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Blind Compressed Sensing
Sivan Gleichman and Yonina C. Eldar, Senior Member, IEEE

Abstract—The fundamental principle underlying compressed
sensing is that a signal, which is sparse under some basis
representation, can be recovered from a small number of linear
measurements. However, prior knowledge of the sparsity basis
is essential for the recovery process. This work introduces the
concept of blind compressed sensing, which avoids the need to
know the sparsity basis in both the sampling and the recovery
process. We suggest three possible constraints on the sparsity
basis that can be added to the problem in order to make its
solution unique. For each constraint we prove conditions for
uniqueness, and suggest a simple method to retrieve the solution.
Under the uniqueness conditions, and as long as the signals
are sparse enough, we demonstrate through simulations that
without knowing the sparsity basis our methods can achieve
results similar to those of standard compressed sensing, which
relay on prior knowledge of the sparsity basis. This offers a
general sampling and reconstruction system that fits all sparse
signals, regardless of the sparsity basis, under the conditions and
constraints presented in this work.

I. INTRODUCTION

Sparse signal representations have gained popularity in

recent years in many theoretical and applied areas [1]–[6].

Roughly speaking, the information content of a sparse signal

occupies only a small portion of its ambient dimension. For

example, a finite dimensional vector is sparse if it contains a

small number of nonzero entries. It is sparse under a basis if

its representation under a given basis transform is sparse. An

analog signal is referred to as sparse if, for example, a large

part of its bandwidth is not exploited [4], [7]. Other models

for analog sparsity are discussed in detail in [5], [6], [8].

Compressed sensing (CS) [2], [3] focuses on the role of

sparsity in reducing the number of measurements needed to

represent a finite dimensional vector x ∈ R
m. The vector x is

measured by b = Ax, where A is a matrix of size n×m, with

n ≪ m. In this formulation, determining x from the given

measurements b is ill possed in general, since A has fewer

rows than columns and is therefore non-invertible. However,

if x is known to be sparse in a given basis P , then under

additional mild conditions on A [9]–[11], the measurements

b determine x uniquely as long as n is large enough. This

concept was also recently expanded to include sub-Nyquist

sampling of structured analog signals [4], [6], [12].

In principle, recovery from compressed measurements is

NP-hard. Nonetheless, many suboptimal methods have been

proposed to approximate its solution [1]–[3], [13]–[15]. These

algorithms recover the true value of x when x is sufficiently

sparse and the columns of A are incoherent [1], [9]–[11],
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[13]. However, all known recovery approaches use the prior

knowledge of the sparsity basis P .

Dictionary learning (DL) [16]–[20] is another application of

sparse representations. In DL, we are given a set of training

signals, formally the columns of a matrix X . The goal is to

find a dictionary P , such that the columns of X are sparsely

represented as linear combinations of the columns of P . In

[17], the authors study conditions under which the DL problem

yields a unique solution for the given training set X .

In this work we introduce the concept of blind compressed

sensing (BCS), in which the goal is to recover a high-

dimensional vector x from a small number of measurements,

where the only prior is that there exists some basis in which

x is sparse. We refer to our setting as blind, since we do not

require knowledge of the sparsity basis for the sampling or

the reconstruction. This is in sharp contrast to CS, in which

recovery necessitates this knowledge. Our BCS framework

combines elements from both CS and DL. On the one hand, as

in CS and in contrast to DL, we obtain only low dimensional

measurements of the signal. On the other hand, we do not

require prior knowledge of the sparsity basis which is similar

to the DL problem. The goal of this work is to investigate the

basic conditions under which blind recovery from compressed

measurements is possible theoretically, and to propose con-

crete algorithms for this task.

Since the sparsity basis is unknown, the uncertainty about

the signal x is larger in BCS than in CS. A straightforward

solution would be to increase the number of measurements.

However, we show that no rate increase can be used to

determine x, unless the number of measurements is equal

the dimension of x. Furthermore, we prove that even if we

have multiple signals that share the same (unknown) sparsity

basis, as in DL, BCS remains ill-posed. In order for the

measurements to determine x uniquely we need an additional

constraint on the problem. To prove the concept of BCS we

begin by discussing two simple constraints on the sparsity ba-

sis, which enable blind recovery of a single vector x. We then

turn to our main contribution, which is a BCS framework for

structured sparsity bases. In this setting, we show that multiple

vectors sharing the same sparsity pattern are needed to ensure

recovery. For all of the above formulations we demonstrate via

simulations that when the signals are sufficiently sparse the

results of our BCS methods are similar to those obtained by

standard CS algorithms which use the true, though unknown

in practice, sparsity basis. When relying on the structural

constraint we require in addition that the number of signals

must be large enough. However, the simulations show that the

number of signals needed is reasonable and much smaller than

that used for DL [21]–[24].

The first constraint on the basis we consider relies on the

fact that over the years there have been several bases that
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have been considered ”good” in the sense that they are known

to sparsely represent many natural signals. These include,

for example, various wavelet representations [25] and the

discrete-cosine transform (DCT) [26]. We therefore treat the

setting in which the unknown basis P is one of a finite

and known set of bases. We develop uniqueness conditions

and a recovery algorithm by treating this formulation as a

series of CS problems. To widen the set of possible bases

that can be treated, the next constraint allows P to contain

any sparse enough combination of the columns of a given

dictionary. We show that the resulting CS problem can be

viewed within the framework of standard CS, or as DL with

a sparse dictionary [23]. We compare these two approaches

for BCS with a sparse basis. For both classes of constrains we

show that a Gaussian random measurement matrix satisfies the

uniqueness conditions we develop with probability one.

Our main contribution is inspired by multichannel systems,

where the signals from each channel are sparse under separate

bases. In our setting this translates to the requirement that

P is block diagonal. For simplicity, and following several

previous works [27]–[29], we impose in addition that P is

orthogonal. We then choose to measure the set of signals X by

a measurement matrix A consisting of a union of orthogonal

bases. This choice has been used in previous CS and DL works

as well [21], [22], [30]–[32]. For technical reasons we also

choose the number of blocks in P as an integer multiple of

the number of bases in A. Using this structure we develop

uniqueness results as well as a concrete recovery algorithm.

The uniqueness condition follows from reformulating the BCS

problem within the framework of DL and then relying on

results obtained in that context. In particular, we require an

ensemble of signals X , all sparse in the same basis. As we

show, a suitable choice of random matrix A satisfies the

uniqueness conditions with probability 1.

Unfortunately, the reduction to an equivalent DL problem

which is used for the uniqueness proof, does not lead to a

practical recovery algorithm. This is due to the fact that it

necessitates resolving the signed permutation ambiguity, which

is inherent in DL. Instead, we propose a simple and direct

algorithm for recovery, which we refer to as the orthogonal

block diagonal BCS (OBD-BCS) algorithm. This method finds

X = PS by computing a basis P and a sparse matrix S using

two alternating steps. The first step is sparse codding, in which

P is fixed and S is updated using a standard CS algorithm.

In the second step S is fixed and P is updated using several

singular value decompositions (SVD).

The remainder of the paper is organized as follows. In

Section II we review the fundamentals of CS and define

the BCS problem. In Section III we prove that BCS is ill

posed by showing that it can be interpreted as a certain ill-

posed DL problem. In Sections IV, V, VI we consider the

three constrained BCS problems respectively. A comparison

between the different approaches is provided in Section VII.

II. BCS PROBLEM DEFINITION

A. Compressed Sensing

We start by shortly reviewing the main results in the field of

CS needed for our derivations. The goal of CS is to reconstruct

a vector x ∈ R
m from measurements b = Ax, where A ∈

R
n×m and n ≪ m. This problem is ill possed in general and

therefore has infinitely many possible solutions. In CS we seek

the sparsest solution:

x̂ = arg min ||x||0 s.t. b = Ax, (1)

where || · ||0 is the ℓ0 semi-norm which counts the number of

nonzero elements of the vector. This idea can be generalized

to the case in which x is sparse under a given basis P , so that

there is a sparse vector s such that x = Ps. Problem (1) then

becomes

ŝ = arg min ||s||0 s.t. b = APs, (2)

and the reconstructed signal is x̂ = P ŝ. When the maximal

number of nonzero elements in s is known to equal k, we may

consider the objective

ŝ = arg min ||b − APs||22 s.t. ||s||0 ≤ k. (3)

An important question is under what conditions (1)-(3) have

a unique solution. In [9] the authors define the spark of a

matrix, denoted by σ(·), which is the smallest possible number

of linearly dependent columns. They prove that if s is k-sparse,

and σ(AP ) ≥ 2k, then the solution to (2), or equivalently (3),

is unique. Unfortunately, calculating the spark of a matrix is

a combinatorial problem. However, it is often bounded by the

mutual coherence [9], which can be calculated easily. Denoting

the ith column of a matrix D by di, the mutual coherence of

D is given by

µ(D) = max
i 6=j

|dT
i dj |

||di||2||dj ||2
.

It is easy to see that σ(D) ≥ 1+ 1
µ(D) . Therefore, a sufficient

condition for the uniqueness of the solutions to (2) or (3) is

k ≤ 1

2

(

1 +
1

µ(AP )

)

.

Although the uniqueness condition involves the product

AP , some CS methods are universal. This means that by

constructing a suitable measurement matrix A, uniqueness is

guaranteed for any fixed orthogonal basis P . In such cases

knowledge of P is not necessary for the sampling process. One

way to achieve this universality property with probability 1

relies on the next proposition.

Proposition 1. If A is an i.i.d. Gaussian random matrix of size

n×m, where n < m, then σ(AP ) = n+1 with probability 1

for any fixed orthogonal basis P .

Proof : Due to the properties of Gaussian random variables

and since P is orthogonal, the product AP is also an i.i.d.

Gaussian random matrix. Since any n, or less, i.i.d. Gaussian

vectors in R
n are linearly independent with probability 1,

σ(AP ) > n with probability 1. On the other hand, more

then n vectors in R
n are always linearly dependent, therefore

σ(AP ) = n + 1. ¥

According to Proposition 1 if A is an i.i.d Gaussian matrix

and the number of nonzero elements in s is k ≤ n/2, then

the uniqueness of the solution to (2) or (3) is guaranteed with

probability 1 for any fixed orthogonal basis P (see also [33]).
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Problems (2) and (3) are NP-hard in general. Many sub-

optimal methods have been proposed to approximate their

solutions, such as [1]–[3], [13]–[15]. These algorithms can

be divided into two main approaches: greedy algorithms and

convex relaxation methods. Greedy algorithms approximate

the solution by selecting the indices of the nonzero elements in

ŝ sequentially. One of the most common methods of this type

is orthogonal matching pursuit (OMP) [13]. Convex relaxation

approaches change the objective in (2) to a convex problem.

The most common of these methods is basis pursuit (BP) [15],

which considers the problem:

ŝ = arg min ||s||1 s.t. b = APs. (4)

Under suitable conditions on the product AP and the sparsity

level of the signals, both the greedy algorithms and the convex

relaxation methods recover the true value of s. For instance,

both OMP and BP recover the true value of s when the number

of nonzero elements in s is no more than 1
2 (1 + 1

µ(AP ) ) [1],

[9]–[11], [13].

B. BCS Problem Formulation

Even when the universality property is achieved in CS, all

existing algorithms require the knowledge of the sparsity basis

P for the reconstruction process. The idea of BCS is to avoid

entirely the need of this prior knowledge. That is, perform

both the sampling and the reconstruction of the signals without

knowing under which basis they are sparse.

This problem seems impossible at first, since every signal is

sparse under a basis that contains the signal itself. This would

imply that BCS allows reconstruction of any signal from a

small number of measurements without any prior knowledge,

which is clearly impossible. Our approach then, is to sample

an ensemble of signals that are all sparse under the same basis.

Later on we revisit problems with only one signal, but with

additional constraints.

Let X ∈ R
m×N denote a matrix whose columns are

the original signals, and let S ∈ R
m×N denote the matrix

whose columns are the corresponding sparse vectors, such

that X = PS for some basis P ∈ R
m×m. The signals

are all sampled using a measurement matrix A ∈ R
n×m,

producing the matrix B = AX . For the measurements to

be compressed the dimensions should satisfy n < m, where

the compression ratio is L = m/n. Following [17], [24] we

assume the maximal number of nonzero elements in each of

the columns of S, is known to equal k. We refer to such

a matrix S as a k-sparse matrix. The BCS problem can be

formulated as follows.

Problem 2. Given the measurements B and the measurement

matrix A find the signal matrix X such that B = AX where

X = PS for some basis P and k-sparse matrix S.

Note that our goal is not to find the basis P and the sparse

matrix S. We are only interested in the product X = PS.

In fact, for a given matrix X there is more than one pair of

matrices P and S such that X = PS. Here we focus on the

question of whether X can be recovered given the knowledge

that such a pair exists for X .

III. UNIQUENESS

We now discuss BCS uniqueness, namely the uniqueness of

the signal matrix X which solves Problem 2. Unfortunately,

although Problem 2 seems quite natural, its solution is not

unique for any choice of measurement matrix A, for any

number of signals and any sparsity level. We prove this result

by reducing the problem to an equivalent one, using the field

of DL, and proving that the solution to the equivalent problem

is not unique.

In Section III-A we review results in the field of DL needed

for our derivation. In Section III-B we use these results to

prove that the BCS problem does not have a unique solution.

In Sections IV, V, VI we suggest several constraints on the

basis P that ensure uniqueness.

A. Dictionary Learning (DL)

The field of DL [16]–[20] focuses on finding a sparse matrix

S ∈ R
m×N and a dictionary D ∈ R

n×m such that B = DS
where only B ∈ R

n×N is given. Usually in DL the dimensions

satisfy n ≪ m. BCS can be viewed as a DL problem with D =
AP where A is known and P is an unknown basis. Thus, one

may view BCS as a DL problem with a constrained dictionary.

However, there is an important difference in the output of DL

and BCS. DL provides the dictionary D = AP and the sparse

matrix S. On the other hand, in BCS we are interested in

recovering the unknown signals X = PS. Therefore, after

performing DL some postprocessing is needed to retrieve P
from D. This is an important distinction which, as we show in

Section VI-B, makes it hard to directly apply DL algorithms.

An important question is the uniqueness of the DL fac-

torization. That is, given a matrix B ∈ R
n×N what are

the conditions for the uniqueness of the pair of matrices

D ∈ R
n×m and S ∈ R

m×N such that B = DS where S
is k-sparse. Note that if some pair D, S satisfies B = DS,

then scaling and signed permutation of the columns of D and

rows of S respectively do not change the product B = DS.

Therefore, there cannot be a unique pair D, S. In the context

of DL the term uniqueness refers to uniqueness up to scaling

and signed permutation. In fact in most cases without loss of

generality we can assume the columns of the dictionary have

unit norm, such that there is no ambiguity in the scaling, but

only in the signed permutation.

Conditions for DL uniqueness when the dictionary D is

orthogonal or just square are provided in [28] and [29].

However, in BCS D = AP is in general rectangular. In [17]

the authors prove sufficient conditions on D and S for the

uniqueness of a general DL. We refer to the condition on D as

the spark condition and to the conditions on S as the richness

conditions. The main idea behind these conditions is that D
should satisfy the condition for CS uniqueness, and that the

columns of S should be diverse regarding both the locations

and the values of the nonzero elements. More specifically, the

conditions for DL uniqueness are:

• The spark condition: σ(D) ≥ 2k.

• The richness conditions:

1) All the columns of S have exactly k nonzero

elements.
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2) For each possible k-length support there are at least

k + 1 columns in S.

3) Any k + 1 columns in S, which have the same

support, span a k-dimensional space.

4) Any k + 1 columns in S, which have different

supports, span a (k + 1)-dimensional space.

According to the second of the richness conditions the

number of signals, that is the number of columns in S, must

be at least
(

m
k

)

(k + 1). Nevertheless, it was shown in [17]

that in practice far fewer signals are needed. Heuristically, the

number of signals should grow at least linearly with the length

of the signals. It was also shown in [17] that DL algorithms

perform well even when there are at most k nonzero elements

in the columns of S instead of exactly k.

B. BCS Uniqueness

Under the conditions above the DL solution given the

measurements B is unique. That is, up to scaling and signed

permutations there is a unique pair D, S such that B = DS
and S is k-sparse. Since we are interested in the product PS
and not in P or S themselves, without loss of generality

we can always assume that the columns of P are scaled

so that the columns of D = AP have unit norm. This

way there is no ambiguity in the scaling of D and S, but

only in their signed permutation. That is, applying DL on

B provides D̃ = APQ and S̃ = QT S for some unknown

signed permutation matrix Q. A signed permutation matrix is

a column (or row) permutation of the identity matrix, where

the sign of each column (or row) can change separately. In

other words, it has only one nonzero element, equal ±1, in

each column and each row. Any signed permutation matrix is

obviously orthogonal.

If we can find the basis P̃ = PQ out of D̃, then we can

recover the correct signal matrix by:

P̃ S̃ = PQQT S = PS = X.

Therefore, under the uniqueness conditions for DL on S and

D = AP Problem 2 is equivalent to the following problem.

Problem 3. Given D̃ ∈ R
n×m and A ∈ R

n×m, where n < m,

find a basis P̃ such that D̃ = AP̃ .

We therefore focus on the uniqueness of Problem 3. Since

n < m the matrix A has a null space. As we now show, even

with the constraint that P̃ is a basis there is still no unique

solution.

To see that assume P̃1 is a basis, i.e., has full rank, and

satisfies D̃ = AP̃1. Decompose P̃1 as P̃1 = PN⊥ +PN where

the columns of PN are in N(A), the null space of A, and

those of PN⊥ are in its orthogonal complement N(A)⊥. Note

that necessarily PN 6= 0, otherwise the matrix P̃1 = PN⊥ is

in N(A)⊥ and has full rank. However, since the dimension of

N(A)⊥ is at most m − n, it contains at most m − n linearly

independent vectors. Therefore, there is no m × m full rank

matrix whose columns are all in N(A)⊥.

Next define the matrix P̃2 = PN⊥ − PN which is different

from P̃1, but it is easy to see that D̃ = AP̃2. Moreover, since

the columns of PN are perpendicular to the columns of PN⊥ ,

P̃T
1 P̃1 = P̃T

2 P̃2 = ||PN⊥ ||2F + ||PN ||2F .

A square matrix P has full rank if and only if PT P has full

rank. Therefore, since P̃1 has full rank and P̃T
2 P̃2 = P̃T

1 P̃1,

P̃2 also has full rank. So that both P̃1 and P̃2 are solutions

to Problem 3. In fact there are many more solutions; some of

them can be found by changing the signs of only part of the

columns of PN .

We now return to the original BCS problem, as defined in

Problem 2. We just proved that when the DL solution given B
is unique, Problem 2 is equivalent to Problem 3 which has no

unique solution. Obviously if the DL solution given B is not

unique, then BCS will not be unique. Therefore, Problem 2

has no unique solution for any choice of parameters.

In order to guarantee a unique solution we need an ad-

ditional constraint. We next discuss constraints on P that

can render the solution to Problem 3 unique, and therefore

in addition to the richness conditions on S and the spark

condition on AP they guarantee the uniqueness of the solution

to Problem 2. Although there are many possible constraints,

we focus below on the following.

1) P is one of a finite and known set of bases.

2) P is sparse under some known dictionary.

3) P is orthogonal and has a block diagonal structure.

The motivation for these constraints comes from the unique-

ness of Problem 3. Nonetheless, we provide conditions under

which the solution to Problem 2 with constraints 1 or 2

is unique even without DL uniqueness. In fact, under these

conditions the solution to Problem 2 is unique even when

N = 1, so that there is only one signal.

In the next sections we consider each one of the constraints,

prove conditions for the uniqueness of the constrained BCS

solution, and suggest a method to retrieve the solution. Table I

summarizes these three approaches.

IV. FINITE SET OF BASES

One way to guarantee a unique solution to Problem 3 is to

limit the number of possible bases P̃ to a finite set of bases,

and require that these bases are different from one another

under the measurement matrix A. Since P̃ in Problem 3 is a

column signed permutation of P in Problem 2, by limiting P
to a finite set we also limit the possible P̃ to a finite set. The

new constrained BCS, instead of Problem 2, is then:

Problem 4. Given the measurements B, the measurement

matrix A and a finite set of bases Ψ, find the signal matrix X
such that B = AX and X = PS for some basis P ∈ Ψ and

k-sparse matrix S.

The motivation behind Problem 4 is that over the years a

variety of bases were proven to lead to sparse representations

of many natural signals, such as wavelet [25] and DCT [26].

These bases have fast implementations and are known to fit

many types of signals. Therefore, when the basis is unknown

it is natural to try one of these choices.
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TABLE I
SUMMARY OF CONSTRAINTS ON P

The constraint Conditions for uniqueness Algorithm

Finite Set - Section IV • σ(AP ) ≤ 2k for any P ∈ Ψ. • F-BCS - Solving (6) or (7) for each P ∈ Ψ using a standard CS
P is in a given finite set • A is k-rank preserving of Ψ (Definition 5). algorithm, and choosing the best solution.
of possible bases Ψ.

Sparse Basis - Section V • σ(AΦ) ≥ 2kP k. • Direct method - Solving (9) or (10) using a standard CS algorithm,
P is kP -sparse under a where the recovery is X = ΦC.
given dictionary Φ. • Sparse K-SVD - Using sparse K-SVD algorithm [23] to retrieve S, Z,

where the recovery is X = ΦZS.

Structure - Section VI • The richness conditions on S. • OBD-BCS - Updating S and P alternately according to the algorithm
P is orthogonal 2L-block • A is a union of L orthogonal bases. in Table IV, where the recovery is X = PS.
diagonal. • σ(AP ) = n + 1.

• A is not inter-block diagonal (Definition 10).

A. Uniqueness Conditions

We now show that under proper conditions the solution

to Problem 4 is unique even when there is only one signal,

namely N = 1. In this case instead of the matrices X, S, B
we deal with the vectors x, s, b respectively.

Assume x is a solution to Problem 4. That is, x is k-sparse

under P ∈ Ψ and satisfies b = Ax. Uniqueness is achieved

if there is no x̄ 6= x which is k-sparse under a basis P̄ ∈ Ψ
and also satisfies b = Ax̄. We first require that σ(AP ) ≥ 2k;

otherwise even if P̄ = P there is no unique solution [9]. Since

the real sparsity basis P is unknown we need that σ(AP ) ≥ 2k
for any P ∈ Ψ.

Next we write x = Ps = PT sT , where T is the index

set of the nonzero elements in s with |T | ≤ k, sT is the

vector of nonzero elements in s, and PT is the sub-matrix

of P containing only the columns with indices in T . If x̄ is

also a solution to Problem 4 then x̄ = P̄ s̄ = P̄J s̄J , where J
is the index set of the nonzero elements in s̄, and |J | ≤ k.

Moreover, b = AP̄J s̄J = APT sT , which implies that the

matrix A[PT , P̄J ] has a null space. This null space contains

the null space of [PT , P̄J ]. By requiring

rank(A[PT , P̄J ]) = rank[PT , P̄J ], (5)

we guarantee that the null space of A[PT , P̄J ] equals the null

space of [PT , P̄J ]. Therefore, under (5), AP̄J s̄J = APT sT if

and only if P̄J s̄J = PT sT , which implies x̄ = x.

Therefore, in order do guarantee the uniqueness of the

solution to Problem 4 in addition to the requirement that

σ(AP ) ≥ 2k for any P ∈ Ψ, we require that any two index

sets T, J of size k and any two bases P, P̄ ∈ Ψ satisfy (5).

Definition 5. A measurement matrix A is k-rank preserving

of the bases set Ψ if any two index sets T, J of size k and any

two bases P, P̄ ∈ Ψ satisfy (5).

The conditions for the uniqueness of the solution to Prob-

lem 4 are therefore: σ(AP ) ≥ 2k for any P ∈ Ψ, and A
is k-rank preserving of the set Ψ. In order to satisfy the

first condition with probability 1, according to Section II-A

we can require all P ∈ Ψ to be orthogonal and generate A
from an i.i.d. Gaussian distribution. However, since the number

of bases is finite, we can instead verify the first condition

is satisfied by checking the spark of all the products AP .

Alternatively, one can bound the spark of these matrices using

their mutual coherence.

It is easy to see that any full column rank matrix A is k-

rank preserving for any k and any set Ψ. However, in our

case A is rectangular and therefore does not have full column

rank. In order to guarantee that A is k-rank preserving with

probability 1 we rely on the following proposition:

Proposition 6. An i.i.d Gaussian matrix A of size n × m is

with probability 1 k-rank preserving of any fixed finite set of

bases and any k ≤ n/2.

Proof : If n ≥ m then A has full column rank with

probability 1, and is therefore k-rank preserving with prob-

ability 1. We therefore focus on the case where n < m.

Assume T, J are index sets of size k, and P, P̄ ∈ Ψ. Denote

r = rank[PT , P̄J ]. We then need such that we need to prove

that rank(A[PT , P̄J ]) = r.

Perform a Gram Schmidt process on the columns of

[PT , P̄J ] and denote the resulting matrix by G. G is then an

m × r matrix with orthonormal columns, with rank(G) = r
and rank(AG) = rank(A[PT , P̄J ]). Next we complete G to

an orthogonal matrix Gu by adding columns. According to

Proposition 1 since A is an i.i.d Gaussian matrix and Gu is or-

thogonal σ(AGu) = n+1 with probability 1. Therefore, with

probability 1 any t columns of AGu are linearly independent,

with t ≤ n. In particular, with probability 1 the columns of AG
are linearly independent, so that rank(AG) = r, completing

the proof. ¥

Until now we proved conditions for the uniqueness of

Problem 4 when there is only one signal N = 1. The same

conditions are true for N > 1 since we can look at every signal

separately. However, since all the signals are sparse under the

same basis, if with N > 1 then the condition that A must be

k-rank preserving can be relaxed.

For instance, consider the case where there are only two

index sets T, J and two bases P, P̄ ∈ Ψ (P is the real

sparsity basis) that do not satisfy (5). In this case if we have

many signals with different sparsity patterns, then only a small

portion of them fall in the problematic index set, and therefore

might falsely indicate that P̄ is the sparsity basis. However,

most of the signals correspond to index sets that satisfy (5),

and therefore these signals indicate the correct basis. The

selection of the sparsity bases is done according to the majority
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of signals and therefore the correct basis is selected.

Another example is the case where there are enough diverse

signals such that the richness conditions on S are satisfied.

In this case it is enough to require that for any two bases

P, P̄ ∈ Ψ the matrices AP and AP are different from one

another even under scaling and signed permutation of the

columns. This way we guarantee that the problem equivalent

to Problem 4 under the richness and spark conditions has a

unique solution, and therefore Problem 4 also has a unique

solution.

Problem 4 can also be viewed as a CS problem with a block

sparsity constraint [34], [35]. That is, if Ψ = {P1, P2, ...} then

the desired signal matrix can be written as

X = [P1, P2, ...]







S1

S2

...






,

where only one of the submatrices Si is not all zeros. In con-

trast to the usual block sparsity constraint here the sub-matrix

Si which is not zero is itself sparse. However, the uniqueness

conditions which are implied from this block sparsity CS

approach are too strong comparing to our BCS approach. For

instance, they require all Pj ∈ Ψ, to be incoherent, whereas

the BCS uniqueness is not disturbed by coherent bases. In fact

the solution is unique even if the bases in Ψ equal one another.

This is because here we are not interested in recovering Si but

rather PiSi.

B. The F-BCS Method

The uniqueness conditions we discussed lead to a straight-

forward method for solving Problem 4. We refer to this method

as F-BCS which stands for finite BCS. When N = 1, F-BCS

solves a CS problem for each P ∈ Ψ

ŝ = arg min
s

||s||0 s.t. b = APs, (6)

and chooses the sparsest s̄. Under the uniqueness conditions

it is the only one with no more than k nonzero elements.

Therefore if we know the sparsity level k we can stop the

search when we found a sparse enough ŝ. The recovered signal

is x = P ŝ where P is the basis corresponding to the ŝ we

chose. When k is known an alternative method is to solve for

each P ∈ Ψ

ŝ = arg min
s

||b − APs||22 s.t. ||s||0 < k, (7)

and choose ŝ that minimizes ||b − APŝ||22. In the noiseless

case this minimum is zero for the correct basis P .

When N > 1 we can solve either (6) or (7) for each of the

signals and select the sparsity basis according to the majority.

The solution to problems (6) and (7) can be approximated

using one of the standard CS algorithms. Since these algo-

rithms are suboptimal, there is no guarantee that they provide

the correct solution x, even for the correct basis P . In general,

when k is small enough relative to n these algorithms are

known to perform very well. Moreover, when N > 1, P is

selected according to the majority of signals, and therefore if

the CS algorithm did not work well on a few of the signals it

will not effect the recovery of the rest of the signals.

TABLE II
F-BCS SIMULATION RESULTS

SNR Miss Average
Detected Error

∞ 0% 10−14%
30dB 0% 1.3%
25dB 0% 2.7%
20dB 0% 5.4%
15dB 1% 11.6%
10dB 12% 22.5%
5dB 25% 40.1%

C. F-BCS Simulation Results

We now demonstrate the F-BCS method in simulation. We

chose the set of bases Ψ to contain 5 bases of size 64 × 64:

the identity, DCT [26], Haar wavelet, Symlet wavelet and

Biorthogonal wavelet [25]. 100 signals of length 64 were

created randomly by generating random sparse vectors and

multiplying them by the Biorthogonal wavelet basis in Ψ. Each

sparse vector contained up to 6 nonzero elements in uniformly

random locations, and values from a normal distribution.

The measurement matrix A was an i.i.d Gaussian matrix of

size 32× 64. The measurements were calculated first without

noise, that is B = AX , and then with additive Gaussian noise

with varying SNR from 30dB to 5dB. For each noise level the

F-BCS method was performed, where the CS algorithm we

used was OMP [13].

Table II summarizes the results. For all noise levels the

basis selection according to the majority was correct. The miss

detected column in the table contains the percentage of signals

that indicated a false basis. The average error column contains

the average reconstruction error, calculated as the average of

ei =
||xi − x̂i||2

||xi||2
(8)

where xi, x̂i are the columns of the real signal matrix X and

the reconstructed signal matrix X̂ respectively. The average

is performed only on the signals that indicated the correct

basis. The reconstruction of the rest of the signals obviously

failed. As can be seen from Table II in the noiseless case the

recovery is perfect and the error grows with the noise level. For

high SNR there are no false reconstructions, but as the SNR

decreases beyond 15dB the percentage of false reconstructions

increases. In these cases, one should use more then one signal,

such that if one of the signals failed there will be an indication

for this through the rest of the signals.

Another simulation we performed investigated the influence

of the sparsity level k, which is the number of nonzero

elements in S. The settings of this simulation were the same

as those of the first simulation, only this time there was

no noise added to the measurements, and k was gradually

increased from 1 to 32. For each sparsity level new signals

were generated with the same sparsity basis and measured by

the same measurement matrix. For k < 8 the recovery of the

signal was perfect, but as expected, for higher values of k the

number of false reconstructed signals and the average error

grew. The reason for this is that the OMP algorithm works

well with small values of k, for higher values of k, even if the
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uniqueness conditions are still satisfied, the OMP algorithm

may not find the correct solution.

V. SPARSE BASIS

A different constraint that can be added to Problem 2 in

order to reduce the number of solutions is the sparsity of the

basis P . That is, we assume that the columns of the basis

P are sparse under some known dictionary Φ, so that there

exists some unknown sparse matrix Z such that P = ΦZ. We

assume the number of nonzero elements in each column of Z
is known to equal kp. We refer to Φ as a dictionary since it

does not have to be square. Note that in order for P to be a

basis Φ must have full row rank, and Z must have full column

rank.

The constrained BCS in this case is then:

Problem 7. Given the measurements B, the measurement

matrix A and the dictionary Φ, which has full row rank, find

the signal matrix X such that B = AX where X = ΦZS for

some k-sparse matrix S and kp-sparse and full column rank

matrix Z.

This problem is similar to that studied in [23] in the context

of sparse DL. The difference is that [23] finds the matrices

Z, S, while we are only interested in their product. The

motivation behind Problem 7 is to overcome the disadvantage

of the previously discussed Problem 4 in which the bases are

fixed. When using a sparse basis we can choose a dictionary

Φ with fast implementation, but enhance its adaptability to

different signals by allowing any sparse enough combination

of the columns of Φ. Note that we can solve the problem

separately for several different dictionaries Φ, and choose the

best solution. This way we can combine the sparse basis

constraint and the constraint of a finite set of bases. Another

possible combination between these two approaches is to

define the basic dictionary as Φ = [P1, P2, ...], where the

finite set of bases is Ψ = {P1, P2, ...}. This way we allow

any sparse enough combination of columns from all the bases

in Ψ.

A. Uniqueness Conditions

As we now show, here too under appropriate conditions the

constrained problem has a unique solution even when there is

only one signal N = 1. Therefore, instead of matrices X, S, B
we deal with vectors x, s, b respectively. Since ||s||0 ≤ k and

Z is kp-sparse, the vector c = Zs necessarily satisfies ||c||0 ≤
kpk. Therefore, Problem 7 as

ĉ = arg min
c

||c||0 s.t. b = AΦc, (9)

or equivalently:

ĉ = arg min
c

||b − AΦc||22 s.t. ||c||0 ≤ kpk, (10)

where the recovery is x = Φĉ. The solutions to (9) and (10)

are unique if σ(AΦ) ≥ 2kpk. If there is more then one signal,

N > 1, then one can solve (9) and (10) for each signal

separately.

Note that in Problem 7 the matrix Z necessarily has full

column rank, while this constraint is dropped in (9) and (10).

However, if the solution without this constraint is unique then

obviously the solution with this constraint is also unique.

Therefore, a sufficient condition for the uniqueness of Prob-

lem 7 is σ(AΦ) ≥ 2kpk.

B. Algorithms For Sparse BCS

1) Direct Method: When there is only one signal, according

to the uniqueness discussion, the solution to Problem 7 can

be found by solving either (9) or (10) using a standard CS

algorithm. When there are more signals the same process

can be performed for each signal separately. Since we use a

standard CS algorithm, for this method to succeed we require

the product kpk to be small relative to n.

2) Sparse K-SVD: The sparse K-SVD algorithm [23] is a

DL algorithm that seeks a sparse dictionary. That is, given the

measurements B and a base dictionary D it finds kp-sparse

Z and k-sparse S, such that B = DZS. In our case we can

run sparse K-SVD on B with D = AΦ in order to find Z
and S, and then recover the signals by X = ΦZS. The sparse

K-SVD algorithm is a variation of the K-SVD algorithm [24],

which is a popular DL algorithm. Sparse K-SVD consists of

two alternating steps. The first is sparse coding, in which Z
is fixed and S is updated using a standard CS algorithm. The

second step is dictionary update, in which the support of S is

fixed and Z is updated together with the value of the nonzero

elements in S. The difference between sparse K-SVD and K-

SVD is only in the dictionary update step. Since the sparse K-

SVD is a DL algorithm, it requires a large number of diverse

signals. Moreover, the required diversity of the signals can

prevent the algorithm from working, for instance in cases of

block sparsity.

In general, BCS cannot be solved using DL methods.

However, under the sparse basis constraint BCS is reduced to a

problem that can be viewed as constrained DL, and therefore

solved using sparse K-SVD. Nevertheless, Problem 7 is not

exactly constrained DL, since in DL we seek the matrices

S and Z themselves, whereas here we are interested only in

their product X = ΦZS. Moreover, as in any DL algorithm,

for sparse K-SVD to perform well it requires many diverse

signals. However, for the uniqueness of Problem 7 or for

the direct method of solution, there is no need for such a

requirement. The sparse K-SVD algorithm is also much more

complicated than the direct method.

Nonetheless, sparse K-SVD has one advantage over the

direct method in solving Problem 7. The direct method uses a

standard CS algorithm in order to find C = ZS which is kpk-

sparse. This algorithm provides the correct result only if the

product kpk is small enough relative to n. On the other hand,

the standard CS algorithms used in sparse K-SVD attempt to

find separately S which is k-sparse and Z which is kp-sparse,

and therefore require k and kp themselves to be small instead

of the product kpk. Thus, when there are few signals, or even

just one, and when kpk is small relative to n, then Problem 7

should be solved using the direct method. If kpk is large but

still satisfies σ(AΦ) ≥ 2kpk, and if there are enough diverse

signals, then sparse K-SVD should be used.
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Fig. 1. Reconstruction error as a function of the sparsity level

C. Simulation Results

Simulation results for sparse K-SVD can be found in [23].

Here we present simulation results for the direct method. First

of all we tested the influence of the sparsity level of the basis.

We generated a random sparse matrix - Z, of size 256 × 256
with up to kp = 6 nonzero elements in each column. The value

of k - the number of nonzero elements in S, was gradually

increased from 1 to 20. For each k we generated S as a random

k-sparse matrix of size 256×100, and created the signal matrix

X = ΦZS, where Φ was the DCT basis. X was measured

using a random Gaussian matrix A of size 128×256, resulting

in B = AX .

We solved Problem 7 given A and B using the direct

method, where again the CS algorithm we used was OMP.

For comparison we also performed OMP with the real basis P ,

which is unknown in practice. Fig 1 summaries the results. For

every value of k the error of each of the graphs is an average

over the reconstruction errors of all the signals, calculated as

in (8). Both the errors are similar for k ≤ 8, but for larger k’s

the error of the blind method is much higher.

Since A is an i.i.d Gaussian matrix and the DCT matrix

is orthogonal with probability 1, σ(AΦ) = 129. Therefore

with probability 1 the uniqueness of the sparse BCS method

is achieved as long as kpk ≤ 64, or k ≤ 10. The error began to

grow before this sparsity level because OMP is a suboptimal

algorithm that is not guaranteed to find the solution even when

it is unique, but works well on sparse enough signals. The

reconstruction error of the OMP which used the real P grows

much less for the same values of k. That is since in this case

k itself, instead of kpk, should be small relative to n.

Sparse K-SVD can improve the results for high value of k,

assuming of course it is small enough for the solution to be

unique. However, in this simulation the number of signals is

even less then the length of the vectors, and sparse K-SVD

does not work well with such a small number of signals. In

the sparse K-SVD simulations which are presented in [23]

the number of signals is at least 100 times the length of the

signals.

We also investigated the influence of noise on the algorithm.

The setting of this simulations were the same as in the previous

TABLE III
RECONSTRUCTION ERROR FOR DIFFERENT NOISE LEVELS

SNR CS sparse BCS

∞ 10−14% 10−14%
30dB 1.2% 2.8%
25dB 1.5% 5.8%
20dB 3.3% 11.9%
15dB 7.1% 23.5%

simulation only this time we fixed k = 3 and added Gaussian

noise to the measurements B. We looked at different noise

levels, and for each level we ran the direct method for sparse

BCS, and also for comparison we ran an OMP algorithm

which used the real basis P . Table III summarizes the average

errors of each of the methods. In the noiseless case there is

a perfect recovery in both cases. As the SNR decreases both

errors increases, but as can be expected, the one of the BCS

grows faster. The reason for the big difference in the low SNR

cases is again the fact that in the CS case the OMP algorithm

is performed on sparser signals, relative to the sparse BCS

case.

VI. STRUCTURAL CONSTRAINT

The last constraint we discuss is a structural constraint on

the basis P . We require P to be block diagonal and orthogonal.

The motivation for the block diagonal constraint comes form

Problem 3, which looks for P̃ such that D̃ = AP̃ . Assume

for the moment that P̃ is block diagonal, such that:

P̃ =







P̃1

. . .

P̃L






,

and A is chosen to be a union of orthonormal bases, as in [21],

[22], [30]–[32]. That is, A = [A1, ...AL] where A1, ..., AL are

all orthonormal matrices. In this case

D = [D1, ..., DL] = [A1P1, ..., ALPL],

and we can simply recover P̃ by:

P̃ =







AT
1 D1

. . .

AT
LDL






. (11)

Therefore, the solution to Problem 3 under the constraint that

P̃ is block diagonal is very simple.

Under the richness and spark conditions the BCS problem,

as defined in Problem 2, is equivalent to Problem 3, where the

basis P̃ in Problem 3 is a column signed permutation of the

basis P in Problem 2. Since we are interested in the solution to

Problem 2, the constraint should be on the basis P instead of

P̃ . However, if we constrain P to be block diagonal, then the

solution to the equivalent Problem 3 is not as simple as in (11).

In Problem 3 we look for P̃ = PQ, for some unknown signed

permutation matrix Q. Under the block diagonal constraint on

P the matrix P̃ = PQ is not necessarily block diagonal, and

therefore we cannot use (11) to recover it.



9

We can guarantee that P̃ is block diagonal only if we can

guarantee that Q is block diagonal. That is, Q permutes only

the columns inside each block of P , and does not mix the

blocks or change the outer order of them. As we prove below

in the uniqueness discussion, this can be guaranteed if we

require P to have more blocks than A. Specifically, we require

P to have 2L blocks, which is twice the number of blocks in

A. Such a basis P is called 2L-block diagonal. In fact, the

number of blocks in P can be ML for any integer M ≥ 2.

We use M = 2 for simplicity; the expansion to M > 2 is

trivial.

We also constraint P to be orthogonal. The motivation for

this is the spark condition. In order be able to solve Problem 3

instead of Problem 2, we need to satisfy σ(AP ) ≥ 2k. By

constraining P to be orthogonal we can use results similar

to Proposition 1 in order to achieve this requirement with

probability 1.

The constrained BCS problem is then:

Problem 8. Given the measurements B and the measurement

matrix A ∈ R
n×nL find the signal matrix X such that B =

AX where X = PS for some orthogonal 2L-block diagonal

matrix P and k-sparse matrix S.

In this new settings the size of the measurement matrix A is

n×nL, where n is the number of measurements and L is the

number of n × n blocks in A, which equals the compression

ratio. Moreover, The length of the signals is m = nL, and the

size of the basis P is nL×nL. Since P is 2L-block diagonal,

the size of its blocks is n
2 × n

2 . Therefore, n must be even.

This constrained problem can be useful for instance in

multichannel systems, where the signals from each channel

are sparse under separate bases. In such systems we can

construct X by concatenating signals from several different

channels, and compressively sampling them. For example,

in microphone arrays [36] or antenna arrays [37], we can

divide the samples from each microphone / antenna into time

intervals in order to obtain the ensemble of sampled signals

B. Each column of B is a concatenation of the signals from

all the microphones / antennas over the same time interval.

A. Uniqueness Conditions

To ensure a unique solution to Problem 8, we need the

DL solution given B to be unique. Therefore, we assume that

the richness conditions on S and the spark condition on AP
are satisfied. Then, Problem 8 is equivalent to the following

problem:

Problem 9. Given the matrices D̃ and A, which have more

columns then rows, find an orthogonal P̃ such that D̃ = AP̃ ,

and P̃ = PQ for some signed permutation matrix Q and

orthogonal 2L-block diagonal matrix P .

In order to discuss conditions for uniqueness of the solution

to Problem 9 we introduce the following definition.

Definition 10. Denote A = [A1, ..., AL], such that Ai ∈ R
n×n

for any 1 ≤ i ≤ L. If for any two indices i 6= j the product

AT
i Aj is not 2-block diagonal, or a permutation of a 2-block

diagonal matrix, we say that A is not inter-block diagonal.

It is easy to see if A is a union of orthogonal bases, then

σ(A) > n
2 + 1 guarantees that A is not inter-block diagonal.

For more details see Appendix B. With this definition in

hand we can now define the conditions for the uniqueness

of Problem 9.

Theorem 11. If A ∈ R
n×nL is a union of L orthogonal bases,

which is not inter-block diagonal, and σ(AP ) = n + 1, then

the solution to Problem 9 is unique.

The proof of this theorem uses the next lemma.

Lemma 12. Assume P and P̂ are both orthogonal 2L-

block diagonal matrices, and A satisfies the conditions of

Theorem 11. If AP̂ = APQ for some signed permutation

matrix Q, then P̂ = PQ.

In general since A has a null space, if the matrices A, P, P̂
did not have their special structures, then the equality AP̂ =
APQ would not imply P̂ = PQ. However, according to

Lemma 12 under the constraints on A,P, P̂ this is guaranteed.

The full proof of Lemma 12 appears in Appendix A. Here we

present only the proof sketch.

Proof sketch: It is easy to see that due to the orthogonality

of the blocks of A, if Q is block diagonal then AP̂ = APQ
implies P̂ = PQ. Therefore, we need to prove that Q is

necessarily block diagonal. Denote D = AP . In general the

multiplication DQ can yield three types of changes in D. It

can mix the blocks of D, permute the order of the blocks of

D, and permute the columns inside each block. Q is block

diagonal if and only if it permutes only the columns inside

each block, but does not mix the blocks or change their outer

order. First we prove that Q cannot mix the blocks of D.

For this we use the condition on the spark of D, and the

orthogonality of the blocks. Next we prove that Q cannot

change the outer order of the blocks. This time we use the

fact that both P and P̂ have 2L blocks and that A is not inter-

block diagonal. Therefore, Q can only permute the columns

inside each block, which implies it is block diagonal ¥

If P and P̃ have only L blocks instead of 2L, then Q can

change the outer order of the blocks of D, such that it does

not have to be block diagonal. Therefore, if the constraint on

P was that it has L blocks instead of 2L, then Lemma 12

would be incorrect, such that the solution to the Problem 9,

and therefore to Problem 8, would not be unique. On the other

hand the extension of the proof of Lemma 12 to ML blocks

where M > 2 is trivial.

Proof of Theorem 11: The proof we provide for Theorem 11

is constructive, although far from being a practical method to

deploy in practice. Denote the desired solution of Problem 9

by P̃ = PQ, and denote:

A = [A1, ..., AL] , P =







P 1

. . .

P 2L






,

where Ai for i = 1, .., L and P j for j = 1, ..., 2L are all

orthogonal matrices.

We first find a permutation matrix QD such that D̂ =
D̃QD = AP̂ , where P̂ is an orthogonal 2L-block diagonal
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matrix. There is always at least one such permutation. For

instance, we can choose QD to equal the absolute value of

QT . In this case P̂ equals P up to the signs, and therefore it

is necessarily orthogonal 2L-block diagonal.

Denote the blocks of P̂ by P̂ j for j = 1, ..., 2L, and note

that

D̂ = [D̂1, ..., D̂L] =
[

A1

(

P̂ 1

P̂ 2

)

, . . . , AL

(

P̂ 2L−1

P̂ 2L

)

]

.

Since Ai are orthogonal for all i = 1, ..., L, we can recover

the blocks of P̂ by
[

P̂ 2i−1

P̂ 2i

]

= AT
i D̂i,

such that

P̂ =







AT
1 D̂1

. . .

AT
LD̂L






.

Since both P and P̂ are orthogonal 2L-block diagonal, ac-

cording to Lemma 12 the equality D̂ = AP̂ = APQQD

implies P̂ = PQQD. Therefore, we can recover P̃ by

P̃ = PQ = P̂QT
D. ¥

The conclusion from Theorem 11 is that if the richness

conditions on S are satisfied and A satisfies the conditions of

Theorem 11, then the solution to Problem 8 is unique.

As proven in Appendix B one way to guarantee that A
satisfies the conditions of Theorem 11 with probability 1 is

to generate it randomly from an i.i.d Gaussian distribution

and perform a Gram Schmidt process on each block in order

to make it orthogonal. This claim is similar to Proposition 1

except that the statistics of A is a bit different due to the Gram

Schmidt process.

B. The OBD-BCS Algorithm

Although the uniqueness proof is constructive it is far from

being practical. In order to solve Problem 8 by following the

uniqueness proof one needs to perform a DL algorithm on

B, resulting in D̃, S̃. Then go over all the permutations D̂ =
D̃QD, and look for QD such that the matrices AT

i D̂i, for

all i = 1, ..., L, are 2-block diagonal. After finding such a

permutation the recovery of X is

X =







AT
1 D̂1

. . .

AT
LD̂L






QT

DS̃.

The problem with this method is the search for the permuta-

tion QD. There are m! different permutations of the columns

of D, where m = nL is the length of the signals, while

only [( m
2L

)!]2L of them satisfy the requirement (see Appendix

C). As m and L grow the relative fraction of the desirable

permutations decreases. For instance, for signals of length

m = 16 and a compression ratio of L = 2 only 1.58·10−6% of

the permutations satisfy the requirement. For the same signals

but a higher compression ratio of L = 4 only 1.22 · 10−9%

satisfy the condition, and for longer signals of length m = 64
and L = 2 only 1.51 · 10−34% satisfy the requirement.

Therefore, a systematic search is not practical, even for short

signals. Moreover, in practice the output of the DL algorithm

contains some error, so that even for the correct permutation

the matrices A−1
i D̂i are not exactly 2-block diagonal, which

renders the search even more complicated. Although there

exist suboptimal methods for permutation problems such as

[38], these techniques are still computationally extensive and

are sensitive to noise.

Instead we present the orthogonal block diagonal BCS

(OBD-BCS) algorithm for the solution of Problem 8, which

is, in theory, equivalent to DL followed by the above post-

processing. However, it is much more practical and simple.

This algorithm is a variation of the DL algorithm in [21],

[22], which learns a dictionary under the constraint that

the dictionary is a union of orthogonal bases. Given B the

algorithm in [21], [22] aims to solve

min
D,S

||B − DS||2F (12)

s.t. S is k-sparse and D is a union of orthogonal bases.

In the BCS case P is orthogonal 2L-block diagonal and A
is a union of L orthogonal bases. Therefore, the equivalent

dictionary is:

D = AP =
[

A1

(

P 1

P 2

)

, . . . , AL

(

P 2L−1

P 2L

)

]

.

Since all Ai and P i are orthogonal, here too D is a union of

orthogonal bases. The measurement matrix A is known and

we are looking for an orthogonal 2L-block diagonal matrix P
and a sparse matrix S such that B = APS. This leads to the

following variant of (12):

min
P,S

||B − APS||2F (13)

s.t. S is k-sparse and P is orthogonal 2L-block diagonal.

The algorithm in [21], [22] consists of two alternating steps.

The first step is sparse coding, in which the dictionary D is

fixed and the sparse matrix S is updated. The second step is

dictionary update, in which S is fixed and D is updated. This

algorithm finds the dictionary D = AP and the sparse matrix

S but not the basis P , and consequently, not the signal matrix

X = PS.

In OBD-BCS we follow similar steps. The first step is again

sparse coding, in which P is fixed and S is updated. The

second step is basis update, in which S is fixed and P is

updated. The difference between OBD-BCS and the algorithm

in [21], [22] is mainly in the second step, where we add the

prior knowledge of the measurement matrix A and the block

diagonal structure of P . In addition, we use a different CS

algorithm in the sparse coding step.

We now discuss in detail the two steps of OBD-BCS.

1) Sparse Coding: In this step P is fixed so that the

optimization in (13) becomes:

min
S

||B − APS||2F s.t. S is k-sparse. (14)
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It is easy to see that (14) is separable in the columns of S.

Therefore, for each column of B and S we need to solve

min
s

||b − APs||22 s.t. ||s||0 ≤ k, (15)

where s, b are the appropriate columns of S, B respectively.

This is a standard CS problem, as in (3), with the additional

property that the combined measurement matrix D = AP is a

union of orthogonal bases. This property is used by the block

coordinate relaxation (BCR) algorithm [21], [22], [39]. The

idea behind this algorithm is to divide the elements of s into

blocks corresponding to the orthogonal blocks of D. In each

iteration all the blocks of s are fixed except one, which is

updated using soft thresholding. The DL algorithm proposed

by [21], [22] is a variation of the BCR algorithm, which aims

to improve its convergence rate. In OBD-BCS we can also use

this variation. However, experiments showed that the results

are about the same as the results with OMP. Therefore, we use

OMP in order to update the sparse matrix S, when the basis

P is fixed.

2) Basis Update: In this step the sparse matrix S is fixed

and P is updated. Divide each of the nL×N matrices S and

X into 2L submatrices of size n
2 × N such that:

S =







S1

...

S2L






, X =







X1

...

X2L






.

Divide each orthogonal block of A into two blocks: Ai =
[A2i−1, A2i] for i = 1, ..., L, such that:

A = [A1, ..., AL] = [A1, A2, ..., A2L−1, A2L].

With this notation Xi = P iSi, and B =
∑2L

i=1 AiP iSi.

Therefore, (13) becomes:

min
P 1,...,P 2L

||B −
2L
∑

j=1

AjP jSj ||2F (16)

s.t. P 1, ..., P 2L are orthogonal.

To minimize (16), we iteratively fix all the blocks P j for j =
1, ..., 2L except one, denoted by P i, and solve

min
P i

||Bi − AiP iSi||2F s.t. P i is orthogonal (17)

where Bi = B−∑

j 6=i AjP jSj . With slight abuse of notation,

from now on we abandon the index i.

Since P is orthogonal and A is constructed of columns from

an orthogonal matrix, PT AT AP = I , and ||APS||2F = ||S||2F .

Thus, (17) reduces to

max
P

{Tr [BT APS]} s.t. P is orthogonal. (18)

Let the singular value decomposition (SVD) of the matrix

R = SBT A be R = UΣV T , where U , V are orthogonal

matrices and Σ is a diagonal matrix. Using this notation we

can manipulate the trace in (18) as follows:

Tr[BT APS] = Tr[SBT AP ] = Tr[ΣV T PU ].

TABLE IV
THE OBD-BCS ALGORITHM

Inputs:

• B ∈ R
n×N - measurements

• A ∈ R
n×nL - measurement matrix (union of L orthogonal bases)

Outputs:

• X̂ ∈ R
nL×N - reconstructed signal matrix

Algorithm:

• Initiate P̂ = I (the identity).
• Repeat until a stoping criteria is reached:

◦ Sparse coding: find the sparsest Ŝ such that B = AP̂ Ŝ,
for instance using OMP.

◦ Basis update: for all i = 1, ..., 2L:

Calculate Bi = B −
∑

j 6=i Aj P̂ j Ŝj .

Use SVD: Ŝi(Bi)T Ai = UΣV T .

Update: P̂ i = V UT .

• Calculate: X̂ = P̂ Ŝ.

The matrix Z = V T PU is orthogonal if and only if P is

orthogonal. Therefore, (18) is equivalent to

max
Z

{Tr [ΣZ]} s.t. Z is orthogonal.

If the matrix R = SBT A has full rank then Σ is invertible.

In this case the maximization is achieved only for Z = I , and

therefore P i = V UT is the unique minimum of (17). Even if

R does not have full rank P i = V UT achieves a minimum of

(17).

Table IV summarize the OBD-BCS algorithm. Note that the

initiation can be any 2L-block diagonal matrix, not necessarily

the identity matrix as written in the table; however, the

identity matrix is simple to implement. This algorithm is much

simpler then following the uniqueness proof, which requires a

combinatorial permutation search. Each iteration of the OBD-

BCS algorithm uses a standard CS algorithm and 2L SVDs.

An important question that arises is whether the OBD-BCS

algorithm converges. To answer this question we look at each

step separately. If the sparse coding step is performed perfectly

it solves (14) for the current P . That is, the objective of (13)

is reduced or at least stays the same. In practice, for small

enough k the CS algorithm converges to the solution of (14).

However, in order to guarantee the objective of (13) is reduced

or at least not increased in this step, we can always compare

the new solution after this step with the one from the previous

iteration and chose the best of them.

Note that this step is performed separately on each column

of S. That is, we can choose to keep only some of the columns

from the previous iteration, while the rest are updated. If at

least part of the columns are updated then the next basis update

step changes the basis P , so that in the following sparse

coding step we can get a whole new matrix S. Therefore,

the decision to keep the results from the previous iteration

does not imply we keep getting the same results in all the

next iterations. Another possibility is to keep only the support

of the previous solution and update the values of the nonzero

elements using least-squares. In practice, in our simulations

the algorithm converges even without any comparison to the

previous iteration.

The basis update step is divided into 2L steps. In each, all
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the blocks of P are fixed except one, which is updated to

minimize (17). Therefore, the objective of (17) is reduced or

at least stays the same in each of the 2L steps constructing

the basis update step. Therefore, the objective of (16), which

is equivalent to (13) with fixed S, is reduced or not increased

in the basis update step.

Thus, as in [21], [22], the algorithm we are based on, and

as in other DL algorithms such as [20], [24], we cannot prove

the OBD-BCS algorithm converges to the unique minimum of

(13). However, we can guarantee that under specific conditions

there is a unique minimum and that the objective function is

reduced or at least stays the same in each step of the algorithm.

Furthermore, as can be seen in the next section the OBD-BCS

algorithm performs very well in simulations on synthetic data.

C. OBD-BCS Simulations

As in the first two constraints we evaluated the algorithm

performance on synthetic data. The signal matrix X had 64

rows and was generated as a product of a random sparse matrix

- S and a random orthogonal 4-block diagonal matrix - P . The

value of the nonzero elements in S was generated randomly

from a normal distribution, and the four orthogonal blocks

of P were generated from a normal distribution followed by

a Gram Schmidt process. The measurement matrix A was

constructed of two random 32 × 32 orthogonal matrices, that

were generated from a normal distribution followed by a Gram

Schmidt process. The number of signals and the sparsity level

were gradually changed in order to investigate their influence.

The stopping rule of the algorithm was based on a maximal

number of iterations and the amount of change in the matrices

S and P . If the change from the last iteration was too small,

or if the maximal number of iterations was reached, then the

algorithm stopped. In most cases the algorithm stopped due to

small change between iterations after about 30 iterations.

First we examined the influence of two parameters, N - the

number of signals needed for the reconstruction, and k - the

sparsity level. Fig. 2 considers the influence of N where the

sparsity level is set to k = 4. For each value of N from 150 to

2500 the error presented in the upper graph is an average over

20 simulations of the OBD-BCS algorithm. In each simulation

the sparse vectors and the orthogonal matrix where generated

independently, but the measurement matrix was not changed.

The error of each signal was calculated according to (8).

For comparison, the lower graph in Fig. 2 is the average

error of a standard CS algorithm that was performed on the

same data, and used the real basis P , which is unknown

in practice. The CS algorithm we used was again OMP. As

expected, the results of the CS algorithm are independent

of the number of signals, since it is performed separately

and independently on each signal. The average error of this

algorithm is 0.08%. The reason for this nonzero error, although

P is known, is that for a small portion of the signals the OMP

algorithm fails.

It is clear from Fig. 2 that for N > 500 the reconstruction

results of the proposed algorithm are successful and similar

to those obtained when P is known. Similarly to the con-

clusion in [17], the reconstruction is successful even for n
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Fig. 2. Reconstruction error as a function of the number of signals, for
sparsity level of k = 4.

much smaller then the number needed in order to satisfy the

sufficient richness conditions, which is
(

m
k

)

(k + 1) ≈ 3 · 106.

As in most DL algorithms, the algorithm in [21], [22] was

evaluated by counting the number of columns of the dictionary

that are detected correctly. The conclusions of [21], [22] are

that their algorithm can find about 80% of the columns when

the number of signals is at least 20n = 640, and can find all the

columns when the number of signals is at least 50n = 1600.

Using the same measurement matrix dimensions as in [21],

[22], the minimal number of signals the OBD-BCS algorithm

requires is only 500.

In order to examine the influence of k we performed the

same experiment as before but for different values of k ≤ 10.

The results are presented in Fig. 3. It can be seen that for

all values of k the graph has the same basic shape: the error

decreases with N until a critical N , after which the error is

almost constant. As k grows this critical N increases and so

does the value of the constant error. The graphs for k = 1,

k = 2, k = 3 follow the same pattern; they are not in the

figure since they are not visible on the same scale as the rest.

Next we investigated the influence of noise on the algorithm.

In this simulation the noisy measurements B were calculated

as B = APS + W , where the elements of W were white

Gaussian noise. For each noise level 20 simulations were per-

formed and the average error was calculated. In all simulations

k = 4 and N = 800. Table V summarizes the results of the

OBD-BCS algorithm and those of OMP algorithm which uses

the real P . It is clear from the table that in the noiseless case

the error of both algorithms is similar, therefore in this case

the prior knowledge of the basis P can be avoided. As the

SNR decreases both error increase, but the error of OBD-BCS

algorithm increases a bit faster then that of the CS algorithm.

However, the difference is not very big.

VII. COMPARATIVE SIMULATION

The following simulation illustrates the difference between

the three BCS methods presented in this work. In this simu-
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Fig. 3. Reconstruction error as a function of the number of signals for
different values of k.

TABLE V
RECONSTRUCTION ERROR FOR DIFFERENT NOISE LEVELS

SNR CS OBD-BCS

∞ 0.008% 0.008%
35dB 0.82% 0.88%
30dB 1.54% 1.64%
25dB 2.95% 3.23%
20dB 5.81% 6.10%
15dB 12.03% 12.58%
10dB 25.11% 26.04%

lation the length of the signals was m = 128, the sparsity

level was k = 6, the number of signals was N = 2000,

and the compression ratio was L = 2. The syntectic data

was generated as in Section VI-C, but this time the instead

of generating P ∈ R
128×128 randomly we used

P =
1√
2















1 −1
1 1

. . .

1 −1
1 1















,

which can be viewed as an orthogonal 4-block diagonal matrix

(each block is 16-block diagonal by itself).

We used five different methods for the reconstruction of

these signals.

1) CS algorithm with the real basis P .

2) CS algorithm with an estimated basis PDL.

3) The F-BCS method.

4) The direct method for sparse BCS.

5) The OBD-BCS algorithm.

In all the methods above we used OMP as the standard CS

algorithm. The first method, came as a reference for the rest.

It used the real basis P , whose knowledge we are trying to

avoid. The second method is an intuitive way to reconstruct the

signals. Since the basis P is unknown one can estimate it first

and then perform a CS algorithm which uses the pre-estimated

TABLE VI
DL ALGORITHM FOR ORTHOGONAL DICTIONARY

Inputs

• X - training set
• k - sparsity level

Outputs

• P - orthogonal dictionary
• S - sparse matrix

Algorithm

• Initiate P = I .
• Repeat until a stoping criteria is reached:

◦ Fix P and calculate S = P T X .
◦ Keep only the k highest (absolute value) elements

in each column of S.

◦ Fix S, and calculate the SVD: SXT = UΣV T .

◦ Update P = V UT .

basis. We performed the estimation using a training set of 2000

signals and a DL algorithm. The estimated basis is denoted

by PDL. There are several different DL algorithms, eg. [20]–

[22], [24], [40]. However, in this case we have important prior

knowledge that the basis P is orthogonal 4-block diagonal.

One way of using this knowledge is dividing the signals

X into 4 blocks corresponding to the 4 blocks of P , and

estimating each block of P from the relevant block of X using

the algorithm in Table VI, which is designed for learning an

orthogonal basis.

Due to this structure of P and the sparsity of S in each

column of X there are up to 12 nonzero elements. Therefore,

the identity matrix I was one of the bases in the finite set

Ψ that we used. Specifically, we used the same set Ψ as in

the simulations in Section IV. X had about twice as many

nonzero elements in each column compared to the real sparse

matrix S, such that X is 2k-sparse under I . Therefore, we

ran the F-BCS method with sparsity level of 2k instead of k.

Moreover, since P is sparse itself we used Φ = I as the base

dictionary in the sparse BCS method. It is easy to see that

kp = 2.

Table VII reports the average error of all five methods,

calculated as in (8). As can be seen, the results of F-BCS are

much worse than all the others. This can be expected since

in this case X is 2k-sparse, so that the OMP reconstruction

is not as good. The error of the sparse BCS is also higher

then the rest. The reason for this is that in order for the direct

method of sparse BCS to work well the product kpk should

be small relative to n. In this case this product is not small

enough. Note that though higher from the rest the errors of

the sparse BCS and F-BCS are quite small. We performed the

same simulation with k = 3 and then the error of sparse BCS

was reduced to the level of the rest, but the error of F-BCS

was still high.

The results of both the OBD-BCS algorithm and the CS with

the estimated basis, which both did not use the knowledge

of the basis P , are similar to those of the algorithm which

used this knowledge. Thus, the prior knowledge of P can be

avoided. The advantage of OBD-BCS over the CS with the

estimated basis is that it does not require any training set, and

therefore can be used in applications where there is no access

to any full signals but only to their measurements.
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TABLE VII
RECONSTRUCTION ERROR OF DIFFERENT RECONSTRUCTION ALGORITHMS

Algorithm Error

CS with the real P 10−5%

CS with P̂ = PDL 10−5%
F-BCS 0.522%
Sparse BCS 0.084%

OBD-BCS 10−5%

VIII. CONCLUSIONS

We presented the problem of BCS which aims to solve CS

problems without the prior knowledge of the sparsity basis of

the signals. Therefore, this work renders CS universal not only

from the measurement process point of view, but also from the

recovery point of view.

We presented three different constraints on the sparsity ba-

sis, that can be added to the BCS problem in order to guarantee

the uniqueness of the solution to the BCS problem. Under

each of these constraints we proved uniqueness conditions

and proposed simple methods to retrieve the solution. All

the proposed methods perform very well in simulations on

synthetic data. In fact, when k is small enough and when

enough signals are measured (only for the structural constraint

case), the performance of our methods is similar to those of a

standard CS which uses the real, though unknown in practice,

sparsity basis. We also demonstrated through simulations the

advantage of BCS over CS with an estimated sparsity basis.

The advantage of BCS is that it does not require any training

set, and therefore can be used in applications where there is

no access to any full signals but only to their measurements.

An interesting direction for future research is to examine

more ways to assure uniqueness, beside the three presented

here, and weaken the constraint on the basis.
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APPENDIX A

The following proves Lemma 12. That is, if P and P̂ are

both 2L-block diagonal matrices, A satisfies the conditions

of Theorem 11, and Q is a signed permutation matrix, then

AP̂ = APQ implies P̂ = PQ.

We begin this proof by proving that Q is necessarily block

diagonal, after this is done the completion of the proof is

straight forward. For any D = [D1, ..., DL] ∈ R
n×nL such

that D1, ..., DL ∈ R
n×n the signed permutation DQ can

yield three types of changes in D. It can mix the blocks of

D, permute the order of the blocks of D, and permute the

columns inside each block. Q is L-block diagonal if and only

if it permute only the columns inside each block, but does not

mix the blocks or change their outer order.

First we prove that Q cannot mix the blocks of D. We

denote by QB the group of all block signed permutation

matrices, which is the group of all the signed permutation

matrices that keep all blocks together. That is, if Q ∈ QB then

when multiplying DQ only the order of the blocks D1, ..., DL

and the order of the columns inside the blocks change, but

there is no mixture between the blocks. In order to prove that

in our case necessarily Q ∈ QB , we use the next lemmas.

Lemma A.1. If D = [D1, ..., DL] ∈ R
n×nL is a union of

L orthogonal bases, and σ(D) = n + 1, then any set of n
orthogonal columns of D are necessarily all from the same

block of D.

Proof : Assume Γ is a set of n orthogonal columns from D.

Denote Γ = Γ1∪Γ2, where Γ1 is the set of columns taken from

D1, and Γ2 contains the rest of the columns in Γ. Without loss

of generality assume the set Γ1 is not empty. Since both D1

and Γ are orthogonal bases of R
n, the span of Γ2 equals the

span of the columns of D1 which are not in Γ. Therefore, the

set of columns Γ2∪d, where d is any column from D1 which

is not in Γ, is either linearly dependent or empty. However,

the set Γ2 ∪ d contains at most n columns, and σ(D) = n+1
such that this set cannot be linearly dependent. Therefore, Γ2

is necessarily empty, such that all the columns of Γ are from

the same block of D. ¥

Lemma A.2. Assume D = [D1, ..., DL] ∈ R
n×nL is a union

of L orthonormal bases, with σ(D) = n + 1, and D̂ = DQ
for some signed permutation matrix Q. If D̂ is also a union

of L orthonormal bases, then Q ∈ QB .

Proof : If there was a signed permutation Q /∈ QB such

that D̂ = DQ, it would imply that n columns of D, not all

from the same block, form one of the orthogonal blocks of D̂.

However, according to Lemma A.1 any n orthogonal columns

must be from the same block, and therefore Q ∈ QB . ¥

Denote the orthogonal blocks of A by Ai for i = 1, ..., L
and the orthogonal blocks of P and P̂ by P j and P̂ j

respectively for j = 1, ..., 2L. Also denote:

D = AP =
[

A1

(

P 1

P 2

)

, . . . , AL

(

P 2L−1

P 2L

)

]

D̂ = AP̂ =
[

A1

(

P̂ 1

P̂ 2

)

, . . . , AL

(

P̂ 2L−1

P̂ 2L

)

]

which are both unions of L orthogonal bases since Ai, P j and

P̂ j are all orthogonal. Therefore, according to Lemma A.2

Q ∈ QB .

Next we prove that Q also cannot change the outer order of

the blocks, and therefore must be L-block diagonal. Assume

by contradictions that Q changes the outer order of the blocks

of D. Without loss of generality we can assume this change

is a switch between the first two blocks of D. That is,

D̂1 = D2Q2 = A2

[

P 3

P 4

]

Q2

D̂2 = D1Q1 = A1

[

P 1

P 2

]

Q1

where Q1, Q2 are the corresponding sub-matrices of Q which

permute the columns inside the blocks D1, D2. In order to
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satisfy D̂ = AP̂ we must have

D̂1 = A1

[

P̂ 1

P̂ 2

]

= A2

[

P 3

P 4

]

Q2

D̂2 = A2

[

P̂ 3

P̂ 4

]

= A1

[

P 1

P 2

]

Q1.

Since A1 and A2 are orthogonal the above implies
[

P̂ 1

P̂ 2

]

= AT
1 A2

[

P 3

P 4

]

Q2

[

P̂ 3

P̂ 4

]

= AT
2 A1

[

P 1

P 2

]

Q1

(A-1)

The left hand side of the above equations is obviously 2-block

diagonal. However, A is not inter-block diagonal, such that the

matrices AT
1 A2, A

T
2 A1 are not 2-block diagonal or a column

permutation of a 2-block diagonal matrix. Since in addition all

P j are orthogonal, the right hand side of (A-1) is necessarily

not 2-block diagonal. Therefore, the contradictions assumption

is incorrect and Q cannot change the outer order of the blocks,

such that it must be L-block diagonal.

Denote the diagonal blocks of Q by Qi for i = 1, ..., L,

such that:

D̂ =
[

A1

(

P̂ 1

P̂ 2

)

, . . . , AL

(

P̂ 2L−1

P̂ 2L

)

]

=

[

A1

(

P 1

P 2

)

Q1, . . . , AL

(

P 2L−1

P 2L

)

QL

]

.

Since all Ai are orthogonal it implies for all i = 1, ..., L that
[

P̂ 2i−1

P̂ 2i

]

=

[

P 2i−1

P 2i

]

Qi,

such that P̂ = PQ. ¥

In fact the above proves not only that Q is L-block diagonal,

it is also 2L-block diagonal. Note that if P and P̂ had L
blocks instead of 2L, this proof would not work. That is since

in order to eliminate solutions of the form of (A-1) we used

the 2-block diagonal structure of the left hand side. However,

if P̂ had only L blocks the left hand side of (A-1) would not

be 2-block diagonal. Therefore, the first block of P̂ could be

either AT
1 A2P2Q2 or P1Q1, and the second block could be

either AT
2 A1P1Q1 or P2Q2. Where P1, P2 are the first two

blocks of P . On the other hand the extension of this proof

to the case where P and P̂ have ML blocks, for M > 2, is

trivial.

APPENDIX B

The following proves that if A = [A1, ..., AL] ∈ R
n×nL is

a union of L orthogonal bases, where each block is generated

randomly from an i.i.d Gaussian distribution followed by a

Gram Schmidt process, then with probability 1 σ(A) = n + 1
and A is not inter-block diagonal (Definition 10). Multipli-

cation by an orthogonal P does not change the statistics,

therefore if σ(A) = n + 1 with probability 1, then also

σ(AP ) = n + 1 with probability 1. Therefore, such an A
satisfies the conditions of Theorem 11 with probability 1.

First of all, we can look at the generation of each block

of A as follows. The first column a1 is generated randomly

from R
n. The second column a2 is generated randomly from

the n− 1 dimensional space orthogonal to a1. a3 is generated

randomly from the n − 2 dimensional space orthogonal to

the span of a1, a2, and similarly any ai is generated randomly

from the space orthogonal to the span of all previous columns,

whose dimension is n − i + 1.

We start by proving σ(A) = n+1. This proof uses the next

lemma.

Lemma B.3. Assume G ∈ R
n×n is generated as an i.i.d

Gaussian matrix followed by a Gram Schmidt process, and

U is a given space of dimension d. If d < n then with

probability 1 non of the columns of G are in U .

Proof : Denote the columns of G by gi for i = 1, ..., n. g1

is generated randomly from R
n. Since d < n the space U

has zero volume in R
n and therefore with probability 1 g1 is

not in U . For any other 1 < i ≤ n, gi is generated randomly

from Gi - the space orthogonal to the i− 1 previous columns

in G, whose dimension is di = n − i + 1. We need to look

at the probability to generate gi in the intersection U ∩ Gi.

If d < di then obviously this intersection has zero volume in

Gi, such that with probability 1 gi is not in U . Furthermore, if

d ≥ di then due to the randomness of the columns of G, with

probability 1 Gi is not entirely contained in U . Therefore, here

too U∩Gi has zero volume in Gi, such that with probability 1

gi is not in U . ¥

Assume Γ is a set of σ(A) linearly dependent columns from

A. Denote Γ = Γ1 ∪ Γ2, where Γ1 is the subset of Γ which

contains the columns taken from the block A1, and Γ2 are the

rest of the columns in Γ. Without loss of generality assume

Γ1 is not empty. Moreover, since A1 is orthogonal Γ1 is also

orthogonal, such that in order for Γ to be linearly dependent

Γ2 also cannot be empty.

Any n + 1 columns from A are linearly dependent such

that σ(A) ≤ n + 1. Therefore, |Γ| ≤ n + 1 such that |Γ1| ≤ n
and |Γ2| ≤ n. If |Γ1| = n or |Γ2| = n then necessarily

σ(A) = |Γ| = n + 1.

Assume by contradiction that σ(A) = |Γ| ≤ n, such that

|Γ1| < n and |Γ2| ≤ n−|Γ1|. If |Γ1| contains only one column,

denoted by γ1, then since Γ is linearly dependent γ1 must be in

the span of Γ2. However, the dimension of this span is at most

|Γ2| ≤ n−1, such that according to Lemma B.3 the probability

for this is zero. If Γ1 contains only two columns, denoted by

γ1, γ2, then γ2 must be in the span of Γ2 ∪ γ1. However, the

dimension of this space is at most |Γ2|+1 ≤ n− 1, such that

according to Lemma B.3 the probability for this is again zero.

We can keep increasing the cardinality of Γ1 and as long as

|Γ| ≤ n the probability for Γ to be linearly dependent will be

zero. Therefore, the contradiction assumption is incorrect with

probability 1, such that with probability 1 σ(A) = |Γ| = n+1.

Next we need to prove that A is not inter-block diagonal.

In order for A to be inter-block diagonal it should have

a pair of blocks Ai, Aj such that the matrix AT
i Aj is 2-

block diagonal or a column permutation of a 2-block diagonal

matrix. That is, any column of Aj should be orthogonal to at

least n/2 columns of Ai. Equivalently, since Ai is orthogonal
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any column of Aj should be in the span of the rest of the

n/2 columns of Ai. Therefore, it is enough to prove that

σ(A) > n/2+1 in order for A not to be inter-block diagonal.

In our case, we already proved that σ(A) = n + 1 such that

A is trivially not inter-block diagonal.

APPENDIX C

Assume A ∈ R
m

L
×m is a union of L random orthogonal

bases and P ∈ R
m×m is an orthogonal 2L-block diagonal

matrix. Denote D̃ = APQ where Q is some unknown signed

permutation matrix. We prove here that there are [( m
2L

)!]2L

different permutation matrices QD such that D̃QD = AP̂ ,

where P̂ is an orthogonal 2L-block diagonal matrix. Without

loss of generality we can assume Q = I , therefore we need to

refer to APQD = AP̂ . According to Lemma 12 this implies

PQD = P̂ . Since both P and P̂ are 2L-block diagonal

QD must be too, and the size of its blocks is m
2L

× m
2L

.

QD is a permutation matrix, therefore each of its blocks is

a permutation of the identity matrix of size m
2L

. Thus, there

are only ( m
2L

)! different possibilities for each block. There

are 2L blocks such that the total number of possible QD’s is

[( m
2L

)!]2L.
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