.

Once the parameters are set properly, the system (13) is an

underdetermined system whose sparsest solution s defines the

original multitone signal f(t). Recovering s from the linear

system (13) is the fundamental problem studied in the CS

literature, see eq. (4). Although the sparse recovery problem

is NP-hard in general, there are many sub-optimal algorithms

which yield the sparsest s at the expense of a slight increase

in the number of measurements NR [14], [15]. To guarantee

recovery, the sampling rate should be on the order of [9]

R ≈ 1.7K log(W/K + 1). (15)

B. The RD and Xampling

Signal model. The multitone model (8) is discrete by

nature; f(t) is defined by 2K parameters, the active tones

and their amplitudes. The highest harmonic Q Hz (or the

rate W under ∆ = 1) conceptually stands for the Nyquist

rate. However, there is no meaning to a sampling rate when

a finite number of parameters define the signal f(t). Indeed,

the Landau theorem [45] for multitone signals implies that

the minimal required density for a stable sampling set is of

zero-measure – a direct consequence of the finite model. The

essential point is that multitones are parameterized by a finite

set of numbers to begin with. In contrast, the Fourier transform

of analog signals, such as the multiband model, consists of an

uncountable number of harmonics; analog signals necessitate

strictly positive sampling rates [45].

It was noted in [9] that a multiband analog signal with N
bands of width B each can be approximated by a multitone

signal with about K = NB tones in (8). More accurately,

the representation yields a reasonable error only if convolving

the input x(t) by a window function, prior to the RD system.

However, it is not stated which window to choose, and how

to recover the analog input x(t) from the windowed version,

if at all possible. Therefore, the finite parametrization of

signals f(t) ∈ N may adequately capture only a limited type

of signals – those that contain finitely many unknowns. In

contrast, a broad analog signal model, as implied by (X1),

captures signals with infinitely many unknowns. As we show

later, the issue of approximation with K = NB results

in a large computational load on the digital reconstruction

algorithm.

Sampling rate. The required rate, eq. (15), predicts the

number of samples per second that are required to determine

f(t) with time-varying support. Here W = Q counts the

number of degrees of freedom per time interval. The RD

system, however, does not allow to approach (15) in general.

For example: consider f(t) with Q = 10 GHz being the

highest harmonic, and K tones such that (15) evaluates to

R ≈ 1.5 GHz. The analysis of [9] relies on the equivalence

between the systems of Fig. 4, which in turn requires that R
divides W . In the example, R = 1.25 GHz and R = 2.5
GHz are the closest allowed rates, and the system is forced

to sample 66% faster than the minimal rate. Therefore, in

practice, R should be set by

R = W/r ≥ 1.7K log(W/K + 1) (16)

for the smallest possible integer r. The rate gap in (16) is

positive in general, and may be quite large as in the example,

thus (X2) is not satisfied.

Implementation. Before studying the implementation fea-

sibility of Fig. 4 and the complexity of the recovery algorithm,

we first point out an inherent sensitivity which is independent

of the actual chosen devices. The rates R,W in the RD

are presumably triggered by some clock signals. In practice,

however, a clock circuitry may vary its basis frequency with

voltage, temperature, humidity, aging and other factors. Recall

that (12) and (14) require R,W to satisfy a strict relation with

the tone spacing of the input. Consequently, for the RD to

work, one has to manually match the rates R,W for the tone

spacing ∆ of the signal f(t) at hand. Such delicate tunings

require additional analog hardware which is not described in

[9]. The normalization ∆ = 1 Hz and R = NR, which

greatly simplifies the presentation in [9], implicitly assume

the existence of such a hardware mechanism.

The authors propose to treat any mismodeling from N as

an additive noise. However, the following toy-example demon-

strates that the strict system-signal dependency translates to a

large recovery error. Let W = 1 kHz, NR = R = 100 Hz and

consider the signal

f(t) = 3 cos(2π 120t) + 4 cos(2π 350t), t ∈ [0, 1). (17)
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Fig. 5. Recovery of a multitone signal from random demodulator samples
under design imperfections. The original and reconstructed signal are plotted
in (a) on a short time interval. The frequency transforms (b) reveal many
spurious tones due to the clock shift.

Applying the random demodulator to f(t) gives NR = R =
100 samples. The ℓ1 minimization (5) with ǫ = 0 reconstructs

f̂(t) = f(t) exactly. Now, suppose that the clock network

suffers from 0.5% inaccuracy, so that R′ = 100.5 Hz and

W ′ = 1.005 kHz. In this case, when allowing some error ǫ =
0.5%‖y‖ in (5) we obtain the reconstructed f̂(t) of Fig. 5(a),

with normalized squared-error ‖f − f̂‖2/‖f‖2 = 1.7. The

frequency contents are compared in Fig. 5(b). Similar results

are encountered if R,W are unchanged but the input obeys

tone spacing ∆ with 0.5% deviation from the system spacing

R/NR. The scenario above considers changes in R,W by the

same proportion and direction, such that R/NR = W/Q and

(12) and (14) are partially satisfied. In practice, R,W may

change independently and manual tunings of their frequencies

should be carried out separately.

We now proceed to study the actual implementation of

Fig. 4, and for that purpose ∆ = R/NR = W/Q = 1 is

assumed hereafter. The RD does not suffer from either of the

practical limitations of PNS. There are no time delays, and

the sampling occurs at rate R where the integrator acts as

a first-order lowpass filter to mitigate bandwidth limitations.

An accurate analog integrate-and-dump, however, may be

difficult to implement. An ideal integrator is realized by a

single capacitor. In practice, a capacitor has an effective series

resistivity and a parallel inductivity, which cannot be avoided.

Consequently, the exact correspondence between the systems

in Fig. 4 is breached. As noted in [9], when the integration

is nonideal, ΦH becomes signal-dependent. In other words,

it requires another tuning mechanism to calibrate ΦH every

second, in parallel to signal acquisition. Another source for

breaching the equivalence is the pseudorandom waveform

pc(t). If the alternations do not occur exactly on the Nyquist

grid n/W , then ΦH becomes again signal-dependent and

another synchronization is required.

Moving on to the recovery steps in the digital domain, we

recall that K = NB tones are required to represent an analog

signal within N (ignoring the pre-windowing issue). We now

examine the recovery complexity under this approximation.

Consider a wideband scenario with N = 6 bands of width

B = 50 MHz and fNYQ = 10 GHz, which boils down to

K = NB = 300 · 106 tones. In this setting W = 1010 and

Φ has about R = NR = 2.6 · 109 rows, resulting in a huge-

scale CS system. The system is idle until NR = 2.6 · 109

samples are collected, that is 1 second for ∆ = 1 Hz.

Memory storage of that volume is against efficient analog

implementation (X3). Solving a CS system with huge-scale

dimensions, namely Φ of size 2.6·109×1010, is the other side

of the coin. It imposes severe computational loads even when

using polynomial-time methods and exploiting fast matrix-

vector multiplications, contradicting again (X3).

Note that in huge-scale CS matrices, the finite-precision of

the matrix entries leads to undesired high correlations between

the columns of Φ. The rate requirement (15) and the properties

of Φ were studied in [9] assuming ideal infinite-precision

setting. We noticed in simulations that the finite precision

dramatically degrades the performance of CS-algorithms even

when the sensing matrix is of moderate dimensions. Overall,

the RD system contradicts (X3) in many aspects. The bank

of RD channels [10] duplicates the analog issues and the

computational complexity is not improved by much.

Baseband processing. Solving the system (13) aims at

recovering the sparsest vector s, which lives in the ambient

space C
Q. Under the convention that ∆ = R/NR = 1,

W = Q, the length of s is proportional to the Nyquist rate.

The recovery yields at once both the tone locations and their

amplitudes, however the output s is already at the Nyquist rate.

Therefore, (X4), which requires the ability to process any band

of interest without involving Nyquist rate computations, cannot

be satisfied. Besides, there is no clear connection between s
and the information I(t), Q(t) of a band of interest.

V. THE MODULATED WIDEBAND CONVERTER

In this section, we examine the MWC system, which over-

comes the previous limitations by sticking to the traditional

frequency-domain analysis, and in the same time employing

CS algorithms where beneficial. This balanced combination of

CS and sampling is shown to satisfy (X1)-(X3). Unfortunately,

there is one fly in the ointment; the MWC generates baseband

sequences that are incompatible with the required formats

I(t), Q(t) for standard DSP packages. This limitation is solved

in Section VII.

A. System overview

The MWC consists of an analog front-end with m channels.

In the ith channel, the input signal x(t) is multiplied by a

periodic waveform pi(t), lowpass filtered, and then sampled

at rate 1/T . In this paper, we study a simplified version of

the converter, as depicted in Fig. 6, in which the sampling

interval T equals the period of the waveforms pi(t). This basic

configuration has three parameters: number of channels m,

periodic waveforms pi(t) and sampling rate 1/T . This scheme

is sufficient for studying the applicability of the system; other

configurations with practical advantages are detailed in [11].

The MWC sensing relies on the following key observation.

The mixing operation scrambles the spectrum of x(t) such that

the baseband frequencies that reside below the filter cutoff

1/2T , contain a mixture of the spectral contents from the

entire Nyquist range. The periodicity of each waveform pi(t)
ensures that the mixture has a specific nature – aliases at 1/T
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pi(t)

yi[n]

h(t)

t = nT
p1(t)

h(t)

pm(t)

x(t)

ym[n]

y1[n]

Lowpass

t = nT

t = nT

T -periodic

1/T

Fig. 6. Block diagram of the modulated wideband converter.

frequency spacing. Whilst aliasing is often considered as an

undesired effect, here it is deliberately utilized to shift various

frequency regions to baseband, simultaneously. In the basic

configuration, we choose the rate 1/T ≥ B.

To understand the act of the MWC on multiband signals,

we consider the equivalent system that is depicted in Fig. 7.

The signal x(t) enters M = 2L + 1 channels, where L is

the smallest integer such that M ≥ TfNYQ. Since 1/T ≈ B,

M represents the compression ratio, that is the quotient of

the Nyquist rate fNYQ by the rate 1/T of a single channel.

In the lth channel, x(t) is frequency-shifted (hence modulated

in time) by l/T Hz, −L ≤ l ≤ L. Then, the baseband region

[−1/2T, 1/2T ] is filtered and sampled every T seconds, giving

the (complex-valued) sequence zl[n]; see the illustration in

Fig. 8. Clearly, if x(t) contains only a few transmissions, then

most of the time sequences zl[n] will be identically zero. This

is where CS comes into play. For each time-point, the vector

z[n] = [z−L[n], . . . , zL[n]]T is compressed into the output

vector y = [y1[n], . . . , ym[n]]T using the linear projection

y[n] = Cz[n]. (18)

The equivalence to Fig. 6 holds due to the periodicity of the

waveforms pi(t). Since pi(t) = pi(t + T ) for all t ∈ R, we

have the Fourier expansion

pi(t) =

∞∑

l=−∞

cile
j 2π

T
lt. (19)

Choosing the matrix C of Fig. 7 such that its ilth entry is equal

to the Fourier coefficient cil results in the desired equivalence

yi[n]
Fig. 6
== (x(t)pi(t)) ⋆ h(t)

∣
∣
∣
t=nT

Fig. 7
==

L∑

l=−L

cil

(

(x(t)e−j2πlt/T ) ⋆ h(t)
∣
∣
∣
t=nT

)

. (20)

Conceptually, the MWC shifts the mixing matrix C = {cil}
into the analog domain, such that each channel realizes a single

row of C in analog hardware.

Note that, the system of Fig. 7 samples the signal at the

high Nyquist rate fNYQ, thus clearly does not satisfy (X2).

h(t)

h(t)

x(t)
Lowpass

t = nT

t = nT

1/T

e−j2πLt/T

t = nT

Fourier-series
coefficients

C

m×M

ym[n]

y1[n]

z−L[n]

zL[n]

z0[n]

e+j2πLt/T

e−j2π0t/T

Fig. 7. The equivalent system of the modulated wideband converter.

f
0

2
NYQf

− 2
NYQf

1/T B

zL[n]z0[n]z−1[n] z1[n]z−L[n]

fiai bi

Fig. 8. The lowrate sequences zl[n] correspond to equal-width spectrum
slices from the Fourier transform of the input multiband signal.

Moreover, most channels are likely to provide identically zero

sequences, which is a waste of mixing resources; having M ≈
fNYQ/B oscillators, mixers and filters is hardware excessive.

However, it nicely captures the intuition behind the MWC.

The periodicity of pi(t) is the only essential requirement for

the equivalence to hold.

Recovery of x(t) from the sample sequences y[n] starts

from (18). Under appropriate conditions on m and C, we have

that m≪M and that (18) determines a unique z[n] for every

n [11]. Theoretically, we can solve for the sparsest solution

z[n] of (18), for every n, and then reconstruct x(t) by properly

re-positioning the nonzero sequences zl[n]. However, this

approach is inefficient, since the sparsest solution z[n], even

if obtained by polynomial-time CS algorithms, is computed

separately for every n. Instead, [7], [39] suggest a more

efficient way which exploits the fact that the bands occupy

continuous intervals in the spectrum. This fact implies that

the vectors z[n] for different time instances share a common

nonzero location set [7]. Thus, instead of solving separately

for every n, we construct a finite frame (or a basis) V from a

set of consecutive sample sets y[n]. It is shown in [39] that any

such frame has the same support as the joint sparsity of z[n].
The Continuous-to-Finite block (CTF), which is depicted in

Fig. 9, implements this principle. The joint support is inferred

from a multiple measurement vector (MMV) CS system

V = CU, (21)

which extends standard vector sparsity to matrices with a few

rows that are not identically zero. In the figure, the support S
is determined by merging the supports of all the columns Ūi

of the sparsest matrix Ū. For the CTF to function, the required

rate is increased to 4NB [7], [39], which is still proportional
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to the actual bandwidths and not to fNYQ. Once the support S
is found, the pseudo-inverse C†

S is computed and is then used

to recover zS [n]. The notation CS means the column subset

of C indicated by S, and similarly zS [n] is the relevant vector

subset. In contrast to the huge dimensions of the RD matrix

Φ, the MWC recovery involves the matrix C of size m×M
which is typically small, and thus the digital computations,

such as the sparse recovery of (21) or the inversion C†
S , are

not an issue.

Reconstruct joint support
V S

Frame construction

Continuous to finite (CTF) block

• Q =
∑

n y[n]yT [n]

• Decompose Q = VHV

zS [n] = C†
Sy[n]

Lowrate recoveryy[n]

• Solve CS system V = CU

• Support S =
⋃

i

supp(Ūi)

h(t)

e−j2πlt/T

x̂(t)

z[n]

Foreach l ∈ S :

∑

Digital processing Analog reconstruction

zl(t)

Fig. 9. The Continuous-to-finite (CTF) block recovers the spectral support
from a set of consecutive vector samples y[n]. Then, the nonzero lowrate se-
quences of z[n] are generated at realtime, and the signal x(t) is reconstructed.

The choice of the waveforms pi(t) directly dictates certain

CS-related properties of C. In [11], an MWC system with

pi(t) consisting of M sign alternations was analyzed and

simulated, though the specific choice of the sign patterns was

not studied. The second part of this work [16] proposes a

theoretical framework for the required properties of the sensing

matrix in sub-Nyquist systems. In that context, we complete

the MWC design by proving that certain binary sequences,

such as Maximal or Gold codes, are suitable choices for the

MWC.

B. The MWC and Xampling

Signal model. The analysis of [11] is based on the analog

multiband model with N bands of width B, and the bands are

allowed to reside anywhere below fmax. As in conventional

sampling, the analog signal is converted into sequences of

digital samples. No finite parametrization is used.

Sampling rate. The basic configuration has m channels,

each sampling at rate 1/T . Therefore, the rate can be adjusted

in steps of 1/T . The step size is independent of the Nyquist

rate fNYQ and the required rate 4NB can be approached. For

example, for N = 6 and B = 50 MHz, the sampling rate

4NB = 600 MHz can be achieved by m = 4N = 24
channels. Additional options to control the rate using fewer

analog channels are detailed in [11].

Implementation. We start with the analog implementation

of Fig. 6. The parameter choice of the MWC is summarized

by

1/T ≥ B, M ≥ TfNYQ. (22)

In contrast to the RD, there is no need to synchronize or

manually tune the system to the input signal, since (22)

involves only inequalities. Setting T,M with small safeguards

allows to apply the MWC to multiband signals, even if the

actual width B or the frequency fmax are higher to some extent

than what assumed in design.

The design has two additional flexibilities. The lowpass

filter h(t) can be realized by standard analog methods. In

practice, ripples and non-smooth transitions in the frequency

response are compensated by a digital filter, whose coeffi-

cients are computed once after manufacturing by a signal-

independent optimization program [49]. In addition, there is no

need to maintain accurate sign alterations on the Nyquist grid

as required for the RD. Only the periodicity of pi(t) matters.

Calibrating the Fourier coefficients cil is performed de-facto.

The calibration is also signal-independent and is performed

once after manufacturing [23].

These implementation advantages were utilized in a board-

level prototype of the MWC, which we report in [23]. The

board consists of commercial devices only. An elliptic filter

of order 7 realizes h(t) by only a few coils and capacitors.

The waveforms pi(t) are derived from a cyclic shift-register

running at a 2.4 GHz clock rate. The periodicity of pi(t) is

guaranteed by no more than a voltage-controlled-oscillator and

a standard phased-lock-loop synthesizer driven by an accurate

crystal source. In the design process, we made no effort

to improve the time-domain appearance of pi(t), and those

are far from nice rectangular shapes. Verifying periodicity

is carried out by observing pi(t) in a spectrum analyzer, a

customary equipment of RF engineers. The point we would

like to emphasize here is that the frequency-domain approach

is what renders the MWC immune to practical issues.

Moving on to recovery complexity, we first recall that the

numerical simulations in [11] demonstrated accurate recovery

for signals with N = 6, B = 50 MHz and fNYQ = 10 GHz by

an MWC system with m = 35 channels and sign waveforms

of M = 195 alternations per period. The first task in the CTF

constructs a frame for y[n], which involves computing

Q =
∑

n

y[n]yT [n], (23)

that is m2 multiplication and summations per input vector

y[n]. This may seem quite challenging, as theoretically it

involves the samples y[n] for −∞ < n < ∞. However,

since y[n] is a length m vector for every n, rank(Q) ≤ m,

which means that a set of m linearly independent vectors

suffice. In fact due to the sparsity of z[n] only K = 2N
independent vectors are needed [11]. In the presence of noise,

a slight rate increase is required to identify the signal space and

reject the noise influence. In practice, the simulations in [11]

demonstrated exact support recovery from noisy samples when

the frame is constructed from only 40 time instances n, for

K = 2N = 12. The memory overhead is minor. Theoretically,

there are pathological examples [7] which may require a

dramatically larger set of samples, however in practice these

are unlikely to occur.

The decomposition

Q = VVH (24)

is more expensive than (23) but for matrices of size 35 × 35
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does not represent great difficulty. In fact, (24) can be avoided

since Q is also a frame for y[n]. In the MMV system (21)

of the CTF, we can substitute the right-hand-side by Q. This

method was not suggested previously in [7], [11], [39]. The

advantages of performing the decomposition (24) are two-

fold: V typically has less columns than Q which reduces

complexity, and in noisy settings, the decomposition can be

used to reject the noise space, as done in the simulations of

[7], [11]. Nonetheless, these advantages are negligible: m is

anyway small and the noise space can be identified by other

methods, e.g. by identifying the dominant nonzero rows of

U (in ℓ2-norm), or by observing the order a greedy-type CS

algorithm constructs U.

The last computation in the CTF block is solving the MMV

system (21) for the sparsest matrix Ū. Since the dimensions

m,M are relatively small (by orders of magnitude compared

with the RD sensing matrix Φ), solving this CS system can

be performed quite fast.

It is worth emphasizing that sub-Nyquist sampling is one of

the appealing properties of the MWC, though it can also be

used for conventional Nyquist sampling of wideband signals

with the proper number of channels. In contrast, the RD cannot

be used for Nyquist sampling, since the single ADC runs at

the high-rate fNYQ.

Baseband processing. The MWC does not utilize carrier

knowledge prior to sampling and consequently the sequences

zl[n] do not relate directly to the information signals I(t), Q(t)
of a band of interest. For example: in Fig. 8, the energy

of the ith band splits between the two consecutive spectrum

slices, and typically zl[n] contains simultaneous contributions

of several bands, as illustrated in Fig. 8. Even when zl[n]
contains a single band, the carrier frequency is an unknown

parameter within a wide range of possible frequencies: for

example, searching for the carrier in a spectrum width of

1/T = B = 50 MHz is still a demanding processing task,

which is prone to errors. Therefore, the baseband processing

capability (X4) is not satisfied. Section VII bridges this gap

by estimating the band edges [ai, bi], recovering the carrier

frequencies fi and providing a single lowrate sequence si[n]
per band. The information contents I(t), Q(t) of any band of

interest are then immediately obtained.

VI. MID-TERM SUMMARY

Table II summarizes the systems we examined in light of

the Xampling requirements. The Whittaker, Kotelńikov, and

Shannon (WKS) theorem, namely uniform sampling at the

Nyquist rate, is added for reference.

The Xampling criteria can be divided into pairs. Model

(X1) and rate (X2) which quantify the theory underlying the

approach, and implementation (X3) and baseband processing

(X4) which capitalize on practical aspects. Table III summa-

rizes in more detail the comparison between [7], [9], [11].

The numbers in the table refer to the wideband scenario that

was considered throughout, namely N = 6, B = 50 MHz

and fNYQ = 10 GHz. The rate gap is zero for methods that

can achieve their minimal rate requirement. We compare a

few properties regarding the sensing matrix. The dimensions

TABLE II
SUB-NYQUIST DESIGNS AND XAMPLING

Model Rate Implementation Processing

Analog Digital BB RT

WKS-theorem + - +/- - - -

PNS [7] + + - - - -

Nyquist-folding [8] - + - ? ? ?

RD [9], [10] - - - - - -

MWC [11] + + + + - +

BB=Baseband, RT=Realtime.

row highlights 9 orders of magnitude difference between the

MWC and the RD. During the execution of CS algorithms, the

sensing matrix is often repeatedly applied on the estimated

sparse signal. The complexity of this operation, which can

utilize the structure of the matrix, is denoted in the next row.

In addition, the storage requirements of the sensing matrix

are also compared. Note that for the MWC, we stated that the

system comprises of m ≥ 4N channels [11], though advanced

configurations of the MWC remove this requirement. In the

prototype [23], only 4 channels were successfully used for

N = 6 bands.

In terms of realtime processing, PNS reconstruction neces-

sitates digital interpolation to the high Nyquist rate, and thus

we indicated “huge” in the last rows of the table. For the RD

and the MWC, the specific CS-algorithm in use determines

the delay. The size of the sensing matrix has a major effect

again, but quantifying this delay is beyond the current scope.

To simplify, in the table, we consider the scenario of known

support – tone locations Λ or support set S, respectively. For

the RD, the nonzeros of the discrete vector s are recovered by

sΛ = Φ†
Λy. (25)

Since (25) requires the entire vector y, the memory require-

ments remain the same. Applying the matrix-vector multipli-

cation in (25) involves KNR = 780 · 109 million instructions

per second (MIPS), a severe computational cost. In contrast,

the computations in the MWC suit a realtime environment –

the memory (of about 2N values of y[n]) introduces a short

delay of 780 nanoseconds. The matrix-vector multiplication

in Fig. 9 translates to only 2Nm = 420 multiplication and

summations per input vector y[n]. Extrapolating to a period

of a second, gives 2Nm/T = 22·103 MIPS. The memory size,

the delay and the MIPS are all at least 6 orders of magnitude

lower than [9].

The technology barrier of each approach is highlighted at

the bottom of Table III. The front-end of a practical ADC

limits the applicability of multicoset or PNS strategies as

explained in Section III. Uniform sampling at the Nyquist

rate shares the same barrier. The above discussion shows

that the computational load and memory requirements in the

digital domain are the bottleneck of the random demodulator

approach. Therefore the size of CS problems that can be solved

with available processors limits the recovery. We estimate

that W ≈ 1 MHz may be already quite demanding using

convex solvers, whereas W ≈ 10 MHz is probably the barrier

using greedy methods. In fact, uniform sampling at 10 MHz

seems to be preferred in this setting. The MWC is limited by
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TABLE III
METHODS FOR WIDEBAND SPECTRUM-BLIND RECOVERY.

WKS theorem PNS Random demodulator Modulated wideband converter

y[n] = x(nTs) Eq. (7) Fig. 4 Fig. 6

T
h

eo
ry

Model β-Bandlimited Multiband Multitone Multiband

Type Continuous Continuous Discrete parametrization Continuous

Model parameters β N, B, fNYQ K, Q, ∆ N, B, fNYQ

Sampling parameters Ts m, M, φi R, W, NR, pc(t) m, M, T, pi(t)

Setup 1/Ts > 2β see [7] ∆ = R/NR 1/T ≥ B, M ≥ TfNYQ

Sensitivity (mismdeling) Low Low High Low

Sensitivity (inaccuracy) Low High High Low

Minimal rate gap 0 0 (16) 0

Analysis domain Frequency Frequency Time Frequency

P
ra

ct
ic

e

Number of channels 1 m ≥ 4N ≈ 35 1 m ≥ 4N ≈ 35§

Devices
ADC

ADC mixer, sign waveform mixer, periodic waveform,

(per channel) Time-shifter integrator filter

Sensing matrix (dimensions) None m × M R × W m × M

35 × 195 2.6 · 109 × 1010 35 × 195

Sensing matrix (apply) None O(M log M) O(W log W ) O(mM + M log M)

Sensing matrix (storage) None O(m) O(W ) O(mM)

Support recovery (mem. size, time) ≥ 2N ≈ 40, 1µsec NR = 2.6 · 109, 1 sec ≥ 2N ≈ 40, 1µsec

Realtime







Memory size

Delay

MIPS

huge NR None

huge NR/R =1 sec real time

huge KNR = 780 · 109 2Nm/T = 22 · 103

Technology barrier ADC’s front-end bandwidth (∼1 GHz) CS algorithms♯(∼10 MHz) Waveform generator (∼23 GHz)

§ see text ♯ Our estimate

the technology for generating the periodic waveforms pi(t)
[11], which depends on the specific choice of waveform. The

estimated barrier of 23 GHz refers to periodic sign waveforms

[50], [51].

VII. BASEBAND PROCESSING WITH THE MWC

The MWC has many advantages for standard analog appli-

cations in the wideband regime, as summarized in Tables II

and III. However, baseband processing – the prominent reason

for shifting to the digital domain – is missing. In this section,

we propose a three-step algorithm which overcomes this

deficiency. We assume the multiband model with N bands,

such that each of the N/2 transmissions is of the standard

quadrature form (1). The MWC with the baseband processing

capability we propose here results in a powerful system, which

is capable of sampling, processing the information content and

recovering the input, and all operations involve only lowrate

computations. Even when fNYQ is small, such that a Nyquist

ADC is available, the baseband and realtime processing of the

MWC becomes a significant advantage which may reduce the

power-consumption and cost of the DSP device.

Fig. 10 depicts the three main steps of our algorithm:

1) refinement of the support estimate S to the actual band

edges [ai, bi]. Here, we rely on two additional model

parameters: the minimal width of a single band Bmin

and the smallest spacing between bands ∆min. These

quantities are often implied by the application specifi-

cation, though uncertainty in the values Bmin,∆min has

little effect on the performance, as described later on;

2) generating a lowrate sequence si[n] per band 1 ≤ i ≤
N/2. This step processes zl[n] and incorporates the

cos(ωit)

x̂(t)

z[n]

fi

Fine support
detection

si[n]
Standard

DSP
packages

Ĩ[n]

Q̃[n]

+

Digital → AnalogDigital domain

∑

Per band
analog reconstruction

sin(ωit)

p(t)

p(t)

pulse
shaping

1.

Band isolation
2.

Digital balanced
quadricorrelator

3.

[ai, bi]
Ii[n]

Qi[n]

S

Fig. 10. Digital algorithm for baseband processing with the MWC.

edges [ai, bi];
3) a digital version of the balanced quadricorrelator [24],

an accurate carrier detector, is used to estimate fi.

The desired information signals I(t), Q(t) are obtained upon

completion at no additional cost. DSP software can alter the

information as desired and generate new baseband information

signals Ĩ[n], Q̃[n].
As a nice feature, using the proposed algorithm, the con-

version to analog of Fig. 9 is replaced by a more efficient

method. In [11], x(t) is reconstructed directly from zl[n] by

interpolation to zl(t) and properly positioning of the spectrum

slices. Since the scenario of band splitting is common, it can

be verified that this procedure requires 2N mixers and filters

at the most. The present approach requires only N mixers and

filters. The reconstruction reduces to standard modulation of

the narrowband bit stream I[n], Q[n] (or the analog message).

In the sequel, we mention the relevant MATLAB commands

(in verbatim style) that are used in our implementation. Nu-

merical simulations are used for demonstration. The algorithm
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zl[n]z−l[n]

0 B
2

0 B
2

0 B

xl[n]

(1.3) Edge detection

0 B 0 B

−B
< ∆min

< Bmin

−B
2−B

2

(1.1) Complex to real (1.2) PSD+Threshold

Fig. 11. Fine support (band edges) detection (Step 1).

does not assume any specific modulation technique; the only

essential assumption is the quadrature form (1). As a con-

sequence, the carrier-frequency-offset (CFO) is not expected

to be zero. In commercial receivers, such as Fig. 1, perfect

lock on the input carrier is achieved only when employing

modulation-specific and data-aided algorithms. The purpose

of our algorithm is not to reach zero CFO, but rather to reach

a CFO within the specifications of commercial standards. The

MWC without the proposed algorithm has CFO intermediacy

of 1/T = B, e.g. 50 MHz in the examples we considered so

far, which is far above standard CFO specifications.

A. Algorithm description

Step 1. For convenience, we start with converting the

complex-valued zl[n] to real-valued counterparts. Recall that

the input x(t) is real-valued with a conjugate symmetric

Fourier transform. Therefore, l ∈ S implies −l ∈ S and

z−l[n] = z∗l [n]. In step (1.1) of Fig. 11, a real-valued

sequence xl[n] at rate 2B for each l ∈ S, l > 0 is obtained

by re-positioning zl[n], z−l[n] on both sides of the origin.

Mathematically, xl[n] = I2,0.5B{z±l[n]}, where the operator

Ir,F {z±l[n]}
△
=(zl[n] ↑ r)e−j2πFn + (z−l[n] ↑ r)ej2πFn,

(26)

and ↑ r denotes rate conversion by a factor of r, with the

appropriate post-filtering. By abuse of notation, here and in

the sequel the same index n is used before and after the rate

conversion, where the context resolves the ambiguity. The case

l = 0 ∈ S, has x0[n] = z0[n]. We used interpft to

carry out the interpolations in (26). The information rate is

not changed; zl[n] is complex-valued at rate B, while xl[n] is

real-valued at rate 2B.

Power spectral density (PSD) estimation of xl[n] is invoked

in (1.2) in order to locate the energy concentration within

each spectrum slice. In our simulations, we used the Welch

PSD estimation method [52], implemented by pwelch, which

divides the input to overlapping sections with overlap ratio

50%, filters each section by a Hamming window, performs a

discrete Fourier transform (DFT) on each section, and finally

averages the results. The frequency resolution and the window

size are determined by:

fres = min(Bmin,∆min), Wsize ≥
2B

fres

. (27)

The PSD estimation produces P
(l)
xx [k] for 1 ≤ k ≤ K ≈

Wsize/2, where the accuracy of the estimation increases with

the number of samples in xl[n]. The window size introduces

0

0 π

0

High-pass

Low-pass

Band-pass

xl[n] xl+1[n]

0

All-pass

π
2

π

ππ

π

Fig. 12. Band isolation (Step 2). Merging occurred in the right-bottom
drawing.

an inherent trade-off, where a short one gives better averaging

of additive noise, while a longer one allows higher DFT orders

and thus improves the number of frequency bins K. In (27),

the shortest possible window is used. A logarithmic threshold

log10(Threshold) =
1

K

K∑

k=1

log10 P
(l)
xx [k], (28)

translates P
(l)
xx [k] to a binary decision on the energy concen-

tration.

Finally, in step (1.3) we mitigate undesired noise effects

that were encountered in simulations; support regions that are

closer than ∆min are united, and isolated regions with width

smaller than Bmin are pruned. The operations (1.1)-(1.3) are

carried out for each l ∈ S, l ≥ 0. To conclude this step, only

the N/2 most powerful bands, according to the PSD values,

are retained to further mitigate noise effects. The output of

step 1 consists of N/2 pairs [ai, bi] roughly indicating the

start and the stop edges of the transmission bandwidths. To

this end, the pairs are ordered such that ai < bi < ai+1, and

by convention a0 = b0 = 0, a(N/2)+1 = b(N/2)+1 = fNYQ/2.

Step 2. The purpose of this step is to isolate a sequence

si[n] for each 1 ≤ i ≤ N/2, such that si[n] contains the

entire contribution of exactly one band of information. Using

the edges [ai, bi] we identify cases in which the information

resides in adjacent spectrum slices xl[n], xl+1[n] for some 0 ≤
l ∈ S; see Fig. 8 for example. In such cases, merging occurs

via

s̃i[n] = I4,0.5B{z±l[n]} + I4,B{z±(l+1)[n]}, (29)

whereas s̃i[n] = xl[n] when both ai, bi lie within the same

spectrum slice. As a result, s̃i[n] contains the entire energy

of the ith band with possible contributions from other bands.

The information [ai, bi] from step 1 is utilized again to decide

on the next actions.

Consider the ith band, and for brevity assume no merging

step was required, so that [ai, bi] ⊆ [lB − B/2, lB + B/2]
for some 0 ≤ l ∈ S. Let [ωp,L, ωp,H ] be the normalized

angular frequencies of xl[n] corresponding to [ai, bi], and set

ωs,L = 0, ωs,H = π/2. If either bi−1, ai+1 resides within

the same spectrum slices zl[n], update the normalized angular

frequencies ωs,L, ωs,H , respectively. Next, design a digital

filter D(ejω) satisfying

|D(ejω)| ≤

{
Ap ωp,L ≤ ω ≤ ωp,H

As ω ∈ [0, ωs,L] or ω ∈ [ωs,H , π]
, (30)

where Ap, As are the allowed ripples in the pass- and stop-

bands, respectively. As Fig .12 shows, the resulting filter
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cos(ω0t)

LPF d
dt

LPF

vI(t)

vQ(t)

s(t)
+

vd(t)

d
dt

sin(ω0t)

Fig. 13. The analog balanced-quadricorrelator.

may be low-, high-, band- or all-pass, depending on the

specific values of ωs,L, ωs,H . We used firpmord and firpm

to determine the filter. The ripple amplitudes are set as

Ap = 10−6, As = 10−2. The filter order is often small,

since the actual spacing between the bands relaxes the cutoff

constraints. At last, si[n] is obtained by filtering s̃i[n] with the

designed finite impulse response (FIR). A similar procedure

is performed when merging occurred in s̃i[n].
At this point, we have a sequence si[n] for each band

1 ≤ i ≤ N/2 at a uniform rate of either 2B or 4B, depending

on whether the merging (29) was required. In either case,

the middle frequency f̃i = (ai + bi)/2 can serve as a rough

estimate of the unknown carrier of (1). In fact, in simulations

we observed that f̃i is not far from the true carrier, as long

as the PSD estimation is sufficiently accurate, a situation

which occurs for a high signal to noise ratio (SNR) and

many samples from xl[n]. In such setting, the number of

PSD points K = Wsize/2 is large, which allows to average

out the noise and also to mitigate undesired effects due to

the windowing. The next step incorporates an accurate carrier

frequency detector which relies on (1) to better predict the

carriers even in cases in which the PSD curve is noisy and

inaccurate.

Step 3. We start with describing the balanced quadricor-

relator (BQ), which was analyzed in [24] and whose circuit

appears in Fig. 13. The BQ receives an input s(t) of the

form (1), assumes a certain carrier frequency f0 = ω0/2π,

and outputs vd(t) whose expected value is proportional to the

carrier offset

E[vd(t)] = −KG(fc − f0)(E[I2(t)] + E[Q2(t)]). (31)

The signals I(t), Q(t) that build s(t) are assumed random

with zero cross-correlation, E[I(t1)Q(t2)] = 0 for all t1, t2. In

practice, time averaging replaces the expectation. The constant

KG in (31) captures the analog gains along the way: the

mixers, the filters, and the differentiators. Note that zero cross-

correlation holds for AM, and also for FSK/PSK with a

preceding source coding stage [24].

In the proposed algorithm, we implement a digital ver-

sion of the BQ. A fundamental requirement for the BQ

operation, either in analog or digital, is that the first mix-

ing yields non-overlapping copies of s(t). To ensure this

property, each si[n] is interpolated by a factor of three,

and the positive and negative frequencies are re-positioned

in [π/3, 2π/3], [−2π/3,−π/3], respectively. For example,

when no merging occurs this operation boils down to

I6,1.5B{z±l[n]} with the relevant l. The digital BQ is applied

on the outcome.

Our digital implementation consists of FIR lowpass filters,

and the continuous derivatives are approximated by the finite

difference – a filter with the discrete impulse response [1,−1].
Note that a wide family of filters can substitute the true

differentiators [24]. The BQ is initialized with a normalized

angular frequency ω0 = π/2 and is repeatedly applied. At

each iteration, ω0 is updated by

ωnew
0 = ωold

0 +G

∑

n vd[n]
∑

n |si[n]|2
, (32)

where the loop gain G = 5 · 106. The procedure monitors

ω0 ∈ [π/3, 2π/3] and terminates upon convergence or if a

pre-defined number of iterations is reached.

Properties. Upon completion, the desired information con-

tents I(t), Q(t) of a band of interest are instantly available

– these are the signals vI(t), vQ(t) from the last BQ itera-

tion, see Fig. 13. In fact, due to the digital implementation,

the information signals are already given in a uniformly-

spaced sampled version which the DSP excepts. The rate of

Ii[n], Qi[n] is either 6B or 12B, depending on the rate of

si[n]. The recovered carrier fi and the detected band edges

[ai, bi] allow to reduce the rate of Ii[n], Qi[n] to the minimal

rate 2(bi − ai).
Besides the information signals I(t), Q(t), the algorithm

outputs additional useful information per band: the edges

[ai, bi], the isolated sequence si[n] and the carrier fi. The

latter is computed from the normalized angular frequency ω0

that the BQ converged to by

fi = B

(

l + c
ω0 − π/3

π/3

)

, (33)

where c = 1 when merging was not required, and c = 2
otherwise. These products are utilized in Section VIII for

spectrum sensing in cognitive radio applications.

For applications in which the exact Bmin,∆max are unknown,

an approximate value can be set. The uncertainty with respect

to the true values may yield many possible support regions

in steps (1.1)-(1.2). Nonetheless, the effect on the overall

performance is little, since only the N/2 powerful regions

are selected in step 1. Furthermore, the exact band locations

have only minor effect on the filter design in step 2, as

Fig. 12 depicts. The BQ iterations in step 3 are also insensitive

to inaccuracies in [ai, bi]. Therefore, approximate values for

Bmin,∆max are sufficient in practice.

B. Simulations

To evaluate the proposed algorithm, we considered an ex-

ample of a multiband model N = 6, B = 50 MHz. Quadrature

phase-shift keying (QPSK) modulation was used to generate

x(t) =
∑3

i=1 xi(t) via

xi(t) =

√

2Ei

Tsym

(
∑

n

Ii[n]p(t− nTsym)

)

cos(2πfit) (34)

+

(
∑

n

Qi[n]p(t− nTsym)

)

sin(2πfit) + n(t),

where Ei = {1, 2, 3}, 1/Tsym = 30 MHz, p(t) =
sinc(t/Tsym) are the symbol energy, rate and pulse shape. The
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Fig. 15. Maximal carrier offset vs. number of channels and SNR level. In
(a) SNR=20 dB and in (b) m = 30 channels.

carriers fi ∈ [0, 5] GHz, the bit streams Ii[n] = ±1, Qi[n] =
±1, and the additive white Gaussian noise n(t) were all drawn

independently at random. The theoretical PSD of a single

QPSK transmission is illustrated in Fig. 14.

An MWC with the basic configuration was used with sign

alternating waveforms pi(t), M = 195 alternations points

per period T = 1/B. The CTF and the matrix inversion of

Fig. 6 were carried out as suggested in [11]. The outputs,

zl[n], were processed by our algorithm. For 100 test signals,

we measure the carrier frequency offset (CFO) of each fi.

Fig. 15 reports the maximal CFO (for i = 1, 2, 3) for various

number of channels m and for several SNR levels. In the

figures, gray intensity is used to report the empirical CFO

distribution between the maximal and minimal values. As

evident, for m ≥ 20 and SNR greater than 10 dB, most trials

resulted in CFOs smaller than 350 kHz. For comparison, the

40 ppm CFO specifications of IEEE 802.11 standards, e.g.

[53], tolerate this error for transmissions located around 10
GHz. The CFO can be further reduced in the DSP, based on

QPSK-specific synchronization techniques.

VIII. APPLICATION – SPECTRUM SENSING

The most intensive task of a sub-Nyquist system consists

of acquiring an analog wideband input x(t) at a low rate,

translating the samples to the format that standard DSP pack-

ages can deal with, and possible reconstruction of the analog

x(t). In this section, we consider a lighter application – the

cognitive radio (CR) transceiver [25]. The prime goal of a CR

is to identify spectrum holes, namely frequency intervals with

no transmissions. The CR uses the spectrum holes, which are

often licensed to a single primary user, in order to transmit

secondary signals. The spectrum is repeatedly monitored, or

sensed, and in case the primary user appears, the secondary

transmissions must be stopped immediately and relocated to

available spectrum holes.

Formulating the problem mathematically, the CR has an

input multiband signal x(t), and the goal is to find the

complement of the spectral support. Clearly, this task is lighter

than sampling the analog signal and providing the information

contents I(t), Q(t). Nonetheless, the implementation is in

the wideband regime, and the computational cost should be

minimal in order to adapt quickly to changes in the spectral

support. Scanning the spectrum for the holes is not much easier

than searching for an unknown carrier fi in the wideband

spectrum, for the reasons explained in Section II. Below

we propose two degenerate configurations of the MWC that

provide the spectrum sensing functionality.

Spectrum sensing – option 1. Assume a multiband model

with an expected number of concurrent transmissions equal

to N/2, and maximal expected bandwidth of a single trans-

mission given by B. Design a standard MWC system. Then,

execute only step 1 of the digital algorithm of Section VII.

The output is a list of band positions [ai, bi].
Spectrum sensing – option 2. Consider a multiband model

with B = Bmin, the expected bandwidth of the narrowest

primary transmission. The number of bands N is set such

that NB ≥ Ω, where Ω is the expected occupied bandwidth

till fmax. Both specifications are typically known in CR en-

vironments. Next, design an MWC system according to the

flow described in [11] for this multiband model. The CTF

will output the support set S, such that l ∈ S indicates the

presence of signal energy in the length Bmin spectrum slice,

centered around lBmin. The union over all l /∈ S indicates

the spectrum holes. A note about analog implementation is in

order. Since B = Bmin is typically small and N is large in

this approach, the basic configuration with m ≥ 4N channels

may be impractical. To reduce the number of channels to

a reasonable size, we may use one of the advanced MWC

configurations [11], in which the sampling rate per channel

fs is set to q times fp, where fp = 1/T , and T remains

the period of pi(t). This option conceptually collapses every

q channels of the basic configuration to a single branch with

q times higher sampling rate. The price for this solution is

additional digital computations in the form of q digital filters

per channel [11].

Comparison. In both solutions, the CTF block is used to

recover the set S. The decomposition (24) can be avoided

as suggested. For option 1, the digital processing ends after

step 1 of the baseband algorithm. Steps 2 and 3 are skipped.

In option 2, the digital processing ends even earlier right after

the CTF recovers the support estimate S. In either case, there

is no need to extract the information I(t), Q(t) or perform any

other computation.

The second approach has a clear advantage that there is no

need to compute the pseudo-inverse C†
S or to generate the

sequences z[n]. On the other hand, the first solution uses the

basic configuration with q = 1, thus avoiding the additional

digital filters required by the advanced configuration. In ad-
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dition, the matrix C in this setting is typically smaller, since

the size of C is inversely proportional to the aliasing rate 1/T
and since 1/T = B is larger than 1/T = Bmin. The price is

the set of operations of step 1, as depicted in Fig. 11, and

especially the PSD estimation. To decide on a solution, one

must compare the computational costs for the specifications

N,B,Bmin,Ω at hand.

Related works. The relation between cognitive radio and

compressed sensing was noted already in several publications

[10], [26]–[30]. The parallel RD scheme [10] has the limita-

tions mentioned in Section IV. The work [26] is based on a

finite parametrization of analog signals, similar to the RD. The

transition between analog signals and discrete CS, eq. (4) and

(5) in [26] is not detailed. Pointwise sampling is used in [27],

see eq. (22). In [28] the authors list implementation issues in

the RD, though the approach taken eventually also uses a finite

parametrization [28, eq. (4)] and the computational burden is

noticed in the experiments. Finally, [29], [30] isolate all analog

issues to an analog-to-information (AIC) device which is as-

sumed to exist. They also use a finite representation of analog

signals, and focus their developments on auto-correlations in

the compressed domain. For the sake of decency, the authors

point out that “the scheme results in a somewhat paradoxical

architecture since sub-Nyquist sampling is achieved by first

sampling the wide-band analog signal at Nyquist rate and

then applying CS” [29], [30].

IX. CONCLUSIONS

We have proposed the Xampling methodology as a fun-

damental tool for the design of sub-Nyquist system: broad

signal model, low rate, efficient implementation and baseband

processing are the necessary ingredients. This framework was

supported by a comprehensive and careful examination of

leading approaches from both classic sampling papers and

recent CS publications.

We also described a digital algorithm that provides the

MWC with the baseband processing capability. This turns the

MWC to a powerful system, which is capable of sampling,

processing the information contents and recovering the input.

All operations involve only lowrate computations. We then

considered an application to cognitive radio receivers. The

MWC has prominent advantages in sub-Nyquist wideband

scenarios. The ability of baseband processing makes the MWC

strategy useful even when Nyquist sampling is possible, but

processing at a low rate is needed.

A famous question by Donoho [14] triggered many works

in the CS literature: “Can we not just directly measure the part

that will not end up being thrown away ?”. Interpreting this

question for analog signals reduces to whether one can sample

at a rate below Nyquist. The Xampling framework highlights

additional considerations in designing of sub-Nyquist sam-

pling, besides reducing the rate. Indeed, one can directly

measure the part that will not end up being thrown away using

the MWC. However, a breakthrough of the Nyquist barrier, in

theory and in practice, must incorporate truly analog models

and efficient hardware and software implementations together

with the ability to process the information captured by the

samples, without interpolating to the high Nyquist rate.
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