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Abstract

An effective way to reduce the number of aborts in software transactional memory (STM) is to keep

multiple versions of transactional objects. In this paper, we study inherent properties of STMs that use

multiple versions to guarantee successful commits of all read-only transactions.

We first show that these STMs cannot be disjoint-access parallel. We then consider the problem of

garbage collecting old object versions, and show that no STM can be optimal in the number of previous

versions kept. Moreover, we show that garbage collecting useless versions is impossible in STMs that

implement invisible reads. Finally, we present an STM algorithm using visible reads that efficiently

garbage collects useless object versions.

1 Introduction

Transactional memory [12, 18] is a popular paradigm for concurrent computing in modern multi-core ar-

chitectures. Most current transactional memory implementations are software toolkits, or STMs for short.

STMs speculatively allow multiple transactions to proceed concurrently, before knowing all possible data

dependencies between them. This optimistic approach inevitably leads to aborting transactions in some

cases, such as when data dependencies introduce inconsistencies. When many transactions contend on the

same data objects, aborts may become frequent, causing a devastating effect on performance [2, 15]. There-

fore, reducing the number of aborts is an important challenge for STMs.

While some aborts are unavoidable, existing STMs tend to be over-conservative, and also abort trans-

actions that could have been committed without violating consistency. Such unnecessary aborts often stem

from coarse-grained inconsistency detection. Consider the scenario depicted in Figure 1. We depict transac-

tional histories in the style of [17]. An object oi’s state in time is represented as a horizontal line, with time

proceeding left to right. Transactions are drawn as polylines, with circles representing accesses to objects.

Filled circles indicate writes, and empty circles indicate reads. A commit is indicated by the letter C, and an

abort by the letter A. A read operation returning an old value of an object is indicated by a dotted arc line.

The initial value of object oi is denoted by o0
i , and the value written to oi by the j’th write is denoted by o

j
i .

In the scenario depicted in Figure 1 transaction T2 reads an object o1, then another transaction T3 updates

objects o1 and o2, and commits. Assume that T2 now tries to read o2. Reading the value o2
2 written by T3

would violate correctness, since T2 does not read the value o1
2 written by T3. In a single-versioned STM,

illustrated in Figure 1(a), T2 must abort. However, a multi-versioned STM may keep both versions o1
2 and

o2
2 of o2, and may return o1

2 to T2, as illustrated in Figure 1(b). This allows T2 to successfully commit, in

spite of its conflict with T3.
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(a) Single-versioned TM, T2 aborts.
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T1

C

(b) Multi-versioned TM, T2 commits.

Figure 1: Keeping multiple versions avoids aborts, which are inevitable in STMs with only one object

version.

We call aborts that can be avoided, such as T2’s abort in Figure 1(a), spurious. We can capture the

amount of spurious aborts that we allow using the notion of permissiveness. Some previously defined

permissiveness conditions, such as single-version permissiveness [8], are too weak, and still allow many

spurious aborts. Other permissiveness conditions, such as online π-permissiveness [13], prevent all spu-

rious aborts, but require complex algorithms to implement (see Section 2 for details). In Section 4, we

define the new notion of multi-versioned (MV) permissiveness. It ensures that read-only transactions never

abort, and permits update transactions to abort only when they conflict with other update transactions. This

property can be achieved by practical algorithms. In fact, the algorithms in [16, 3, 2] would all satisfy

MV-permissiveness if they kept enough object versions.

A key challenge when maintaining multiple versions is knowing when to garbage collect (GC) old

object versions. On the one hand, an STM needs to keep versions that might be needed in the future. On

the other hand, keeping unneeded versions wastes memory. In Section 5, we show that this problem is

inherent. We prove that no STM algorithm can be space optimal, i.e., ensure that it always maintains the

minimum number of object versions possible. We then define an achievable GC property called useless

prefix (UP) GC, based on maintaining object versions only when they may be needed by some existing

read-only transactions.

Satisfying MV-permissiveness (and UP GC) imposes costs on an STM. A key contribution of our paper

is a systematic study of such necessary and sufficient costs. In Section 6, we show that an MV-permissive

STM cannot be weakly disjoint-access parallel (DAP). Roughly speaking, this means that in order to ensure

that read-only transactions never abort, it is necessary for transactions to communicate with each other, even

when they do not access the same transactional objects. We also show that if an STM is MV-permissive

and satisfies UP GC, then read-only transactions must leave some trace of themselves in shared memory,

even after they have committed. Note that this implies the STM cannot use invisible reads [6], an important

technique for optimizing read-only transactions. We also note that if the UP GC requirement is omitted, then

it is possible to implement an STM using invisible reads, as done in our companion paper [15], assuming

there exists a garbage collection thread that sees the private (“invisible”) memory of all transactions, such

as the Java GC.

Finally, to complete our exploration of the design space of MV-permissiveness and garbage collection,

we present in Section 7 a non-DAP algorithm using visible reads, satisfying MV-permissiveness and UP

GC. Our results are summarized in Table 1.

2 Related Work

Permissiveness. The notion of permissiveness was first introduced by Guerraoui et al. [8]. Informally,

an STM satisfies π-permissiveness for a correctness criterion π, if every history that does not violate π is

accepted by the STM. However, Guerraoui et al. focused on a model with single-versioned objects, which
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MV-Permissiveness (Sec. 4)

Space Optimality Impossible (Sec. 5.1)

DAP Impossible (Sec. 6.1)

UP GC (Sec. 5.2)
Impossible when read-only transactions leave no trace after commit. (Sec. 6.2)

Possible with non-DAP algorithm using visible reads. (Sec. 7)

Table 1: Summary of our results.

is insufficient for avoiding many spurious aborts.

Another permissiveness condition, online π-permissiveness, was presented in our earlier paper [13].

Online permissiveness does not allow aborting transactions if there is a way to continue the run without

violating π [10]. This condition is strong enough to avoid all spurious aborts, but is too complex to achieve

with practical algorithms, and also requires keeping a large number of object versions. In fact, object

versions overwritten by a write-only transaction T cannot be garbage collected until all transactions that

started before T ’s commit terminate.

Garbage collection. Any practical multi-versioned STM has to address the problem of removing old

object versions. Some earlier STMs, such as LSA [16] and Versioned Boxes [3], keep a fixed number of

old object versions. This approach is neither necessary nor sufficient: certain object versions kept by these

algorithms may be GCed without causing additional aborts, while the algorithms sometimes do not keep

enough object versions to ensure all read-only transactions commit.

Another approach for garbage collection was presented in our selective multi-versioning (SMV) STM

[15]. SMV keeps a variable number of old versions, which reduces memory usage while ensuring read-only

transactions can always commit. Nevertheless, SMV does not satisfy UP GC, and hence keeps more object

versions than the algorithm we present in Section 7. In addition, our new algorithm is more efficient for

read-only transactions. The tradeoff is that update transactions are more costly.

Impossibility of DAP. An important technique for optimizing STM performance is disjoint-access par-

allelism. As described earlier, this means that transactions that do not access the same objects should also

not access the same memory locations, thereby avoiding memory contention. Kapalka and Guerraoui [9]

show that a single-versioned, obstruction free [11] STM cannot be strictly DAP. However, their proof does

not apply in the multi-versioned setting we consider.

Attiya et al. [1] show that there is no STM implementing DAP that uses invisible reads, in which read-

only transactions always terminate. In Section 6.1, we show that no MV-permissive STM can be DAP. As

stated earlier, MV-permissiveness ensures all read-only transactions commit, and update transactions abort

only when they conflict with other update transactions. Thus, our results show that the requirement of

invisible reads in [1] can be replaced by precluding update transactions from aborting when they conflict

with read-only transactions.

3 System Model

Transactions. A transaction consists of a sequence of transactional operations, where each operation is

comprised of an invocation step and a subsequent matching response step, collectively called transactional

steps. The system contains a set of transactional objects. Each transactional operations either accesses a

transactional object, or tries to commit or abort the transaction. More precisely, let T be a transaction, o

be a transactional object, and v be a value. Then a transactional operation is one of the following. (1) An
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invocation step read(T, o), followed by a response step that either gives the current value of o, or responds

A(T ), meaning that the transaction is aborted. (2) An invocation write(T, o, v), followed by a response

either acknowledging the write, or responding A(T ). (3) An invocation Abort(T ), followed by response

A(T ). (4) An invocation Commit(T ), followed either by response C(T ), meaning T committed, or A(T ).
We say the read set, resp. write set of a transaction is the set of transactional objects read, resp. written

to by T . We say T is read-only if its write set is empty. An update transaction is any transaction that is not

read-only. We say two transactions conflict if they both access a common transactional object, and at least

one of the accesses is a write. We assume that the steps in a transaction are not known ahead of time, but it

is known a priori whether a transaction is a read-only or update transaction. Detection of read-only behavior

can be done at compile time or using programmer annotations.

A transactional history H is a sequence of transactional steps, interleaved in an arbitrary order. A

transaction is live in H if it is neither committed nor aborted, it is complete otherwise. We let complete(H)
denote the set of completed transactions in H .

Serializations. Two transactional histories H and H ′ are equivalent if they contain the same transac-

tions, and every transaction performs the same sequence of invocations and receives the same responses in

both histories. The real-time order of a transactional history H , written �H , is a partial order on the trans-

actions in H . Given transactions T, T ′ in H , we define T �H T ′ when the response step for Commit(T )
occurs before the first step of T ′. T, T ′ are concurrent if neither T �H T ′, nor T ′ �H T .

A transactional history S is sequential if it has no concurrent transactions. S is legal if it respects

the sequential specification of each transactional object accessed in S. H is strictly serializable [14] if

complete(H) is equivalent to some legal sequential history S, and �S is a refinement of �H . Note that

strict serializability is strictly weaker than the commonly used correctness condition of opacity [10]. Our

lower bounds hold for algorithms satisfying strict serializability. It can be shown that our algorithm satisfies

opacity, though for simplicity, we only consider strict serializability herein.

STM. A software transactional memory (STM) is an algorithm for running transactions. In this paper,

we assume the algorithm consists of a set of threads. The threads communicate with each other using shared

memory, and each thread also has private memory which it alone can access. Each transaction is run by a

thread, and each thread runs at most one transaction at a time. To run a transaction T , a thread runs each of

T ’s transactional operations, as follows. (1) Take as input an invocation step of T . (2) Perform a sequence of

private and shared memory steps, which are determined by the input and the memory. (3) Return as output

a response step to T . We write thr(T ) for the thread running T .

We call the memory objects accessed by the threads base objects. Note that these are conceptually

distinct from the transactional objects accessed by the transactions. We also call the steps performed by

the threads base steps. We assume that all the base steps for running a transactional step appear to execute

atomically. In practice, this atomicity can be achieved using locks, or by lock-free algorithms [7].

The STM guarantees that each operation invocation eventually gets a response, even if all other threads

do not invoke new transactional operations. This limits the STM’s behavior upon operation invocation, so

that it may either return an operation response, or abort a transaction, but cannot wait for other transactions

to invoke new transactional operations. Note that our model does allow waiting for concurrent transactional

operations to complete, such as the use of locks in TL2 [4]. In other words, the STM provides lock-freedom

at the level of transactional operations.

A configuration of an STM consists of the states of the shared memory, private memory, and threads. An

execution of an STM is an alternating sequence of configurations and base steps, starting with a configuration

in which the memory and threads are all in their initial states. Two executions are indistinguishable to a

thread if it performs the same sequence of state changes in both executions. Given a configuration C and a
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transaction T , we let the configuration external to T in C consist of the state of the shared memory and the

states and private memories of all threads other than thr(T ) in C.

Given a set of transactions T and an execution α, the execution interval of T in α, written interval(α, T ),
is the smallest subsequence of α containing all the base steps for the transactions in T .

DAP. We define the notion of weak disjoint-access parallelism, following [1]. Let T1, T2 be transactions,

and let α be an execution. Let T be the set of all transactions whose execution interval overlaps with the

execution interval of {T1, T2} in α. Let X be the set of transactional objects accessed by T . Let G(T1, T2, α)
be an undirected graph with vertex set X , and an edge between vertices x1, x2 ∈ X whenever there is a

transaction T ∈ T accessing both x1 and x2. We say T1, T2 are disjoint-access in α if there is no path

between T1 and T2 in G(T1, T2, α). Given two sets of base steps, we say they contend if there is a base

object that is accessed by both sets of steps, and at least one of the accesses changes the state of the object.

Definition 1. An STM is weakly disjoint-access parallel (weakly DAP) if, given any execution α, and trans-

actions T1, T2 that are disjoint-access in α, the base steps for T1 and T2 in α do not contend.

4 Multi-Versioned Permissiveness

One of the main benefits of multi-versioning is reducing the aborts rate. In order to evaluate the effectiveness

of multi-versioned STMs, we need to formally define the set of aborts that are avoided. Such restrictions

on aborts are captured by permissiveness conditions. As noted in Section 2, many existing permissiveness

notions are either too weak or too strong. In this section, we define a practically achievable permissiveness

property that is suited for multi-versioned STMs.

Multi-versioning is particularly useful for avoiding aborts of read-only transactions. In fact, by keeping

enough versions, read-only transaction can always find appropriate object versions to read, and commit

successfully. Our permissiveness condition captures this property. In addition, it captures the property that

read-only transactions do not cause update transactions to abort.

Definition 2. An STM satisfies multi-versioned (MV)-permissiveness if a transaction aborts only when it is

an update transaction that conflicts with another update transaction.

We say that an STM satisfying MV-permissiveness is MV-permissive.

Most multi-versioned algorithms [16, 3, 2] are not MV-permissive, because they do not always keep

all the object versions needed to commit all read-only transactions. However, the algorithm we present in

Section 7, as well as the algorithm in [15], are MV-permissive.

5 Garbage Collection Properties

A key aspect to maintaining multiple versions is a mechanism for garbage collecting (GC) old object ver-

sions. This section considers two sides to this problem. In Section 5.1 we show that no STM can always

keep the minimum number of old object versions. Then in Section 5.2, we define an achievable GC property

that removes many old versions.

5.1 Impossibility of Space Optimal STM

Definition 3. An MV-permissive STM X is online space optimal, if for any other MV-permissive STM X ′

and any transactional history H , the number of versions kept by X at any point of time during H is less

than or equal to the number of versions kept by X ′.
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Theorem 1. No MV-permissive STM can be online space optimal.

T1

o1

o2

o3

o4

o5

T2

T3

T4

C

C

t0

?

(a) An STM does not know

whether to remove o
1

3.

T1

o1

o2

o3

o4

o5

T2

T3

T4

C

C

t0

T5

C

t1

(b) Removing o
1

3 obliges an STM

to keep the versions written by T4

to o4 and o5 even after they are

overwritten.

T1

o1

o2

o3

o4

o5

T2

T3

T4

C

C

t0

T5

C

t1

(c) Keeping o
1

3 allows removing

the versions written by T4 to o4 and

o5 after they are overwritten.

Figure 2: No STM can be online space optimal — it is not known at time t0 whether to remove the version

of o3 written by T2.

Proof. The main idea is to construct a transactional history in which any STM that keeps the minimum

number of object versions at a time t0 will keep more than the minimum number of object versions at time

t1 > t0. Thus, no STM can keep the minimum number of versions at all times, and so is not online space

optimal.

Formally, assume for contradiction that there exists an online space optimal STM X satisfying MV-

permissiveness. Consider the transactional history H depicted in Figure 2(a). At time t0, X should either

remove object version o1
3 or keep it. We show that for either one of these decisions, there exists an MV-

permissive STM that keeps fewer versions than X during H or an extension of H .

Assume first that X keeps o1
3 at time t0. Consider another STM X ′ which behaves the same as X until

time t0, but GCs o1
3 as soon as T4 performs its write to o3. Then X ′ keeps fewer object versions than X . It

remains to show that X ′ does not violate MV-permissiveness by GCing o1
3. Notice that it suffices to show

that at time t0, all live read-only transactions, namely T1 and T3, can commit. Now, T1’s first read step

precedes T2’s first write step. Thus, T1 cannot read o1
3 when invoking a read operation of o3. X is MV-

permissive, hence there exists a version ox
3 6= o1

3, which is kept by X at time t0 and which can be read by T1.

Other than removing version o1
3, X and X ′ are the same — T1 can read ox

1 when invoking a read operation

of o3. Also, T3 can return o3
2, by serializing T3 after T4. So both T1 and T3 can commit after X ′ removes o3

1,

and so X ′ satisfies MV-permissiveness. Thus, X is not online space optimal.

Next, suppose that o1
3 is GCed at time t0. Consider the transactional history H1 depicted in Figure 2(b),

which extends H . We claim that the second step of T3 cannot read o0
3. Indeed, T3 starts after T2 finished,

and T2’s second step overwrote o0
3. So, T3’s second step must read o2

3, and so T4 precedes T3 in any strict

serialization. Also, T3 precedes T5 in any strict serialization, because the first step of T3 does not read o1
1.

From this, we get that the third and fourth steps of T3 must read o1
4 and o1

5, resp. So, these object versions

cannot be GCed at time t1. Now, to show that X is not online space optimal, consider another STM X ′ that

keeps o1
3 at time t0, but GCs o1

4 and o1
5 at time t0. We claim that X ′ satisfies MV-permissiveness. Again,

it suffices to show the live read-transactions T1 and T3 at time t0 can commmit. Indeed, T1’s second and

third steps read o0
4 and o0

5, resp., so T1 can commit. Also, T3’s second, third and fourth steps can read o1
3, o0

4

and o0
5, resp., by serializing T3 after T2, and so T3 can also commit. This is illustrated in Figure 2(c). Thus,
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X ′ satisfies MV-permissiveness. So, since X ′ keeps 6 object versions at t1 and X keeps 7, X is not online

space optimal.

5.2 Useless-Prefix GC

Though we have just seen that no MV-permissive STM is online space optimal, we would still like an STM

to garbage collect as many old versions as it can. To this end, we define the following.

Definition 4. An MV-permissive STM satisfies useless-prefix (UP) GC if at any point in a transactional

history H , an object version o
j
i is kept only if there exists an extension of H with a live transaction Ti, such

that (1) Ti can read o
j
i , and (2) Ti cannot read any version written after o

j
i .

In other words, an STM satisfying UP GC, removes the longest possible prefix of versions for each

object at any point in time and keeps the shortest suffix of versions that might be needed by read-only

transactions.

6 Inherent Limitations

In shared memory systems, cache contention due to concurrent memory accesses, and especially concurrent

writes, is a significant performance bottleneck. Thus, it is desirable to try to separate the memory locations

accessed by different transactions as much as possible. One natural requirement seems to be that transactions

that access different transactional objects access only different base objects. However, we show in this

section that MV-permissive STMs cannot satisfy this property.

Another desirable property for an STM is not to update shared memory during read-only transactions.

Such STMs are said to use invisible reads. It is easy to show that an STM satisfying MV-permissiveness and

UP GC cannot use invisible reads. Indeed, UP GC requires knowing about existing read-only transactions,

in order to determine which object versions to GC; such knowledge cannot be obtained unless read-only

transactions write. In our second result in this section, we prove a stronger statement. We show that it is not

possible for an MV-permissive STM to perform UP GC, even when we allow read-only transactions to write,

and only require that when such a transaction runs alone, the external configurations before and after the

transaction are the same. This means that read-only transactions must leave some trace of their existence,

even after they have committed. In particular, even keeping current readers lists for the objects [7], or using

non-zero indicators for conflict detection [5] does not suffice.

6.1 Disjoint-Access Parallelism

Theorem 2. An STM satisfying MV-permissiveness cannot be weakly disjoint-access parallel.

o1

T2

o2

C

T3

T1

C

(a) H1: T1 � T3, T2 must read

the value written by T1.

o1

T2

o2

C

T3

T1

C

(b) H2: T3 � T1, T2 cannot

read the value written by T1.

Figure 3: In a weakly DAP STM T1 does not distinguish between H1 and H2 and cannot be MV-permissive.
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Proof. Suppose for contradiction that there exists an STM satisfying MV-permissiveness that is weakly

DAP. Consider the transactional histories in Figure 3. In both H1 and H2, transactions T2 and T3 conflict on

object o1: T3 writes to o1 and commits, overriding the value read by a live transaction T2. Note that since an

STM satisfies MV-permissiveness, T3 neither aborts nor waits for T2’s termination upon a write to o1. We

claim the following. (1) The second step of T2 returns o1
2 in H1. (2) The second step of T2 returns o1

2 in H2.

(3) The first step of T2 returns o0
1 in H2. (4) H2 is not strictly serializable if the first step of T2 returns o0

1,

and the second step returns o1
2. Conclusion (4) contradicts the strict serializability of the STM. So there is

no STM that is both MV-permissive and weakly DAP. In the following, let s1, s2, s3 denote the first steps of

T1, T2, T3, resp., and let s′2 denote the second step of T2.

To show (1), note that T1 performs the last write on o2 before the start of T2 in H1. So by strict

serializability, s′2 returns o1
2.

To show (2), we show that H1 and H2 are indistinguishable to thr(T2). We first claim that the base steps

of s1 and s2 in H1 do not contend. Indeed, consider another transactional history H3 in which T2 commits

after its first step s2. T1 and T2 are disjoint-access in H3, so the base steps of s1 and s2 in H3 do not contend.

After s2, thr(T1) and thr(T2) do not distinguish H1 from H3, because the steps of T2 are not known ahead

of time. Thus, the base steps of s1 and s2 in H1 also do not contend. Next, we claim that the base steps of

s1 and s3 in H1 do not contend. This is because T1 and T3 are disjoint-access in H3, so the base steps of

s1 and s3 in H3 do not contend. Since thr(T1) and thr(T2) do not distinguish H1 from H3 after s3, then

thr(T3) does not distinguish them after s3. So, the base steps of s1 and s3 do not contend in H1. Now, since

the base steps for s1, s2 and s1, s3 in H1 do not contend, then the configuration after the base steps of s3 in

H1, and after the base steps of s1 in H2, are the same. Thus, thr(T2) does not distinguish between H1 and

H2. So since s′2 returns o1
2 in H1, it also returns o1

2 in H2.

(3) is true because s2 occurs before s3 in H2, and so s2 returns o0
1.

To show (4), let S be any legal sequential history that is equivalent to H2. Since s2 returns o0
1 and s′2

returns o1
2, then T2 �S T3 and T1 �S T2. Also, since T1 starts after T3 commits, then T3 �S T1. But then

T1 �S T2 �S T3 �S T1, which is a contradiction. Thus, H2 is not strictly serializable.

6.2 Read Visibility

Theorem 3. Suppose an STM satisfies MV permissiveness and UP GC. Consider a read-only transaction

whose execution interval does not contain base steps of any other transaction. Then the configuration

external to the transaction, immediately before and after the transaction, cannot be the same.

o1

T4

o2

T5

T2
T1

C

C

C
T3

C

(a) H1: o
1

2 is GCed, T4 can read o
2

2 and

commits.

o1

T4

o2

T5

T2T1

C

C
T3

C A

(b) H2: o
1

2 is GCed, T4 cannot read o
2

2

and aborts.

Figure 4: H1 and H2 are indistinguishable if a read-only transaction T2 does not leave any trace after its execution.

Proof. Suppose for contradiction that there exists an STM satisfying MV-permissiveness and UP GC, in

which the external configurations before and after a read-only transaction are the same, when the trans-

action’s interval does not overlap the steps of any other transaction. Consider the transactional histories
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in Figure 4. We claim the following. (1) o1
2 is GCed in H1. (2) o1

2 is GCed in H2. (3) T4 aborts in

H2. Conclusion (3) is a contradiction, because T4 is a read-only transaction, and cannot abort because of

MV-permissiveness.

To show (1), first note that the second step of T4 can read o2
2, since this is equivalent to the legal sequential

history T1T2T3T4T5. Also, any read transaction that starts after H1 follows T3 in real-time, and so it cannot

return o1
2. Thus, in every extension of H , a live transaction can read o2

2 or a later version. So by the definition

of UP GC, o1
2 is GCed.

We now show (2). In H1 and H2, T2 is a read-only transaction, and its execution interval does not

contain steps of any other transactions. So by assumption, the external configuration before and after T2

are the same. Thus, after T2’s second step in H2, the only thread that distinguishes between H1 and H2

is thr(T2). Note that thr(T2) does not GC o1
2, since o1

2 is the latest version of o2 during T2’s execution

interval. Then, since o1
2 is GCed in H1, it is also GCed in H2.

To show (3), assume for contradiction that T4 commits in H2. Let S be a legal sequential history

equivalent to H2. Since o2
1 is GCed in H2, then T4 must return o2

2 in its second read step. Thus, we have

T3 �S T4. Next, we have T4 �S T5, because T4 does not read o2
1 in its first read step. We have T5 �S T2,

because T2 starts after T5 commits. Finally, we have T2 �S T3, because the first step of T2 does not return

o2
2. Combining the above, we have T2 �S T3 �S T4 �S T5 �S T2, which is a contradiction. Thus, T4 does

not commit in H2, and so the lemma is proved.

7 UP Multi-Versioning Algorithm

We present UP Multi-Versioning (UP-MV), an STM algorithm satisfying MV-permissiveness and UP GC.

Section 7.1 overviews the principles underlying UP-MV’s design. The data structures used by UP-MV and

its algorithm are described in Section 7.2. UP-MV’s properties are analyzed in Section 7.3.

7.1 Algorithm Overview and Design Principles

First we explain how the algorithm finds the versions to read and write, and then explain the garbage collec-

tion mechanism.

Versions written and read. As UP-MV satisfies MV-permissiveness, each read-only transaction com-

mits. Almost all STMs abort an update transaction whenever its read-set is overwritten [11, 4, 16, 7]. Our

first design principle mandates that we abort only in such situations:

Design Principle 1. Update transaction T aborts if and only if one of the objects in its read-set has been

overwritten after being read by T and before T commits.

This rule is trivially checked at commit time by validating that each version in the read-set is still the

latest one. To expedite these checks, we use a global version clock, as in TL2 [4] and LSA [16]. The clock

is incremented by each committed transaction, and object versions are tagged with its values.

The writes to a transactional object o create a sequence of versions o0, o1, . . .. Like [4, 7, 6], UP-MV

defers the writes to commit time, and does not allow for “write reordering”:

Design Principle 2. When an update transaction commits, it adds a new object version as the latest one.

Since update transactions abort whenever their read-set is overwritten, they read only the last object

versions. A read-only transaction reads the latest version that it can read without violating correctness. To

specify this, we define the transaction precedence relation recursively as follows: Tj precedes Ti if:
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• Tj terminates before the start of Ti (real-time order);

• Ti reads the value written by Tj (read-after-write);

• Ti writes to object ok, which was previously written to by Tj (write-after-write);

• Ti writes to object ok and Tj reads the version overwritten by Ti (write-after-read); or

• ∃Tk s.t. Ti precedes Tk and Tk precedes Tj .

If Tj precedes Ti, we say that Ti follows Tj . Note that any serialization order must respect the precedence

order. We can now specify which versions are read:

Design Principle 3. Consider a transaction Ti reading object oj . If Ti is an update transaction, it reads the

latest version. Otherwise, let Tk be the earliest update transaction that follows Ti and writes to oj . Then Ti

reads the version of oj overwritten by Tk. If no such Tk exists, Ti reads the last version of oj .

o1

T0

o2

T2

o3

T1

T4

T3
T6T5

C C C

Figure 5: Transaction T0 reads the latest object versions it can correctly read: when reading o2 it accesses o1

2
, which

was overwritten by T2; when reading o3, it accesses the last version.

For example, in Figure 5, when transaction T0 reads o2 it should read o1
2, because this version is over-

written by T2, which follows T0 and writes to o2. We say that a live transaction Ti is a potential reader of

version o
j
i if Ti precedes o

j+1
i .writer and does not precede o

j
i .writer. In order to maintain the precedence

information, UP-MV keeps a graph whose vertices are transactional descriptors for each transaction, and

whose edges correspond to the precedence relations created by transactional steps during the run.

Note that if a read-only transaction does not conflict with any update transaction, then it has no following

transactions, and therefore reads the last version of every object. Thus, by default, read-only transactions

access the last object versions, which are referenced directly by object handles. In addition, each read-only

transaction should be able to find references to relevant old object versions. But since, by UP GC, such

versions may exist only as long as there are live transactions that can read them, these versions have to

somehow be linked to their potential readers. This leads to the following design principle:

Design Principle 4. Every read-only transaction T has a map of references from objects to old versions of

which T is a potential reader.

The responsibility for maintaining such maps lies on update transactions: before a committing update

transaction writes to an object, it copies the reference to the overwritten version to all the maps of its live

preceding transactions, (which are the potential readers of that version). The potential readers are found

by traversing the precedence graph. In case the map already includes a version for this object, the version

numbers are compared, and the earlier one is kept.

In Appendix A, we prove that our algorithm satisfies the following invariant:
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Invariant 1. Transaction Ti has o
j
i in its map if and only if o

j
i is not oi’s last version and o

j
i is the latest

version that Ti can read without violating correctness.

Garbage Collection. To satisfy the UP GC, an old object version is deleted at time t0 if it cannot be read

by any transaction after t0. By Design Principle 3, version o
j
i may be read if and only if it has a potential

reader. Version o
j
i is deleted at time t0 if it may have no potential readers from t0 onward. Our algorithm

ensures that if there are no potential readers at time t0, then no such readers may appear after t0.

We deduce the following design rule for garbage collecting old object versions:

Design Principle 5. Every old object version is deleted when its last potential reader terminates.

In addition to removing old object versions, UP-MV’s garbage collection should clean up transactional

descriptors of terminated transactions from the precedence graph. As noted above, this graph is needed

to allow committing transactions to copy overwritten versions to their live preceding transactions. Once a

terminated transaction T has no live preceding transactions, its descriptor become useless. Hence:

Design Principle 6. The descriptor of terminated transaction T is deleted when the last live preceding

transaction of T terminates.

7.2 UP-MV’s Data Structures and Algorithm

Algorithm 1 UP-MV algorithm data structures.

1: Object Handle oj :

2: Version: latest ⊲ latest version of the object

3: Version ok
j :

4: Data: data ⊲ actual data

5: Tid: writerId ⊲ Id of the version’s writer

6: int: versionNum ⊲ ordered version number of ok
j

7: TxnDsc[]: readers ⊲ current live readers

8: int: potentialCount ⊲ the number of live read-only transactions that might need the version in future

9: TxnDsc Ti:

10: {Live, Terminated}: status

11: int: clockVal ⊲ global clock at the beginning of transaction

12: 〈Object, Version〉[]: readSet

13: 〈Object, Version〉[]: writeSet

14: TxnDsc[]: prev ⊲ immediate predecessors of Ti

15: TxnDsc[]: next ⊲ immediate successors of Ti

16: 〈Object, Version〉[]: toRead ⊲ if Ti cannot read the latest version of oj , then the legal version is kept in Ti.toRead[oj ]

17: Global Variables:

18: int: globalClock ⊲ incremented by committing update txn

19: TxnDsc[]: finished ⊲ finished txns that have not been GCed

20: 〈Tid, TxnDsc〉[]: txnMap

Memory layout. The data structures used in the algorithm are depicted in Algorithm 1. Transactional

objects are accessed via object handles, which point to the last object versions. In order to facilitate garbage

collection, old versions are referenced directly by their potential readers.

Each version keeps a counter of potential readers, potentialCount; when this counter becomes zero the

version is deleted. Additionally, each version keeps the version number, versionNum, as read from the

global clock when the version is written. Each object version also keeps the list of its current live reading

transactions, readers, which is used by update transactions to maintain precedence information. This is

where the algorithm violates read invisibility, as required for UP GC (see Section 6.2).
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Figure 6: An example of memory layout: object handles keep last versions only, old versions are kept as long as they

have potential readers, terminated transactions are GCed once they have no live preceding transactions.

Each transaction is represented by its transactional descriptor keeping the read-set and the write-set of

the accessed objects. A data structure TxnMap keeps pointers to all the non-GCed transactions’ descriptors.

Some of the transactional descriptors point to each other, forming a subgraph of the precedence graph.

Transactional steps add edges according to read-after-write, write-after-write, and write-after-read relations.

Edges reflecting real-time precedence are added at startup, as we explain below. The transactional descriptor

of a terminated transaction is GCed once it has no incoming edges. If transaction Ti has no live preceding

transactions at the end of its run, Ti’s descriptor is deleted by Ti itself. Otherwise, Ti’s descriptor is deleted

by the last live transaction preceding Ti when it terminates.

In order to track real-time order, the algorithm maintains a global transaction set finished, which holds

the descriptors of all the terminated transactions that have not been GCed. A transaction T that cannot GC

its descriptor inserts it to this set upon termination, and the descriptor is removed from finished when it is

GCed. Note that finished is always empty in runs without conflicts. When a new transaction starts, it adds

edges from every transaction in finished to itself. The use of this set is where the algorithm violates the DAP

property, as necessary for MV-permissiveness (see Section 6.1). Although the use of a global clock, which

is incremented by each committing transaction, and copied to every written version, also violates DAP, we

use it only to optimize consistency checks, and it is not needed for correctness.

In Figure 6, we see the memory layout for the scenario depicted in Figure 5: a live read-only transac-

tion T0 precedes committed transactions T2 . . . T4, so these transactions are not GCed, whereas committed

transactions T1, T5, T6, which have no live preceding transactions, are deleted.

The map of old object versions Ti may read is stored in Ti.toRead. Invariant 1 guarantees that if a read-

only transaction Ti cannot read the last version of object oj , then Ti.toRead contains a mapping from oj to

the old version that should be read by Ti. In Figure 6, the object versions overwritten by T1 are referenced

by its live preceding transaction T0. All other old object versions are GCed because they have no potential

readers.

Handling update transactions. The pseudo-code for update transaction Ti is depicted in Algorithm 2.

At startup, transaction Ti saves the value of the global clock in its local variable clockVal and adds edges

from all the descriptors in finished to itself (line 34).

Write operations postpone most of the work till the commit phase; a write operation merely updates the

local copy of the object and puts it in its write-set. A read operation may only return the last version of

the object. To that end, the last version’s number is validated. If a read operation succeeds, Ti updates the
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Algorithm 2 UP-MV algorithm for update transaction Ti.

1: Write to oj :

2: if (oj ∈ Ti.writeSet) then update Ti.writeSet[oj ]; return

3: localCopy← oj .latest.clone()

4: writeSet[oj ]← localCopy

5: update localCopy

6: Read oj :

7: if (oj ∈ Ti.writeSet) then return Ti.writeSet[oj ]

8: version← oj .latest

9: if (version.versionNum > Ti.clockVal) then

10: if ¬validateReadSet() then abort

11: clockVal← version.versionNum

⊲ update precedence information

12: lastWriter← txnRepository.get(version.writerId)

13: if (lastWriter 6= ⊥) then addEdge(lastWriter, Ti)

14: readSet[oj ]← version

15: return version.data

16: Commit:

17: if ¬validateReadSet() then abort

18: overwritten← ∅ ⊲ keep the versions overwritten by Ti

19: globalClock← globalClock + 1
20: foreach oj ∈ Ti.writeSet do:

⊲ update precedence info

21: prevWriter← txnRepository.get(oj .latest.writerId)

22: if (prevWriter 6= ⊥) then addEdge(prevWriter, Ti)

23: foreach Tj ∈ oj .latest.readers do: addEdge(Tj , Ti)

⊲ install the new version

24: oj .latest.potentialReadersCount← 0
25: overwritten[oj ]← oj .latest

26: localCopy.versionNum← globalClock

27: oj .latest← localCopy

⊲ pass the overwritten versions to the txns preceding Ti

28: foreach Tj ∈ Ti.prev do:

29: overwrittenVersions(Tj , overwritten)

30: Startup:

31: Ti.status← Live

32: Ti.clockVal← globalClock

33: foreach Tj ∈ finished do:

34: addEdge(Tj , Ti) ⊲ RTO dependence

35: Termination:

36: Ti.status← Terminated

37: finished← finished ∪ Ti

38: GC(Ti)

39: Function GC(Ti)

⊲ remove the transactions with no live preceding transactions

40: if (prev = ∅) then

41: txnRepository← txnRepository \ Ti

42: finished← finished \ Ti

43: foreach Tj ∈ Ti.next do:

44: Tj .prev← Tj .prev \ Ti

45: GC(Tj )

46: delete Ti’s descriptor

47: Function validateReadSet()

48: foreach 〈oj , version〉 ∈ Ti.readSet do:

49: if oj .latest 6= version then return false

50: return true

51: Function overwrittenVersions(Tj , overwritten)

52: if (Tj .status = Live) then

53: foreach 〈oi, veri〉 ∈ overwritten do:

54: curVer← Tj .toRead[oi]
55: if (curVer = ⊥ ∨ curVer.versionNum >

veri.versionNum)
56: veri.potentialCount++

57: Tj .toRead[oi]← veri
58: foreach Tk ∈ Tj .prev do:

59: overwrittenVersions(Tk , overwritten)

precedence information: if the last version’s writer Tj was not GCed, then Ti adds an edge from Tj to itself.

Transaction Ti commits successfully if and only if no object in its read-set is overwritten after being

read by Ti and before Ti commits. This is checked similarly to TL2 [4], using the global clock, and without

using precedence information. A commit operation starts by revalidating Ti’s read-set (line 17). If the

validation fails, Ti aborts. Otherwise, Ti executes the following: 1) increments the global clock; 2) for each

oj ∈ Ti.writeSet, Ti adds edges from oj’s writer and from oj’s readers to itself, and then installs the new

version (lines 21–27); and 3) calls the function overwrittenVersions to update potential readers’ maps with

the versions overwritten by Ti (line 29).

The process of updating potential readers with overwritten versions (lines 51–59) is executed recursively

for every preceding transaction. For a live transaction Tj , the overwritten versions are inserted to its toRead

map. If for some object oi, toRead already contains a version of oi, the version with the smaller versionNum

is chosen (lines 54–57). This way, the algorithm guarantees that a read-only transaction that reads oi accesses

the version overwritten by the earliest following transaction.

When Ti terminates, it adds its descriptor to finished and starts the GC procedure (lines 39–46). The

transactional descriptor may be deleted if it has no incoming edges. Since deleting one transactional de-

scriptor decreases the number of incoming edges in its successors, the GC continues recursively with them.

Handling read-only transactions. The pseudo-code for read-only transactions appears in Algorithm 3.
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Algorithm 3 UP-MV algorithm for read-only transaction Ti.

60: Read oj :

61: if (oj ∈ Ti.readSet) then return readSet[oj ].data

⊲ find the version to read

62: if (oj ∈ Ti.toRead) then

63: verToRead← Ti.toRead[oj ]
64: else

65: verToRead← oj .latest

⊲ update precedence information

66: writer← txnRepository.get(verToRead.writerId)

67: if (writer 6= ⊥) then

68: addEdge(writer, Ti)

⊲ pass the overwritten versions to the preceding transactions

69: foreach Tj ∈ Ti.prev do:

70: overwrittenVersions(Tj , Ti.toRead)

71: verToRead.readers← verToRead.readers ∪Ti

72: readSet[oj ]← verToRead

73: return verToRead.data

74: Termination:

75: Ti.status← Terminated

76: finished← finished ∪ Ti

77: if (Ti.prev = ∅) then

78: foreach 〈oj , version〉 ∈ Ti.readSet do:

79: version.readers← version.readers \ Ti

80: foreach 〈oj , oldVersion〉 ∈ Ti.toRead do:

81: oldVer.potentialCount← oldVer.potentialCount− 1
82: if (oldVer.potentialCount = 0) then delete oldVersion

83: GC(Ti)

To read object oj (lines 3–6), Ti checks whether the object is in toRead. If not, then Ti reads the last version

of oj . Otherwise, Ti reads the version from its toRead list.

When a read-only transaction Ti terminates, it decrements the counter of potential readers for all the

versions in its toRead list. If a version’s number of potential readers becomes zero, the old object version is

deleted (lines 80–82).

7.3 Properties

UP-MV’s MV-permissiveness immediately follows from the code, since read-only transactions never abort

and update transactions abort only if some object in their read-set is modified during their lifecycle. UP GC

is also easy to see, since each version has a counter, which is non-zero only if the version is in the map of

a read-only transaction. But by Invariant 1, Ti has o
j
i in its toRead map only if o

j
j is the last version Ti can

read.

UP-MV’s correctness follows from the following arguments:

1. The algorithm maintains precedence order correctly. That is, if Ti is a live preceding transaction of

Tj , then there is a path from Ti’s descriptor to Tj’s.

2. The precedence graph remains acyclic, since (a) by Invariant 1, a read-only transaction can always

find a version to read without creating a cycle; and (b) update transactions have no followers as long

as they are alive because they abort on every conflict, and so their steps also do not create cycles.

3. Any total order that preserves the precedence order of an H is a legal serialization of H [13].
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8 Conclusions

This paper studied the use of multi-versioning to reduce the number of aborts in STMs, as well as techniques

for garbage collection to reduce the memory consumption of multi-versioned STMs. We first defined the

property of multi-version permissiveness. Then we showed that no MV-permissive STM can guarantee to

always garbage collect the maximum number of unneeded object versions. We also showed that an MV-

permissive STM cannot be weakly disjoint-access parallel. We defined an achievable garbage collection

property, useless-prefix GC, and showed that in an MV-permissive STM satisfying UP GC, even read-

only transactions must make lasting changes to the system state. Finally, we presented an MV-permissive

STM satisfying UP GC that uses visible reads and is non-DAP, showing that these conditions are not only

necessary but also sufficient.

Our paper suggests a number of areas for future research. For example, while we showed that no MV-

permissive STM can be online space optimal, it is interesting to consider whether there exist approximately

optimal STMs. There are clear tradeoffs between the quality of garbage collection, permissiveness and the

computational complexity of transactional operations: we believe that understanding these tradeoffs may be

valuable to improving the performance and utility of transactional memory.
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A Invariant Proof

We now prove Invariant 1 presented in Section 7.1.

It was shown earlier, that history H has a legal serialization if and only if its precedence graph is

acyclic [13]. We use this property to prove the following lemma:

Lemma 1. Transaction Ti can read object version o
j
i without violating correctness if and only if Ti does not

precede o
j
i .writer.

Proof. Ti can correctly read o
j
i if and only if the read operation does not create a cycle in the precedence

graph. When Ti reads o
j
i , two new precedence relations are added: (oj

i .writer, Ti) and (Ti, o
j+1
i writer).

(⇒:) If Ti already precedes o
j
i .writer, then adding relation (oj

i .writer, Ti) creates a cycle in the prece-

dence graph, so Ti cannot read o
j
i .

(⇐:) The algorithm always installs new versions at the end, so o
j
i .writer precedes o

j+1
i .writer. If Ti

does not precede o
j
i .writer, then adding relation (oj

i .writer, Ti) cannot create a cycle in the precedence

graph. Therefore, Ti can read o
j
i if it does not precede o

j
i .writer.

The following lemma can be proven by easy induction on the steps of the algorithm:

Lemma 2. The transactional descriptor graph of UP-MV is at any given time a subgraph of the precedence

graph, which includes a path from every live transaction Ti to each of its followers.

Invariant 2. Let S
j
i be the set of committed update transactions following Ti that write to oj . If S

j
i is

empty then Ti’s map contains no mapping for oj . Otherwise, Ti’s map contains the first version of oj that is

overwritten by a transaction in S
j
i .

Proof. We prove the invariant by showing that it is correct at the beginning of each transaction and is

preserved after each algorithm step. Upon startup, Ti’s map is empty and Ti does not precede any other

transaction, so S
j
i = ∅. Hence, the invariant holds.

In order to show that the invariant is preserved after each algorithm’s operation, we show the following:

(1) each change in Ti’s mapping for oj corresponds to a change in S
j
i , (2) S

j
i may only grow during the

lifetime of Ti, (3) the invariant is preserved when a new transaction joins S
j
i . These three steps together

complete the proof.

To show (1), observe that Ti’s mapping for oj changes only in the function overwrittenVersions (line 57),

which operates on Ti’s descriptor as a result of one of two events. First, a transaction Tk that follows Ti

writes to oj and commits (line 29, and recursively, line 57). In this case, Tk ∈ S
j
i . Second, a live read-

only transaction Tk, which precedes some Tl that writes oj , reads the value written by one of Ti’s followers

(line 70). In this case, Ti starts preceding Tl via Tk, and therefore Tj ∈ S
j
i . Each member of S

j
i writes to oj

once, Therefore, every change in Ti’s mapping for oj corresponds to a change of S
j
i .

Claim (2) follows directly from the observation that if Ti precedes Tj at time t0, this relation persists in

every extension of the history.

To show (3), we examine all the possible ways for a new transaction to join S
j
i :

• A transaction Tl that follows Ti writes to oj and commits. In this case, Tl calls overwrittenVersions

(line 29), which traverses recursively all the predecessors of Tl’s descriptor. By Lemma 2, Ti’s de-

scriptor is a predecessor of Tl’s descriptor, hence overwrittenVersions is executed with Ti, and in

line 57, it compares Ti’s mapping for oj with the version overwritten by Tj , and chooses the version

with the earlier version number. The invariant is preserved.
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• A (committed) writer of oj has a new preceding transaction Tl. This happens only when a live read-

only transaction Tk, which precedes Tl, reads a value written by one of Ti’s followers. In this case, Tk

calls overwrittenVersions (line 70), which traverses recursively all the predecessors of Tk’s descriptor,

including Ti’s descriptor (by Lemma 2). According to the invariant assumption, Tk’s mapping for oj

contains the version of oj that is overwritten by the earliest transaction in S
j
k. This version is compared

with Ti’s current mapping for oj in line 57, and the version with the earlier version number is chosen.

Note that if an update transaction Tm ∈ S
j
k is not the earliest one in S

j
k, then it cannot be the earliest

one in S
j
i , because S

j
k ⊆ S

j
i . Therefore, the invariant is preserved.

We have shown that the invariant is correct at the beginning of each transaction and is preserved after each

algorithm step.

Invariant 1 follows directly from Lemma 1 and Invariant 2:

Invariant 1. (restated) Transaction Ti has o
j
i in its map if and only if o

j
i is not oi’s last version and o

j
i is

the latest version that Ti can read without violating correctness.
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