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A Hybrid Vector Wiener Filter Approach to
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Abstract—We address the problem of purely-translational
super-resolution (SR) for signals in arbitrary dimensions. We
show that discretization, a key step in many SR algorithms,
inevitably leads to inaccurate modeling. Instead, we treat the
problem entirely in the continuous domain by modeling the
signal as a continuous-space random process and deriving its
linear minimum mean-squared error (LMMSE) estimate given
the low-resolution discrete-space observations. We derive a closed
form expression for the resulting mean-squared error and use
it to analyze the emergence of periodic artifacts in the super-
resolved signal. We also provide three efficient implementation
schemes of the LMMSE estimate, one of which specialized for 1D
applications. These methods constitute a natural generalization
of several well known single-image recovery algorithms, such as
spline interpolation, to the multichannel SR setting. Experiments
on real-world images demonstrate the advantage of our approach
with respect to several prominent SR techniques that rely on
discretization.

Index Terms—Super-resolution, nonuniform interpolation, hy-
brid Wiener filter.

I. INTRODUCTION

S
UPER-RESOLUTION refers to the process of combining

several low-resolution descriptions of a signal to form

one higher resolution version of it. In the field of image

processing, there are 1D, 2D and 3D variants of this task.

Perhaps the most commonly treated scenario is that of purely-

translational spatial (2D) super-resolution (SR) [1], [2]. Here,

several low-resolution noisy images of a scene are captured by

a camera, each with a different translation, and the goal is to

produce one high-resolution image of the same scene. Three-

dimensional scenarios arise in space-time SR applications [3].

There, several video sequences of the same scene are fused

into one higher-resolution video stream at a higher frame-

rate. If the video cameras are spatially co-calibrated, then

processing can be carried out only along the time dimension

(temporal SR), rendering the problem one-dimensional. In this

paper, we collectively refer to all problems of this type as SR,

and develop a theory for arbitrary d-dimensional signals.

The physical model underlying purely-translational SR sce-

narios can be described mathematically as [4]

ck[n] = [(s ∗ x)(t)]t=n−tk
+ uk[n], k = 1, . . . ,K, (1)
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where ck[n], n ∈ Z
d, is the kth discrete-space observation

of the continuous-space signal x(t), t ∈ R
d, acquired with

translation tk and additive noise uk[n]. The filter s(t) is

associated with the imaging device. It corresponds to the

point-spread-function (PSF) of the lens in 2D SR, to the

temporal integration profile of the sensor in 1D SR, and to

a combination of both in 3D space-time SR. The goal of an

SR algorithm is to produce a discrete-space high-resolution

signal xHR[n] which corresponds to the samples of x(t) on a

dense grid.

In much of the recent literature, SR is modeled via the

discrete-space relations [1], [2]:

ck = SkxHR + uk, k = 1, . . . ,K. (2)

Here ck, uk, and xHR are column vectors comprising the

elements of ck[n], uk[n], and xHR[n] respectively, and the

matrix Sk accounts for the filtering by s(t) and the sam-

pling. This discrete formulation has several advantages over

the continuous model (1). Most noteworthy, it allows the

construction of a finite-dimensional optimization problem in-

corporating complicated realistic prior-knowledge assumptions

on the unknown xHR [2]. Such optimization problems may be

solved using standard optimization methods. Nevertheless, as

we show in this paper, there are many situations in which the

continuous-space equations (1) cannot be represented in the

discrete form (2). In other words, we show that in certain set-

tings SR must be regarded as a continuous-space interpolation

problem. Algorithms which do not treat the problem from this

viewpoint, inevitably suffer from a model miss-match error.

Prior SR work falling into the interpolation category (also

termed frequency-domain methods [4]) include [5], [6], [7],

[8], [9], [10], [11], [12]. In these algorithms, the continuous-

space scene x(t) is assumed to be bandlimited. In the single-

channel interpolation literature, recent work has shown that

this type of prior knowledge is often not in agreement with

the typical behavior of natural images [13], [14]. Furthermore,

it has been experimentally demonstrated that interpolation

algorithms relying on non-bandlimited models, such as the

Matèrn prior, can lead to improved reconstruction results [15],

[16], [17]. In SR applications, the bandlimited assumption

translates to a stringent limitation on the required number

of measurements. Specifically, the number of observations K
required for increasing the resolution by a factor of ∆ must be

at least ∆d in the methods mentioned above. Thus, to increase

resolution by a factor of 4 in every dimension, for example, at

least 16 still images are required in a spatial SR task (d = 2),

and at least 64 video sequences are needed in a space-time

SR scenario (d = 3).
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An additional disadvantage of existing continuous-domain

SR methods is that they do not explicitly incorporate statistical

assumptions on x(t). Such assumptions have been shown

to greatly improve SR performance when using the discrete

model (2) [2].

In [18], the authors proposed an SR approach, which can

(in theory) be adapted to work in the continuous-domain, and

which does not rely on the bandlimited assumption. There,

prior knowledge on x(t) is implicitly defined by a user-chosen

“back-projection kernel”. However, the effect of this kernel

on the reconstruction is not clear. Moreover, by adapting this

algorithm to the continuous-domain, we end up with the need

to iteratively update the continuous-space recovery x̂(t). This,

of course, cannot be done in a precise manner. In practice, only

the densely sampled version x̂HR[n] is maintained throughout

the iterations. Therefore, practically, this method belongs to

the category of algorithms relying on the incorrect discrete

formulation (2).

In this paper we treat the SR interpolation problem without

resorting to the commonly used bandlimited assumption. Mo-

tivated by the good single-channel image interpolation results

reported in [13], [14], [15], [16], [17], here we model x(t) as a

wide-sense-stationary (WSS) continuous-space random signal

with known power-spectral-density (PSD). We then derive

the linear minimum mean-squared error (MSE) estimator of

x(t) given the discrete-space observations c1[n], . . . , cK [n].
We term this estimator the vector hybrid Wiener filter

as it operates on a discrete-space vector process c[n] =
(c1[n], . . . , cK [n])T , and outputs a continuous-space recovery

x̂(t).
We show that in situations where both the PSF and the

signal’s autocorrelation function are compactly supported, the

resulting estimator can be implemented efficiently. Specif-

ically, for 1D SR, we provide an implementation which

consists of digital filtering of the discrete-space measurements

ck[n], followed by a simple interpolation stage. For SR in

higher dimensions (e.g., spatial or space-time SR), we propose

two algorithms for efficient implementation of the resulting

estimator. Both approaches include an iterative stage which

operates on the measurements c1[n], . . . , cK [n], followed by

an interpolation step. An important feature of our iterative

approaches, is that iterations are performed in the digital do-

main so that the implementation stays loyal to the continuous

formulation (1). In other words, our approach does not rely

on approximations of the type required to adapt [18] to work

in the continuous-domain.

When the autocorrelation function of the scene is chosen to

be a B-spline, our approach constitutes a natural generaliza-

tion of the widely used (single-channel) spline interpolation

method to the multichannel SR setting. We term the resulting

algorithm spline super resolution. As we demonstrate through

experiments on real-world images, our multichannel spline

interpolation method often yields recoveries, which are better

than those produced by current state-of-the-art algorithms.

The paper is organized as follows. In Section II, we show

mathematically why discretization is generally not loyal to

the true physical setting. In Section III, we present our

assumed continuous-space statistical model and derive the

corresponding LMMSE estimator. Three efficient implemen-

tation schemes for the LMMSE estimator are provided in

Sections IV and V. In Section VI, we analyze the reconstruc-

tion error patterns and discuss the inherent tradeoff between

a sharp recovery and periodic artifacts. To obtain a practical

SR algorithm, we specialize our approach in Section VII

to spline autocorrelation models, which leads to the spline

super resolution algorithm. Finally, in Section VIII we present

several experiments on real-world images, demonstrating the

advantage of our approach over SR algorithms which rely on

discretization.

II. THE NEED FOR CONTINUOUS-SPACE TREATMENT

In this section we analyze the situations in which purely-

translational SR cannot be accurately modeled via the discrete

form (2).

A. Motivation

To develop intuition, we begin by examining a simple case

of an imaging device whose lens’ PSF is negligible with

respect to pixel size. In this situation, the pixels in the image

correspond to integrals of the continuous-space scene x(t)
over non-overlapping rectangular environments. Therefore, the

filter s(t) of (1) in this case is a rectangular kernel:

s(t) =

{

1 t ∈ [0, 1]d

0 else.
(3)

Now, assume we wish to construct a representation xHR[n]
whose resolution is ∆ times higher in each dimension. In other

words, we want the pixels in xHR[n] to correspond to integra-

tions of x(t) over contiguous non-overlapping environments

of size 1/∆. This setting is demonstrated in Fig. 1 for a uni-

dimensional signal (d = 1), with t1 = 0, t2 = −1/2 and

∆ = 2. As can be seen, in this case each of the elements in

the low-resolution sequences ck[n] can be expressed as a linear

combination of the high-resolution pixels xHR[n]. For example,

c1[1] = xHR[1]+xHR[2], and similarly c2[3] = xHR[4]+xHR[5].
The above example demonstrates that in some situations,

the discrete formulation (2) is loyal to the physical settings.

However, what made discretization possible in this scenario

was the fact that the magnification ∆ was an integer (namely

∆ = 2), and that the translations tk were integer multiples

of 1/∆ (namely 0 and −1/2). It is easily verified that unless

these two conditions are met, discretization is impossible in

this setting.

Typically, the magnification factor ∆ is indeed chosen to

be an integer. Furthermore, one may argue that when ∆ is

sufficiently large, the translation tk can be quite accurately

approximated by ℓk/∆ for some ℓk ∈ Z
d, so that use of the

discrete model (2) is justified. However, as we show next,

even under these two assumptions, discretization is generally

impossible for non-rectangular PSF functions.

B. Discretization with General PSFs

To study discretization with arbitrary PSF functions, we

need to specify explicitly the relation between the discrete-

space high resolution signal xHR[n] and the continuous-space
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Fig. 1: Increasing resolution by a factor of 2 with a rectangular

PSF. The low resolution sequences c1[n] and c2[n] were

acquired with translations t1 = 0 and t2 = −1/2 respectively,

and correspond to linear combinations of elements from the

high resolution sequence xHR[n].

signal x(t). Here we assume that xHR[n] corresponds to the

samples of x(t) on a grid of points {n/∆ : n ∈ Z
d} for

some magnification ∆ > 1, after having been convolved with

a PSF w(t):

xHR[n] = [(w ∗ x)(t)]t=n/∆ . (4)

This formulation is general enough to capture a wide range

of interesting scenarios. For example, by choosing the target

PSF w(t) = δ(t), we get that xHR[n] corresponds to the point-

wise samples x(n/∆). The PSF w(t) can also be chosen

to provide xHR[n] with the realistic impression that it was

obtained by moving the imaging device towards the scene.

This is done by setting w(t) = s(∆t), as in the example

of Fig. 1. Finally, if the the profile of s(t) is too wide with

respect to the low-resolution grid, then w(t) can be set to be

narrower than s(∆t), in order to obtain a deblurring effect in

the high-resolution domain.

Using (4), xHR[n] can be written as

xHR[n] =

∫

Rd

x(t)w
(n

∆
− t
)

dt. (5)

Similarly, (1) implies that the low-resolution samples ck[n]
are given by

ck[n] =

∫

Rd

x(t)s(n− t− tk)dt. (6)

The conjecture that ck[n] is a linear function of xHR[n]
corresponds to the existence of a set of coefficients Sk[m,n],

m,n ∈ Z
d, such that

ck[n] =
∑

m∈Zd

Sk[n,m]xHR[m]

=
∑

m∈Zd

Sk[n,m]

∫

t∈Rd

x(t)w
(m

∆
− t
)

dt

=

∫

t∈Rd

x(t)





∑

m∈Zd

Sk[n,m]w
(m

∆
− t
)



 dt, (7)

where we used (5). Discretization is possible if and only if (7)

equals (6) for every signal x(t) in L2(R
d). This happens only

if

s(n+ t− tk) =
∑

m∈Zd

Sk[n,m]w
(m

∆
+ t
)

(8)

for every n ∈ Z
d and for almost every t ∈ R

d.

Taking the d-dimensional continuous-space Fourier trans-

form (CSTF) of both sides of (8) with respect to t, yields the

condition

S(ω)eiω
T (n−tk) = W (ω)Ak,n(e

−iω/∆). (9)

Here ω denotes the d-dimensional frequency vector, S(ω)
and W (ω) are the CSTFs of s(t) and w(t) respectively,

and Ak,n(e
iω) is the discrete-space Fourier transform (DSFT)

of Sk[n,m] with respect to the index m. As motivated in

Section II-A, we now make the simplifying assumption that the

magnification factor ∆ is an integer, and that the shift vector

tk comprises only integer multiples of 1/∆. We therefore

substitute tk = ℓk/∆, where ℓk is some vector in Z
d, and

get that S(ω) and W (ω) must satisfy

S(ω) = W (ω)Ak,n(e
−iω/∆)eiω

T (ℓk−∆n)/∆. (10)

Finally, noting that Ak,n(e
−iω/∆)eiω

T (ℓk−∆n)/∆ is a func-

tion which is 2π∆-periodic in each of the elements of the

frequency vector ω, we arrive at the following conclusion.

Proposition 1: Let S(ω) and W (ω) denote the CSFTs of the

two PSFs s(t) and w(t) respectively. Furthermore, let ∆ ≥ 1
be an integer magnification factor and tk be a shift vector

whose elements are integer multiples of 1/∆. Assume that

a continuous-space scene x(t) is sampled on the grid {t =
n− tk : n ∈ Z

d}, after having been convolved with s(t), to

yield the discrete-space signal ck[n]. Similarly, assume that

x(t) is sampled on the grid {t = n/∆ : n ∈ Z
d} after

having been convolved with w(t), to yield the discrete-space

signal xHR[n]. Then ck[n] can be written as a linear function

of xHR[n] for every scene x(t) if and only if there exists a

2π∆-periodic function Bk(e
iω/∆) such that

S(ω) = W (ω)Bk(e
iω/∆) (11)

for almost every ω ∈ [−π, π]d.

We see that even in the simplistic case of integer magni-

fication and quantized shifts, the target PSF w(t) cannot be

arbitrary. To demonstrate the implications of Proposition 1,
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−π π 3π−3π

−π π 3π−3π

−π π 3π−3π

S(ω)

S

(

ω
2

)

B(eiω/2)

ω

ω

ω

5π

5π

5π

−5π

−5π

−5π

Fig. 2: Increasing resolution by a factor of 2 with the PSF

s(t) = sinc(t). Here S(ω) = rect(ω/(2π)) (top) and conse-

quently S(ω/2) (middle) can be expressed as the product of

S(ω) and a rectangular wave of period 4π (bottom).

consider the case in which w(t) = s(∆t). In this situation,

condition (12) becomes

S(ω) = S
(ω

∆

)

Bk(e
iω/∆). (12)

As we have seen in Section II-A, this condition holds for a

rectangular PSF. As another example, it is easy to verify that

(12) is satisfied when the PSF s(t) is an ideal low-pass filter

sinc(t), as demonstrated in Fig. 2. However, in this scenario,

the entire frequency content above ω = π is zeroed out in

each dimension, rendering super-resolution ill-posed. A more

realistic situation corresponds to the Gaussian PSF model,

which is widely used in the SR literature. In this case,

S(ω) = exp

{

−∥ω∥2

2σ2
s

}

. (13)

for some σs > 0. Direct computation shows that

S(ω)

S
(

ω
∆

) = exp

{

−∥ω∥2

2σ2
s

(

1−
1

∆2

)}

, (14)

which is not a 2π∆-periodic function. Therefore this kind of

PSF does not conform with (12), and cannot be treated via

the discrete model (2). We conclude that to be loyal to the

physical setting when the conditions of Proposition 1 are not

met, SR must be addressed in the continuous domain.

III. THE VECTOR HYBRID WIENER FILTER

The discussion above revealed that the discrete model (2)

is generally invalid. Therefore, we now turn to the problem

of recovering the high resolution description xHR[n] from the

low resolution sequences ck[n], k = 1, . . . ,K, based on the

continuous-space model (1).

A. Statistical Model

Ultimately, our goal is to devise an algorithm which pro-

duces an estimate x̂HR[n] minimizing the MSE

ϵ2x[n] = E
[

(x̂HR[n]− xHR[n])
2
∣

∣

∣
x(t)

]

, (15)

for every pixel n ∈ Z
d, where the expectation is over

realizations of the noise sequences uk[n], k = 1 . . . ,K
in (1). Unfortunately, the MSE depends on the underlying

scene because xHR[n] is a function of x(t), as implied by

(5). Minimizing ϵ2x[n] uniformly over all signals x(t) is

impossible. Consequently, comparison between different SR

approaches is not a well defined problem since one method

may be better than another for some signals x(t) and worse

for others. To overcome this obstacle, we propose modeling

the signal x(t) as the realization of a random process with

known statistics. This allows the replacement of the signal-

dependent MSE ϵ2x[n] by its expectation ϵ2[n] = E[ϵ2x[n]]
over all possible signal realizations, resulting in the criterion

ϵ2[n] = E
[

(x̂HR[n]− xHR[n])
2
]

. (16)

In the SR literature, various statistical priors have been

proposed for describing the typical behavior of natural images.

These include, for example, Gaussian and Huber random

Markov fields [19], [20], [21]. However, these studies modeled

the statistics of the desired discrete-space signal xHR[n] rather

than that of the continuous-space signal x(t). In the single

image interpolation literature, several recent works have used

the assumption that continuous-space natural scenes are re-

alizations of some stationary process [13], [14], [15], [16],

[17]. It has been demonstrated that when the power-spectral

density (PSD) of x(t) is chosen to have a polynomial decay

in frequency, the resulting recovery is superior to the Shan-

non interpolation, which relies on the traditional bandlimited

model. Based on these findings, in this paper we adopt the

stationarity assumption and extend the Bayesian single image

recovery techniques to the multi-frame SR scenario.

B. Optimal Linear Recovery

Our goal is to linearly estimate xHR[n] given the measure-

ments c1[n], . . . , cK [n]. Due to the linearity of the convolution

operation in (4), the linear minimum MSE (LMMSE) estimate

of xHR[n] is given by

x̂HR[n] = [(w ∗ x̂)(t)]t=n/∆ , (17)

where x̂(t) is the LMMSE estimate of x(t) given the mea-

surements. Therefore, to obtain a closed form expression for

x̂HR[n], we will first compute the continuous-space LMMSE

recovery x̂(t) and then sample it on the high-resolution grid

using (17).

Before analyzing our estimation problem in detail, we would

like to note that the purely translational SR setting treated in

this paper can be viewed as a special case of multichannel

sampling, as schematically shown in Fig. 3. In this setting,

a signal x(t) passes through K filters, which in our case

correspond to sk(t) = s(t− tk), k = 1, . . . ,K, contaminated
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s1(t)
t = n

x(t)
u1(t)

y1(t)

sK(t)
t = n

uK(t)

yK(t)

c1[n]

cK [n]

Fig. 3: Multichannel sampling scheme.

by continuous-space noise processes1 u1(t), . . . , uK(t), and

then sampled on the grid {t = n : n ∈ Z
d} to yield the

observed measurements c1[n], . . . , cK [n]. Thus, denoting

yk(t) = (x ∗ sk)(t) + uk(t), k = 1, . . . ,K, (18)

our goal can be more generally described as estimating a

continuous-space signal x(t) based on equidistant samples of a

set of continuous-space processes y1(t), . . . , yK(t), which are

statistically related to x(t), such that the MSE E[(x(t)−x̂(t)2]
is minimized for every t ∈ R

d.

The case in which only one measurement channel is avail-

able (i.e., K = 1) was treated in [22]. We refer to the resulting

reconstruction formula as the scalar hybrid Wiener filter since

its input is the (scalar) discrete-space signal y1(n), n ∈ Z
d,

whereas its output is a continuous-space signal x̂(t), t ∈ R
d.

Consequently, we refer to our multichannel setup (for K > 1)

as the vector hybrid Wiener filter.

To make the derivation general, all we assume in this section

is that x(t) and y1(t), . . . , yK(t) are jointly WSS. We denote

their cross-correlation functions by

Rk
xy(τ ) = E[x(t)yk(t− τ )], k = 1, . . . ,K, (19)

Rk,ℓ
yy (τ ) = E[yℓ(t)yk(t− τ )], k, ℓ = 1, . . . ,K. (20)

The cross-spectra are given by the CSFTs

Γk
xy(ω) = F{Rk

xy}(ω), k = 1, . . . ,K, (21)

Γk,ℓ
yy (ω) = F{Rk,ℓ

yy }(ω), k, ℓ = 1, . . . ,K. (22)

At any given location t ∈ R
d, the estimate x̂(t) corresponds to

a linear combination of the measurements y1(n), . . . , yK(n),
n ∈ Z

d. Therefore, x̂(t) can be expressed as

x̂(t) =
K
∑

k=1

∑

n∈Zd

yk(n)ṽk(t− n), (23)

for some set of functions ṽ1(t), . . . , ṽk(t), which we call

interpolation kernels. The following theorem provides a closed

form for the set of interpolation kernels minimizing the MSE.

Theorem 2 (Vector hybrid Wiener filter): The interpolation

kernels ṽ1(t), . . . , ṽK(t) in (23) that minimize the MSE

1To comply with (1), the continuous-space processes u1(t), . . . , uK(t)
should be chosen such that, when sampled on Z

d, produce processes
whose statistics are the same as that of the discrete-space noise signals
u1[n], . . . , uK [n] of (1).

E[(x(t)− x̂(t))2] for every t ∈ R
d, are given in the frequency

domain by

Ṽ (ω) =





∑

n∈Zd

Γyy(ω − 2πn)





−1

Γxy(ω), (24)

where Γxy(ω) = (Γ1
xy(ω), . . . ,ΓK

xy(ω))T , Ṽ (ω) =

(Ṽ1(ω), . . . , ṼK(ω))T is a K×1 vector comprising the CSFTs

of the interpolation kernels, and Γyy(ω) is a K ×K matrix

whose (k, ℓ)th entry is Γk,ℓ
yy (ω).

Proof: See Appendix A.

In the case K = 1, (24) reduces to the scalar hybrid

Wiener filter [22], which was used for the task of single-image

zooming in [15], [16], [17].

In the multichannel setting K > 1, the interpolation formula

(23) can be broken up into K single-channel interpolation

procedures. Specifically, (23) implies that each of the K low-

resolution signals has to be interpolated using an appropriate

reconstruction kernel and then the resulting K high-resolution

estimates should be summed up to produce x̂(t). However,

this naive implementation of (23) is typically not efficient

since the optimal interpolation kernels ṽ1(t), . . . , ṽK(t) are

generally not compactly supported. This means that in each

of the single-channel recoveries, every pixel depends on all

pixels of the corresponding low-resolution image. In the next

sections, we provide several efficient implementations for the

multichannel hybrid Wiener filter.

IV. EFFICIENT IMPLEMENTATION SCHEMES

We now specialize the hybrid Wiener filter to the SR setting

and provide efficient implementation schemes.

We begin by noting that for any given sequence c[n], n ∈
Z
d, and function h(t), t ∈ R

d, we have the CSFT relation

∑

n∈Zd

c[n]h(t− n)
F
7−→ C(ejω)H(ω), (25)

where C(ejω) is the DSFT of c[n] and H(ω) is the CSFT of

h(t). Using this relation together with (24), the reconstruction

formula (23) can be expressed in the frequency domain:

X̂(ω) =

K
∑

k=1

Ck(e
jω)Ṽk(ω)

= Ṽ
T
(ω)C(ejω)

= Γ
T
xy(ω)

(

∑

n∈Z

Γyy(ω − 2πn)

)−T

C(ejω)

= Γ
T
xy(ω)D(ejω), (26)

where we denoted C(ω) = (C1(ω), . . . , CK(ω))T and de-

fined

D(ejω) =





∑

n∈Zd

Γyy(ω − 2πn)





−T

C(ejω). (27)

The term in the parentheses is a matrix-valued function, which

is 2π-periodic in each of the elements of the frequency vector
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∑

n∈Zd

δ(t− n)

∑

n∈Zd

δ(t− n)

c1[n]

cK [n]

x̂(t)

R1
xy(t)

RK
xy(t)

H
(

ejω
)

d1[n]

dK [n]

Fig. 4: Multichannel reconstruction scheme.

ω. Therefore, it corresponds to a multiple-input multiple-

output (MIMO) digital filtering operation. Consequently, for-

mula (23) can be implemented in two stages. First, the vector

process c[n] = (c1[n], . . . , cK [n])T is fed into the K × K
MIMO digital filter

H
(

ejω
)

=





∑

n∈Zd

Γ
T
yy(ω − 2πn)





−1

(28)

to obtain a “corrected” process d[n] = (d1[n], . . . , dK [n])T .

Then, x̂(t) is formed using

x̂(t) =

K
∑

k=1

∑

n∈Zd

dk[n]R
k
xy(t− n). (29)

This scheme is depicted in Fig. 4.

Finally, to obtain the desired discrete-space high-resolution

estimate we have to convolve x̂(t) with the target PSF w(t)
and sample it on a dense grid, as implied by (17). Therefore,

x̂HR[m] =

K
∑

k=1

∑

n∈Zd

dk[n]vk

(m

∆
− n

)

, (30)

with the kernels vk(t) = (w ∗Rk
xy)(t), k = 1, . . . ,K.

As we show next, this alternative scheme can be imple-

mented efficiently under several conditions, which are com-

monly satisfied in practice. However, before discussing the

implementation details, we note that the splitting of the recov-

ery into a digital correction stage and an interpolation stage

carries another important advantage. Specifically, the process

of constructing the corrected images d1[n], . . . , dK [n] from

the raw images c1[n], . . . , cK [n] via (27) does not depend

on the magnification factor ∆. Thus, once d1[n], . . . , dK [n]
are computed, we can construct x̂HR[m] using (30) with

any desired magnification. In contrast, in most existing SR

techniques, if the user wishes to change the magnification

factor, then the algorithm has to be run from the beginning

again.

We now proceed in making the following assumptions:

1) The noise processes u1(t), . . . , uK(t) are independent

of the scene x(t) and are characterized by Rk,ℓ
uu (τ ) =

E[uℓ(t)uk(t− τ )] = σ2
uδk,ℓsinc(τ ),

2) supp{s(t)} ⊆ [−Ls, Ls]
d,

3) supp{w(t)} ⊆ [−Lw, Lw]
d, and

4) supp{Rxx(t)} ⊆ [−Lx, Lx]
d.

Assumption 1 is equivalent to replacing the analog noise

signals u1(t), . . . , uK(t) by digital white noise processes

u1[n] . . . , uK [n] with variance σ2
u, which are added after the

sampling occurs. Assumptions 2, 3 and 4 are required in order

to make the recovery algorithm efficient, as we detail next.

For simplicity, we also assume in the sequel that the

translations t1, . . . , tK are in the range [−0.5, 0.5]d. This does

not pose any limitation since a shift |tk| > 0.5 can always be

compensated for by introducing an integer shift of −⌊tk+0.5⌋
samples to ck[n] prior to reconstruction.

A. Interpolation Stage

We first examine the interpolation stage, namely the com-

putation of x̂HR[m] via (30). Using Assumption 1, the recon-

struction kernels R1
xy(t), . . . , R

K
xy(t) appearing in Fig. 4 are

given by

Rk
xy(t) = E[x(t)yk(0)]

= E

[

x(t)

(∫

Rd

s(−τ )x(τ − tk)dτ + uk[0]

)]

=

∫

Rd

s̄(τ )Rxx(t+ tk − τ )dτ

= (s̄ ∗Rxx)(t+ tk), (31)

where we denoted s̄(t) = s(−t). Consequently, the ker-

nels v1(t), . . . , vK(t) in (30), which are used to reconstruct

x̂HR[m], are given by

vk(t) = (w ∗Rk
xy)(t) = (w ∗ s̄ ∗Rxx)(t+ tk). (32)

Assumptions 2, 3 and 4 imply that the supports of the

kernels v1(t), . . . , vK(t) are finite, making the interpolation

practical. Specifically, for any m0 ∈ Z
d, the computation of

x̂HR[m0] involves at most ⌊2(Lw+Ls+Lx)⌋
d multiplications

in processing each of the corrected channels d1[n], . . . , dK [n].
This sums up to a total of K⌊2(Lw +Ls +Lx)⌋

d multiplica-

tions per high-resolution pixel x̂HR[m0].

This reduction in computational load in the interpolation

stage comes at the cost of the MIMO digital filtering stage.

Specifically, the optimal interpolation kernels ṽ1(t), . . . , ṽk(t)
in the naive implementation (23) are generally not compactly

supported. Therefore, the emergence of compactly supported

kernels v1(t), . . . , vk(t) in our alternative scheme means that

the MIMO digital pre-filter H(ejω) must have an infinite

impulse response (IIR). However, as we show next, Assump-

tions 2 and 4 can be employed to implement the digital filtering

stage efficiently as well.

V. EFFICIENT DIGITAL PRE-FILTERING

We now present three methods for efficiently applying the

IIR MIMO filter H(ejω) on the samples c[n] to obtain the

corrected low-resolution signals d[n], which are used in the

interpolation stage. The first approach we study is extremely

efficient, but is valid only for 1D SR applications. The other

two methods are iterative, however they can be applied in

arbitrary dimensions. In particular, they are applicable to

spatial and spatiotemporal SR scenarios.
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A. Digital Correction Stage for 1D Signals

We begin by addressing the case of uni-dimensional signals

(i.e., d = 1). In this case x(t) is a signal defined over t ∈ R and

the low resolution measurements ck[n] are sequences defined

over n ∈ Z.

A close inspection of (28), reveals that H(ejω) corresponds

to the convolutional inverse of the matrix sequence Q[n],
whose (k, ℓ) entry is Rℓ,k

yy (n). In our setting,

Qk,ℓ[n] = Rℓ,k
yy (n)

= E[yk(n)yℓ(0)]

= E

[(∫

Rd

s(n− η)x(η − tk)dη + uk[n]

)

×

(∫

Rd

s(−τ)x(τ − tℓ)dτ + uℓ[0]

)]

=

∫

Rd

∫

Rd

s(n− η)s(−τ)Rxx(η − τ + tℓ − tk)dτdη

+ σ2
uδk,ℓδ[n]

= (s̄ ∗ s ∗Rxx)(n+ tℓ − tk) + σ2
uδk,ℓδ[n]. (33)

Assumptions 2 and 4 imply that the sequence Q[n] is com-

pactly supported. This, in turn, means that the Z-transform of

Q[n] can be written as

Q(z) = AT
p z

−p+. . .+AT
1 z

−1+A0+A1z+. . .+Apz
p, (34)

where p = ⌈2Ls + Lx⌉.
Our key observation is that if Q(z) is positive definite on

the unit circle |z| = 1, then it can be factored as

Q(z) = B(z)BT (z−1), (35)

where

B(z) = B0 +B1z + . . .+Bpz
p (36)

is a matrix whose determinant does not vanish inside the unit

circle |z| ≤ 1. Such a factorization can be obtained e.g., by

any one of the methods surveyed in [23]. Using (35), we can

now carry out the filtering by H(z) = Q−1(z) of (28) in two

stages. Specifically, the “corrected” vector sequence d[n] is

given in the frequency domain by

D(z) = H(z)C(z)

= Q−1(z)C(z)

= B−T (z−1)B−1(z)C(z). (37)

Thus, we first form an auxiliary vector sequence c′[n], by

applying the MIMO filter B−1(z) on the samples c[n]. Then,

we obtain d[n] by passing c′[n] through the MIMO filter

B−T (z−1).
The input-output relation of the first filtering operation is

given by

C(z) = B(z)C ′(z)

= (B0 +B1z + . . .+Bpz
p)C ′(z), (38)

which shows that

C ′(z) = B−1
0

(

C(z)− (B1z + . . .+Bpz
p)C ′(z)

)

. (39)

In the time domain, this filter can be implemented by the

recursive formula

c′[n] = B−1
0 (c[n]−B1c

′[n+ 1]− . . .−Bpc
′[n+ p])

(40)

running from right to left. Similarly, the input-output relation

of the second filtering operation is given by

C ′(z) = BT (z−1)D(z)

=
(

BT
0 +BT

1 z
−1 + . . .+BT

p z
−p
)

D(z), (41)

which shows that

D(z) = B−T
0

(

C ′(z)−
(

BT
1 z

−1 + . . .+BT
p z

−p
)

D(z)
)

.

(42)

In the time domain, this filter can be implemented by the

recursive formula

d[n] = B−T
0

(

c′[n]−BT
1 d[n− 1]− . . .−BT

p d[n− p]
)

(43)

running from left to right.

Due to the spectral factorization properties, the determinant

of the anti-causal filter B−1(z) has no poles inside the com-

plex unit circle |z| ≤ 1 and therefore (40) is a stable operation.

Similarly, the determinant of the causal filter B−T (z−1) has

no poles outside the unit circle, implying that the recursive

formula (43) is also stable. Algorithm 1 summarizes the

proposed 1D SR interpolation scheme.

The technique outlined above follows similar ideas as those

in the direct B-spline transform introduced in [24], which is

used for single-channel spline interpolation from uniformly

spaced samples. There are, however, several major differences

a practitioner must be aware of, which are caused by the fact

that the SR setting is more complicated. First, in contrast to the

scalar interpolation scenario, here the order in which (40) and

(43) are performed is important. Second, this scheme cannot

be extended to multiple dimensions by operating along each

dimension separately, as done in the scalar case. Specifically,

even if the PSF s(t) and the autocorrelation Rxx(t) are

separable functions of the coordinates t, the digital filtering by

H(ejω) of (28) is generally not equivalent to applying (40)

and (43) sequentially on each dimension. Last, we note that

whereas in scalar interpolation the filter coefficients are com-

puted in advance, in typical SR applications the translations

t1, . . . , tK are estimated from the data and thus the matrices

B0, . . . ,Bp are not known beforehand. This may complicate

potential hardware implementations of the filtering stage.

B. Digital Correction Stage via the Neumann Series

Next, we propose an efficient iterative technique for imple-

menting the filtering by H(ejω) of (28) in arbitrary dimen-

sions.

We begin by choosing a constant α > 0 such that
∥

∥I − αQ(ejω)
∥

∥ < 1, ∀ω ∈ R
d, (44)

where Q(ejω) = H−1(ejω), I is the identity matrix and

∥A∥ denotes the spectral norm of a matrix A. Below, we

discuss how such a constant can be chosen. Now, the filtering
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Algorithm 1 Fast 1D hybrid Wiener super-resolution.

Input: Low resolution sequences c1[n], . . . , cK [n], n ∈ Z, noise variance σ2
u, shifts t1, . . . , tK in the range [−0.5, 0.5], imaging

PSF s(t) supported on [−Ls, Ls], target PSF w(t) supported on [−Lw, Lw], signal’s autocorrelation Rxx(t) supported on

[−Lx, Lx], magnification factor ∆.

Output: High resolution recovery x̂HR[n], n ∈ Z.

1: PSD computation: Set (A0)k,ℓ = (s̄ ∗ s ∗Rxx)(tℓ− tk) + σ2
uδk,ℓ and (An)k,ℓ = (s̄ ∗ s ∗Rxx)(n+ tℓ− tk), n = 1, . . . , p,

where p = ⌈2Ls + Lx⌉.
2: Spectral factorization: Given the matrices A0, . . . ,Ap, compute matrices B0, . . . ,Bp satisfying (35) using any matrix

spectral factorization algorithm, e.g., one of the methods surveyed in [23].

3: Anti-causal MIMO filtering: Apply (40) on the vector process c[n] = (c1[n], . . . , cK [n])T to obtain an auxiliary vector

process c′[n] = (c′1[n], . . . , c
′
K [n])T .

4: Causal filtering: Apply (43) on c′[n] to obtain the vector process d[n] = (d1[n], . . . , dK [n])T .

5: Interpolation: Compute x̂HR[m] =
∑K

k=1

∑

n∈Z
dk[n]vk(m/∆− n), where vk(t) = (w ∗ s̄ ∗Rxx)(t+ tk), k = 1, . . . ,K.

operation (27) with H(ejω) of (28) can be expressed via the

Newmann series [25]

D(ejω) = H(ejω)C(ejω)

= Q−1(ejω)C(ejω)

= α
(

I −
(

I − αQ(ejω)
))−1

C(ejω)

= α
∞
∑

r=0

(

I − αQ(ejω)
)r

C(ejω). (45)

As we have seen in Section V-A, Assumptions 2 and 4

imply that Q(ejω) is a finite impulse response (FIR) filter.

Consequently, I − αQ(ejω) is also an FIR filter. This shows

that filtering the samples c[n] with the IIR filter H(ejω) can

be performed by a sequence of FIR filtering operations.

To obtain a simple recursive implementation, we let

D̂m(ejω) = α
m
∑

r=0

(

I − αQ(ejω)
)r

C(ejω) (46)

denote the approximation of D(ejω) by the first m+1 terms

of the Neumann series. Then D̂m+1(e
jω) can be calculated

from D̂m(ejω) as follows:

D̂m+1(e
jω) = α

m+1
∑

r=0

(

I − αQ(ejω)
)r

C(ejω)

= α

(

C(ejω) +
m+1
∑

r=1

(

I − αQ(ejω)
)r

C(ejω)

)

= α

(

C(ejω) +
(

I − αQ(ejω)
) 1

α
D̂m(ejω)

)

= D̂m(ejω) + α
(

C(ejω)−Q(ejω)D̂m(ejω)
)

.

(47)

As D̂m(ejω) approaches Q−1(ejω)C(ejω), the increment

C(ejω)−Q(ejω)D̂m(ejω) approaches zero. In practice, when

this increment is sufficiently small, the iterations may be

terminated.

To choose a step size α > 0 that guarantees convergence,

we note that the matrix Q(ejω) is positive semi-definite.

Consequently,

∥

∥I − αQ(ejω)
∥

∥ =

= max
{

1− αλmin

(

Q(ejω)
)

, αλmax

(

Q(ejω)
)

− 1
}

,
(48)

where λmin(·) and λmax(·) denote respectively the minimal

and maximal eigenvalues of their matrix argument. Therefore,

for (44) to hold, we need that

1− αλmin

(

Q(ejω)
)

< 1, (49)

αλmax

(

Q(ejω)
)

− 1 < 1, (50)

for all ω ∈ [−π, π]d. Condition (50) is satisfied if

α <
2

λmax(Q(ejω))
, ∀ω ∈ [−π, π]d. (51)

Condition (49) can be fulfilled only if λmin(Q(ejω)) > 0 for

every ω ∈ [−π, π]d. In this case, it is satisfied if α > 0.

In practice, it may be time-consuming to seek the worst-

case ω ∈ [−π, π]d in (51) such that convergence is ensured

for all frequencies. However, recall from (28) that Q(ejω)
corresponds to a sum of shifted replicas of the measurement

spectrum Γyy(ω). In typical SR applications, this spectrum

rapidly decays as a function of frequency. Thus, it is rea-

sonable to expect that λmax(Q(ejω)) attains its maximum at

ω = 0, so that (51) can be verified only there. Below, we also

discuss how the step-size α can be varied from one iteration to

the next, in order to achieve a faster convergence. Algorithm 2

summarizes the proposed SR interpolation scheme.

C. Digital Correction Stage via Steepest-Descent Iterations

Algorithm 2 is very efficient, since every iteration consists

only of applying a MIMO FIR filter with (2p+1)d coefficients.

Its disadvantage, though, is that it is commonly impossible

to choose a step size α for which the convergence at all

frequencies is fast. We therefore now propose a method in

which the step size is updated from one iteration to the next.

As we will see, this makes each iteration slower, but guarantees

a rapid convergence at all frequencies.

As we have seen, the corrected signal d[n] is obtained by

applying the filter H(ejω) = Q−1(ejω) on the samples c[n].
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Algorithm 2 Hybrid Wiener super-resolution via Neumann iterations.

Input: Low resolution signals c1[n], . . . , cK [n], n ∈ Z
d, noise variance σ2

u, shifts t1, . . . , tK in the range [−0.5, 0.5]d, imaging

PSF s(t) supported on [−Ls, Ls]
d, target PSF w(t) supported on [−Lw, Lw]

d, signal’s autocorrelation Rxx(t) supported

on [−Lx, Lx]
d, magnification factor ∆.

Output: High resolution recovery x̂HR[n], n ∈ Z
d.

1: PSD computation: Set p = ⌈2Ls + Lx⌉ and calculate the matrices (Q[n])k,ℓ = (s̄ ∗ s ∗Rxx)(n+ tℓ − tk) + σ2
uδk,ℓδ[n]

for n ∈ [−p, p]d.

2: Step size calculation: Choose a step size α satisfying 0 < α < 2/λmax(
∑

n∈[−p,p]d Q[n]).

3: Initialization: Set m = 0, dm[n] = 0, for all n ∈ Z
d.

4: repeat

5: Compute εm[ℓ] = c[ℓ]−
∑

r∈[−p,p]d Q[r]dm[ℓ− r] for every ℓ ∈ Z
d.

6: To use the optimal step-size, compute ε̃m[ℓ] =
∑

r∈[−p,p]d Q[r]εm[ℓ − r] for every ℓ ∈ Z
d and set αm =

(
∑

n∈Zd ε
T
m[n]ε̃m[n])/(

∑

n∈Zd ∥ε̃m[n]∥2). Otherwise set αm = α.

7: Set dm+1[n] = dm[n] + αmεm[n] for every n ∈ Z
d.

8: Set m← m+ 1.

9: until
∑

n∈Zd ∥εm[n]∥2 ceases to decrease.

10: Interpolation: Compute x̂HR[ℓ] =
∑K

k=1

∑

n∈Z
dk[n]vk(ℓ/∆− n), where vk(t) = (w ∗ s̄ ∗Rxx)(t+ tk), k = 1, . . . ,K.

Therefore, for every ω ∈ [−π, π]d, the vector D(ejω) is the

minimizer of the objective

f(D(ejω)) =
∥

∥Q(ejω)D(ejω)−C(ejω)
∥

∥

2
. (52)

The gradient of f(D(ejω)) with respect to D(ejω) is given

by

∇Df(ejω) = 2QH(ejω)
(

Q(ejω)D(ejω)−C(ejω)
)

. (53)

Noting that in our setting QH(ejω) = Q(ejω), the minimizer

of f(ejω) can be found using the steepest descent iterations

D̂m+1(e
jω) = D̂m(ejω)+

αmQ(ejω)
(

C(ejω)−Q(ejω)D̂m(ejω)
)

(54)

Note that (54) is the same as the Neumann update rule (47),

besides the factor Q(ejω) and the fact that the step-size αm

may change from one iteration to the next. If αm is properly

chosen at each iteration, then the sequence of approximations

D̂m(ejω) will converge to D(ejω) [26].

We would like to choose a step size αm, such that the

energy of the error is minimized. Specifically, we would like

to minimize

∫

ω∈[−π,π]df
(

D̂m+1(e
jω)
)

dω =
∫

ω∈[−π,π]d
f
(

D̂m(ejω)+

+ αmQ(ejω)
(

C(ejω)−Q(ejω)D̂m(ejω)
))

dω.

(55)

Substituting the expression for f(D(ejω)) from (52) and

equating the derivative with respect to αm to zero, we find

that the optimal step size is given by

αm =

∫

ω∈[−π,π]d
∥Ẽm(ejω)∥2dω

∫

ω∈[−π,π]d
∥Q(ejω)Ẽm(ejω)∥2dω

=

∑

n∈Zd ∥ε̃m[n]∥2

∑

n∈Zd

∥

∥

∥

∑

ℓ∈[−p,p]d Q[ℓ]ε̃m[n− ℓ]
∥

∥

∥

2 , (56)

where Ẽm(ejω) = Q(ejω)(C(ejω)−Q(ejω)D̂m(ejω)) and

ε̃m[n] is its inverse DSFT. Algorithm 3 summarizes the

proposed SR interpolation scheme.

It is important to note that each steepest-descent iteration

comprises three applications of the FIR MIMO filter Q[n],
as opposed to the single filtering operation required in the

Neumann method. Therefore, for Algorithm 3 to be preferable

to Algorithm 2 in terms of running time, it has to converge to

the optimum at least three times faster. Unfortunately, this is

usually not the case. In typical situations, its first few iterations

lead to a dramatic increase in the error, but its convergence

becomes very slow near the optimum. This phenomenon of

the steepest-descent method is well known [26].

Interestingly, the computational complexity of Algorithm 3

can be reduced, while retaining the benefits of a varying step-

size. To do this, we note that the direction of the Neumann

update (47) is related to that of the steepest-descent (54), via

multiplication by the positive-definite matrix Q−1(ejω). Thus,

the objective is guaranteed to decrease in the direction of

the Neumann update (47). Now, we can compute the step-

size αm leading to the maximal reduction in the error for the

Neumann iterations, similar to equations (55) and (56), which

were relevant for the steepest-descent method. The resulting

optimal Neumann step-size is given by

αm =

∑

n∈Zd ε
T
m[n]ε̃m[n]

∑

n∈Zd ∥ε̃m[n]∥2
, (57)

where εm[ℓ] = c[ℓ]−
∑

r∈[−p,p]d Q[r]dm[ℓ− r], and ε̃m[n]
is as in (56). This option of using a varying step-size in the

Neumann iterations is presented in Algorithm 2. It requires
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Algorithm 3 Hybrid Wiener super-resolution via steepest descent iterations.

Input: Low resolution signals c1[n], . . . , cK [n], n ∈ Z
d, noise variance σ2

u, shifts t1, . . . , tK in the range [−0.5, 0.5]d, imaging

PSF s(t) supported on [−Ls, Ls]
d, target PSF w(t) supported on [−Lw, Lw]

d, signal’s autocorrelation Rxx(t) supported

on [−Lx, Lx]
d, magnification factor ∆.

Output: High resolution recovery x̂HR[n], n ∈ Z
d.

1: PSD computation: Set p = ⌈2Ls + Lx⌉ and calculate the matrices (Q[n])k,ℓ = (s̄ ∗ s ∗Rxx)(n+ tℓ − tk) + σ2
uδk,ℓδ[n]

for n ∈ [−p, p]d.

2: Initialization: Set m = 0, dm[n] = 0, for all n ∈ Z
d.

3: repeat

4: Compute εm[ℓ] = c[ℓ]−
∑

r∈[−p,p]d Q[r]dm[ℓ− r] for every ℓ ∈ Z
d.

5: Compute ε̃m[ℓ] =
∑

r∈[−p,p]d Q[r]εm[ℓ− r] for every ℓ ∈ Z
d.

6: Compute αm = (
∑

n∈Zd ∥ε̃m[n]∥2)/(
∑

n∈Zd ∥
∑

ℓ∈[−p,p]d Q[ℓ]ε̃m[n− ℓ]∥2).

7: Set dm+1[n] = dm[n] + αmε̃m[n] for every n ∈ Z
d.

8: Set m← m+ 1.

9: until
∑

n∈Zd ∥ε[n]∥2 ceases to decrease.

10: Interpolation: Compute x̂HR[ℓ] =
∑K

k=1

∑

n∈Z
dk[n]vk(ℓ/∆− n), where vk(t) = (w ∗Rk

xy)(t), k = 1, . . . ,K.

two filtering operations in each iteration, as opposed to the

three required in Algorithm 3.

D. Comparison

For 1D applications, Algorithm 1 seems to be advantageous

over Algorithms 2 and 3 due to its non-iterative form. Specif-

ically, it does not suffer from error due to a finite number

of iterations. Furthermore, its time-consumption is known in

advance and does not depend on the underlying signal.

For SR in two or more dimensions, one must use either

Algorithm 2 (with a fixed or varying step-size) or Algorithm 3.

The rate of convergence of the steepest descent method

(Algorithm 3) is known to be very slow near the optimum,

especially whenever the ratio λmax(Q(ejω))/λmin(Q(ejω))
is large [26]. The latter is controlled by the noise variance

σ2
u, which appears in the diagonal elements of Q(ejω). The

condition number of Q(ejω) also affects the convergence rate

of the Neumann method in a similar manner.

Figure 5 depicts the root MSE (RMSE) as a function of

the number of iterations in the constant and the varying step-

size Neuman methods, and in the steepest descent algorithm.

Figures 5a and 5b differ by the noise level σ2
u. The former

was run with a signal-to-noise ratio (SNR) of 0dB whereas

the latter with 8dB. These experiments validate that the con-

vergence rate of all algorithms is indeed higher for low SNRs.

Furthermore, it is evident that the steepest-descent method has

the slowest convergence rate. That, together with the fact that

its iterations are more computational demanding than the other

methods, make it the least favorable of all three approaches.

The varying step-size Neumann iterations provide the fastest

convergence. However, the gain with respect to using a con-

stant step-size is rather small. On the other hand, each iteration

of the varying step-size Neuman approach requires twice the

amount of computations as its fixed step-size counterpart.

Therefore, we conclude that the best approach in terms of

overall time consumption, is Algorithm 2 with a constant step-

size.

VI. ERROR ANALYSIS AND PATTERNS

In [27], [28], the authors investigated bounds on the achiev-

able MSE in SR scenarios. These analyses, however, did not

incorporate any assumed prior knowledge on the underlying

scene. As we show next, one of the benefits of our approach, is

that we can obtain closed form expressions for the MSE in our

setting. This is due to the fact that we assume knowledge of the

statistics of x(t). The error analysis we provide in this section

is particularly useful in predicting the appearance and the

extent to which periodic structures appear in the reconstructed

high-resolution recovery x̂HR[n].

Our goal is to obtain an expression for the MSE ϵ2[m]
defined in (16), which is the error in estimating xHR[m] by

x̂HR[m]. Substituting (4) and (17), ϵ2[m] can be expressed as

ϵ2[m] = E
[

(x̂HR[n]− xHR[n])
2
]

= E

[

(∫

t∈Rd

(x(t)− x̂(t))w
(m

∆
− t
)

dt

)2
]

= E

[∫

t∈Rd

∫

η∈Rd

(x(t)− x̂(t))(x(η)− x̂(η))

×w
(m

∆
− t
)

w
(m

∆
− η

)

dtdη
]

=

∫

t∈Rd

∫

η∈Rd

e(t,η)w
(m

∆
− t
)

w
(m

∆
− η

)

dtdη,

(58)

where x̂(t) denotes the LMMSE estimate of the continuous

scene x(t), and

e(t,η) = E[(x(t)− x̂(t))(x(η)− x̂(η))] (59)

is the covariance function of the error in estimating x(t)
by x̂(t). Therefore, the discrete-space error pattern ϵ2[m] is

associated with the continuous-space error covariance function

of the vector hybrid Wiener filter.

Theorem 3 (Error of the vector hybrid Wiener filter): The

error covariance (59) of the LMMSE estimate x̂(t) of x(t)
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Fig. 5: RMSE as a function of iterations. (a) SNR of 0dB. (b) SNR of 8dB.

based on the measurements y1(n), . . . , yK(n), n ∈ Z
d, is

given by

e(t,η) = Rxx(t−η)−
K
∑

k=1

∑

n∈Zd

ṽk(t−n)Rk
xy(η−n), (60)

where ṽ1(t), . . . , ṽK(t) are given by (24).

Proof: See Appendix B.

Substituting (60) into (58), we have

ϵ2[m] =

=

∫

t∈Rd

∫

η∈Rd

Rxx(t− η)w
(m

∆
− t
)

w
(m

∆
− η

)

dtdη

−
K
∑

k=1

∑

n∈Zd

(∫

t∈Rd

ṽk(t− n)w
(m

∆
− t
)

dt

)

×

(∫

t∈Rd

Rk
xy(η − n)w

(m

∆
− η

)

dη

)

=

∫

η∈Rd

(Rxx ∗ w)
(m

∆
− η

)

w
(m

∆
− η

)

dη

−

K
∑

k=1

∑

n∈Zd

(ṽk ∗ w)
(m

∆
− n

)

(Rk
xy ∗ w)

(m

∆
− n

)

.

(61)

With a change of variables η ← m/∆ − η, and using

the notation vk(t) = (Rk
xy ∗ w)(t) introduced in (30), this

expression simplifies to

ϵ2[m] =

∫

η∈Rd

(Rxx ∗ w)(η)w(η)dη

−

K
∑

k=1

∑

n∈Zd

(ṽk ∗ w)
(m

∆
− n

)

vk

(m

∆
− n

)

.

(62)

The first term in this expression is constant. The second

term, however, is a function of m. It can be seen that if the

magnification factor ∆ is an integer, then the error pattern

ϵ2[m] is periodic with period ∆.

The above exposition is important as it reveals the fact that

some pixels in xHR[m] are harder to estimate than others. As a

consequence, the recovery x̂HR[m] will typically exhibit some

sort of periodic structure. This effect is very well known in

single-image interpolation. The most common example is the

nearest-neighbor interpolation method, which produces block-

artifacts, but the effect is also apparent in bilinear interpolation,

bicubic recovery, etc. [14]. As discussed in [14], the narrower

the interpolation kernel is, the stronger the effect of periodic

structure appearing in the restored image. In our multichannel

setting, the interpolation kernels are determined by the cross-

correlation functions R1
xy(t), . . . , R

K
xy(t), which correspond to

shifted versions of Rxx(t) when the noise is independent of

the scene. Therefore, the narrower Rxx(t) is, the stronger the

periodic artifacts in x̂HR[m] will be.

It is important to note that the periodic structure in x̂HR[m]
can be eliminated, for example by using bandlimited inter-

polation kernels [14]. However, while suppressing artifacts,

this would lead to a large reconstruction error. Thus, there is

a tradeoff between periodic artifacts and reconstruction error.

By tuning the width of Rxx(t) we may produce a smooth

recovery which substantially deviates from xHR[m], or one

that contains periodic artifacts but is more loyal to xHR[m].
This effect will be demonstrated in Section VIII, where we

present SR results on images.

VII. SPLINE SUPER-RESOLUTION

In practical imaging scenarios, the PSD Γxx(ω) should

be chosen to roughly match the typical frequency content

of the scenes encountered in a specific application (e.g.,

medical images, natural images, etc.). In the single-image
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interpolation literature, several authors have used the Matérn

class of PSD functions [15], [16], which has the form

Γxx(ω) = α(∥ω∥2 + β2)−(γ+d/2) for some constants α, β
and γ. It has been demonstrated that this type of prior is

suitable for natural images and leads to better reconstruction

results than the commonly used bilinear interpolation, Keys’

bicubic interpolation [29], and Shannon’s sinc interpolation.

Nevertheless, the drawback of the Matérn prior is that, as

shown in [30], its associated autocorrelation function Rxx(t)
is not compactly supported. This violates our Assumption 4

in Section IV.

As an alternative class of autocorrelation functions, whose

frequency content decays polynomially, we now consider B-

splines. A B-spline of degree N , denoted βN (t) is the function

obtained by the (N + 1)-fold convolution of the unit square

β0(t) =

{

1 t ∈
[

− 1
2 ,

1
2

]d

0 else.
(63)

In single-image recovery, if both the PSF s(t) and the au-

tocorrelation Rxx(t) are B-splines of some degree, then the

(scalar) hybrid Wiener filter corresponds to the widely used

spline interpolation technique [30]. Consequently, in our multi-

channel setting, we refer to the recovery resulting from the

vector hybrid Wiener filter as spline super-resolution (SSR).

Since B-splines all have a bell-like shape whose width is

controlled by their degree, modeling the PSF s(t) as a B-

spline is adequate for many imaging devices. In particular, if

the blur due to the lens is negligible with respect to pixel size,

then s(t) can be quite accurately modeled as a B-spline of

degree 0. Higher-order B-splines can be used when the lens’

blur is more significant.

Assume that the imaging PSF s(t) is a B-spline of degree

Ds, the autocorrelation Rxx(t) is a B-spline of degree Dx,

and the target PSF is a delta function w(t) = δ(t). Then from

(32), we see that the interpolation kernels v1(t), . . . , vK(t) are

shifted versions of B-splines of degree Dx + Ds + 1. Thus,

the interpolation stage in our approach reduces to performing

standard spline interpolation2, with appropriate shift, on each

of the low-resolution images, and then summing the results.

This can be done efficiently, by relying on the fact that d-

dimensional B-spline functions are separable and compactly

supported. In particular, if Dx = Ds = 0, then the interpola-

tion stage comprises K bilinear interpolation procedures.

The FIR filter Q[n] needed for the digital correction stage

can also be computed simply in the SSR method. Specifically,

the elements of the MIMO filter Q[n], appearing in Algo-

rithms 2 and 3, involve samples of the function (s̄∗s∗Rxx)(t).
In our SSR approach, this function is a B-spline of degree

2Ds +Dx + 2, and thus possesses a closed form expression.

As discussed in Section VI and will be demonstrated in the

next section, the choice of the order Dx of the autocorrelation

B-spline is guided by two conflicting desires. On one hand, a

small Dx corresponds to a narrow autocorrelation function

Rxx(t), which leads to a sharp recovered image, but with

strong periodic artifacts. A large degree Dx corresponds to

a wide Rxx(t), leading to a smooth recovery, but with a large

2Without the associated pre-filtering, which is used in spline interpolation.

 

c1[n]
c2[n]
c3[n]
x̂1(t)
x̂2(t)

Fig. 6: 1D interpolation using the SSP algorithm.

reconstruction error. In practice, we found that Dx should be

chosen to be 1 or 2 in order to obtain satisfying results.

VIII. EXPERIMENTS

We now demonstrate our SR interpolation algorithm via

simulations and experiments on real-world data.

A. 1D Super-Resolution

We begin by demonstrating the behavior of our SSR algo-

rithm in the task of recovering 1D signals. Figure 6 depicts two

1D interpolation examples produced by Algorithm 1. Here,

the PSF s(t) is a B-spline of degree 0 (namely a rectangular

window of width 1), the auto-correlation Rxx(t) is a B-spline

of degree 2, and the shifts are (t1, t2, t3) = (−0.1, 0, 0.1). The

solid curve is the recovery x̂(t) obtained when setting σ2
u = 0.

This reconstruction is consistent in the sense that if we were

to pass x̂(t) through s(t) and sample it, then the resulting

samples would coincide with the measured sequences c1[n],
c2[n], and c3[n].

The dashed curve is the estimate obtained when setting the

noise variance σ2
u to be equal to the variance of the clean

measurement sequences. In other words, the noise level is

assumed to be 0dB. As can be seen, in this case x̂(t) tends

to be smoother at the cost of deviating from the measured

samples. This a result of the fact that the samples are assumed

to be contaminated with white noise, whereas the signal is

known to have little energy in the high frequencies. Therefore,

in this setting the high frequencies of the LMMSE estimate

are attenuated with respect to the noiseless case.

B. 2D Super-Resolution

We now present several 2D experiments with the SSR

algorithm. In all these experiments, the PSF s(t) was taken

to be a rectangular kernel, namely a B-spline of degree

Ds = 0. We applied the Neumann method (Algorithm 2) with

a constant step-size.

We begin by visualizing the general flow of our approach.

Figure 7a shows (a portion of) six low-resolution images
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of a pine tree, taken with an Olympus C-60 camera. The

translations t1, . . . , t6 were estimated from the images. Here,

we set the autocorrelation B-spline degree to Dx = 0, and

tuned σ2
u to get an assumed SNR of 0dB. In this setting, the

reconstruction kernels are B-splines of degree 1, so that the

recovery stage involves applying bilinear interpolation to each

of the corrected images d1[n], . . . , d6[n].
A naive SR approach would be to apply bilinear interpola-

tion to the original images c1[n], . . . , c6[n] without performing

the correction stage. However, as can be seen in Fig. 7b, the

corrected images d1[n], . . . , d6[n] are very different from the

original ones. In particular, the correction process is highly

dependent on the shifts between the images. Figures 8a and 8b

depict respectively the restoration obtained with and without

the correction stage. Evidently, the recovery without the pre-

filter is blurred with respect to the one with the pre-filter.

Next, we compare the performance of the SSR algorithm to

that of several prominent SR techniques, which rely on the dis-

crete model (2). A common method for quantitative compari-

son between SR methods is to produce a set of low-resolution

images c1[n], . . . , cK [n] from a known high-resolution image

xHR[n], and then measure the MSE E[(xHR[n] − x̂HR[n])
2]

attained by each of the studied methods. However, by doing

that we would actually conform to the the incorrect dis-

crete model (2). As we have seen, in real-world scenarios

c1[n], . . . , cK [n] cannot be produced from xHR[n]. Therefore,

in the sequel we focus on qualitative comparisons on real-

world images.

The discrete SR algorithms we compare against are shift-

and-add (S&A) with Wiener deconvolution [31], and the meth-

ods reported in [32], namely Median S&A with Wiener decon-

volution, ℓ1-norm regularization, ℓ2-norm regularization, and

robust recovery (ℓ1-norm fidelity) with ℓ1-norm regularization.

In all our experiments, we supplied these algorithms with the

discrete-space PSF, which is the counterpart of s(t) = β0(t)
used in our algorithm. These algorithms are compared with

the SSR approach proposed here, with autocorrelation B-

spline degrees 0, 1, and 2, which we term respectively SSR0,

SSR1, and SSR2. The noise level σ2
u was set such that the

resulting SNR was 0dB, 8dB and 10dB in the SSR0, SSR1

and SSR2 methods respectively. We used the same estimate

for the translations in all algorithms.

Figure 9 shows the SR recoveries obtained from the first

K = 20 frames of the sequence Disk taken from [33].

As can be seen, the choice of the autocorrelation B-spline

degree controls the tradeoff between the recovery of fine

features and artifacts. Algorithm SSR1 seems to achieve a

good balance between these properties, and together with the

ℓ2-norm regularization approach, yields the best performance

(note in particular the recovery of the letters ‘R’ ‘E’ and ‘F’).

A similar behavior can be observed in Fig. 10, where we used

the 28-frame sequence Text taken from [33], and in Fig. 11,

in which the 6 images from Fig. 7a were processed.

IX. CONCLUSION

In this paper, we analyzed the validity of the widely used

discrete-space formulation of the SR problem. We showed

that discrete modeling generally cannot be loyal to the actual

physical setting. As a result, algorithms which do not treat

the problem from a continuous-space interpolation viewpoint,

inevitably suffer from a model miss-match error. This moti-

vated us to model the scene as a continuous-space random

process with known statistics, and seek its LMMSE estimate

given the observed discrete-space measurements. We derived

a closed form expression for the LMMSE estimator, which

we coin the vector hybrid Wiener filter. We also provided

an analytic formula for the MSE of our method, which shed

light on the emergence of periodic artifacts in the recovered

signal. We presented three efficient implementations of the

vector hybrid Wiener filter and showed that when the signal’s

autocorrelation is a B-spline function, these methods constitute

a natural extension of the widely used single-channel spline

interpolation to the multi-channel setup. Experiments on real-

world data demonstrated the effectiveness of our proposed

approach.

APPENDIX A

PROOF OF THEOREM 2

The optimal interpolation kernels ṽ1(t), . . . , ṽK(t) must

satisfy the orthogonality principle

E[(x(t)− x̂(t))yk(m)] = 0, ∀m ∈ Z
d, ∀k ∈ [1,K]. (64)

Substituting (23), (64) becomes

K
∑

ℓ=1

∑

n∈Zd

Rk,ℓ
yy (n−m)ṽℓ(t− n) = Rk

xy(t−m), (65)

for all m ∈ Z
d and k ∈ [1,K]. With a change of variables

τ = t−m and n′ = n−m, (65) can be written as

K
∑

ℓ=1

∑

n′∈Zd

Rk,ℓ
yy (n

′)ṽℓ(τ − n′) = Rk
xy(τ ), ∀k ∈ [1,K]. (66)

Taking the CSFT of both sides, we get

K
∑

ℓ=1

Ṽℓ(ω)
∑

n∈Zd

Γk,ℓ
yy (ω − 2πn) = Γk

xy(ω), ∀k ∈ [1,K].

(67)

Put in matrix form, (67) leads to (24).

APPENDIX B

PROOF OF THEOREM 3

Using the orthogonality principle, the error (59) of the

LLMSE estimate x̂(t) is given by

e(t,η) = E[(x(t)− x̂(t))(x(η)− x̂(η))]

= E[(x(t)− x̂(t))x(η)] . (68)

Substituting the expression (23) for x̂(t), (68) becomes

e(t,η) = E







x(t)−
K
∑

k=1

∑

n∈Zd

yk(n)ṽk(t− n)



x(η)





= Rxx(t− η)−

K
∑

k=1

∑

n∈Zd

ṽk(t− n)Rk
xy(η − n).

(69)
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(a) Original low-resolution frames.

(b) Corrected low-resolution frames.

Fig. 7: (a) A set of low-resolution images c1[n], . . . , c6[n], n ∈ Z
2. (b) The corresponding set of corrected images

d1[n], . . . , d6[n], n ∈ Z
2.

(a) (b)

Fig. 8: Resolution enhancement by a factor of ∆ = 3 with the SSR method (Dx = 0, SNR = 10dB). (a) Without digital

correction. (b) With digital correction.

The kernels ṽ1(t), . . . , ṽK(t) are those minimizing the MSE,

namely those given in (24).
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(a) Low-resolution image (b) S&A + Wiener deconvolution (c) Median S&A + Wiener deconvolution

(d) ℓ1 regularization (e) ℓ2 regularization (f) ℓ1 fidelity with ℓ1 regularization

(g) SSR0 (h) SSR1 (i) SSR2

Fig. 9: Resolution enhancement by a factor of ∆ = 4 from a set of 20 images.
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(a) Low-resolution image (b) S&A + Wiener deconvolution (c) Median S&A + Wiener deconvolution

(d) ℓ1 regularization (e) ℓ2 regularization (f) ℓ1 fidelity with ℓ1 regularization

(g) SSR0 (h) SSR1 (i) SSR2

Fig. 10: Resolution enhancement by a factor of ∆ = 4 from a set of 28 images.
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(a) Low-resolution image (b) S&A + Wiener deconvolution (c) Median S&A + Wiener deconvolution

(d) ℓ1 regularization (e) ℓ2 regularization (f) ℓ1 fidelity with ℓ1 regularization

(g) SSR0 (h) SSR1 (i) SSR2

Fig. 11: Resolution enhancement by a factor of ∆ = 4 from a set of 6 images.


