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Blind Separation of Time/Position Varying Mixtures
Ran Kaftory and Yehoshua Y. Zeevi

Abstract

We address the fascinating open engineering problem of blindly separating time/position varying mixtures,
and attempt to separate the sources from such mixtures without having prior information about the sources or the
mixing system. Unlike studies concerning instantaneous or convolutive mixtures, we assume that the mixing system
(medium) is changing in time/position. Attempts to solve this problem have mostly utilized, so far, online algorithms
based on tracking the mixing system by methods previously developed for the instantaneous or convolutive mixtures.
In contrast with these attempts, we develop a batch algorithm in the form of Staged Sparse Component Analysis
(SSCA). Accordingly, we assume that the sources are either sparse or can be ’sparsified’. In the first stage we
estimate the mixing system filters, based on the scatter plot of the sparse mixtures’ data, using a proper grouping
and curve/surface fitting. In the second stage, the mixing system is inverted, yielding the estimated sources. We use
the SSCA approach for solving three types of mixtures: time/position varying instantaneous mixtures, single-path
mixtures and multi-path mixtures. Real image mixtures and simulated mixtures are used to test our approach.

Index Terms

Blind Source Separation (BSS), Sparse Component Analysis (SCA), Time/Position Varying Mixing/Unmixing.

I. INTRODUCTION

Extensive research has been devoted over the last two decades to the subject of blind source separation
(BSS), especially in the form of independent component analysis (ICA). The research mainly focused
on the stationary, instantaneous and convolutive theoretical aspects of the problem and on practical
applications. In the relevant models, the sources are attenuated by a fixed factor, and/or filtered by a
fixed filter prior to being mixed. The approaches and techniques, used for solving the BSS problem
of stationary mixtures, can be roughly divided into two categories: ICA and sparse component analysis
(SCA). ICA assumes that the sources are statistically independent and, therefore, utilizes separation cost
functions based on the maximization of non-Gaussianity [1], negentropy [2], maximum likelihood [3], or
minimization of the mutual information [4], [5], diagonalization of the cumulant tensor [6], non-linear
decorrelation [7] and second order statistics [8]. Blind separation using SCA assumes that the sources
are sparse or can be projected onto a space of sparse representations by using a proper transformation
(’sparsification’). The sources need not be statistically independent, but one should be able to represent
them differently in some domain (i.e. there are atoms in a dictionary or instances in time/position in
which only one source is represented or active). This approach lends itself to a geometric interpretation
of the mixing coefficients. The mixing matrix entries can thereby be retrieved from the scatter plot of the
’sparsified’ mixtures [9].

In most real-life scenarios, the mixing system is not constant as in the instantaneous or convolutive
model, but it is changing as a function of time or position. The attenuation of signals/images varies
over time/positin thus creating time/positin varying instantaneous mixtures. The delay/shift or rever-
beration/blurring of a signal/image may also vary over time/position creating a time/position varying
single/multi-path mixtures. Only few studies address this generalized BSS problem. Most of them use the
ICA approach and assume a slow varying mixing system, thus, enabling the use of an adaptive version
of the algorithms developed for the stationary cases. The very few batch algorithms which assume a
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faster varying mixing system, limit themselves to a specific model of the variation of the mixing system.
Table. I summarizes the approaches adopted by researches in order to solve the BSS of time/position
varying mixtures.

TABLE I
METHODS FOR BSS OF TIME/POSITION VARYING MIXTURES COVERED BY THE LITERATURE

App- Problem Type Criteria and References
roach

NonGaussianity: [10]
Maximum Likelihood: [11]

Online Mutual Information: [12],[13],[14]
Instantan- Non-linear Decorrelation: [15]

eous Minimizing prediction error: [16],[17]
All criteria: [18],[19],[20],[21],[22]
Min. Helmholtz energy: [23],[24],[25]

Batch Second Order Statistics: [26]a, [27]b

ICA
Second Order Statistics: [28],[29],[30]
Nonlinear Decorellation: [31]

Online Mutual Information: [32],[33],[34]
Single/Multi Maximum Likelihood: [35], [36],[37]

path All criteria: [18]

Batch Second Order Statistics: [38]c

Online Tracking Angle Histogram: [39]
Instantan-

eous
Batch —

SCA

Online —
Single/Multi

path
Batch —

aWorks only for periodically time-varying mixing matrix
bWorks only for linearly time-varying mixing matrix
cWorks only for stationary mixtures of Doppler shifted sources

In this paper, we extend and generalize the BSS problem to cases of time/position varying mixtures
that have not been dealt with so far, by using a staged SCA (SSCA) approach with batch algorithm. This
enables the separation of mixtures of a faster varying mixing system with arbitrary model of variations.
Accordingly, we assume that the sources are either sparse or can be ’sparsified’. In the first stage we
estimate the mixing system filters, based on the scatter plot of the sparse mixtures’ data, using a proper
grouping and curve/surface fitting. In the second stage, the mixing system is inverted yielding the estimated
sources. We study the conditions which enable the application of the SSCA and test our approach on
experimental and simulated data.

The paper is organized as follows: Section I introduces the problem formulation and outlines the three
types of time/position varying mixtures which occur in real-life scenarios. Section II outlines the SSCA
approach for separating time/position varying mixtures. We study the conditions which enable the use of
the SSCA approach in Section III. Sections IV-VI, present the methods and results of applying our approach
to experimental and simulated data of three types of mixtures. Concluding remarks are summarized in
section VII.
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II. PROBLEM FORMULATION

We consider the case of separating Ns sources from Nz linear time/position varying mixtures, where
the number of the sources and mixture Ns = Nz is small. We use the vector notation for the independent
variables ξ = (ξ1, ..., ξNξ

), ξ′ = (ξ′1, ..., ξ
′
Nξ

), where Nξ is the number of independent variables. Denoting
Z =

[
z1(ξ), ..., zNz(ξ)

]
as a vector of the observed mixtures, and S =

[
s1(ξ), ..., sNs(ξ)

]
as a vector of the

sources, the observed mixtures are generated from the sources by a linear time varying transformation:

Z = H ? S + η, (1)

where

H =




h11(ξ, ξ
′) · · · h1Ns(ξ, ξ

′)
... hij(ξ, ξ

′)
...

hNz1(ξ, ξ
′) · · · hNzNs(ξ, ξ

′)


 ,

is a matrix of the mixing system filters, η is some unknown noise and the symbol ? is defined as follows:
Definition 1: The symbol ? denotes an integral operator with multidimensional kernel function acting

on a single or multi-variable function. This operator is used for representing the linear filtering of a signal
with a time/position varying filter and composition of such time/position varying filters:

1) Filtering with a filter (? : R2Nξ ? RNξ → RNξ):

h ? s ≡
∞∫

−∞
h(ξ, ξ′)s(ξ′)dξ′, (2)

2) Composition of filters (? : R2Nξ ? R2Nξ → R2Nξ):

g ? h ≡
∞∫

−∞
g(ξ, ξ′′)h(ξ′′, ξ′)dξ′′, (3)

where g(ξ, ξ′) and h(ξ, ξ′) are time/position varying filters used for filtering Nξ-dimensional signals.
Similar to the definition of [40], we distinguish between three types of time/position varying mixtures:

1) Time/position varying instantaneous mixtures:
In this case, only the attenuation of the signals varies over time/position. We also assume that the
signals arrive at the sensors instantaneously (in the case of images, without position shifts) and that
they do not reverberate, nor do they have multiple reflections. The mixing system filters are given
explicitly as:

hij(ξ, ξ
′) = aij(ξ)δ(ξ − ξ′), (4)

where δ is the Kronecker’s delta, and aij(ξ) is the time/position varying attenuation of the j th source
with respect to the ith sensor. Using the definition of hij(ξ, ξ

′), Eq. (1) produces the following results
for the generation of the time/position varying instantaneous mixtures:

zi(ξ) =
∑

j

aij(ξ)sj(ξ) + η(ξ). (5)

2) Time/position varying single-path1 mixtures:
In this case, the attenuation and the delay/position shift of the signals/images change over time/position.
This creates the doppler effect or the zooming/streching of images. We assume in this case, as in
the instantaneous case, the absence of reverberations/multi-path/blurring. The mixing system filters
are given explicitly as:

hij(ξ, ξ
′) = aij(ξ)δ(dij(ξ)− ξ′), (6)

1In some studies the term anechoic mixtures is used
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where dij(ξ) is the time/position varying delay/position shift of the j th source with respect to the
ith sensor. Using the definition of hij(ξ, ξ

′), Eq. (1) yields the following results for the generation
of the time/position varying single-path mixtures:

zi(ξ) =
∑

j

aij(ξ)sj(dij(ξ)) + η(ξ). (7)

3) Time/position varying multi-path2 mixtures:
In this case, the attenuation, delay/position shift and reverberation/multi-path/blur may change over
time where the function of hij is arbitrary.

Fig. 1 provides a graphical (visual) interpretation of the above three types of position varying mixtures.
Two image sources are mixed using different mixing filters, hij(x, x′). In the instantaneous case, only the
attenuation of each source image varies from left to right. In the single-path mixture, varying the position
shift varies the scale of the images from left to right. In the case of multi-path mixtures, we use a variable
low-pass filter, which blurs the image differently from left to right.

III. STAGED SPARSE COMPONENT ANALYSIS (SSCA)
Without loss of generality, we consider a system of two mixtures, z1(ξ), z2(ξ), of two sources, s1(ξ), s2(ξ).

One of the approaches to the BSS problem is the SSCA, which is based on the assumption that the sources
are sparse. We adopt this approach for solving the time/position varying BSS problem as outlined in the
sequel.

A. Preprocessing: ’Sparsification’
Sparse signals are defined as those signals whose value differs significantly from zero only in a few

instances of time/position. The probability density function (PDF) of such signals is modelled as an
exponential [9]. The joint distribution of uncorrelated sparse signals is also approximately exponential.
Therefore, if one source is active in some instance/position, the probability that the other source is
’active’ in the same instance/position is very small. For signals which are not naturally sparse, a proper
’sparsification’ transformation which is invariant to the mixing matrix can be applied.
’Sparsification’ is defined as follows:

Definition 2: ’Sparsification’ of a signal s(ξ) is the process of applying a transformation T to the
non-sparse signal s(ξ) and yeilds a sparse output T

[
s(ξ)

]
.

We define invariancy of the ’sparsification’ transformation to the mixing matrix as follows:
Definition 3: A ’sparsification’ transformation T is invariant under mixing by the matrix, H , if

T [H ? S] = H ? T [S] . (8)

The preprocessing required, according to the SSCA approach, implements an invariant sparsification
transformation on both sides of Eq. (1), yielding the following separation problem:

T [Z] = H ? T [S] . (9)

B. First Stage of the Separation Process: Mixing Matrix Estimation
In the noiseless case, all the time/position instances wherein the first sparsified source is active and the

other is not-active satisfy the relations:

T [z1] = h11 ? T [s1], T [z2] = h21 ? T [s1]. (10)

We define the new position-varying filter, g1 such that:

T [z2] = g1 ? T [z1]. (11)

2In some studies the term echoic mixtures is used
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Eq. (10) and Eq. (11) yield
h21 = g1 ? h11. (12)

Similarly, for all the time/position instances in which the second sparsified source is active and the other
is not, we define g2 as T [z2] = g2 ? T [z1] and obtain h22 = g2 ? h12.

Even for the noisy case, it is possible to filter the time/position instances (usually by introducing some
threshold) over which one of the sources can be regarded as active with respect to the not-active source,
and where the noise is negligible 3. The filters g1 and g2 are found by using a scatter plot of the sparse
mixtures’ data. A proper method of grouping/clustering these time/position instances and curve/surface
estimation is used to estimate g1 and g2 out of the these active/not-active time/position samples of T [z1]
and T [z2].

The first step of the SSCA is completed by substituting h21 and h21 for g1 ? h11 and g2 ? h12. This
yields the following BSS problem:

T [z1] = h11 ? T [s1] + h12 ? T [s2] + η1 (13)
T [z2] = (g1 ? h11) ? T [s1] + (g2 ? h12) ? T [s2] + η2.

Using the associativity property of the operator ? yields:

T [z1] = h11 ? T [s1] + h12 ? T [s2] + η1 (14)
T [z2] = g1 ? (h11 ? T [s1]) + g2 ? (h12 ? T [s2]) + η2.

Denoting s′1 ≡ h11 ? s1 and s′2 ≡ h12 ? s2, and recalling the invariancy property of the sparsification
operator, Eq. (14) is rewritten as:

T [z1] = T [s′1] + T [s′2] + η1 (15)
T [z2] = g1 ? T [s′1] + g2 ? T [s′2] + η2,

or in the context of the vector notation of Eq. (1):

T [Z] = H ′ ? T [S ′] + η, (16)

where

H ′ =

[
1 1
g1 g2

]
,

and 1 is the identity filter which is defined as: 1 ≡ δ(ξ − ξ′).
We conclude this exposition with the analysis of a closely related BSS problem, in which the mixing

filters have already been estimated (i.e. g1 and g2). The sources are not s1 and s2 but are s′1 and s′2, where
the latter versions of s1 and s2 are filtered by the time/position varying filters h11 and h12 respectively. It
is proven in [41] that this is the upper bound on the quality of estimating the sources.

C. Second Stage of the Separation Process: Solving the Inverse Problem

The task of the second stage of the SSCA is to solve the inverse problem of Z = H ′ ? S ′ + η, and
estimate the sources. A ’naive’ approach would be to directly invert the system:

Ŝ ′ = H ′−1 ? Z, (17)

where

H ′−1 ≡ (g1 − g2)
−1 ?

[
g2 −1
−g1 1

]
.

3After the sparsification preprocessing the SNR is improved
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However, matrix inversion and the calculation of the determinant is feasible only for commutative rings,
which is not the general case of sets of time/position varying filters. Even for a subset of time/position
varying filters, which commute, direct inversion requires the inversion of the difference filter g1−g2. This
filter can be singular or badly conditioned, in which case, its inverse amplifies the noise and yields noisy
estimation of the image sources. To overcome this problem we use a variational method which is effective
in both cases of noncommutative mixing time/position varying filters and singular or badly conditioned
mixing matrix. Instead of inverting the system, a cost function is defined:

J = ‖Z −H ′ ? Ŝ ′‖+ wR(Ŝ ′), (18)

where R(·) is a regularization operator and w is a weighting parameter. The minimization of this cost
function using the Euler-Lagrange equations yields an estimation of the separated sources.

IV. CONDITIONS WHICH ENABLE THE USE OF THE SSCA

In order to successfully apply the SSCA approach in separation of time/position varying mixtures,
proper conditions must be fulfilled. In this section, we outline the conditions which concern the sparsity
of the sources signals, signal-to-noise ratio, the mixing filters, sparsification transformation and the filter
matrix.

A. Conditions on the Noise and Signal Sources

The first step of the SSCA requires to filter time/position instances where one sparsified source is active
while the others are not, and the noise is negligible. In the sequel we show that for ’sparsified’ sources
this probability increases as the value of the observed mixture increases. We define the following criteria
for the above specified instances.

Definition 4: A time/position instance ξ
0

in which one sparsified source can be regarded as active and
the other is not is defined as follows:

∣∣∣∣∣
hi1 ? T [s1(ξ0

)]

hi2 ? T [s2(ξ0
)]

∣∣∣∣∣ > th1, (19)

where the ratio on the left hand side is termed Contributing-Signal-to-Interfering-Signal Ratio (CSISR)
and the right hand side is a subjective threshold which depends on the robustness of the algorithm for
estimating the mixing filters as well as the mixing filters themselves.

Definition 5: A time/position instance ξ
0

in which the sparsified noise is negligible with respect to the
mixture of the two ’sparsified’ sources is defined as:

∣∣∣∣∣
hi1 ? T [s1(ξ0

)] + hi2 ? T [s2(ξ0
)]

T [ηi]

∣∣∣∣∣ > th2, (20)

where the ratio on the left hand side is termed Contributing Signals-to-Noise Ratio (CSNR) and the right
hand side is a subjective threshold which depends on the robustness of the algorithm for estimating the
mixing filters as well as the mixing filters themselves.

The probability density function (PDF) of a sparsified source is modelled as an exponential [42],
pdf(T [s]) = ke−µ|T [s]|1/ν , where µ is a positive parameter, ν ≥ 1, and k = (

∞∫
−∞

e−µ|T [s]|1/ν
)−1 is a

normalization parameter [9].
We assume that the noise is not sparse even after applying the sparsification transformation. Therefore,

we can assume that the PDF of the noise is Gaussian with zero mean and some standard deviation:
pdf(T [η]) = ke−

T [η]2

2σ2 , where σ is the standard deviation of the noise and k = 1√
2πσ

is a normalization
parameter.
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Proposition 1: The conditional probability that one sparsified source is active and the other is not,
where the noise is negligible in some time/position instance ξ

0
, given the observed sparsified mixture

T [zi(ξ0
)], and the thresholds th1, and th2, is:

p
(
CSISR > th1, CSNR > th2 | T [zi] = T [zi(ξ0

)]
)

=

=

m2∫
m1

l2∫
l1

e−
(T [zi(ξ0

)]−ζ)2

2σ2 −|ζ−φ|1/νi1µT
i1−|φ|1/νi2µT

i2dφdζ

∞∫
−∞

∞∫
−∞

e−
(T [zi(ξ0

)]−ζ)2

2σ2 −|ζ−φ|1/νi1µT
i1−|φ|1/νi2µT

i2dφdζ

+

+

m2∫
m1

l4∫
l3

e−
(T [zi(ξ0

)]−ζ)2

2σ2 −|ζ−φ|1/νi1µT
i1−|φ|1/νi2µT

i2dφdζ

∞∫
−∞

∞∫
−∞

e−
(T [zi(ξ0

)]−ζ)2

2σ2 −|ζ−φ|1/νi1µT
i1−|φ|1/νi2µT

i2dφdζ

, (21)

where for ζ ≥ 0,
l1 ≡ ζ

1−th1
, l2 ≡ ζ

1+th1
, l3 ≡ ζth1

th1+1
, l4 ≡ ζth1

th1−1
,

and for ζ < 0, l1 and l2 are interchanged and so are l3 and l4.
If zi(ξ0

) ≥ 0,

m1 =
T [zi(ξ0

)]th2

th2+1
, m2 =

T [zi(ξ0
)]th2

th2−1
,

and if zi(ξ0
) < 0, m1 and m2 are interchanged. (For a proof see the Appendix).

Fig. 2 depicts the conditional probability of sparsified signal distribution, with µ = 1.5 and ν = 2
plotted as a function of T [zi(ξ0

)] for several values of σ. It is observed that the probability is a monotonic
non non-decreasing function of |T [zi(ξ0

)]|. Therefore, as a rule of thumb, it is possible to use a proper
threshold on the observed mixture such that the probability that only one source is active, and the noise
is negligible, is high. In such instances, the estimation of the mixing filters is possible. The number of
such instances which is required for the correct estimation of the mixing filter is discussed in reference
to the context of conditions required for mixing filters estimation.

B. Conditions on the Mixing Filters
The first step of the SSCA approach, requires the existence of gi and its estimation based on samples

of the observed measurements. Assuming that gi exists, we can obtain only samples of the filter using a
threshold over which we can assume a high probability for only one source to be active, and the noise
to be negligible. These samples are distributed randomly and depend on both the source signals and the
noise. If we assume that we know the filter gi up to some finite number Nk of unknown parameters, and
the function is injective, then we need at least the same number (Nk) of samples of that filter, in order
to obtain the unknown parameters. If the filter is unknown, a Taylor approximation can be derived using
some Nk-order polynomial function:

ĝi(ξ1, ..., ξNξ
, ξ′1, ..., ξ

′
Nξ

) =

=
Nk∑

k1=0

...
Nk∑

kNk
=0

Nk∑

k′1=0

...
Nk∑

k′Nk
=0

αk1,...,kNk
,k′1,...k′Nk

(22)

(ξ1 − ξ10)
k1 · · · (ξNξ

− ξNξ0
)kNk (ξ′1 − ξ′10

)k′1 · · · (ξ′Nξ
− ξ′Nξ0

)
k′Nk .

It takes (Nk + 1)2Nξ samples to calculate the unknowns α parameters by the Lagrangian interpolation
formula, [43].
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A non-parametric approach for estimating gi out of its samples would require the following condition:
Proposition 2: if gi(ξ, ξ

′) is band-limited to a region Ω, it can be uniquely represented by nonuniformly
distributed samples satisfying the Nyquist rate, on the average, as long as the samples are not on the zero-
crossing contours of any member of the set of all functions band-limited to Ω. [The proof for 1D and 2D
functions is given in [44]].

In practice, the function gi is usually known up to a finite number of parameters, using some prior
knowledge regarding the physics of the mixing system. In other cases, it can be assumed that it is a
smooth function and therefore band-limited to a small region Ω, which allows the use of a non-parametric
function estimation by means of a low average sampling rate.

By definition, g1 = h21 ? h−1
11 and g2 = h22 ? h−1

12 , therefore, the filters g1 and g2 exist only if h−1
11 and

h−1
12 exist. We now provide the conditions for the existence of an inverse filter by using the frequency

analysis of time/position varying systems.
Zadeh [45] was the first to present an approach suitable for the analysis of linear time-varying systems

in the context of frequency analysis. His transform has rarely been used [46] but it is useful for our
purposes. We consider the linear time/position varying system representation as the superposition integral:
z(ξ) = h(ξ, ξ′) ? s(ξ), where h(ξ, ξ′) is the system response at the instance ξ to the impulse δ(ξ − ξ′).

Zadeh defined the frequency response of the time/position varying system, to a unit impulse applied at
ξ = ξ

0
as:

HZ(ξ
0
, ω) =

∞∫

−∞
h(ξ

0
, ξ′)e−jω(ξ

0
−ξ′)T

dξ′. (23)

The following Proposition, indicates that Zadeh’s transform can be used for the synthesis of variable
systems. The output of such a system to a given input can be found using the system frequency response.

Proposition 3: The output of the system z(ξ) = h(ξ, ξ′) ? s(ξ) can be calculated using the system
frequency response:

z(ξ) =
1

2π

∞∫

−∞
HZ(ξ, ω)SF (ω)ejωξT

dω, (24)

where SF (ω) is the Fourier transform of s(ξ): SF (ω) =
∞∫
−∞

s(ξ)e−jωξT

dξ. (For the proof see the Appendix).

It is important to find the frequency response of a composition of time/position varying filters. The
following Theorem provides the relations between the frequency response of a system to the frequency
response of its components.

Lemma 4: The Zadeh frequency response of the system: f = g ? h, is given by the Zadeh frequency
responses, GZ(ξ, ω) and HZ(ξ, ω) as:

FZ(ξ, ω) =
n∑

i=0

1

i!

∂iGZ(ξ, ω)

∂(jω)i

∂iHZ(ξ, ω)

∂ξi , (25)

where n is the order of the differential system representing the SISO system. (For a proof see [47]).
A condition establishing relationship between the Zadeh frequency responses of the filter and its inverse

is defined by the following Theorem:
Theorem 5: The time/position varying filter h(ξ, ξ′) has an inverse g(ξ, ξ′) only if GZ(ξ, ω), which is

the Zadeh frequency response of g(ξ, ξ′), satisfies the equation:

n∑

i=0

∂iGZ(ξ, ω)

∂(jω)i

∂iHZ(ξ, ω)

∂ξi = 1, (26)

where n is the order of the differential equation. [For a proof see the Appendix).
Therefore, the filters g1 and g2 exist only if h−1

11 and h−1
12 exist and fulfil Eq. (26), where h and g are

substituted by h11 or h12 and h−1
11 or h−1

12 , respectively.
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C. Conditions on the Sparsification Transformation

A sufficient condition for the existence of a sparsification transformation is its invariancy to the mixing
matrix. We provide a weaker explicit condition sufficient for a subset of sparsification transformations,
which can be regarded as filtering with a time/position varying filter: T [H ? S] = T ? (H ? S).

Recalling Definition 3 with this subset of transformations, the invariancy to the mixing matrix means
that T ? (H ? S) = H ? (T ? S), or explicitly for a 2x2 mixing system:

T ? (hi1 ? s1 + hi2 ? s2) = hi1 ? (T ? s1) + hi2 ? (T ? s2) . (27)

This implies that a transformation which is invariant to the mixing matrix should be commutative over
the operator ?.

Proposition 6: The operator ? along with the set of 2Nξ-dimensional time/position varying filters
perform a noncommutative operation: g ? h 6= h ? g, where g and h are time/position varying filters.
[For a proof see the Appendix].

Therefore, in general, by substituting g with T and h with hi1, T ? hi1 6= hi1 ? T . A similar non-
commutative operation is obtained for hi2. But, using the Zadeh transform, we can find the subset of
transformations which do commute:

Corollary 7: The filters h and g commute, if their relative Zadeh frequency responses obey:
n∑

i=0

1

i!

∂iGZ(ξ, ω)

∂(jω)i

∂iHZ(ξ, ω)

∂ξi =

=
n∑

i=0

1

i!

∂iHZ(ξ, ω)

∂(jω)i

∂iGZ(ξ, ω)

∂ξi . (28)

This result implies that filters which have a fixed-in-ξ Zadeh frequency response, commute with similar
filters. Filters which have a fixed-in-ω Zadeh frequency response, commute with similar filters (the proof
follows directly from Theorem 4).
Therefore, the filters T and hi1 or hi2 commute if the condition of Eq. (28) is fulfilled by substituting g
and h with T and hi1 or hi2, respectively.

D. Conditions on the Mixing Matrix

The second step of the SSCA requires the solution of the inverse problem of Z = H ? S. It can be
accomplished by means of Eq. (17) by using the inverse of H . However, matrix algebra which includes
the calculation of the determinant and the inverse of a matrix, is defined only over a commutative ring.
In our case, we show that in general, the set of 2Nξ-dimensional time/position varying filters together
with addition and the operator ? (which substitutes multiplication) constitute a noncommutative ring and,
therefore, matrix algebra cannot be performed.

A ring of elements is defined with two binary operators: ’addition’ and ’multiplication’. It requires the
elements to constitute a commutative group over ’addition’ and a monoid over ’multiplication’.

Theorem 8: The set of 2Nξ-dimensional time/position varying filters, and the two binary operators of
addition and ? (which serves as ’multiplication’) constitute a non-commutative ring. (Proof is provided
in the Appendix].

Nevertheless, it is possible to find a subset of 2Nξ-dimensional time/position varying filters which
commute with each other, using Corollary 7. These filters are regarded as their centralizer, where the
centralizer is defined as follows:

Definition 6: The centralizer of an element, h, of a monoid associated with the operator ?, is the set
of all the elements gi in that monoid which obey: h ? gi = gi ? h.

Therefore, matrix algebra can be performed for the subset of filters which costitute the centralizer of
themselves. As a consequence, the inverse of a matrix can be calculated using the following Corollary:
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Corollary 9: If the elements of H , a matrix of Nz − by −Ns , Nz = Ns time/position varying filters,
belong to the centralizer of the matrix filters, and if H is invertible then its inverse is given by:

H−1 = det(H)−1 ?




c11 · · · c1Ns

... . . . ...
cNz1 · · · cNzNs


 , (29)

where det(H)−1 is the inverse filter of the determinant filter, which results from calculating det(H), and
cij is the matrix cofactor (this is proved by Cramer’s rule of linear algebra).

As a result, a matrix of Nz−by−Nz time/position varying filters, H , is invertible only if the determinant
of H is invertible.

Nevertheless, the existence of H ′−1 is a necessary condition for solving directly the inverse problem,
but not sufficient. The matrix H can be ill-conditioned, meaning a small change in the input results in a
large change of the output.

Looking at the inverse problem of the second stage in Eq. (16), we can observe that for the noisy case:

[
ŝ′1
ŝ′2

]
= (g1 − g2)

−1 ?

[
g2 −1
−g1 1

]
?

[
z1

z2

]
=

=

[
s′1
s′2

]
+ (g1 − g2)

−1 ?

[
g2 −1
−g1 1

]
?

[
η1

η2

]
=

=

[
s′1 + (g1 − g2)

−1 ? g2 ? η1 − (g1 − g2)
−1 ? η2

s′2 − (g1 − g2)
−1 ? g1 ? η1 + (g1 − g2)

−1 ? η2

]
, (30)

where η1 and η2 are the noise in the respective sensors.
Therefore, if the filter (g1 − g2)

−1 or any of the composed filters (g1 − g2)
−1 ? g2 or (g1 − g2)

−1 ? g1

amplify the noise, the error of estimation due to the noise is large.
We assume that the noise η is a white Gaussian noise that results form a stationary stochastic process.

Filtering such noise with a time/position varying filter results in a non-stationary process. Therefore, the
error in estimating the sources can be small for some time/postition instances or large for others. In the
Zadeh transform domain, we can state the following Proposition

Proposition 10: The time/position varying power spectral density of the white Gaussian noise filtered
by the time/position varying filter g(ξ, ξ′) is NSD|GZ(ξ, ω)|, where NSD is the noise spectral density
(the proof is given in [41]).

Consequently, amplification of the noise occurs whenever |GZ(ξ, ω)| ≥ 1. The conditions for solving
directly the inverse problem using the inverse of the mixing matrix H ′−1 is therefore:

1) |Z{(g1 − g2)
−1}| ≥ 1,

2) |Z{(g1 − g2)
−1 ? g1}| ≥ 1,

3) |Z{(g1 − g2)
−1 ? g2}| ≥ 1,

where Z{·} stands for the Zadeh frequency response. Whenever the conditions for solving directly the
inverse problem are not fulfilled, the variational approach can be used.

In the following sections, we outline the methods and the results of applying our approach to experiments
and simulated data for the three types of time/position varying mixtures. For each type, we outline the
method for the sparsification of the mixtures, the method for estimating the mixing filters gi out of the
scatter-plot of the mixtures’ data, the method for the inversion of the BSS problem to estimate the sources
and when applicable, we describe a system for generating real mixtures. We also demonstrate results of
separating the sources using experimental data and simulations.
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V. METHODS AND RESULTS FOR BLIND SEPARATION OF TIME/POSITION VARYING INSTANTANEOUS
MIXTURES

For this section4, we assume that the mixing filters have the form of Eq. (4). We also assume the
following:

1) The model of the instantaneous mixing filters is arbitrary, but it is known up to a finite number of
parameters.

2) Apart from some instances, the zero order Taylor approximation of the instantaneous mixing filters
around some instance in a small window, is sufficient to represent the function in that window.

3) The sources are sparse or can be sparsely represented using an appropriate transform.

A. Sparsification Using Wavelet packets and Short Time Fourier Transform
The Zadeh transform of the mixing filters, hij , is as follows:

HZij
(ξ, ω) =

∞∫

−∞
aij(ξ)δ(ξ − ξ′)ejω(ξ−ξ′)T

dξ′ =

= aij(ξ). (31)

Observe that the Zadeh frequency response of the mixing filters is independent of ω. Therefore, using
Corollary 7, every sparsification transformation which also has a Zadeh frequency response independent
of ω, is an element of the centralizer. Elements of the centralizer commute with the mixing filter and are
therefore invariant of the mixing matrix. Unfortunately, all the known linear sparsification transformations
which can be written as a time/position varying filter, extract usually, the high frequencies of the signals.
This implies that they have an ω-dependent frequency response and, therefore, are not members of the
centralizer, nor are invariant to the mixing matrix.

Nevertheless, we can utilize the second assumption of this section and estimate the mixing filters over a
small windows around some instances (where the assumption holds) as though they are fixed (in ξ) filters.
The Zadeh frequency response of such fixed filters is independent of ξ and therefore, using Corollary 7,
every sparsification transformation which can be written also as a fixed (in ξ) filter, is a member of the
centralizer and, therefore, commutes and is invariant to the mixing matrix over these instances.

The short time Fourier transform (STFT) can be used for sparse representation of audio and other
harmonic signals, whereas wavelet packets can be used for images [49]. The STFT window size, and the
support of the filter in the wavelet packets decomposition, should follow the above assumption in order
to produce an invariant transform.

B. Parametric Mixing Filters Estimation
We assume for the rest of this section, that the mixtures are of 1D signals. In the case of images, the

columns are concatenated to form a single vector. If we group the instances, {ξl}, where one of the sources
is active and the other is not, using some threshold, the values of gi for these instances are according to
Eq. (11):

gi(ξl) ≈ T [z2(ξl)]

T [z1(ξl)]
. (32)

As a result, the mixing filter g also has the form of gi(ξ, ξ
′) = ai(ξ)δ(ξ − ξ′). According to the first

assumption, the mixing filters are known up to a finite number of parameters, which means that: ai(ξ) ≡
ai(αik ; ξ), where αik are the unknown parameters.

We wish to construct a unified framework for grouping time/position instances originated from the same
sensor for estimating the αik parameters. This unified framework is necessary since correct estimation of
αik solves the grouping problem and vice versa. Correct grouping estimates the parameters αik .

4Some of the methods and the results of this section were presented in [48]
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Suppose that we take Nm time/position instances ξ0...ξ(Nm−1) in which a signal was detected above the
threshold. For each individual instance ξl, we define the ratio ri(ξl) ≡ T [zi(ξl)]/T [z1(ξl)].

A maximum likelihood approach for estimating αik would be to maximize:

arg max
αik

J(αik) ≡ arg max
αik

p(ri(ξ0...ξ(Nm−1)) | αik). (33)

Using Bayes’ rule, we can calculate the conditional probability of Eq. (33) by:

p(ri(ξ0...ξ(Nm−1)) | αik) =

=
p(αik | ri(ξ0...ξ(Nm−1)))p(ri(ξ0...ξ(Nm−1)))

p(αik)
. (34)

Since prior information regarding the distribution of αik is not available, a uniform distribution is assumed.
Omitting p(αik), which is assumed to be constant, and omitting p(ri(ξ0...ξ(Nm−1))), which does not depend
on αik , does not affect the maximization of Eq. (34) with respect to αik . Therefore, estimating αik by
using the maximum likelihood approach corresponds to maximizing

arg max
αik

J(αik) ≡ arg max
αik

p(αik | ri(ξ0...ξ(Nm−1))). (35)

In order to evaluate the conditional probability p(αik | ri(ξ0...ξ(Nm−1))), we first construct a density
estimation to get a certain ratio on a specific instance, given the measurements T [zi(ξl)] and T [z1(ξl)]. It
can be done using a kernel density estimation:

f̂(ri, ξ | T [zi(ξl)], T [z1(ξl)]) =

=
1

NmLrLξ

K

(
ri − ri(ξl)

hr
,
ξ − ξl

hξ

)
, (36)

where K is a multivariate kernel density estimator, and Lr, Lξ are the kernel supports along the r and ξ
axes, respectively.

Using the law of total probability, f̂(ri, ξ) can be found by calculating:

f̂(ri, ξ) = (37)

=
Nm−1∑

l=0

f̂(ri, ξ | T [zi(ξl)], T [z1(ξl)])p(T [zi(ξl)], T [z1(ξl)]).

We interpret the probability p(T [zi(ξl)], T [z1(ξl)]) as a measure of the correctness of calculating ai(ξl)
using Eq. (32). If the noise is at least one order of magnitude smaller than the observed signals, the
approximation of Eq. (32) holds. If the noise parameters can be estimated, for example in the case of
normal distributed noise with a known variance σ2, the probability of the noise being an order of magnitude
smaller than the measurement T [zi(ξl)] or T [z1(ξl)], is:5

p(T [zi(ξl)], T [z1(ξl)]) ≡

≡ min{
|l|∫

−|l|

1

σ
√

20π
e−

v2

20σ2 dv,

|l|∫

−|l|

1

σ
√

20π
e−

v2

20σ2 dv}, (38)

where l = T [zi(ξl)].

5In the case where the noise parameters are unknown, we assume that p(T [zi(ξl)], T [z1(ξl)]) is constant.



KAFTORY AND ZEEVI: BLIND SEPARATION OF TIME/POSITION VARYING MIXTURES 13

We want to evaluate the conditional probability of aj(ξ), being represented by αik parameters, given
the ratio of the measurements ri(ξ0...ξ(Nm−1)), i.e. Eq. (35). We can calculate this probability using a line
integral over a scalar field, being the density f̂(ri, ξ):

J(αik) ≡ p(αik | ri(ξ0...ξ(Nm−1))) =

=

ξ2∫

ξ1

f̂(ai(αik ; ξ), ξ)
√

1 + [a′i(αik ; t)]
2dξ, (39)

where a′i stands for the derivation with respect to ξ, and ξ1, ξ2 are the observation start and stop
time/position instance, respectively.

The optimization can be executed by means of the Newton method, starting from several initial points
as follows:

1) Take as an initial guess a vector of α
(0)
ik

parameters.
2) Use the vector α

(m)
ik

obtained from the previous step, and construct the gradient vector ∇J(α(m)
ijk

)

and the Hessian matrix HessJ(α
(m)
ik

), using:

∂J(α(m)
ik

)

∂α
(m)
ik

=
∂p(α

(m)
ik

| ri(ξ0...ξ(Nm−1)))

∂α
(m)
ik

(40)

∂2J(α(m)
ik

)

∂α
(m)
ik

∂α
(m)
ij

=
∂2p(α

(m)
ik

| ri(ξ0...ξ(Nm−1)))

∂α
(m)
ik

∂α
(m)
ip

.

3) Update the estimated parameters:

α
(m+1)
ik

= α
(m)
ik

−HessJ(α
(m)
ik

)∇J(α(m)
ik

). (41)

4) Repeat steps 2 and 3 until convergence.
The initial points can be selected by using an approach similar to the application of the Hough transform

in image processing [50].
A few implementation remarks are in order:

1) The integral of Eq. (39) should be found indefinitely. We, therefore, propose using the Epanechnikov
radially symmetric kernel [51] which is defined as follows:

K(x, y) =

{
2
π
(1− x2 − y2) (x2 + y2) ≤ 1

0 othewise
. (42)

2) If ai(αik) renders the indefinite integral of Eq. (39) unsolvable, an approximation for ai(αik) should
be used.

3) It is usually preferable to define g′i(ξ) ≡ arctan(gi(ξ)) in order to eliminate the noise amplification
accompanying the calculation of T [zi(ξ)]/T [z1(ξ)]. The definition of ri(ξl) to be inserted in Eq. (36)
should be accordingly changed to ri(ξl) ≡ arctan(T [zi(ξl)]/T [z1(ξl)]). After optimizing for the αik

parameters and finding g′i(ξ), gi(ξ) can be found using gi(ξ) = tan(g′i(ξ)).

C. Source Estimation
As we have already shown, the Zadeh’s frequency response of the elements of the mixing matrix is

independent of ω and, therefore, these elements belong to their centralizer. This means that the elements
of the matrix are commutative, permitting the application of the matrix algebra mentioned in Corollary 9.
As long as the determinant a1(ξ) − a2(ξ) 6= 0,6 the system is invertible and Eq. (17) can be used to
estimate the sources.

6In instances where a1(ξ)− a2(ξ) ¿ 1 the system is singular or badly conditioned and the variational method should be used
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D. A System for Generating Position Varying Instantaneous Image Mixtures
In the process of imaging through a semi-reflector, such as a plain glass window, the reflected image

is superimposed on the transmitted one. The left optical setup shown in Fig. 3 depicts an optical system
assembled in our lab for generating position varying instantaneous mixture of images. The glass is used
as a mixer of transmitted and reflected obtained images. The position varying mixing is achieved by
changing the lighting condition of the transmitted image, by using a non-uniform illumination. First
mixture is acquired using room lighting whereas a second mixture is acquired using an extra non-uniform
illumination.

E. Results
We tested our approach on simulated and real mixtures. For the simulated mixtures, two mixtures were

obtained from two audio signals. The signals were sampled at a rate of 32K samples/sec, and mixed using
time varying instantaneous filter matrix with the following coefficients:

g2j(t) = α2j1t
2 + α2j2t + α2j3 . (43)

The filters change the attenuation of the signals as a second degree polynomial function of time. Random
noise with normal distribution was added to the mixtures, yielding a Peak-Mixture-to-Noise Ratio (PSNR)
of 20 dB. The mixtures were ’sparsified’ using STFT with window duration of 1/4 of a second. For
the parametric mixing system estimation, we estimated the probability density using the Epanechnikov
radially symmetric kernel density estimation. The integral of Eq. (39) was indefinitely calculated and the
intersections of the support of the kernel with the curve were found using Matlab solver. The optimization
scheme was implemented using Matlab and the algorithm was initialized by several starting points and
converged to two local maxima. The system was directly inverted by calculating the inverse of the mixing
matrix, H−1. Fig. 4 depicts the signals of mixtures of two voices. On the top left are the spectrograms
obtained by using a STFT with a window duration of 1/4 second. Shown on the top right are the
separated estimated sources. On the top middle, we can see the kernel estimated probability density. The
audio mixtures and separated sources can be found at www.visl.ac.il/ kaftory/...

The CSISR of the top examples of Fig. 4 increased from 4dB and −4dB, for the two mixed sources,
to 28dB and 32dB after the separation.

The setup depicted in Fig. 3 was used for generating real mixtures. The mixtures were acquired with
a Nikon D100 digital camera controlled by a computer. The PSNR for the noisiest mixture, which was
estimated by taking consecutive identical pictures, was 40 dB. We define g′i(ξ) ≡ arctan(gi(ξ)) and
assume that a second order polynomial is the estimated Taylor expansion of g′i(ξ). Since images are not
naturally sparse, we used the Haar wavelet packet for sparsification. The sparsest node (node 1,3) was
chosen. Again, for the parametric mixing system estimation, we estimated the probability density using
the Epanechnikov radially symmetric kernel density estimation. We initiated our algorithm with several
starting parameters and the algorithm converged to two local maxima. The system was inverted directly
by calculating the inverse of the mixing matrix, H−1.

The bottom of Fig. 4 depicts results obtained in separation of reflection from a transmitted image. The
mixtures were generated by the system shown on the left side of Fig. 3. The mixtures of the images
are shown on the bottom left. One mixture was acquired under normal room-lighting condition and the
other acquired with the addition of non-uniform lighting to the transmitted image. The estimated separated
sources are shown in the bottom right. The Mutual Information of the mixtures is 0.3 and 0.15 for the
separated sources. The kernel-estimated probability density, obtained by selecting pixels corresponding to
wavelet packet coefficients exceeding the threshold, is shown on the middle.

VI. BLIND SEPARATION OF TIME/POSITION VARYING SINGLE-PATH MIXTURES

Here7, we assume that the mixing filters have the form of Eq. (6), where there is no attenuation. In
this section, we use as an example, two mixtures of a transmitted image and a phantom reflected from

7Some of the methods and the results of this section where published in [52], [53]
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a curved semi-reflector, acquired from slightly different locations. When the semi-reflector is not flat,
as is the case in a front windshield of a car or the canopy of a cockpit, the reflected image is usually
distorted. Furthermore, the distortion of the reflection varies as a function of the viewing position [54].
We model these image mixtures in the context of a position varying single-path BSS problem. To this
end, we following:

I. The model of the single-path mixing coefficient is arbitrary, but is a smooth function.
II. The dependency of the reflection and the transmission coefficients on the viewing angle is negligible.

Therefore, the image intensity does not change when the camera position varies.
III. The image sources contain edges or other features.
Considering two different mixtures and representing them in matrix form, the BSS problem can be

written explicitly as: [
zλ1

zλ2

]
=

[
hR1 hD1

hR2 hD2

]
?

[
Rλ

Dλ

]
+ η. (44)

, where zλ1 and zλ2 are the mixtures observed from two different camera positions. hR and hD, defined
by:

hR(ξ, ξ′) ≡ δ
(
ξ′ −MR(ξ)

)
, hD(ξ, ξ′) ≡ δ

(
ξ′ −MD(ξ)

)
, (45)

where MR and MD are mapping between the reflected image coordinate system and the transmitted image
coordinate system to the camera system respectively [52]. We explicitly define the filters gi of Eq. 12 as:

hR2 = gR ? hR1 , hD2 = gD ? hD1 . (46)

Solving for gR and gD yields:
gR = δ

(
ξ′ −MR2(ξ) + MR1(ξ)

)
, (47)

and
gD = δ

(
ξ′ −RD2(ξ) + MD1(ξ)

)
. (48)

A. Sparsification using Scale Invariant Feature Transform

The Zadeh transform of one of the elements of the mixing matrix is:

HZR
(ξ, ω) =

∞∫

−∞
δ

(
ξ′ −MR(ξ)

)
ej(ω(ξ−ξ′)T )dξ =

= ej(ω(ξ−MR(ξ))). (49)

Since it is a function of both ω, and ξ, finding its centralizer is a challenging task. None of the common
sparsification transformations, which can be accounted for by conventional filters, belongs to the centralizer
and is invariant to the mixing system. The zero order Taylor approximation of the mixing filters, calculated
around some point is a translation of that point. The first order scales the image about this point. The
second and higher order, produce nonlinear stretching to this image point. Therefore, the mixing filters
can be approximated by local affine transforms. The Scale Invariant Feature Transform (SIFT) [55], which
cannot be accounted for by a filter, but is invariant to local affine transforms, can be used as a sparsification
transformation invariant to the mixing filters. SIFT transforms an image into a large collection of local
feature vectors, based on the appearance of an object of special interest (key) points. Each feature vector
is translation, rotation and scale invariant as well as invariant, to illumination changes and 3D projection.
The feature vectors are highly distinctive and can, therefore, be regarded as a sparse representation, where
only a small percentage of the pixels are chosen.



16 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XX 2010

B. Mixing Matrix Estimation
Suppose we observe in one of the mixtures, in some position ξ

0
, the existence of a matching keypoint to

the other mixture in the position ξ
1
, and the keypoint belongs to the transmitted image. MD1(ξ)−MD2(ξ) is

the difference (measured in pixels) between the mapping of a point in the transmitted image to the first and
second observed images. Therefore, for the matching keypoints this value is M1

D1
(ξ)−MD1(ξ) = ξ

0
− ξ

1
.

Recalling Eq. (48), the value of gD(ξ) is known for this keypoint. For matching keypoints which belong to
the reflected image, the value of gR is known. Therefore, by scatter-plotting the location difference of the
matching keypoints, two surfaces can be estimated. One corresponds to gD and the other to gR. We can
usually assume that the transmitted image is not distorted but may be slightly shifted between the mixtures,
and solve the problem of grouping the keypoints to gR or gD. It is done by first grouping all the matching
keypoints of which their relative offsets are consistent with a small, close to zero shift, and assigning
them to the surfaces of gD. The remaining keypoints are assigned to gR and used in estimating the surface
of gR by utilizing a surface fitting technique. If we have a-priori information about the curvature of the
semi-reflector, we can assume a parametric surface fitting model for the surface estimation. Otherwise,
we can assume that the surface is smooth and apply a non-parametric surface fitting with smoothing
constraints.

C. Variational Source Estimation
From the Zadeh’s transform of the mixing filters in Eq. (49) one may conclude that the elements of

the mixing matrix do not commute. Therefore, a direct inversion of the mixing system is not feasible. We
implement a variational framework for solving the problem. Recalling the BSS problem,

zλ1 = R′
λ + D′

λ + η1,

zλ2 = gR ? R′
λ + gD ? D′

λ + η2, (50)

we filter both sides of the first equation with the position varying filter gR and subtract it from the second
equation. This yields the following equation, to be solved for D′

λ:

zλ2 − gR ? zλ1 = (gD − gR) ? D′
λ + η, (51)

where we used the distributivity property of ?.
A variational approach to solving Eq. (51) is by minimizing the cost functional:

J =‖ zλ2 − gR ? zλ1 − (gD − gR) ? D′
λ ‖2 +wR(D′). (52)

The regularization operator, R(D′), that we use for color images, is based on the Beltrami flow. Sochen et
al.,. [56], interpret an image as a manifold (surface) embedded in a high dimensional space, where x, and
y are two spatial coordinates of this space, and the intensity at each of the λ channels is represented as an
additional dimension. Hence, a color image, such as the reflected or the transmitted image, is a manifold
embedded in a 5-dimensional space. From this viewpoint, image regularization can be interpreted as a
process that minimizes the surface area of this manifold. The surface area of an image is measured by
the Polyakov action [57]. It is given for the transmitted image by:

R(D′) =
∫∫

Ω

√
det(GD)dxdy, (53)

where GD is a 2× 2 matrix. Each of the matrix entries, depends on the spatial location. Their values are
given [58] by

gD
11 = 1 + ρ2

∑
λ
(∂D′

λ/∂x)2

gD
12 = gD

21 = ρ2
∑

λ

∂D′
λ

∂x

∂D′
λ

∂y

gD
22 = 1 + ρ2

∑
λ
(∂D′

λ/∂y)2 , (54)
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where ρ is a parameter for scaling the intensity dimensions. It is useful not to use the Polyakov action,
but to use a modified version (by multiplying it by a positive function) where its derivative is the Beltrami
flow which is defined as:

Beltrami ≡ 1√
det(GD)

Div
[√

det(GD)(GD)
−1∇D′

λ

]
. (55)

The properties of using the Beltrami flow for the restoration of color images are investigated thoroughly
in [59] and [60]. Some of these properties are:
1) Forcing the color channels to spatially align and therefore to suppress color distortions.
2) Reducing the noise.
3) Preserving the image edges.

Minimizing J, [56], accomplished by reaching dJ/dD′
λ = 0 or, equivalently, solving its Euler-Lagrange

equation:
∑

λ
(gD − gR)T ? (zλ2 − gR ? zλ1 − (gD − gR) ? D′

λ)

+
w√

det(GD)
Div

[√
det(GD)(GD)

−1∇D′
λ

]
= 0, (56)

where (gD−gR)T is the position varying filter obtained by switching the place along the coordinates ξ and
ξ′, ∇Dλ is the spatial gradient of D′

λ and Div is the divergence operator. Eq. (56) is a nonlinear partial
differential equation (PDE). Rather than solving it directly, we use the Fixed Point Lagged Diffusive
method, used in [61]. By means of this method, the PDE can be solved by lagging the nonlinear term
of the Beltrami operator one iteration behind. Then, for example, by knowing D′(t)

λ in some iteration t ,
D′(t+1)

λ can be found by solving a linear PDE, while applying a conjugate gradient minimization scheme.
In operator form, we obtain the following operator definitions:

L(D′(t)
λ )D′(t+1)

λ ≡ (gD − gR)T ? (gD − gR) ? D′(t+1)
λ − (57)

− γ√
det(GD(t))

Div
[√

det(GD(t))(GD(t))−1∇D′(t+1)
λ

]
,

and
K ≡ (gD − gR)T ? (zλ2 − gR ? zλ1) . (58)

Eq. (56) can be written using the above operator definition as:

L(D′(t)
λ )D′(t+1)

λ −K = 0. (59)

A direct solution of these equations, as required by each minimization step, would be:

D′(t+1)
λ = L(D′(t)

λ )−1K. (60)

Since it is difficult to find and invert L(D′(t)
λ )−1, the step dD′(t)

λ is introduced:

D′(t+1)
λ = D′(t)

λ + dD′(t)
λ . (61)

The step dD′(t)
λ can be found by solving:

L(D′(t)
λ )dD′(t)

λ = K − L(D′(t)
λ )D′(t)

λ . (62)

Eq. (62) can be solved by using the conjugate gradient method.
A similar restoration process with the Beltrami operator, was used in [62] for the unmixing and

restoration of color images taken through a scattering medium.
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D. System for Generating Position Varying Single-path Mixtures

Optical systems which yield position varying image mixtures are depicted in Fig. 3. Shown on the right-
hand side is a curved semi-reflector used as a mixer between a transmitted image and a reflection. The
position-varying single-path mixing is imposed the curvature of the semi-reflector. Two different mixtures
are acquired by moving the camera to slightly different positions, which results in approximately the same
transmitted image, but different distortions of the reflected image.

E. Results

We tested our approach on simulated and real mixtures. For the simulation, we implemented a simulator
based on ray-tracing and used it to simulate a superposition of a reflected and transmitted image. Two
observation points were used to obtain two slightly different mixtures. The shape of the semi-reflector
was chosen to be a sphere, thus, producing a reflection with a fisheye-lens effect. We also assumed that
the semi-reflector is very thin, to avoid distortions of the transmitted image. Finally, Gaussian noise was
added to the mixtures, yielding a peak-mixture-to-noise ratio of 25 dB. For the real mixtures, the setup
depicted in Fig. 3 was used. Instead of a semi-reflector made out of glass, we curved a thin polycarbonate
sheet. The mixtures were acquired with a Nikon D100 digital camera interfaced with a computer. The
PSNR for the noisiest mixture, which was estimated by taking consecutive identical pictures, was 40 dB.

The mixtures were sparsified using SIFT.8 Following the keypoint matching we use the parametric
surface fitting on the simulated mixtures and a nonparametric on the experiments , by first calculating the
location difference of corresponding SIFT keypoints. We take advantage of the fact that the transmitted
image is not distorted. Thus, the location difference between the corresponding SIFT keypoints is constant.
We estimate this constant by finding the maximum of the histogram of the location differences. After
removing all the features corresponding to this constant, a second degree polynomial surface fitting is
applied to the rest.

Fig. 5 depicts the results. The mixtures of the images are shown on the left. The estimated surfaces
obtained by the parametric surface fitting are shown in the middle. The separated, estimated, sources are
shown on the right. The estimated sources are well separated.

The Mutual Information of the images, which was 2.7 and 1.3 for the mixtures in the simulation and
the experiment respectively, was reduced to 0.8 and 0.6, respectively, after the separation.

VII. BLIND SEPARATION OF TIME VARYING MULTI-PATH MIXTURES

We limit ourselves to mixing filters which are time-varying, attenuated-and-delayed, versions of fixed
channel distortions:

hij(t, τ) = aij(t)fij(dij(t)− τ), (63)

where aij is a time-varying attenuation, fij is a Finite Impulse Response filter and dij is a time-varying
delay function. In this section, we assume the following:

I. Apart from some instances, the zero order Taylor approximation of the Zadeh transform of the
multi-path mixing coefficients, around some instances confined to a small window, is sufficient to
represent the function in that window.

II. The sources are either sparse in their native domain, or can be sparsely represented in the time-
frequency domain.

We assume that these mixing filters have finite support, with a maximum support of size 2LM . We can,
therefore, find a window of size 2LT , LT À LM , around the time instance t, in which hij(t, τ < t−LT ) = 0
and hij(t, τ > t + LT ) = 0. Consequently, we can state that:

hij(t, τ) = hij(t, τ)wind(t− τ), (64)

8SIFT Matlab code can be downloaded from www.cs.ubc.ca/lowe/keypoints
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where wind(t− τ) denotes a unit window function centered at τ = t with support of 2LT .
The BSS problem can be written as:

zi(t) =
∑

j

∞∫

−∞
hij(t, τ)wind(t− τ)sj(τ)dτ + η =

=
∑

j

∞∫

−∞
hij(t, τ)sj(t, τ)dτ + η, (65)

where we define s(t, τ) ≡ wind(t − τ)s(τ). We note that s(t) can be calculated by s(t) =
∞∫
−∞

δ(t −
τ)s(t, τ)dτ .

Using Zadeh’s frequency response, Eq. (65) can be written as:

zi(t) =
1

2π

∑

j

∞∫

−∞
HZij

(t, ω)SFj
(t, ω)ejωtdω, (66)

where HZij
(t, ω) is the Zadeh frequency response of hij , and SFj

(t, ω) is the Fourier transform of sj(t, τ)
along the τ axis.

The BSS problem can be written in the Zadeh time-frequency domain as:

ZZi
(t, ω) =

∑

j

HZij
(t, ω)SFj

(t, ω) + η̃, (67)

where η̃ is the time-frequency representation of the Gaussian noise, assumed to be constant. We can
regard ZZi

(t, ω) as the frequency representation of the output of the mixing system given an input at the
instance t using the filters hij(t, τ), with the addition of some noise constant. Clearly, in a similar way
to Eq. (66), zi(t) can be found using the inverse Zadeh transform of ZZi(t, ω):

zi(t) =
1

2π

∞∫

−∞
ZZi

(t, ω)ejωtdω. (68)

The modified BSS problem can be written in the Zadeh domain as:

ZZi
(t, ω) =

∑

j

GZij
(t, ω)S ′Fj

(t, ω) + η̃, (69)

where GZij
(t, ω) = HZij

(t, ω)H−1
Z1j

(t, ω) and S ′Fj
(t, ω) = HZ1j

(t, ω)SFj
(t, ω), where a method for finding

the sources s′1(t) and s′2(t) out of {S ′F1
(t, ω) and S ′F2

(t, ω) is by calculating:

s′(t) =

∞∫

−∞
S ′F (t, ω)ejωtdω.

A. Sparsification Using Short Time Fourier Transform
As stated earlier, ZZi

(t, ω) is the time-frequency representation of the mixtures in the Zadeh transform
domain. In a similar way to the Short Time Fourier Transform (STFT), and as one of the assumptions
mentioned in the introduction, ZZi

(t, ω) is a sparse representation of audio and other harmonic signals.
Utilizing the assumption stated in the introduction, we can find some windows of size 2LL, over which

the zero order Taylor approximation is sufficient to represent the Zadeh transform of the mixing filters in
these windows. We set the size of LT such that LL > LT + LM , where 2LT is the size of the window
used for calculating sj(t, τ), and 2LM is the maximum support of the mixing filters.

It is shown in [41] that if the frequency content of the sources does not change over the same window
where the zero order Taylor approximation is sufficient to represent the Zadeh transform of the mixing
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filters, the STFT with windows of size 2LL of the observed mixtures zi(t), provides an estimation to
ZZ(t, ω).

Since this estimation is sparse, the STFT under the assumptions can be regarded as a sparsification
transformation.

B. Mixing Matrix Estimation
Sparse signals represented in the time-frequency space enable the estimation of the mixing system,

since there are many frequencies and time instances, over which only one source is active. Therefore,
Gij(t, ω) can be found from:

GZij
(t, ω) ≈ ZZi

(t, ω)ZZ1(t, ω)−1. (70)

The Zadeh frequency responses of filters of the type used in this section, are:

HZij
(t, ω) = aij(t)FFij

(ω)e−jω(t−dij(t)), (71)

where FFij
(ω) is the Fourier transform of the fixed filter fij(t− τ).

The value of the mixing filter Gij(t, ω) is therefore:

GZij
(t, ω) =

aij(t)FFij
(ω)e−jω(t−dij(t))

a1j(t)FF1j
(ω)e−jω(t−d1j(t))

. (72)

The filter GZij
(t, ω) is a complex function. Therefore, instead of finding it directly, we estimate its

amplitude and phase separately.
We define the angle ψi(t, ω) as follows:

ψi(t, ω) = tan−1

( |ZZi
(t, ω)|

|ZZ1(t, ω)|

)
. (73)

According to the assumptions related to properties of sources that are sparse in their time-frequency
domain representation, there are time instances tn and frequencies ωm where only one source is active.
We scatter-plot the points ψ1(tn, ωm) and ψ2(tn, ωm) for some fixed ω as a function of t. The points lie
on one of the curves ψ̃1j(t, ω) or ψ̃2j(t, ω), where ψ̃ij(t, ω) is defined as follows:

ψ̃ij(t, ω) = tan−1


 aij(t)

∣∣∣FFij
(ω)

∣∣∣
a1j(t)

∣∣∣FF1j
(ω)

∣∣∣


 . (74)

Note that the above curve is continuous, since ψ̃ij(t, ω) does not depend on the value of the source
j. Therefore, if we assume that aij(t) is a continuous functions of t, ψ̃ij(t, ω) is also a continuous
function of t, bounded between 0 and π/2. We should note that we use the inverse tangent of the ratio
aij(t)

∣∣∣FFij
(ω)

∣∣∣/a1j(t)
∣∣∣FF1j

(ω)
∣∣∣ in order to suppress the amplification of the noise in the cases where the

denominator is close to zero.
We define the phase shift ∆φi(t, ω) as follows:

∆φi(t, ω) = ∠ZZi
(t, ω)− ∠ZZ1(t, ω), (75)

where the symbol ∠ denotes the phase.
We scatter-plot the points ∆φ1(tn, ωm) and ∆φ2(tn, ωm) on a graph for some fixed ω as a function of

t. The points lie on one of the curves ∆φ̃1j(t, ω) and ∆φ̃2j(t, ω), where ∆φ̃ij(t, ω) is defined as follows:

∆φ̃ij(t, ω) = ∠FFij
(ω)− ∠FF1j(ω) + ω(dij(t)− d1j(t))). (76)

In this case too, the above curve is continuous, since ∆φ̃ij(t, ω) does not depend on the value of the
source j. Therefore, if we assume that dij(t) is a continuous function of t, ∆φ̃ij(t, ω) is also a continuous
function of t, bounded between 0 and 2π with a 2π fold.
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It is observed that the values of the mixing filters GZij
can be found by:

GZij
(t, ω) = tan

(
ψ̃ij(t, ω)

)
ej∆φ̃ij(t,ω). (77)

The objective is, therefore, to find the curves out of the cluttered points. This can be done either by
using a parametric estimation, or a non-parametric estimation using methods described in the previous
sections.

C. Source Estimation

In the time-frequency domain, the filters GZij
(t, ω) of the above form, are commutative. Therefore,

a direct inversion of the problem is feasible. In cases where GZ22(t, ω) − GZ21(t, ω) ¿ 1 the system is
singular or badly conditioned. A variational methods should then be used. Two variational methods – one
in the combined time-frequency domain and the other in the time domain are presented in [41].

D. Results

We tested our approach on simulated audio signals in a semi-realistic acoustic scenario, in which a
reporter is speaking to a 2-microphone array, while an emergency vehicle is passing nearby. The functions
aij(t) and dij(t) are calculated for this scenario as:

aij(t) =
1

qij(t)
, dij(t) = t− qij(t)

c
, (78)

where c is the speed of sound and qij is the distance between the jth source to the ith sensor.
The signals recorded from the reporter and the emergency vehicle were sampled with anti-aliasing filter

at the rate of 4K samples /second. We assumed that the microphones were close to each other, therefore
the time invariant atmospheric transfer function obeys f11 = f21 and f12 = f22. Finally, Gaussian noise
was added to the mixtures, yielding a mixture-to-noise ratio of 20 dB. The value of Zi(t, ω) was obtained
using a windowed Fourier transform with a window of length 400 samples.

We scatter-plot the points ψ(tn, ωm) for the time and frequencies, where the absolute values of the
windowed Fourier transform of the mixtures are above the threshold. It is done for each ω as a function
of t. Since according to the assumptions, this ratio should be the same for all ω, we take the maximum of
the histogram and plot it as a function of time. We use the parametric curve fitting assuming a polynomial
of various degrees, until a good approximation to the curves ψ̃ij(t, ω) is achieved. We then scatter-plot
the points ∆φ(tn, ωm)/ωm for the time and frequencies where the absolute values of the windowed
Fourier transform of the mixtures are above the threshold. These points are independent of ω. We use
the parametric curve fitting, assuming a polynomial of various degrees, until a good approximation to the
curves ∆ψ̃ij(t, ω)/ω is achieved.

Fig. 6 depicts the results. The estimation of ψ̃ij(t, ω) and ∆φ̃ij(t, ω)/ω using a polynomial fit are shown
on the right. We use ψ̃ij(t, ω) and ∆φ̃ij(t, ω) to construct GZij

(t, ω) by:

GZij
(t, ω) = tan

(
ψ̃ij(t, ω)

)
ej∆φ̃ij(t,ω). (79)

The system is inverted using the variational approach in the time-frequency domain. The spectrogram
of the mixtures is depicted on the left of Fig. 6 whereas the estimation of ψ̃ij(t, ω) and ∆ψ̃ij(t, ω)/ω are
depicted in the middle and the estimated sources are depicted on the right. The mutual information of 1.6
of the mixtures, was reduced significantly to 0.7 for the separated sources.
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VIII. CONCLUSIONS

Previous studies stated that the separation of time/position varying mixing system can be achieved
by using an online algorithm of instantaneous or convolutive BSS. However, since all of the methods
for the instantaneous and convolutive BSS, find an inverse to the mixing system using matrix algebra,
they are applicable to time/position varying mixtures only under the assumption that the zero order
Taylor approximation of the filters estimates the mixing system, and that the inverse system is not badly
conditioned. In our study of time/position varying systems, we proved that in the general case the mixing
filters do not commute and therefore inversion of the mixing system using matrix algebra is not feasible.
We further found in the Zadeh time-frequency domain the conditions under which filters are commutative
and consequently, an inverse filter exists. Thus, in most cases, an online form of existing instantaneous
or convolutive BSS techniques does not solve the time/position varying BSS problem.

Instead of using an online form of instantaneous or convolutive BSS, we use the SSCA approach in a
batch processing manner. We study the conditions which allow the application of the SSCA, and show
that using an appropriate sparsification operator enables the estimation of the mixing system, as long
as a proper threshold is imposed, so that the above-threshold instances are frequent enough and have a
good signal-to-noise ratio. Estimation of the mixing system enables the system inversion which can be
done directly by matrix inversion. For cases where matrix algebra cannot be used to invert the system,
or where the inverse system is badly conditioned, we developed a variational approach for solving the
inverse problem.

The demonstration of our SSCA approach along with the methods for sparsification and parametric
and non-parametric mixing matrix estimation shows the feasibility of using the SSCA for the solution of
various time/position varying BSS problems. This was demonstrated on simulated and experimental data,
obtained from three types of mixtures representing many real-life applications.

APPENDIX

PROOF OF PROPOSITION 1
The proof is only roughly outlined. The detailed proof can be found in [41]. By the definition of the

conditional probability, and assuming that the variables are independent, we get:

p
(
CSISR > th1, CSNR > th2 | zi = zi(ξ0

)
)

=

=
p(CSISR > th1 ∩ zi = zi(ξ0

))

p(zi = zi(ξ0
))

·

·p(CSNR > th2 ∩ zi = zi(ξ0
))

p(zi = zi(ξ0
))

. (80)

Starting with the denominator, zi is a random variable which equals the sum of three independent random
variables: hi1 ? s1, hi2 ? s2 and ηi. The PDF of zi is therefore given by convolving the PDF of the random
variables. For the numerator, we find the intersection of CSISR > th1 and hi1 ? s1 + hi2 ? s2 = zi(ξ0

),
and the intersection of CSNR > th2 and hi1 ? s1 + hi2 ? s2 = zi(ξ0

).

PROOF OF PROPOSITION 3
Using the inverse fourier transform of SF (ω):

s(ξ) =
1

2π

∞∫

−∞
SF (ω)ejωξT

dω, (81)

the system can be written as:

z(ξ) =

∞∫

−∞
h(ξ, ξ′)

1

2π

∞∫

−∞
SF (ω)ejωξ′T dωdξ′. (82)
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Changing the order of integration yields:

z(ξ) =
1

2π

∞∫

−∞
SF (ω)




∞∫

−∞
h(ξ, ξ′)ejωξ′T dξ′


 dω, (83)

which is equal to:

z(ξ) =
1

2π

∞∫

−∞
SF (ω)




∞∫

−∞
h(ξ, ξ′)e−jω(ξ−ξ′)T

ejωξT

dξ′

 dω

=
1

2π

∞∫

−∞
SF (ω)HZ(ξ, ω)ejωξT

dω, (84)

where we used the definition of the Zadeh transform.

PROOF OF THEOREM 5

By the definition of an inverse filter:

∞∫

−∞
g(ξ, ξ′′)h(ξ′′, ξ′) = δ(ξ − ξ′) = 1. (85)

Taking the Zadeh transform of both sides, and using Lemma 4, we get:

n∑

r=0

∂rGZ(ξ, ω)

∂(jω)r

∂rHZ(ξ, ω)

∂ξr =

=

∞∫

−∞
δ(ξ − ξ′)e−jω(ξ−ξ′)T

dξ′ = 1. (86)

PROOF OF PROPOSITION 6

We prove it by an example. Consider the time varying filter which down-scales the axis by a factor of
two, h(ξ, ξ′) = δ(2ξ−ξ′), and the delay filter which delays the signal by one unit is g(ξ, ξ′) = δ(ξ−1−ξ′).
Clearly, if scaling precedes delaying, the scaled signal is delayed by one unit. If delaying precedes scaling,
the scaled signal is only delayed by half a unit:

g ? h =

∞∫

−∞
δ(ξ − 1− ξ′′)δ(2ξ′′ − ξ′)dξ′′ =

= δ(2ξ − 2− ξ′) 6=

h ? g =

∞∫

−∞
δ(2ξ − ξ′′)δ(ξ′′ − 1− ξ′)dξ′′ =

= δ(2ξ − 1− ξ′). (87)



24 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XX 2010

PROOF OF THEOREM 8
We have to show that the set is a commutative group over addition and a monoid over the operator ?.

The first part is trivial, since 2n-dimensional time/position varying filters contain the set of real numbers
R2n, which is a commutative group over addition. In order to prove that the set is a monoid over the
operator, ?, we have to prove that it is a semigroup with the identity element. This means that it is a closed
set under ?, has the associativity property and includes an identity element. An inverse is not required. By
definition, the operation ? with the set of time/position varying filters is a closed set (? : R2n?R2n → R2n).
The associativity can be proven by:

f ? (g ? h) =

∞∫

−∞
f(ξ, ξ′′)




∞∫

−∞
g(ξ′′, ξ′′′)h(ξ′′′, ξ′)dξ′′′


 dξ′′. (88)

Changing the order of integration results in the following:
∞∫

−∞




∞∫

−∞
f(ξ, ξ′′)g(ξ′′, ξ′′′)dξ′′


 h(ξ′′′, ξ′)dξ′′′ = (f ? g) ? h. (89)

and the identity element which was defined by 1 ≡ δ(ξ − ξ′), is an identity element of the operator ?
and the set of 2n-dimensional time/position varying filters. The non-commutativity property was proven
in Proposition 6.
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Fig. 1. Types of position varying image mixtures, where the system varies only along the x axis. Left column: instantaneous case. Middle
column: single-path case. Right column: multi-path case. From top to bottom: mixing filter h11(x, x′), result of filtering one of the sources
with this filter, mixing filter h12(x, x′), result of filtering the other source with this filter, the mixture. Observe how the following property
of the filtered image changes along the x axis: intensity for the instantaneous case, scale for the single-path case and blur for the multi-path
case.
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Fig. 2. The conditional probability that one source is active and the other is not (and the noise is negligible), given the thresholds th1,
th2 and the observed mixture plotted for several values of σ, given sparse signal distribution with µ = 1.5 and ν = 2. Observe how the
probability is a symmetric non decreasing function.
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(direct)
Picture 2 

(reflected)

Curved 

Glass

Fig. 3. An optical system generating spatial varying instantaneous mixtures (left) and spatial varying single-path mixtures (right): two
pictures are positioned opposite to each other while a semi-reflective glass is mounted along the optical axis of one of them. In the case
of instantaneous mixtures, the first mixture is generated using a uniform lighting. A second mixture is generated using a non-uniform
illumination. In the case of single-path mixtures, the first and second mixtures are acquired from slightly different camera position
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Fig. 4. [Left] Two audio signals of a man and a women voices are mixed. [Top left] The spectrograms of the two audio mixtures. [Middle
left] Kernel-estimated probability density. The black lines indicates the estimated curves gi(αik ; ξ). [Bottom left] The spectrograms of the
estimated separated sources. [Right] Mixtures produced by the setup depicted on the left in Fig. 3. [Top right] A mixture of the images
obtained in room lighting and with the addition of non-uniform lighting to the transmitted image. [Middle right] Kernel-estimated probability
density. The black lines indicate the estimated curves g′i(αik ; ξ). [Bottom right] The estimated image sources.
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Fig. 5. Simulated (left) and experimental (right) single-path image mixtures obtained by a round semi-reflector. [Top] Image mixtures.
[Middle] Estimated surfaces obtained by surface fitting of matching SIFT keypoints. [Bottom] The estimated image sources.
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Fig. 6. An audio signal of a man’s voice is mixed with the sound of a siren generated according to a semi-realistic scenario. [Top] The
spectrograms of the two audio mixtures. [Middle] The amplitude and phase of the mixing filters. [Bottom] The spectrograms of the estimated
separated sources.




