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Ref. [1] presents significant generalizations of the theory of multiplexing. Instead of optimally recovering intensity arrays

(which result from a mixture of underlying materials), the optimal recovery of underlying materials is defined as the goal

of multiplexed acquisition. As detailed in [1], the mixing/unmixing process is directly incorporated into the optimization of

multiplexing codes. This leads to the definition of constrained minimization problem where multiplexing code that yields

optimal unmixing in the sense of minimal MSE is sought. The notation here is similar to Ref. [1].

The recovery of the concentrations c is based on WLS. Thus from [1],

MSEc =
1

Ndyes

tr

[(
Wx

T
Σ

−1
noiseWx

)
−1

]
, (1)

where Wx = WX. Here X is the mixing matrix. According to [1] we seek to solve

Ŵc = arg min
W

MSEc, s.t. 0 ≤ wm,s ≤ 1 . (2)

To achieve this, we use the projected gradient descent method [2]: MSEc is iteratively minimized as a function of W in

analogy to Ref. [4]. In each iteration k, W is updated by its gradient ∂MSEc

∂W
:

Wk+1 = Wk − γ
∂MSEc

∂Wk

, (3)

where γ is a parameter controlling the step size. This report derives the gradient of MSEc, with respect to the multiplexing

matrix W. The matrix Wk+1 is then projected onto the constraint

0 ≤ wm,s ≤ 1 , (4)

as a generalization to Ref. [4].

To facilitate Eq. (3), we differentiate MSEc with respect to W. To simplify the calculations, define an auxiliary matrix:

Z = W
T
x ΣnoiseWx. (5)

Substituting Z into Eq. (1), yields

MSEc =
1

Ndyes

tr
(
Z

−1
)

. (6)

The gradient of MSEc, with respect to Z [3] is

∂MSEc

∂Z
= −

1

Ndyes

[(
Z

−1
)2

]T

. (7)

We use the following chain rule [3] in order to calculate the partial derivatives:

∂MSEc

∂wm,s

=

Ndyes∑

p=1

Ndyes∑

d=1

∂MSEc

∂zp,d

·
∂zp,d

∂wm,s

, (8)
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where ∂MSEc

∂zp,d
and zp,d are elements in ∂MSEc

∂Z
and Z respectively.

Next, we explain the computation of the derivatives in Eq. (8). Since Z is a function of both Wx and Σnoise (Eq. 5), we

use the chain rule [3] again in order to calculate their partial derivatives. Recall the noise covariance matrix Σnoise. It is

diagonal. Thus, its elements are

σ2
m,q = δm,qσ

2
m , (9)

where δm,q is Kronecker’s delta. Therefore,

∂zp,d

∂wm,s

=

Nmeasure∑

q=1

Ndyes∑

r=1

∂zp,d

∂wx
q,r

∂wx
q,r

∂wm,s

+

Nmeasure∑

m′=1

∂zp,d

∂σ2
m′

∂σ2
m′

∂wm,s

. (10)

According to [1],

σ2
m ≈ σ2

gray +
∑Ndyes

d=1
wx

m,dν
2
d . (11)

Based on Eq. (11), the elements of Σnoise depend on elements of Wx. Therefore, the partial derivatives of σ2
m′ in Eq. (10)

can also be computed using the chain rule:

∂σ2
m′

∂wm,s

=

Nmeasure∑

k=1

Ndyes∑

l=1

∂σ2
m′

∂wx
k,l

·
∂wx

k,l

∂wm,s

. (12)

Based on Eq. (5),

∂zp,d

∂wx
q,r

=
δd,rw

x
q,p

σ2
q

+
δp,rw

x
q,d

σ2
q

, (13)

∂zp,d

∂σ2
m′

= −
wx

m′,pw
x
m′,d

(σ2
m′)2

. (14)

From Eq. (11)
∂σ2

m′

∂wx
k,l

= δm′,k ν2
l . (15)

Finally, recall from [1] that Wx = WX. Then,

∂wx
q,r

∂wm,s

= δq,mxs,r . (16)

Substituting Eqs. (15,16) into Eq. (12) we get,

∂σ2
m′

∂wm,s

= δm′,m

Ndyes∑

l=1

ν2
l xs,l . (17)

Substituting Eqs. (13,14,16,17) into Eq. (10), yields

∂zp,d

∂wm,s

=
1

σ2
m

(wx
m,pσ

2
qxs,d + wx

m,dσ
2
qxs,p) −

1

(σ2
m)2

wx
m,pw

x
m,d

Ndyes∑

l=1

ν2
l xs,l. (18)

The partial derivatives that were computed in Eq. (18) are substituted into Eq. (8), yielding

∂MSEc

∂wm,s

=

Ndyes∑

p=1

Ndyes∑

d=1

∂MSEc

∂zp,d

·

[
1

σ2
m

(
wx

m,pσ
2
qxs,d + +wx

m,dσ
2
qxs,p

)
−

1

(σ2
m)2

wx
m,pw

x
m,d

Ndyes∑

l=1

ν2
l xs,l

]
. (19)

This is the gradient of MSEc with respect to the multiplexing matrix W.

Recall that in [1] we made the following approximation

σ2
m ≈ σ2

gray + ν2
∑Ndyes

d=1
wx

m,d . (20)



Substituting the approximation in Eq. (20) into Eq. (19) yields

∂MSEc

∂wm,s

≈

∑Ndyes

p=1

∑Ndyes

d=1
∂MSEc

∂zp,d
(wx

m,pxs,d + wx
m,dxs,p)

σ2
gray + ν2

∑Ndyes

l=1 wx
m,l

−
ν2

∑Ndyes

l=1 xs,l

∑Ndyes

p=1

∑Ndyes

d=1
∂MSEc

∂zp,d
wx

m,pw
x
m,d

(σ2
gray + ν2

∑Ndyes

l=1 xs,l)2
. (21)

Define a row vector

1 = (1 1 1 1 · · · 1) (22)

of length Ndyes. Now we can rewrite Eq. (21) using matrix form as

∂MSEc

∂W
≈ Σ

−1
noise

[
Wx

∂MSEc

∂Z
X

T + Wx

(∂MSEc

∂Z

)
T
X

T

]
− ν2diag

(
Wx

∂MSEc

∂Z
W

T
x

)
· 1 · X

T
· (Σ−1

noise)
2 . (23)

Here diag returns a column vector formed by the elements of the main diagonal and Σnoise is approximated by Eq (20).

Consequently we use Eq. (23) to express the gradient of MSEc with respect to the multiplexing matrix W.
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