

IRWIN AND JOAN JACOBS

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

Dist r ibuted Data Classificat ion

in Sensor Netw orks

I t tay Eyal, I dit Keidar and

Raphael Rom

CCI T Report # 7 6 2

February 2 0 1 0

Electronics
Computers
Communications

DEPARTMENT OF ELECTRICAL ENGINEERING

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

Distributed Data Classification in Sensor Networks

Ittay Eyal Idit Keidar Raphael Rom

Department of Electrical Engineering, Technion — Israel Institute of Technology

Abstract

Low overhead analysis of large distributed data sets is necessary for current data centers and for

future sensor networks. In such systems, each node holds some data value, e.g., a local sensor read, and

a concise picture of the global system state needs to be obtained. To this end, we define the distributed

classification problem, in which numerous interconnected nodes compute a classification of their data,

i.e., partition these values into multiple collections, and describe each collection concisely.

We present a generic algorithm that solves the distributed classification problem and may be imple-

mented in various topologies, using different classification types. For example, the generic algorithm can

be instantiated to classify values according to distance, like the famous k-means classification algorithm.

However, the distance criterion is often not sufficient to provide good classification results. We

present an instantiation of the generic algorithm that describes the values as a Gaussian Mixture (a set of

weighted normal distributions), and uses machine learning tools for classification decisions.

We prove that any implementation of the generic algorithm converges over any connected topology,

classification criterion and collection representation, in fully asynchronous settings.

lesley
Text Box
CCIT REPORT #762 February 2010

1 Introduction

To analyze large data sets, it is common practice to employ classification [6]: In classification, the data

values are partitioned into several collections, and each collection is described concisely using a summary.

This classical problem in machine learning is solved using various heuristic techniques, which typically base

their decisions on a view of the complete data set, which is stored in some central database.

However, it is sometimes necessary to perform classification on data sets that are distributed among a

large number of nodes. For example, in a grid computing system, load balancing can be implemented by

having heavily loaded machines stop serving new requests. But this requires analysis of the load of all ma-

chines. If, e.g., half the machines have a load of about 10%, and the other half is 90% utilized, the system’s

state can be summarized by partitioning the machines into two collections — lightly loaded and heavily

loaded. A machine with 60% load is associated with the heavily loaded collection, and should stop taking

new requests. But, if the collection averages were instead 50% and 80%, it would have been associated with

the former, i.e., lightly loaded, and would keep serving new requests. Another scenario is that of sensor

networks with thousands of nodes monitoring conditions like seismic activity or temperature [1, 17]. In

both settings, there are strict constraints on the resources devoted to the classification mechanism. Large-

scale computation clouds allot only limited resources to monitoring, so as not to interfere with their main

operation, and sensor networks use lightweight nodes with minimal hardware. These constraints render the

collection of all data at a central location infeasible, and therefore rule out the use of centralized classifi-

cation algorithms. In this paper, we address the problem of distributed classification. To the best of our

knowledge, this paper is the first to address this problem in a general fashion. A more detailed account of

previous work appears in Section 2, and a formal definition of the problem appears in Section 3.

A solution to distributed classification ought to summarize data within the network. There exist dis-

tributed algorithms that calculate scalar aggregates, such as sum and average, of the entire data set [11, 8].

In contrast, a classification algorithm must partition the data into collections, and summarize each collection

separately. In this case, it seems like we are facing a Catch-22 [10]: Had the nodes had the summaries,

they would have been able to partition the values by associating each one with the summary it fits best.

Alternatively, if each value was labeled a collection identifier, it would have been possible to distributively

calculate the summary of each collection separately, using the aforementioned aggregation algorithms.

In Section 4 we present a generic distributed classification algorithm to solve this predicament. Our

algorithm captures a large family of algorithms that solve various instantiations of the problem — with dif-

ferent approaches to classification, classifying values from any multidimensional domain and with different

data distributions, using various summary representations, and running on arbitrary connected topologies.

In our algorithm, all nodes obtain a classification of the complete data set without actually hearing all the

data values. The double bind described above is overcome by implementing adaptive compression: A classi-

fication can be seen as a lossy compression of the data, where a collection of similar values can be described

succinctly, whereas a concise summary of dissimilar values loses a lot of information. Our algorithm tries

to distribute the values between the nodes. At the beginning, it uses minimal compression, since each node

has only little information to store and send. Once a significant amount of information is obtained, a node

may perform efficient compression, joining only similar values. For example, a common approach to clas-

sification summarizes each collection by its centroid (average of the values in the collection) and partitions

the values based on distance. Such a solution is a possible implementation of our generic algorithm.

Since the summary of collections as centroids is often insufficient in real life, machine learning solutions

typically also take the variance into account, and summarize samples as a weighted set of Gaussians (normal

distributions), which is called a Gaussian Mixture (GM) [16]. In Section 5, we present a novel distributed

classification algorithm that employs this approach, also as an instance of our generic algorithm. The GM

1

algorithm makes classification decisions using a popular machine learning heuristic, Expectation Maximiza-

tion (EM) [5]. We present in Section 5.3 simulation results showing the effectiveness of this approach.

The centroids and GM algorithms are but two examples of our generic algorithm; in all instances, nodes

independently strive to estimate the classification of the data. This raises a question that has not been dealt

with before: does this process converge? One of the main contributions of this paper, presented in Section

6, is a formal proof that indeed any implementation of our generic algorithm converges, s.t. all nodes in the

system learn the same classification of the complete data set. We prove that convergence is ensured under a

broad set of circumstances: arbitrary asynchrony, an arbitrary connected topology, and no assumptions on

the distribution of the values.

Note that in the abstract settings of the generic algorithm, there is no sense in defining the destination

classification the algorithm converges to precisely, or in arguing about its quality, since these are application-

specific and usually heuristic in nature. Additionally, due to asynchrony and lack of constraints on topology,

it is also impossible to bound the convergence time.

In summary, this paper makes the following contributions:

• It formally defines the problem of classification in a distributed environment (Section 3).

• It provides a generic algorithm that captures a range of algorithms solving this problem in a variety of

settings (Section 4).

• It provides a novel distributed classification algorithm based on Gaussian Mixtures, which uses ma-

chine learning techniques to make classification decisions (Section 5).

• It proves that the generic algorithm converges in very broad circumstances, over any connected topol-

ogy, using any classification criterion, in fully asynchronous settings (Section 6).

2 Related Work

Kempe et al. [11] and Nath et al. [14] present approaches for calculating aggregates such as sums and means

using gossip. These approaches cannot be directly used to perform classification, though this work draws

ideas from [11], in particular the concept of weight diffusion, and the tracing of value weights.

In the field of machine learning, classification has been extensively studied for centrally available data

sets (see [6] for a comprehensive survey). In this context, parallelization is sometimes used, where multiple

processes classify partial data sets. Parallel classification differs from distributed classification in that all the

data is available to all processes, or is carefully distributed among them, and communication is cheap.

Centralized classification solutions typically overcome the Catch-22 issue explained in the introduction

by running multiple iterations. They first estimate a solution, and then try to improve it by re-partitioning

the values to create a better classification. K-means [13] and Expectation Maximization [5] are examples of

such algorithms. Datta et al. [4] implement the k-means algorithm distributively, whereby nodes simulate

the centralized version of the algorithm. Kowalczyk and Vlassis [12] do the same for Gaussian Mixture esti-

mation by having the nodes distributively simulate Expectation Maximization. In contrast to this paper, they

require multiple iterations to obtain their estimation, since the entire data set is required for re-partitioning.

Moreover, they demonstrate convergence through simulation only, but do not provide a convergence proof.

Haridasan and van Renesse [9] and Sacha et al. [15] estimate distributions in sensor networks by estimat-

ing histograms. Unlike this paper, these solutions are limited to single dimensional data values. Additionally,

both use multiple iterations to improve their estimations. While these algorithms are suitable for certain dis-

tributions, they are not applicable for classification, where, for example, small sets of distant values should

not be merged with others. They also do not prove convergence.

2

3 Model and Problem Definitions

3.1 Network Model

The system consists of a set of n nodes, connected by communication channels, s.t. each node i has a set

of neighbors neighborsi ⊂ {1, · · · , n}, to which it is connected. The channels form a static directed

connected network. Communication channels are asynchronous but reliable links: A node may send mes-

sages on a link to a neighbor, and eventually every sent message reaches its destination. Messages are not

duplicated and no spurious messages are created.

Time is discrete, and an execution is a series of events occurring at times t = 0, 1, 2, · · · .

3.2 The Distributed Classification Problem

At time 0, each node i takes an input vali — a value from a domain D. In all the examples in this paper, D
is a d-dimensional Cartesian space D = R

d (with d ∈ N). However, in general, D may be any domain.

A weighted value is a pair 〈val, α〉 ∈ D × (0, 1], where α is a weight associated with a value val. We

associate a weight of 1 to a whole value, so, for example, 〈vali, 1/2〉 is half of node i’s value. A set of

weighted values is called a collection:

Definition 1 (Collection). A collection c is a set of weighted values with unique values. The collection’s

weight, c.weight, is the sum of the value weights: c.weight
∆
=

∑

〈val,α〉∈c α.

A collection may be split into two new collections, each consisting of the same values as the original

collection, but associated with half their original weights. Similarly, multiple collections may be merged to

form a new one, consisting of the union of their values, where each value is associated with the sum of its

weights in the original collections.

A collection can be concisely described by a summary in a domain S, using a function f that maps

collections to their summaries: f : (D× (0, 1])∗ → S. The domain S is a pseudo-metric space (like metric,

except the distance between distinct points may be zero), with a distance function dS : S2 → R.

A collection c may be partitioned into several collections, each holding a subset of its values and sum-

marized separately1. The set of weighted summaries of these collections is called a classification of c.
Weighted values in cmay be split among collections, so that different collections contain portions of a given

value. The sum of weights associated with a value val in all collections is equal to the sum of weights

associated with val in c. Formally:

Definition 2 (Classification). A Classification C of a collection c into J collections {cj}Jj=1 is the set of

weighted summaries of these collections: C = {〈f(cj), cj .weight〉}Jj=1 s.t.

∀val :
∑

〈val,α〉∈c

α =
J

∑

j=1





∑

〈val,α〉∈cj

α



 .

A classification of a value set {valj}lj=1 is a classification of the collection {〈valj , 1〉}lj=1.

The number of collections in a classification is bounded by a system parameter k.

A classification algorithm maintains at every time t a classification classificationi(t), yielding an infinite

series of classifications. For such a series, we define convergence:

1Note that partitioning a collection is different from splitting it, because, when a collection is split, each part holds the same

values.

3

Definition 3 (Classification Convergence). A series of classifications

{

{〈f(cj(t)), cj(t).weight〉}Jt

j=1

}∞

t=1

converges to a destination classification, which is a set of l collections {destx}lx=1, if for every t ∈ 0, 1, 2, · · ·
there exists a mapping ψt between the Jt collections at time t and the l collections in the destination classi-

fication ψt : {1, · · · , Jt} → {1, · · · , l}, such that:

1. The summaries converge to the collections to which they are mapped by ψt:

max
j

{

dS(f(cj(t)), f(destψt(j)))
} t→∞−−−→ 0 .

2. For each collection x in the destination classification, the relative amount of weight in all collections

mapped to x converges to x’s relative weight in the classification:

∀1 ≤ x ≤ l :

∑

{j|ψt(j)=x}
cj(t).weight

∑Jt

j=1 cj(t).weight

t→∞−−−→ destx.weight
∑l

y=1 desty.weight
.

We are now ready to define the problem addressed in this paper, where a set of nodes strive to learn a

common classification of their inputs. As previous works on aggregation in sensor networks [11, 14, 2],

we define a converging problem, where nodes continuously produce outputs, and these outputs converge to

such a common classification.

Definition 4 (Distributed Classification Problem). Each node i takes an input vali at time 0 and maintains

a classification classificationi(t) at each time t, s.t. there exists a classification of the input values

{vali}ni=1 to which the classifications in all nodes converge.

4 Generic Classification Algorithm

We now present our generic algorithm that solves the Distributed Classification Problem. At each node, the

algorithm builds a classification, which converges over time to one that describes all input values of all nodes.

In order to avoid excessive bandwidth and storage consumption, the algorithm maintains classifications as

weighted summaries of collections, and not the actual sets of weighted values. It begins with a classification

of its own input value. It then periodically splits its classification into two new ones, which have the same

summaries but half the weights of the originals; it sends one classification to a neighbor, and keeps the

other. Upon receiving a classification from a neighbor, a node merges it with its own, according to an

application-specific merge rule. The algorithm thus progresses as a series of merge and split operations.

In Section 4.1, we present the generic distributed classification algorithm. It is instantiated with a domain

S of summaries used to describe collections, and with application-specific functions that manipulate sum-

maries and make classification decisions. As an in-line example, we present an algorithm that summarizes

collections as their centroids — the averages of their weighted values.

In Section 4.2, we enumerate a set of requirements on the functions the algorithm is instantiated with.

We then show that in any instantiation of the generic algorithm with functions that meet these requirements,

the weighted summaries of collections are the same as those we would have obtained, had we applied the

algorithm’s operations on the original collections, and then summarized the results.

4

4.1 Algorithm

The algorithm maintains at each node an estimate of the classification of the complete set of values. Each

collection c is stored as a weighted summary. By slight abuse of terminology, we refer by the term collection

to both a set of weighted values c, and its summary–weight pair 〈c.summary, c.weight〉.
The algorithm for node i is shown in Algorithm 1 (at this stage, we ignore the parts in dashed frames).

The algorithm is generic, and it is instantiated with S and the functions valToSummary, partition

and mergeSet. The functions of the centroids example are given in Algorithm 2. The summary domain

S in this case is the same as the value domain, i.e., R
d.

Initially, each node produces a classification with a single collection, based on the single value it has

taken as input (Line 2). The weight of this collection is 1, and its summary is produced by the function

valToSummary : D → S, which encapsulates f . In the centroids example, the initial summary is the

input value (Algorithm 2, valToSummary function).

Algorithm 1: Generic Distributed Data Classification Algorithm. Dashed frames show auxiliary code

1 state

2 classificationi, initially {〈valToSummary(vali), 1 , ei 〉}

3 Periodically do atomically

4 Choose j ∈ neighborsi (Selection has to ensure fairness)

5 old← classificationi

6 classificationi ←
⋃

c∈old{〈c.summary, half(c.weight) ,
half(c.weight)
c.weight

· c.aux 〉}

7 send (j,
⋃

c∈old{〈c.summary, c.weight− half(c.weight) ,
(

1− half(c.weight)
c.weight

)

· c.aux 〉})

8 Upon receipt of incoming do atomically

9 bigSet← classificationi ∪ incoming

10 M = partition(bigSet)
11 classificationi ←

⋃|M |
x=1

{

〈mergeSet
(
⋃

c∈Mx
{〈c.summary, c.weight〉}

)

,
∑

c∈Mx
c.weight ,

∑

c∈Mx
c.aux 〉

}

12 function half(α)
13 return the multiple of q which is closest to α/2.

A node occasionally sends data to a neighbor (Algorithm 1, Lines 3–7): It first splits its classification

into two new ones. For each collection in the original classification, there is a matching collection in each of

the new ones, with the same summary, but with approximately half the weight. Weight is quantized, limited

to multiples of a system parameter q (q, 2q, 3q, · · ·). This is done in order to avoid a scenario where it takes

infinitely many transfers of infinitesimal weight to transfer a finite weight from one collection to another

(Zeno effect). We assume q is small enough to avoid quantization errors: q ≪ 1
n . In order to respect the

quantization requirement, the weight is not multiplied by exactly 0.5, but by the closest factor for which the

resulting weight is a multiple of q (function half in Algorithm 1). One of the collections is attributed the

result of half and the other is attributed the complement, so that the sum of weights is equal to the original,

and system-wide conservation of weight is maintained.

5

Algorithm 2: Centroid Functions

1 function valToSummary(val)
2 return val

3 function mergeSet(collections)

4 return









∑

〈avg,m〉 ∈
collections

m









−1

×
∑

〈avg,m〉 ∈
collections

m·avg

5 function partition(bigSet)
6 M = bigSet

7 If there are sets in M with weight q, merge them arbitrarily with others.

8 while |M | > k do

9 Let Mx and My be (different) elements of M whose centroids are closest.

10 M = M \ {Mx,My} ∪ (Mx ∪My)

11 return M

The node then keeps one of the new classifications, replacing its original one (Line 6), and sends the

other to some neighbor j (Line 7). The selection of neighbors has to ensure fairness in the sense that

in an infinite run, each neighbor is chosen infinitely often; this can be achieved, e.g., using round robin.

Alternatively, the node may implement gossip communication patterns: It may choose a random neighbor

and send data to it (push), or ask it for data (pull), or perform a bilateral exchange (push-pull).

When a message with a neighbor’s classification reaches the node, an event handler (Lines 8–11) is

called. It first combines the two classifications of the nodes into a set bigSet (Line 9). Then, an application-

specific function partition divides the collections in bigSet into setsM = {Mx}|M |
x=1 (Line 10). The col-

lections in each of the sets in M are merged into a single collection, together forming the new classification

of the node (Line 11). The summary of each merged collection is calculated by another application-specific

function, mergeSet, and its weight is the sum of weights of the merged collections.

To conform with the restrictions of k and q, the partition function must guarantee that (1) |M | ≤ k; and

(2) no Mx includes a single collection of weight q (that is, every collection of weight q is merged with at

least one other collection).

Note that the parameter k forces lossy compression of the data, since merged values cannot later be

separated. At the beginning, only a small number of data values is known to the node, so it performs only

a few (easy) classification decisions. As the algorithm progresses, the number of samples described by the

node’s classification increases. By then, it has enough knowledge of the data set, so as to perform correct

classification decisions, and achieve a high compression ratio without losing valuable data.

In the centroids algorithm, the summary of the merged set is the weighted average of the summaries

of the merged collections, calculated by the implementation of mergeSet shown in Algorithm 2. Merg-

ing decisions are based on the distance between collection centroids. Intuitively, it is best to merge close

centroids, and keep distant ones separated. This is done greedily by partition (shown in Algorithm 2)

which repeatedly merges the closest sets, until the k bound is reached.

6

4.2 Auxiliaries and Instantiation Requirements

4.2.1 Instantiation Requirements

To phrase the requirements, we describe a collection in 〈D, (0, 1]〉∗ as a vector in the Mixture Space —

the space R
n (n being the number of input values), where each coordinate represents one input value. A

collection is described in this space as a vector whose j’th component is the weight associated with valj in

that collection. A vector in the mixture space precisely describes a collection. We can therefore view f as

a mapping from mixture space vectors of collections to collection summaries, i.e., f : R
n → S. From this

point on, we use f in this manner.

We define the distance function dM : (Rn)2 → R between two vectors in the mixture space to be

the angle between them. Collections consisting of similar weighted values, are close in the mixture space

(according to dM). Their summaries should be close in the summary space (according to dS), with some

scaling factor ρ. Formally:

R1 For any input value set, ∃ρ : ∀v1, v2 ∈ (0, 1]n : dS(f(v1), f(v2)) ≤ ρ · dM (v1, v2).

In the centroids algorithm, we define dS to be the L2 distance between the centroids of collections. This

fulfills requirement R1. We defer the proof of this guarantee to Appendix A.

In addition, operations on summaries must preserve the relation to the collections they describe:

R2 Samples are mapped by f to their summaries: ∀i, 1 ≤ i ≤ n : valToSummary(vali) = f(ei).

R3 Summaries are oblivious to weight scaling: ∀α > 0, v ∈ (0, 1]n : f(v) = f(αv).

R4 Merging the summarized description of collections is equivalent to merging the collections and then

summarizing the result: mergeSet
(
⋃

v∈V 〈f(v), ‖v‖1〉
)

= f
(
∑

v∈V v
)

.

4.2.2 A Collection Summary is a Function of its Auxiliary Variable

We show that the weighted summaries maintained by the algorithm to describe collections that are merged

and split, indeed do so. To do that, we define an auxiliary algorithm. This is an extension of Algorithm 1

with the auxiliary code in the dashed frames. Collections are now triplets, containing, in addition to the

summary and weight, the collection’s mixture space vector c.aux.

At initialization (Line 2), the auxiliary vector at node i is ei (a unit vector whose i’th component is 1).

When splitting a collection (Lines 6–7), the vector is factored by about 1/2 (the same ratio as the weight).

When merging a set of collections, the mixture vector of the result is the sum of the original collections’

vectors (Line 11).

The following lemma shows that, at all times, the summary maintained by the algorithm is indeed that

of the collection described by its mixture vector:

Lemma 1 (A Summary is a Function of its Vector). The generic algorithm, instantiated by functions satis-

fying R1–R4, maintains the following invariant:

∀1 ≤ i ≤ n : ∀c ∈ classificationi : f(c.aux) = c.summary.

The lemma is proven by induction on the algorithm’s progress, where in each step a single operation is

performed, and the operations maintain the invariant. The formal proof is deferred to Appendix B.

7

5 Gaussian Classification

When classifying value sets from a metric space, the centroids solution is seldom sufficient. Consider the

example shown in Figure 1, where we need to associate a new value with one of two existing collections.

Figure 1a shows the information that the centroids algorithm has for collections A and B, and a new value.

The algorithm would associate the new value to collection A, on account of it being closer to its centroid.

However, Figure 1b shows the set of values that produced the two collections. We see that it is more likely

that the new value in fact belongs to collection B, since it has a much larger variance.

(a) Centroids and a new value (b) Gaussians and a new value

Figure 1: Associating a new value when collections are summarized (a) as centroids and (b) as Gaussians.

The field of machine learning suggests the heuristic of classifying data using a Gaussian Mixture (a

weighted set of normal distributions), allowing for a rich and accurate description of multivariate data.

Figure 1b illustrates the summary employed by GM: An ellipse depicts an equidensity line of the Gaussian

summary of each collection. Given these Gaussians, one can easily classify the new value correctly.

We present in Section 5.1 the GM algorithm — a new distributed classification algorithm, implementing

the generic one by representing collections as Gaussians, and classifications as Gaussian Mixtures. Contrary

to the classical machine learning algorithms, ours performs the classification without collecting the data in

a central location. Nodes use the popular machine learning tool of Expectation Maximization to make

classification decisions (Section 5.2). A taste of the results achieved by our GM algorithm is given in

Section 5.3 via simulation. It demonstrates the classification of multidimensional data. More simulation

results appear in [7] — an informal publication of the GM algorithm. Note that due to the heuristic nature

of EM, the only possible evaluation of our algorithm’s quality is empirical.

5.1 Gaussian Mixture Classification

The summary of a collection is the tuple 〈µ, σ〉, comprised of the average of the weighted values in the

collection µ ∈ R
d (where D = R

d the value space), and their covariance matrix σ ∈ R
d×d. Together with

the weight, a collection is described by a weighted Gaussian, and a classification consists of a weighted set

of Gaussians, or a Gaussian Mixture.

The mapping f of a vector is the tuple 〈µ, σ〉 of the average and covariance matrix of the collec-

tion represented by the normalized vector. We define dS as in the centroids algorithm. The function

valToSummary(val) returns a collection with an average equal to val, a zero covariance matrix, and a

weight of 1. The function mergeSet takes a set of weighted summaries and calculates the summary of

the merged set. A complete description of the functions, showing they conform to R1–R4, is deferred to

Appendix C.

8

5.2 Expectation Maximization Partitioning

To complete the description of the GM algorithm, we now explain the partition function. When a node

has accumulated more than k collections, it needs to merge some of them. In principle, it would be best

to choose collections to merge according to Maximum Likelihood, which is defined in this case as follows:

We denote a Gaussian Mixture of x Gaussians x-GM. Given a too large set of l ≥ k collections, an l-GM,

the algorithm tries to find the k-GM probability distribution for which the l-GM has the maximal likelihood.

However, computing Maximum Likelihood is NP-hard. We therefore instead follow common practice and

approximate it with the Expectation Maximization algorithm [13].

5.3 Simulation Results

Due to the heuristic nature of the Gaussian Mixture classification and of EM, the quality of their results

is typically evaluated experimentally. In this section, we briefly demonstrate the effectiveness of our GM

algorithm through simulation. We demonstrate the algorithm’s ability to classify multidimensional data,

which could be produced by a sensor network.

We simulate a fully connected network of 1,000 nodes. The run progresses in rounds, where in each

round each node sends a classification to one neighbor. Nodes that receive classifications from multiple

neighbors accumulate all the received collections and run EM once for the entire set.

As an example input, we use data generated from a set of three Gaussians in R
2. Values are generated

according to the distribution shown in Figure 2a, where the ellipses are equidensity contours of normal

distributions. This input might describe temperature readings taken by a set of sensors positioned on a fence

located by the woods, and whose right side is close to a fire outbreak. Each value is comprised of the sensor’s

location x and the recorded temperature y. The generated input values are shown in Figure 2b. We run the

GM algorithm with this input until its convergence; k = 7 and q is set by floating point accuracy.

The result is shown in Figure 2c. The ellipses are equidensity contours, and the x’s are isolated samples

(zero variance). This result is visibly a usable estimation of the input data.

(a) Distribution fG (b) Values (c) Result

Figure 2: Gaussian Mixture classification example. The three Gaussians in Figure 2a were used to generate

the data set in Figure 2b. The GM algorithm produced the estimation in Figure 2c.

9

6 Convergence Proof

We now prove that the generic algorithm presented in Section 4 solves the distributed classification problem.

To prove convergence, we consider a pool of all the collections in the system, including all nodes and

communication channels. This pool is in fact, at all times, a classification of the set of all input values. In

Section 6.1 we prove that the pool of all collections converges, i.e., roughly speaking, it stops changing.

Then, in Section 6.2, we prove that the classifications in all nodes converge to the same destination.

6.1 Collective Convergence

In this section, we ignore the distributive nature of the algorithm, and consider all the collections in the

system at time t as if they belonged to a single multiset pool(t). A run of the algorithm can therefore be

seen as a series of splits and merges of collections.

To argue about convergence, we first define the concept of collection descendants: for t1 ≤ t2, a collec-

tion c2 ∈ pool(t2) is a descendant of a collection c1 ∈ pool(t1) if c2 is equal to c1, or the result of operations

on c1. Formally:

Definition 5 (Collection Genealogy). We recursively define the descendants desc(A, ∗) of a collection set

A ∈ pool(t). First, at t, the descendants are simply A. Next, consider t′ > t.
Assume the t′ operation in the execution is splitting (and sending) (Lines 3–7) a set of collections

{cx}lx=1 ⊂ pool(t′ − 1). This results in two new sets of collections, {c1x}lx=1 and {c2x}lx=1, being put

in pool(t′) instead of the original set. If a collection cx is a descendant at t′− 1, then the collections c1x and

c2x are descendants at t′.
Assume the t′ operation is a (receipt and) merge (Lines 8–11), then some m (1 ≤ m ≤ k) sets of

collections {Mx}mx=1 are merged and are put in pool(t′) instead of the merged ones. For every Mx, if any

of its collections is a descendant at t′ − 1, then its merge result is a descendant at t′.
Formally:

desc(A, t′)
∆
=



















A t′ = t

desc(A, t′ − 1) \ {cx}lx=1 ∪
⋃l
x=1{{c1x, c2x}|cx ∈ desc(A, t′ − 1)} t′ > t, operation t’

is split

desc(A, t′ − 1) \
⋃m
x=1Mx ∪

⋃m
x=1{cx|Mx ∩ desc(A, t′ − 1) 6= φ} t′ > t, operation t’

is merge

By slight abuse of notation, we write v ∈ pool(t) when v is the mixture vector of a collection c, and

c ∈ pool(t); vector genealogy is similar to collection genealogy.

We now state some definitions and the lemmas used in the convergence proof. The proofs of some

lemmas are deferred to Appendix D. We prove that, eventually, the descendants of each vector converge

(normalized) to a certain destination. To do that, we investigate the angle between a vector v and the i’th
axis unit vector, which we call the i’th reference angle and denote ϕvi . We denote by ϕi,max(t) the maximal

i’th reference angle over all vectors in the pool at time t:

ϕi,max(t)
∆
= max

v∈pool(t)
ϕvi .

Lemma 2 (Monotonically Decreasing ϕi,max). For 1 ≤ i ≤ n, ϕi,max(t) is monotonically decreasing.

10

Since the maximal reference angles are bounded from below by zero, Lemma 2 shows that they con-

verge, and we can define

ϕ̂i,max
∆
= lim

t→∞
ϕi,max(t) .

By slight abuse of terminology, we say that the i’th reference angle of a vector v ∈ pool(t) converges to

ϕ, if for every ε there exists a time t′, after which the i’th reference angle of all of v’s descendants is in the

ε neighborhood of ϕ.

The next lemma shows that there exists a time after which the pool is partitioned into classes, and the

vectors from each class merge only with one another. Moreover, the descendants of all vectors in a class

converge to the same reference angle.

Lemma 3 (Class Formation). For every 1 ≤ i ≤ n, there exists a time ti,max and a set of vectors Vi,max ⊂
pool(ti,max) s.t. the i’th reference angles of the vectors converge to ϕ̂i,max, and their descendants are merged

only with one another.

We next prove that the pool of auxiliary vectors converges:

Lemma 4 (Auxiliary Collective Convergence). The set of auxiliary variables in the system converges, i.e.,

there exists a time t, s.t. the normalized descendants of each vector in pool(t) converge to a specific desti-

nation vector, and merge only with descendants of vectors that converge to the same destination.

Proof. By Lemmas 2 and 3, for every 1 ≤ i ≤ n, there exist a maximal i’th reference angle, ϕ̂i,max, a time,

ti,max, and a set of vectors, Vi,max ⊂ pool(ti,max), s.t. the i’th reference angles of the vectors Vi,max converge

to ϕ̂i,max, and the descendants of Vi,max are merged only with one another.

The proof continues by induction. At ti,max we consider the vectors that are not in desc(Vi,max, ti,max).
The descendants of these vectors are never merged with the descendants of the Vi,max vectors. Therefore,

the proof applies to them with a new maximal i’th reference angle. This can be applied repeatedly, and since

the weight of the vectors is bounded from below by q, we conclude that there exists a time t after which, for

every vector v in the pool at time t′ > t, the i’th reference of v converges. Denote that time tconv,i.

Next, let tconv = max{tconv,i|1 ≤ i ≤ n}. After tconv, for any vector in the pool, all of its reference

angles converge. Moreover, two vectors are merged only if all of their reference angles converge to the

same destination. Therefore, at tconv, the vectors in pool(tconv) can be partitioned into disjoint sets s.t. the

descendants of each set are merged only with one another and their reference angles converge to the same

values. For a class x of vectors whose reference angles converge to (ϕxi)
n
i=1, its destination in the mixture

space is the normalized vector (cosϕxi)
n
i=1.

We are now ready to derive the main result of this section.

Corollary 1. The classification series pool(t) converges.

Proof. Lemma 4 shows that the pool of vectors is eventually partitioned into classes. This applies to the

weighted summaries pool as well, due to the correspondence between summaries and auxiliaries (Lemma 1).

For a class of collections, define its destination collection as follows: Its weight is the sum of weights of

collections in the class at tconv, and its summary is that of the mixture space destination of the class’s mixture

vectors. Using requirement R1, it is easy to see that after tconv, the classification series pool(∗) converges to

the set of destination collections formed this way.

11

6.2 Distributed Convergence

We show that the classifications in each node converge to the same classification of the input values.

Lemma 5. There exists a time tdist after which each node holds at least one collection from each class.

Proof. First note that after tconv, once a node has obtained a collection that converges to a destination x, it

will always have a collection that converges to this destination, since it will always have a descendant of that

collection — no operation can remove it.

Consider a node i that obtains a collection that converges to a destination x. It eventually sends a

descendant thereof to each of its neighbors due to the fair choice of neighbors. This can be applied repeatedly

and show that, due to the connectivity of the graph, eventually all nodes hold collections converging to x.

Boyd et al. [3] analyzed the convergence of weight based average aggregation. The following lemma

can be directly derived from their results:

Lemma 6. In an infinite run of Algorithm 1, after tdist, at every node, the relative weight of collections

converging to a destination x converges to the relative weight of x (in the destination classification).

We are now ready to prove the main result of this section.

Theorem 1 (Distributed Classification Convergence). Algorithm 1, with any implementation of the func-

tions valToSummary, partition and mergeSet that conforms to Requirements R1–R4, solves the

Distributed Classification Problem (Definition 4).

Proof. Corollary 1 shows that pool of all collections in the system converges to some classification dest, i.e.,

there exists mappings ψt from collections in the pool to the elements in dest, as in Definition 3. Lemma 5

shows that there exists a time tdist, after which each node obtains at least one collection that converges to

each destination.

After this time, for each node, the mappings ψt from the collections of the node at t to the dest collections

show convergence of the node’s classification to the classification dest (of all input values). Corollary 1

shows that the summaries converge to the destinations, and Lemma 6 shows that the relative weight of all

collections that are mapped to a certain collection x in dest converges to the relative weight of x.

7 Conclusion

We presented the problem of distributed data classification, where nodes obtain values and must calculate a

classification thereof. We presented a generic distributed data classification algorithm that solves the prob-

lem efficiently by employing adaptive in-network compression. The algorithm is completely generic and

captures a wide range of algorithms for various instances of the problem. We presented a specific instance

thereof — the Gaussian Mixture algorithm, where collections are maintained as weighted Gaussians, and

merging decisions are done using the Expectation Maximization heuristic. Finally, we provided a proof that

any implementation of the algorithm converges.

Acknowledgements

We would like to thank Prof. Yoram Moses and Nathaniel Azuelos for their valuable advice.

12

References

[1] G. Asada, M. Dong, T. Lin, F. Newberg, G. Pottie, W. Kaiser, and H. Marcy. Wireless integrated

network sensors: Low power systems on a chip. In ESSCIRC, pages 9–16, sep 1998.

[2] Y. Birk, L. Liss, A. Schuster, and R. Wolff. A local algorithm for ad hoc majority voting via charge

fusion. In DISC, pages 275–289, 2004.

[3] S. P. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algorithms: design, analysis and applications.

In INFOCOM, pages 1653–1664, 2005.

[4] S. Datta, C. Giannella, and H. Kargupta. K-means clustering over a large, dynamic network. In SDM,

2006.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em

algorithm. J. Royal Stat. Soc., 39(1):1–38, 1977.

[6] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience, 2nd edition, 2000.

[7] I. Eyal, I. Keidar, and R. Rom. Distributed clustering for robust aggregation in large networks. In

HotDep, 2009.

[8] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications. J. Comput.

Syst. Sci., 31(2):182–209, 1985.

[9] M. Haridasan and R. van Renesse. Gossip-based distribution estimation in peer-to-peer networks. In

International Workshop on Peer-to-Peer Systems (IPTPS 08), February 2008.

[10] J. Heller. Catch-22. Simon & Schuster, 1961.

[11] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information. In FOCS,

pages 482–491, 2003.

[12] W. Kowalczyk and N. A. Vlassis. Newscast em. In NIPS, 2004.

[13] J. B. Macqueen. Some methods of classification and analysis of multivariate observations. In Pro-

ceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pages 281–297,

1967.

[14] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis diffusion for robust aggregation in

sensor networks. In SenSys, pages 250–262, 2004.

[15] J. Sacha, J. Napper, C. Stratan, and G. Pierre. Reliable distribution estimation in decentralised envi-

ronments. Submitted for Publication, 2009.

[16] D. J. Salmond. Mixture reduction algorithms for uncertain tracking. Technical report, RAE Farnbor-

ough (UK), January 1988.

[17] B. Warneke, M. Last, B. Liebowitz, and K. Pister. Smart dust: communicating with a cubic-millimeter

computer. Computer, 34(1):44–51, Jan 2001.

13

A Centroids R1 Compliance

We prove the following claim, showing that the centroids algorithm satisfies R1.

Claim 1. For the centroids algorithm, as described in Section 4, with dS defined to be the L2 distance

between centroids, and for each input value set, there exists a ρ such that the distance between the centroids

of collections is smaller than the angle between the vectors that represent them in the mixture Space.

Proof. Let ρ be the maximal L2 distance between values, and let ṽ be the L2 normalized vector v. We show

that R1 holds with this ρ.

dS(f(v1), f(v2))
(1)

≤

ρ‖v1 − v2‖1
(2)

≤

ρ · n−1/2‖ṽ1 − ṽ2‖1
(3)

≤

ρ‖ṽ1 − ṽ2‖2
(4)

≤
ρ · dM (ṽ1, ṽ2) = ρ · dM (v1, v2)

(1) Each value may donate at least ρ the coordinate difference.

(2) The normalization from L1 to L2 may factor each dimension by no less than n−1/2.

(3) The L1 norms is smaller than
√
n times the L2 norm, so a factor of

√
n is added that annuls the n−1/2

factor.

(4) Recall that dM is the angle between the two vectors. The L2 difference of normalized vectors is

smaller than the angle between them.

B Summary and Auxiliary Relation in Algorithm 1

We prove that, at all times, the summary maintained by Algorithm 1 is that of the collection described by its

mixture vector:

Lemma 1 (restated) The generic algorithm, instantiated by functions satisfying R1–R4, maintains the

following invariant:

∀1 ≤ i ≤ n : ∀c ∈ classificationi : f(c.aux) = c.summary.

Proof. By induction on the states of the system. The system status changes by the two operations send

(Lines 3–7) started by a node and receive (Lines 8–11) run by a node due to a message arrival on a com-

munication channel. Due to the atomicity of the operations, we can serialize the transitions of the system,

and describe the progress of the algorithm after each transition: t0 (after initialization), then t1, t2, · · · . We

monitor the collections in the system as a single set, since it is irrelevant which node holds each collection.

Basis Initialization puts at time t0 in node i the valToSummary of value i and the vector ei. Requirement

R2 ensures the invariant holds at this state.

14

Assumption At state j − 1 the invariant holds.

Step Transition j may be either send or receive. Each of them removes collections from the set, and

produces a collection or two. To prove that at time tj the invariant holds, we need only show that in

both cases the new collection(s) maintain the invariant.

Send We show that the mapping holds for the kept collection ckeep. A similar proof holds for the sent

one csend.

ckeep.summary
Line 6
=

= c.summary
Induction

assumption
=

= f(c.aux)
R3
=

= f

(

half(c.weight)

c.weight
· c.aux

) Auxiliary
line 6=

= f(ckeep.aux)

Receive We prove that the mapping holds for each of the m produced collections. Each collection

cx is derived from a set Mx. mergeSet takes a set M̃x, produced by removing the auxiliary

variable from the collections.

cx.summary
Line 11

=

= mergeSet(M̃x)
Induction

assumption
=

= mergeSet











⋃

〈c′.summary,

c′.weight〉 ∈ M̃x

f(c′)











R4
=

= f











∑

〈c′.summary,

c′.weight〉 ∈ M̃x

c′.aux











Auxiliary
line 11=

= f (c.aux)

C GM Algorithm Functions

We specify the functions that implement the Gaussian Mixture algorithm, and show that they conform to

Requirements R1–R4.

15

Let v = (v1, · · · , vn) be an auxiliary vector; we denote by ṽ a normalized version thereof:

ṽ =
v

∑s
j=1 vj

Recall that vj represents the weight of valj in the collection. The centroid µ(v) and covariance matrix

σ(v) of the weighted values in the collection are calculated as follows:

µ(v) =
n

∑

j=1

ṽj · valj , and

σ(v) =
1

1−
∑n

k=1 ṽ
2
k

n
∑

j=1

ṽj(valj − µ)(valj − µ)T .

We use them to define the mapping f from the mixture space to the summary space: f(v) = 〈µ(v), σ(v)〉.
Note that the use of the normalized vector ṽ makes both µ(v) and σ(v) invariant under weight scaling, thus

fulfilling Requirement R3.

We define dS as in the centroids algorithm. Namely, it is the L2 distance between the centroids of

collections. This fulfills requirement R1 (see Appendix A).

The function valToSummary returns a collection with an average equal to the value, a zero covariance

matrix, and a weight of 1. Requirement R2 is trivially satisfied.

To describe the function mergeSet we use the following definitions: Denote the weight, average and

covariance matrix of collection x by wx, µx and σx, respectively. Given the summaries and weights of two

collections a and b, one can calculate the summary of a collection c created by merging the two:

µc =
wa

wa + wb
µa +

wb
wa + wb

µb

σc =
wa

wa + wb
σa +

wb
wa + wb

σb +
wa · wb

(wa + wb)2
· (µa − µb) · (µa − µb)T

This merging function maintains the average and covariance of the original values [16], therefore it can be

iterated to merge a set of summaries and implement mergeSet in a way that conforms to R4.

D Generic Algorithm Convergence

We prove two lemmas necessary for the convergence proof of Section 6.

D.1 Maximal Reference Angle is Monotonically Decreasing

We prove Lemma 2, showing that the i’th reference angle is monotonically decreasing (for any 1 ≤ i ≤ n).

To achieve this, we show that the sum of two vectors has an i’th reference angle not larger than the larger

i’th reference angle of the two (Lemma 10). The proof considers the 3-dimensional space spanned by the

two summed vectors and the i’th axis. We show in Lemma 8 that it is sufficient to considered the angles of

the two vectors in a 2-dimensional space spanned by the two summed vectors, and then show in Lemma 9

that in this space the claim holds. We begin by proving Lemma 7 showing that all the relevant angles are

bounded by π/2.

16

Denote by ‖v‖p the Lp norm of v. ‖v‖ is the Euclidean (L2) norm. v1 · v2 is the scalar product of the

vectors v1 and v2. The angle between two vectors in the mixture space is:

arccos

(

va · vb
‖va‖ · ‖vb‖

)

Lemma 7 (Acute Reference Angles). The reference angles of all collection vectors (for all 1 ≤ i ≤ n) and

their sums are at most π/2. Same goes for the angles between the vector and the projection of ei on their

plane.

Proof. Consider the angle between a collection vector v and one of the unit vectors (take e1 WLOG). The

first element of v is denoted v[1]:

ϕ = arccos

(

v · e1
‖v‖2 · ‖e1‖2

)

= arccos

(

v[1]

‖v‖2

)

.

Since arccos is monotonically decreasing, the vector ṽ with positive coordinates only that maximizes the

angle, minimizes the expression
ṽ[1]
‖ṽ‖2

. This expression is brought to a minimum by a vector such as ṽ =

(0, 1, 0, · · · , 0), and the maximal angle is:

ϕmax = arccos(0) =
π

2
.

va and vb are vectors with positive coordinates. vc is their sum, therefore it too has only positive coordinates.

Therefore, according to the above, all three have reference angles not larger than π
2 .

ϕẽ is the minimal angle between ei and a vector on the XY plane, therefore it is smaller than both ϕa and

ϕb. Both of these angles are smaller than π
2 , so 0 < ϕẽ <

π
2 .

Finally, we show that for any vector on the plane with a mixing angle ϕ < π
2 , its angle with the projection

of ei is also smaller than π
2 . From Equation 1 we have

ϕ̃ = arccos

(

cosϕ

cosϕẽ

)

.

Since cosϕẽ ≤ 1, we obtain cosϕ
cosϕẽ

≥ cosϕ. Since arccos is monotonically decreasing, ϕ̃ ≤ ϕ, and

specifically ϕ̃ ≤ π
2 . Therefore, the angles of va, vb and vc with the projection of ei are all not larger

than π
2 .

We now show that we may prove for 2-dimensions rather than 3:

Lemma 8 (Reduction to 2 dimensions). In a 3 dimensional space, let va and vb be two vectors lying on the

XY plane with angles not larger than π/2 with the X axis. Assume va’s angle with the axis is larger than

that of vb. Let ve be a third vector whose projection on the XY plane is aligned with the X axis, and whose

angles with the X and Z axes are not larger than π/2. Let vc = va + vb. If the angle of vc with the axis is

smaller than that of va, then vc’s angle with ve is smaller than that of va.

Proof. Let us express the angle of a vector on the XY plane with ve using the angle of the vector with the

X axis, i.e., with the projection of ve on the XY plane. Figure 4 shows such a vector v.

Denote the end point of the vector by v, and the origin by O. Construct a perpendicular to the X axis

passing through v. Denote the point of intersection ẽ. From ẽ take a perpendicular to the XY plane, until

17

intersecting the reference vector. Denote that intersection point e. Oe is the vector ei andOẽ is its projection

on the XY axis. This construction is also shown in Figure 4.

Oẽ = |v| cos ϕ̃

Op =
Oẽ

cosϕẽ
=
|v| cos ϕ̃

cosϕẽ

eẽ = Oẽ tanϕẽ = |v| cos ϕ̃ tanϕẽ

vẽ = |v| sin ϕ̃
ve =

√

eẽ2 + vẽ2 =
√

(|v| cos ϕ̃ tanϕẽ)2 + (|v| sin ϕ̃)2

Now we can use the law of cosines to obtain:

ϕ = arccos
Ov2 +Oe2 − ve2

2 ·Ov ·Oe = arccos(cos ϕ̃ cosϕẽ) (1)

Both ϕ̃i and ϕi are smaller than 90◦. (Lemma 7)

Getting back to Equation 1, since 0◦ ≤ ϕ̃ ≤ 90◦ and 0◦ ≤ ϕẽ ≤ 90◦, we see that ϕ is monotonically

increasing with ϕ̃. Therefore, if ϕ̃c < ϕ̃a, and both are smaller than 90◦, then:

cos ϕ̃a ≤ cos ϕ̃c

cos ϕ̃a cosϕẽ ≤ cos ϕ̃c cosϕẽ

arccos(cos ϕ̃a cosϕẽ) ≥ arccos(cos ϕ̃c cosϕẽ)

ϕa ≥ ϕc (2)

We prove our claim, after the reduction to 2 dimensions.

Lemma 9 (Smaller angle with Projection). Let va and vb be two vectors in a two dimensional space, with

angles with the X axis smaller than π/2, s.t. va’s angle with the X axis is larger. The angle of vc = va + vb
with the X axis is not larger than va’s angle with it.

Proof. Lemma 7 shows that both angles are smaller than π
2 . Figure 3 shows the only two possible cases. It

is evident that in both cases the lemma holds.

And now, back to the n dimensional mixture space.

Lemma 10 (Decreasing Reference Angle). The sum of two vectors in the mixture space is a vector with a

smaller i’th reference angle than the larger i’th reference angle of the two, for any 1 ≤ i ≤ n.

Proof. Denote the two vectors va and vb, and their i’th reference angles ϕai and ϕbi , respectively. Assume

WLOG that ϕai ≥ ϕbi .
It is sufficient to prove the above in the 3 dimensional space spanned by va, vb and ei. Align the XYZ

axes such that va and vb lie on the XY plane and the projection of ei on that plane is aligned with the X
axis. vc lies on the XY plane, as it is a linear combination of two vectors on the plane. Figure 4 shows this

space with the vector ei and a vector v on the XY plane.

It is sufficient to show the angle of vc with the projection of the reference vector is smaller than the angle

of va with the projection. (Lemma 8)

vc’s angle with the X axis is smaller than va’s angle with it. (Lemma 9)

18

(a) (b)

Figure 3

Figure 4

We are now ready to prove the main result of this section.

Lemma 2 (restated) For 1 ≤ i ≤ n, ϕi,max(t) is monotonically decreasing.

Proof. The sum of two vectors is a vector with a smaller i’th reference angle than the larger of the i’th
reference angles of the two. (Lemma 10)

If vectors are replaced by their sum and one of them had the maximal reference angle, then according to

the above point the maximal reference angle may only decrease. The new reference angle may be the one

of the new sum vector, or the one of another vector in the pool.

If vectors are replaced by their sum and none of them had the maximal i’th reference angle, then ϕi,max

is unchanged. Proof is trivial given the above point.

D.2 Vectors Partitioning and i’th Reference Angle Convergence

We prove Lemma 3, showing that the vectors in the pool are partitioned by the algorithm according to the

i’th reference angle their descendants converge to (for any 1 ≤ i ≤ n). We show that, due to the quantization

of weight, a gap is formed between descendants that converge to the maximal reference angle, and those

19

that do not. We prove that a gap is formed and there are no vectors in it (Lemma 11), and then show that

vectors from different sides of the gap are never merged (Lemma 12). We use the following definition:

Definition 6. Since the i’th maximal reference angle converges (Lemma 10), for every ε there exists a time tε
after which there are always vectors in the ε neighborhood of ϕ̂i,max. Denote by qε the minimal weight (sum

of L1 norms of vectors) ever to be in this neighborhood after tε. Such a qε exists because of the quantization

of weight.

The following observation immediately follows:

Observation 1. For every ε′ < ε, the relation qε′ ≤ qε holds. Specifically: qε−qε′ = l·q with l ∈ {0, 1, · · · }.

We show that a gap is formed in which there are no vectors.

Lemma 11. There exists an ε such that for every ε′ < ε the minimal weights in both neighborhoods of

ϕ̂i,max are the same: qε = qε′ .

Proof. Assume for contradiction that this does not hold, so (since Observation 1 showed that qε′ ≤ qε), for

every ε there exists an ε′ < ε whose minimal weight is strictly smaller: qε′ < qε.
The algorithm ensures that weights of collections are always multiples of q, therefore, for every ε, there

exists an ε′ < ε whose minimal weight is smaller by at least q: q′ε ≤ qε − q.

Let us build a series of ε’s with decreasing matching qε’s. Choose some ε0 arbitrarily. For every i, define

εi such that qεi
≤ qεi−1

− q. Such an εi exists according to Statement D.2. If the initial weight in the system

is W , then after W · q−1 + 1 steps the minimal weight in the εW ·q−1+1 neighborhood is negative, which is

of course impossible.

We conclude that an ε as required indeed exists.

And we show a gap exists, s.t. vectors from different sides of it are never merged.

Lemma 12. For any given ε, there exists an ε′ < ε such that if a vector vout lies outside the ε neighborhood

with a reference angle smaller than ϕ̂i,max−ε, and a vector vin of weight win lies inside the ε′ neighborhood,

then their sum vc lies outside the ε′ neighborhood.

Proof. We go through the proof of Lemma 10 in reverse order:

In Lemma 9 it was shown that ϕ̃c ≤ ϕ̃a. Let’s decide to take ε′ ≤ ε/2, so we know that the angle

between va and vb is at least ε/2. Notice also that the L2 norms of va and vb are bounded between q
from below and

√
s from above. Observing Figure 3 again, we deduce that there is a lower bound on the

difference between the angles:

ϕ̃c < ϕ̃a − x1

We now follow the steps leading to Inequality 2. Due to the previous bound, a bound x2 exists such that

cos ϕ̃a < cos ϕ̃c − x2.

Since the reference angles of va and vb are different, at least one of them is smaller than 90◦, therefore

ϕẽ < 90◦ for any such couple. Therefore, cosϕẽ is a bounded size, and there exists a bound x3 such that

cos ϕ̃a cosϕẽ < cos ϕ̃c cosϕẽ − x3.

20

This allows us to finally deduce that there exists a bound x4 such that

arccos(cos ϕ̃a cosϕẽ) > arccos(cos ϕ̃c cosϕẽ) + x4

ϕa > ϕc + x4

Therefore, for a given ε, we choose

ε′ < min

{

1

2
x4,

1

2
ε

}

.

This way, even if ϕa = ϕ̂i,max + ε′, we get that ϕc < ϕ̂i,max − ε′, as needed.

We are now ready to prove the main result of this section.

Lemma 3 (restated) For every 1 ≤ i ≤ n, there exists a time ti,max and a set of vectors Vi,max ⊂ pool(ti,max)
s.t. the i’th reference angles of the vectors converge to ϕ̂i,max, and their descendants are merged only with

one another.

Proof. Choose an ε such that for every ε′ < ε the minimal weights are the same: qε = qε′ . Such an ε exists

according to Lemma 11.

We choose a small enough ε̃, such that for any two sets Vin ε̃ of vectors inside the ε̃ neighborhood and

Vout ε of vectors outside the ε neighborhood (i.e. with reference angles smaller than ϕ̂i,max − ε), their sum

(v =
∑

v′∈Vin ε̃∪Vout ε
v′) is outside the ε̃ neighborhood.

We show such an ε̃ exists. Denote vin ε̃ =
∑

v′∈Vin ε̃
v′ and vout ε =

∑

v′∈Vout ε
v′. All the Vout ε vectors

have reference angles outside the ε neighborhood, i.e., too small. Therefore (Lemma 10) vout ε is also outside

the ε neighborhood. vin ε̃ may either be inside the ε̃ neighborhood or outside it. Lemma 12 proves that there

exists an ε̃ s.t. if Vin ε̃ is inside the ε̃ neighborhood then the sum v is outside the ε neighborhood. If it is

outside, then v = vin ε̃ + vout ε is outside the ε̃ neighborhood (Lemma 10 again).

We choose a tε,min s.t. tε,min > tε̃ and at tε,min the ε neighborhood contains a weight qε = qε̃. Since

tε,min > tε̃, the weight in the ε̃ neighborhood cannot be smaller than qε̃, therefore the weight is actually in

the ε̃ neighborhood.

We now show that all operations after ti,max keep the descendants of the vectors that were in the ε̃
neighborhood at ti,max inside that neighborhood, and never mix them with the other vector descendants, all

of which remain outside the ε neighborhood.

Send operations (Lines 3–7) do not change the angle of the descendants, therefore maintain the claim.

A receive operation (Lines 8–11) takes vectors at tj , and sums them to create a new vector in state tj+1.

We consider all possible cases and show that either all the merged vectors are from inside the ε̃ neighbor-

hood and the result is in that neighborhood, or all the merged vectors are from outside the ε neighborhood

and the result is outside of that neighborhood. There is never a merger of vectors from both inside the ε̃
neighborhood and outside the ε neighborhood.

1. Two vectors from the ε̃ neighborhood are summed up, creating a new vector inside the ε̃ neighborhood.

2. Two vectors from ε̃ are summed up, creating a new vector outside the ε̃ neighborhood. Impossible:

This would leave in the ε′ neighborhood a weight smaller than qε̃, contradicting Definition 6.

3. Two vectors from outside the ε neighborhood are summed up, creating a new vector outside the ε
neighborhood.

21

4. Two vectors from outside the ε neighborhood are summed up, creating a new vector inside the ε
neighborhood. Impossible: the result has a reference angle smaller than those of both vectors, so it

too must be outside the ε neighborhood. (Lemma 10)

5. A vector from outside the ε neighborhood is added to a vector from inside ε̃. The result is a vector

outside the ε̃ neighborhood, since this is how ε̃ was chosen. Contradiction: This would leave in the ε′

neighborhood a weight smaller than qε′ .

22

