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Evyatar Hemoa , Boris Spektora and Joseph Shamira

aDepartment of Electrical Engineering, Technion - Israel Institute of Technology,
Haifa 32000, Israel

Investigating spherical nano-particles by illumination of Gaussian beam was studied.
In order to simulate the scattering e¤ect new software simulation based on the Bromwich
formulation and the Mie theory was developed. The scattering simulation enables us to
examine the scattered �eld a¤ected by the particle size and material composition. Study-
ing the scattered �elds yielded sensors con�guration which has the ability to di¤erentiate
between particles made of di¤erent materials.

1. Introduction

Advanced technology quite frequently encounters the need to analyze particles and
surface features in the nanometer region. The most important aspects of interest are
the size and material composition. Since we deal with dimensions under the wavelength
of light, conventional imaging has signi�cant limitations and di¤erent approaches must
be investigated. In this work we assess the possibilities to extract information about
the material composition of spherical nano-particles by observing the distribution of the
scattered intensity when the investigated particles are illuminated by a focused Gaussian
beam.

Table 1
Mainly studied materials and their refractive index.

Material Refractive index

Glass 1.5

Gold 1.658+1.956i

Poly-Si 5.298+0.843i

GaAs 4.434+2.052i

Aluminum 0.503+4.923i

Diamond 2.458

In order to simulate the scattering e¤ect a simulation software was developed based on
the Bromwich formulation and the Mie theory to yield the beam shape coe¢ cients (BSC).
Analyzing the interaction of the beam with a sphere using the BSC method enables us to
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Figure 1. Coordinates system

get a di¤erent insight of the problem. Table 1 presents a list of material parameters that
were studied as speci�c examples.

2. The simulation model

To simulate the scattering of a focused Gaussian beam on sub-wavelength spherical
particles a new simulation software was developed based on the Mie theory. However,
since the Mie theory was developed for plane wave illumination it must be generalized
for illumination with more complex beam structures, such as Gaussian beams. Following
the Bromwich formulation [1], [4] the electric and magnetic �elds are detemined by the
Bromwich potentials also known as the Hertz-Debye potentials. There are two potentials
UTM and UTE which must ful�ll the wave equation, which, in a spherical coordinate
system, has the form,
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The TM and TE �elds are de�ned with respect to the radial direction such that Hr = 0
and Er = 0, respectively. They are calculated [5] from the solutions [3] of UTM and UTE.
The origin of the coordinate system, O, is both at the center of the incident beam on the
xy plane and the center of the scattering sphere. During the Bromwich formalism the
scatterer center always remains the center of the coordinates system while the center of
the beam can be relocated.

The radial component of the scattered electric �eld is given by



3

Er = �kE0
1X
n=1

+nX
m=�n

cng
m
n;TMan [�

00
n (kr) + �n (kr)]P

jmj
n (cos �) exp ({m') (2)

where k is the wave number, k =M !
c
, ! is the angular frequency, c is the speed of light

and M is the sphere�s complex refractive index. The Bromwich beam coe¢ cients of a
plane wave, cn, are given by
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1
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and the structure of a beam is described by the beam shape coe¢ cients, gmn;TM and gmn;TE
that are 1 for a plane wave. The function, �n (kr), is one of the Ricatti-Bessel functions
de�ned by
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where H(2)
n (kr) is a superposition of the Bessel and Neumann functions and is called the

Hankel function of the second kind. The Hankel function has an important property of
vanishing when kr !1. P jmjn (cos �) are the well known associated Legendre polynomials
and an are called Mie coe¢ cients and will be explained further on.
The other components of the scattered electric �eld are
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Where �mn and �
m
n are de�ned by

�mn (cos �) =
d

d�
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The scattering process is taken into account by the Mie coe¢ cients an and bn [2] that
are expressed by
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where x = ka = 2�a
�
, y = kspa; a is the particle radius and ksp is the wave number inside

the sphere, therefore the refractive index is M = ksp
k
. The function 	n (kr) is one of the

Ricatti-Bessel functions corresponding to the �rst order Bessel function. The full model
will be rigorously described in Ref. [3].
It can be seen from Eqs. (2 - 6) that for a given incident illumination:
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the scattered �eld is completely determined by the Mie coe¢ cients that depend on the
sphere�s radius and refractive index. Therefore, the di¤erence between the scattered �elds
of two di¤erent materials can be represented by these coe¢ cients.

3. Shape of the scattered �eld distribution

As indicated above, for a particle positioned at a certain position within a given illu-
minating beam the Mie coe¢ cients determine completely the scattered �eld components
and thereby the shape of its distribution. While exploring the relations between the Mie
coe¢ cients and the scattered �eld distribution, several mathematical properties of these
coe¢ cients were studied. Studying the e¤ects of the real part, the imaginary part, the
absolute value and the phase of the Mie coe¢ cients on the �eld distribution lead us to the
conclusion that the most signi�cant factor is the phase. It means that di¤erent scatterers
that cause similar phases of the Mie coe¢ cients will generate scattered �eld distribution
of similar shape.
As a physical justi�cation for this conclusion we may consider the Mie coe¢ cients

as spatial frequency coe¢ cients since they originate from the decomposition process of
the scattered �eld in the Legendre-Bessel basis. Therefore, the Mie coe¢ cients have
the meaning of frequency coe¢ cients and it is a well known fact that the phase of the
frequency coe¢ cients have the strongest in�uence on the shape of an image.
To test the in�uence of the Mie coe¢ cients on the shape of the scattered �eld dis-

tribution, dozens of scattering scenarios from both real and imaginary materials were
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Figure 2. Mie coe¢ cients relative phases for several materials

simulated. Imaginary materials with arbitrary refractive index were added to the simu-
lations in order to enlarge the refractive index variety of the test. The phases of the �rst
�ve Mie coe¢ cients for the materials listed in the table above are shown in �gure 2
and the respective scattered �elds are presented in Fig. 3. For example, the coe¢ cients

for gold, poly-Si and GaAs have similar phases and they signi�cantly di¤er from those for
glass and diamond, in good correspondence with the shape of the scattered �elds. Using
this correspondence it is possible to predict which materials would cause scattered �elds
with similar shapes.

4. The e¤ects of the NA on the scattered �eld distribution

In order to investigate the in�uence of the material on the scattered �elds, several
scenarios were simulated. These scenarios included X polarized Gaussian beams with
di¤erent NA scattered from spheres of di¤erent materials and radius. Gaussian beams
with NA = 1; 0:5; 0:25 (beam width of 0.25um, 0.5um and 1um respectively) scattered
from a 100nm radius sphere were calculated 10mm from the sphere�s center. The scattered
intensities for NA = 1 are shown in �gure 3.
As can be seen, di¤erent materials yield di¤erent scattered �elds. Some of the �elds

have similar shapes while others are quite di¤erent. It is important to note that the sphere
radius is small compared to the beam width. For a �xed sphere radius, as long as a

w0
. 1

where a is the sphere radius and w0 is the beam width, the beam width has no in�uence
on the scattered �eld distribution. The only thing that changes with the sphere radius
is the intensity of the scattered �eld relative to the incident intensity. For larger beam
width (lower NA), the energy hitting the sphere is smaller and so is the scattered �eld.
However, when a

w0
& 1 the scattered �elds look completely di¤erent. For example, the
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Figure 3. Scattered �elds from several materials for a=100nm sphere

scattered �eld distributions of the same Gaussian beam from a 300nm spheres are quite
di¤erent as can be seen from �gure 4.
The results of the above simulations indicate that the material of particles can be

classi�ed by these measurements provided the condition a
w0
. 1 is maintained. Such a

material classi�cation can be done by calculating the eccentricity of the scattered �eld
distribution. For example, within our set of materials, lower eccentricity values indicate
glass or diamond while higher values are indication of semiconductor scatterers. In order
to measure the eccentricity, the scattered �elds were converted into binary images with
threshold of 90% from the maximal energy. After retrieving the oval shapes (Fig. 5), the
eccentricity parameter can be calculated as presented in Table 2 for various materials.

Table 2
Scattered �elds eccentricity parameter.

Material Eccentricity index Material Eccentricity index

Glass 0.718 Silver 0.821

Diamond 0.689 Poly-Si 0.972

GaN 0.657 GaAs 0.948

Aluminum 0.846 Germanium 0.945

Gold 0.899 Silicon 0.978

Copper 0.88 SiO 0.927

Particles made of materials such as Si, Ge and GaAs which are commonly used in the
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Figure 4. Scattered �elds from several materials for a=300nm sphere
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Figure 5. Binary images of the scattered �elds
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Figure 6. Detectors con�guration

semiconductor industry have high eccentricity values (> 0:94) while glass and diamond
particles have small values (< 0:72). Metals have intermediate values, closer to the
semiconductors.

5. Material classi�cation

To classify the material composition of nano-particles it is suggested to use the eccen-
tricity property of the scattered �elds. Combining the fact that the Gaussian beam is
spatially �nite (as opposed to a plane wave, for example) it is possible to design a special
detector architecture which enables us to classify di¤erent materials. The scattered in-
tensity is low relative to the incident intensity therefore the total measured �eld will not
have distinguishable eccentricity values at its center. However, by setting the detectors
far enough from the incident beam�s maximal intensity region but adequately close to
still have signi�cant values of the scattered �eld, it is possible to estimate the material
composition of sub-wavelength particles. The detector con�guration shown in Fig. 6 is
composed of two pairs of parallel rectangular detectors. The �rst pair, perpendicular to
the y axis, is located 6.8[mm] from the center of the beam and the second pair is located
at the same distance perpendicular to the x axis. The size of each of the four detectors is
0.9x11.8[mm].
For the proposed estimation we measure the total power incident on the �rst parallel

pair and divide it with the power measured over the second parallel pair. Calculating
this power ratio enables us to calculate indirectly the eccentricity e¤ect of the scattered
�elds. To eliminate the in�uence of the absolute power of the scattered �elds this ratio is
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multiplied by a normalization factor. The normalization factor is the ratio between the
maximal intensity of the total �eld and the maximal intensity of the incident �eld (the
total �eld in case that there is no scatterer). In order to measure the normalization coef-
�cient a �fth 0.9x0.9[mm] detector was added at the center of the beam. The normalized
intensity ratio (NIR) is thereby given by

NIR =

�
P (d1) + P (d2)

P (d3) + P (d4)

�
� P (d5)

P (d5) jno scatterer
(13)

where P (di) is total power measured by the detectors:

P (di) =

Z
di

�
jExj2 + jEyj2

�
ds

where E is the total �eld calculated at the detector plane and di is the relevant detector.
The NIR measurement indicates the eccentricity of the scattered �elds and thereby the
scatterer material. It is important to note that the above sensor con�guration is based
on the assumption that the incident Gaussian beam is x polarized. As a consequence the
semi-major axis of the elliptic shaped of the scattered intensity is y. This asymmetry was
taken into account when the power received by the detectors perpendicular to the y axis
was placed in the numerator of the NIR expression. Several NIR values are listed in the
next table.

Table 3
NIR values.
Material NIR Material NIR

Glass 1.43 Silver 1.66

Diamond 1.18 Poly-Si 2.37

GaN 1.15 GaAs 2.10

Aluminum 1.70 Germanium 2.10

Gold 1.77 Silicon 2.94

Copper 1.76 SiO 1.90

As can be seen, it is possible to identify families of materials such as glass, diamond
and GaN having low NIR values (NIR . 1:5), metals having medium NIR values 1:6 .
NIR . 1:8 and the semiconductors having high NIR values NIR > 1:9.

6. Conclusions

Using new scattering simulation software it was possible to investigate the in�uence
of the particle material and size on the shape of the scattered �eld distribution. It was
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found that while the condition a
w0
. 1 is maintained it is possible to sort scatterers into

di¤erent families of materials. The material classi�cation is based on the eccentricity of
the scattered �eld distribution, which has a strong dependence on the relative phases
of the Mie coe¢ cients. Exploiting these results it is possible to predict which materials
will cause similar scattered �elds just by calculating the Mie coe¢ cients of a scatterer
without simulating the scattered �eld itself. Finally, a detector architecture was o¤ered
to measure the eccentricity property of the scattered �elds for the classi�cation of the
material composition of scattering nano-particles.
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