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Abstract—Eliminating redundant network traffic became an
important task with the volume increase of large files and rich
media content. Consequently, many commercial traffic redundancy
elimination (TRE) middleboxes, were placed at WAN and Internet
access points.

However, recent studies have shown that the majority of traffic
redundancy results from end-to-end exchanges. Moreover, the
penetration of laptops and smart phones has detached clients from
specific access middleboxes. Consequently, there is a rising need
for a universal, software based, end-to-end transport level TRE.

As many central services such as email and streaming video may
use these new capabilities, it is important to minimize the overhead
and latency increase associated with the TRE operations.

We present a novel low latency, low overhead, universal TRE
mechanism, termed PACK. PACK is designed as a TCP extension
and supports all applications built over TCP.

The main idea for reducing the latency and server overheads is
PACK s receiver based speculative operation replacing the common
sender based approach. The receiver sends data predictions to the
sender which in turn moves to computational expensive actions
only when these predictions are correct.

Consequently, PACK is best suited for highly loaded servers.
Other benefits of PACK are its low latency and buffering require-
ments.

I. INTRODUCTION

TCP/IP traffic at both intranets and the Internet exhibits a
significant amount of redundancy and replication. Traffic redun-
dancy results from common users activities such as repeatedly
accessing and modifying the same information (documents,
data, web and video), and from communicating and sharing
of information among multiple users.

Traffic redundancy at enterprise offices was found to vary
between 20% to 60% [1][2][3], exacerbating the need for
traffic redundancy elimination (TRE), as a mean to reduce
network loads and costs and to speed up communication and
applications.

A major progress in handling redundant data, followed sev-
eral seminal papers that set the foundation of modern TRE
[4], [11, [S]. In such techniques, the sender and the receiver
compare signatures of data chunks, parsed according to the data
content, prior to their transmission, possibly eliminating their
transmission.

In [5] files are divided into chunks using the method described
in [4], by computing a 48-byte Rabin fingerprint [6] for each
byte and defining as the beginning of the chunk the byte for
which the 12 least significant bits take a predefined value.
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A SHA-1 signature is calculated for each chunk. These TRE
algorithms require that both sides perform file indexing and
signature calculations.

Subsequently, TRE techniques have been explored at both
the industry and the academic community to eliminate the
redundant content and to significantly improve the network
speed and efficiency. Most commercial TRE solutions involve
the deployment of two or more middleboxes at both the intranet
entry points of data centers and branch offices, eliminating
repetitive traffic due to sharing, and preventing the exchange of
redundant data between clients and data centers. Examples of
commercial TRE solutions vendors are Cisco [7], Riverbed [8],
Quantum [9], Juniper [10], Bluecoat [11], Expand Networks
[12] and F5 [13].

A recent work [2] reports that in an enterprise environment
75%-90% of the redundancy captured by the shared middle-
boxes stemmed from an end-to-end redundancy (i.e. data redun-
dancy in the traffic exchanged by a single server and a single
client). Consequently, it is claimed that an end-to-end (software
based) TRE solution can achieve most of the bandwidth savings
of the TRE middleboxes, and offer higher savings for small
to medium organizations, home offices and end users. The
main advantages of an end-to-end solution are the reduction
of cost, space and maintenance due to the elimination of the
middlebox hardware. It also enables the freedom to move
from incompatible proprietary vendor solutions to a standard
protocol stack, and to cope with end-to-end encryption methods
(e.g., IPsec). Finally, the vast use of mobile Wi-Fi laptops
and smart phones eliminate the association between clients and
middleboxes. Therefore, it becomes evident that an application
transparent, end-to-end, standard TRE can benefit the emerging
data intensive services and applications.

We believe that an end to end, software based TRE should
meet the following desirable properties:

1) Standard: The TRE standard needs to work across all
server and client platforms and operating systems. This
will enable servers to reduce redundant traffic, regardless
of the client nature and location.

2) Application independent: The TRE should support most
applications that transmit redundant information. Similar
data may be observed across different applications, e.g.,
mail attachments may repeat data transmitted by the
file system, FTP or web browsing. This calls for the
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implementation of a standard TRE at the transport layer.

3) Stateless: Servers should be able to perform equally well
for both persistent and casual clients. Note that most mid-
dlebox solutions assume that the server side middlebox is
aware of the state of the client side middleboxes.

4) High server performance: The additional TRE computa-
tions should minimize the performance impair of servers.
In particular, it should limit the size of a TRE specific
buffering and the amount of processing overheads due
to expensive lookups and data computations. For smooth
integration of TRE standards, the TRE solution itself
should not become the server side bottleneck [3].

5) Minimum impact on end-to-end latency: TRE protocols
introduce additional traffic latencies even when TRE is not
in effect. The standard TRE should minimize additional
latencies.

In this paper we introduce a low latency, low overhead
universal TRE mechanism, termed PACK. PACK operates at the
transport layer and is designed as a TCP extension. Therefore,
PACK supports, on the fly, all applications built over TCP, such
as web, mail and video streaming.

The PACK unique characteristic is that it is designed to
reduce the additional computational effort placed on servers by
TRE, leveraging the untapped computational power, buffering
and relative low utilization of clients. Since most data is sent
from the server to the clients, PACK is designed as the first
receiver driven TRE. In normal operation, the sender does
not buffer, index or calculate signatures and in contrast to
existing TRE schemes, is not required to wait or negotiate
prior to data sending. In turn, the receiver, upon receiving,
parsing and signing the data, determines if it might be a
preamble to an already known byte stream. If so, the receiver
sends to the sender a sequence of expected chunk signatures,
accompanied with an easy to verify hint for each chunk in
the predictive chain. The sender moves into a computational
intensive TRE mode only after it validates, using the hint, that
in high probability the data already exist at the receiver.

PACK is best suited for loaded servers as it does not require
them to buffer or perform calculations over the data until the
receiver indicates that it identifies a clear case for TRE. In
addition, unless it is desired for extra traffic saving, PACK
does not force a negotiation prior to transmission and therefore
keeps the end-to-end latency intact. Finally, PACK reduces the
amount of the required TCP buffers at the sender compared
to a sender based TRE. In order to allow for a maximum
redundancy elimination, our design also enables the server
driven” operation that can be operated at the choice of the
sender.

The speculative operation of PACK can be very beneficial
when the receiver based predictions identify the majority of
redundant chunks. This happen when relative long sequences of
redundant chunks (e.g. repeated data) exist. Our experimental
study shows that such a phenomenon is evident in email data.
Hence, PACK can decrease significantly user upload time, and
improve the end user experience for web based mail services

such as Google and Yahoo. Clearly, rich content such as
streamed video, movies and audio also show similar sequence
characteristics.

The paper is structured as follows. Related work is described
in Section II. PACK is described in details in Section III. In
Section IV we describe several PACK enhancements that better
utilize its capabilities. Evaluations and simulation results are
presented in Section V.

II. RELATED WORK

Several TRE techniques have been explored in recent years.
The first sender based TRE was proposed by Spring and
Wetherall in [1]. They introduced a packet-level TRE, utilizing
algorithms first presented by [4].

Several commercial TRE solutions described in [7] and [8],
have combined the sender-based TRE ideas of [1] with the
algorithmic and implementation approach of [5] along with
protocol specific optimizations.

[14] presents a redundancy-aware routing algorithm. It as-
sumes that the routers have a cache mechanism, and that they
systematically search for routes that can make a better use of the
cached data. The implementation is based on [1] with several
adaptations for the speed and limited memory size of routers.

A subsequent redundancy-aware routing work [15] considers
the hop by hop approach and offers an alternative network layer
approach that identifies a caching location along a path for each
packet.

A large scale study of real-life traffic redundancy is presented
in [16] and [2]. In the latter, packet-level TRE techniques are
compared [4], [17]. One of their main finding is that “an end
to end redundancy elimination solution, could obtain most of
the middlebox’s bandwidth savings”, motivating the benefit of
low cost software end-to-end solutions.

To the best of our knowledge none of the previous works
have addressed the requirements for a server friendly, end-to-
end TRE solved by PACK.

III. THE PACK ALGORITHM

For the sake of clarity, we first describe the basic version
of the PACK protocol. Several optimizations and improvements
are introduced in IV.

PACK is a receiver oriented TRE solution implemented as
a TCP extension. The stream of data received at the PACK
receiver is parsed to a sequence of variable size, content based
signed chunks according to [4][5].

The chunks are then compared to the receiver local storage.
If a matching chunk is found, the receiver identifies the local
data sequence, termed a chain of chunks, to which the local
matched chunk belongs, and sends a prediction to the sender for
the following data in that sequence. The prediction consists of a
byte by byte XOR checksum over the predicted data, termed a
hint, and the SHA-1 signature of the data. The sender identifies
the predicted range in its buffered data, and also calculates a
checksum over that range. If the result matches the received
hint, it continues to perform the more computational intensive
SHA-1 operation. Upon a signature match, the sender sends a



confirmation message to the receiver, enabling it to copy the
matched data from its local storage.

The PACK receiver maintains a large persistent chunk and
chunk signature caches, employing caching and indexing tech-
niques to efficiently manage and access the stored chunks. In
addition, it maintains a chain store to keep the order by which
the various chunks were last received. For example, consecutive
chunks that belong to a particular video will be indexed at that
order in the chain store. When new data is received and parsed to
chunks, the receiver derives the chunk’s signature using SHA-1.
At this point the chunk and chunk signature caches and the chain
stores are updated.

To enable PACK, both TCP parties need to set the PACK
enable option during the TCP 3-way initialization handshake.
For details, see Section III-D.

A. From Anchors to Chains

PACK parsing procedure is similar to [4][18] and its chunk
store structure is similar to [5]. The chunk store holds pointers
to the data chunks', and a list of per chunk properties such as
the chunk size, a chunk hint (a simple byte by byte checksum)
and the chunk signature (SHA-1). In addition, PACK uses a
new chunk chains scheme, described in Fig. 1, in which data
indexes in the disk are kept in a chain store. The chain store
includes a linked list of indexes to previously observed chunks
according to their original order. When a duplicate chunk is
received, PACK identifies the chain to which a received chunk
belongs, and uses this particular chain to predict future chunks.

B. The PACK Receiver Algorithm

Upon the arrival of new data, the receiver computes the
chunks and their respective SHA-1 signatures. Then it looks
for a match in the chunk signature cache. If one is found,
it examines the chain store to find the following chunks in
its database. If such a chain is found, the receiver sends a
prediction, consisting of the following chunks in the chain,
to the sender. Each prediction message carries the prediction
starting point in the byte stream (i.e., offset) and several
following chunks as explained later.

Byte stream

Anchor 1 Anchor 2 Anchor 3 Anchor 4

Chunk 1 Chunk 2 Chunk 3

Stamp 1

Stamp 2 Stamp 3

Chain 1

Fig. 1: From anchors to chunks and chain

I'To prevent excessive disk accesses, deduplication is implemented and used
for sharing data between the TCP receiver and its applications [19][20].

Upon a successful prediction, the sender responds with a
PRED-ACK confirmation message. The PRED-ACK is carried
within an empty (no payload) TCP segment. Once the PRED-
ACK message is received and processed, the receiver copies
the data from the chunk store to its TCP input buffers, placing
it according to the given sequence numbers. At this point, the
receiver sends a normal TCP ACK with the next expected TCP
sequence number. In the case the prediction is incorrect, the
sender does not send a PRED-ACK message but continues with
a normal TCP operation, sending the raw data. The arriving data
is treated as a new data, i.e., the receiver looks for a matching
chunk in its chunk signature cache.

Proc. 1 Receiver Segment Processing

1. if segment carries payload data then
calculate chunk
if reached chunk boundary then

activate predAttempt()

end if

else if PRED-ACK segment then
processPredAck()
activate pred Attempt()

end if

O X NN kWD

Proc. 2 predAttempt()

1. if received chunk matches one in local storage then
2 if foundChain(chunk) then

3 calculate prediction PRED
4 send TCP ACK with PRED
5. exit

6. end if

7. else

8.  store chunk

9. append chunk to current chain
10. end if

11. send TCP ACK only

Proc. 3 processPredAck()
offset € PRED-ACK do
read data from disk

1
2
3. put data in TCP input buffer
4. end for

. for all

C. The Sender Algorithm

When a sender receives a PRED message from the receiver, it
tries to match each of the chunk predictions to its buffered (yet
to be sent) data. Each PRED segment usually contains several
prediction offsets. The sender separates the predictions, finds the
corresponding data’s absolute TCP sequence number, and cal-
culates the single byte XOR checksum over the corresponding
data. If it matches the checksum of the prediction, the sender
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Fig. 2: Sender algorithm part 1/2: filling prediction queue

calculates the more computational intensive SHA-1 signature
of the same chunk, and compares the result to the receiver’s
signature.

One of the key features of PACK is that the sender needs
to perform SHA-1 operations only when data redundancy is
very likely. When the receiver prediction is incorrect, a hint
mismatch occurs with a 0.996 probability. This guarantees
that the sender “false positive” (e.g. unnecessarily computing
the SHA-1 signature) probability is less than 0.4%. When
a signature prediction match occurs, the sender replaces the
buffered data with a PRED-ACK signal. Since the receiver holds
a list of the predictions it sent, the sender sends in its reply the
byte range (denoted by pairs of sequence numbers) for which
the prediction is correct. When an acknowledgement is received,
the sender frees up the retransmission buffers.

Fig. 2 and Fig. 3 illustrate the sender operation using simple
state machines. The state machine in Fig. 2 describes the parsing
of a received PRED command. The predictions are processed to
calculate each range sequence numbers, and the range bound-
aries, denoted by the corresponding sequence numbers, are put
in a queue. Fig. 3 describes how the sender tries to match its
predicted range to its own data. First, it finds out if this data was
already sent or not. In case the data was already acknowledged,
the corresponding prediction is discarded. Otherwise, it tries
to match the data to the data in its outgoing TCP buffers, as
described before.

D. The PACK Wired Protocol

Fig. 4 illustrates the way the PACK wired protocol operates,
assuming the data is redundant. First, both sides enable the
PACK option during the initial TCP handshake by adding a
PACK permitted flag (denoted by a bold line) to the TCP options
field. Then, the sender sends the (redundant) data (in one or
more TCP segments) and the receiver identifies that a currently
received chunk is identical to an indexed chunk at its chain
store. The receiver, in turn, piggybacks a TCP ACK message
and sends the prediction in the ACK message option fields. At
the last step, the sender sends a confirmation message, PRED-
ACK, replacing the actual data.

We suggest to add two new TCP options, similarly to the ones
defined in SACK [21]. The first is an enabling option PACK
permitted sent in a SYN segment to indicate that the PACK
option can be used after the connection is established. The

Get from
prediction
queue

e;;?:é Check Send
if still raw data
relevant

Relevant

Wait
application

Cleanup
prediction

accepted

Fig. 3: Sender algorithm part 2/2: processing prediction queue and

sending PRED-ACK and/or raw data

=
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Fig. 4: PACK wired protocol in a nutshell

other is the PACK message that may be sent over an established
connection once permission has been granted by both parties.

To allow a full backward compatibility to legacy TCP clients,
PACK uses exclusively the TCP Options field for its new
signaling. The 4-bit Data Offset field that determines the total
length of the TCP header yields a usable TCP Options field of
up to 40 bytes. Since an unknown option must include a length
octet in addition to the option code octet, there are up to 38
bytes left for PACK control information.

A single PACK message is designed to wrap and carry mul-
tiple PACK commands. This not only saves message overhead,
but also copes with security network devices (e.g. firewall) that
tend to change TCP options order [22]. Note, that most TCP
options are only used at the TCP initialization period. Several
exceptions such as SACK [21] and timestamps [23] exist [22].

We use of the following option codes for PACK initiation
during TCP SYN: option 29 (decimal) for PACK permitted (two
hex bytes 1D02) and option 30 for the PACK message. Fig. 6
presents the PACK message header format as it appears in the
TCP options field.



The receiver always sends together the following two com-
mands. The first command is OFFSET (Fig. 7) that informs
the sender where the next prediction starts, relative to the
acknowledgement offset of the piggybacked segment?.

The second command is PRED (Fig. 8), which includes the
predictive ACK parameters. Multiple PRED commands can be
carried in one TCP segment. The offsets of the chunks predicted
by the PRED commands start from the value of OFFSET and
then follow each other. Each PRED message carries a set of
parameters: the predicted chunk length, a hint per this chunk,
and its SHA-1 signature.

The sender uses a single command termed PRED-ACK
(Fig. 9). Since the receiver holds a list of sent predictions, the
sender only needs to acknowledge a range of TCP sequence to
approve some or all of them.

E. PACK Impact on TCP Mechanisms

Some of the built-in TCP mechanisms should be reviewed in
light of the PACK protocol and should be slightly modified. In
general, we found that it is most convenient to treat the delivery
of virtual data (redundant chunks delivered by a reference to the
chunk cache) as an independent process that does not influence
the mechanisms that are tightly connected with the sending of
the real data. Below we explain the key mechanisms that are
reviewed in light of PACK.

1) TCP Retransmission: Retransmissions work normally ex-
cept for one small modification. The data itself may be replaced
at any given time with a PRED-ACK, and the transmission
contains from that point on only the short virtual data, and
not the data itself. As an option, in rare cases of a PRED
time race, when the first transmission that contained real data
is lost, the sender may replace the data with a PRED-ACK
at the following retransmissions since a PRED command for
this data was accepted after the initial transmission. This option
also helps the sender to free faster its corresponding outgoing
memory buffers.

2) Delayed ACKs: Delayed ACKs were introduced to reduce
the number of ACKs sent from a receiver by sending accumu-
lated ACKs for a bigger number of data segments. PACK may
interfere with this mechanism as the receiver sends a PRED
message as soon as possible, maybe before the delayed ACK
is normally triggered. However, in practice the delayed ACK
mechanism is not relevant to PACK, as it is designed for slow
and low rate applications where PACK is less relevant.

321bits
t f t

| 29 | 2

\

Kind=29 as the first
unassigned today

Fig. 5: PACK permitted TCP Option

2Another command, OFFSET-NEG, allows overlapping predictions of
different sizes (see section IV).
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Fig. 6: PACK message header format as a single TCP Option

3) Round-Trip Time Measurements: RTT estimators continue
to work normally by considering virtual data as real data. This
is because PACK messages travel at the same path as other
segments, and both sides do not hold data or acknowledgments
more than the normal operation.

4) The Receiver Window: The receiver window value deter-
mines the amount of unacknowledged data the sender can send.
When the application is fast enough this value reflects the size
of the incoming buffer at the receiver. With PACK’s virtual data,
the sender should ignore the published window restriction and
send virtual data that is much larger than the published window
size. Therefore, even with the most basic PACK version, the
sender treat a received PRED as a permission to virtually send
at least the specified amount of virtual data contained in the
prediction.

5) Duplicate ACK: In some cases the receiver may want to
send independent PRED messages since there is not enough
free space in the option field of the ACK messages. Since TCP
gives a special treatment to duplicate ACKs, the sender should
be able to distinguish between a real duplicated ACK and an
ACK that was created to carry new PRED messages, similar to

32|bits )
T T

| Cmd | Len | Offset — Len determines max offset
0 1 up to 255 /
| Cmd | Len | Offset |
0 2 up to 64K
| Cmd | Len | Offset |
0 3 up to 16M
Cmd | Len Offset |
0 4 up to 6.4G

(continue)

Fig. 7: PACK command, receiver offset: OFFSET
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Fig. 8: PACK command, receiver prediction: PRED
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Fig. 9: PACK command, sender ACK: PRED-ACK



the way it treats TCP window updates.

IV. OPTIMIZATIONS

For simplicity and clarity we described in the previous section
the most basic version of the PACK protocol. In the following,
we describe several enhancements and optimizations that are
likely to be included in a TCP based TRE standard.

A. Adaptive Receiver Virtual Window

PACK enables the receiver to locally obtain sender data when
such a local copy is available, eliminating the need to send
such data over the network. We term the receiver fetching of
local data following the reception of sender confirmations to the
previously sent receiver predictions as the reception of virtual
data.

When a large amount of local data is fetched, the receiver
expects to receive virtual data at high rates that are limited
by the receiver capabilities (storage, CPU, etc.) and not by
the network throughput. This in turn means that the receiver
predictions and the sender confirmations regarding future virtual
data transfers should be expedite as much as possible. For
example, in the case of a repetitive success in PACK predictions,
it is reasonable for the receiver side PACK algorithm to become
greedy and increase the ranges of its predictions.

PACK enables a large prediction size by either sending sev-
eral successive PACK predictions and/or by using an additional
command (PRED-COMB) presented in Fig. 10. In the case of a
several successive PACK prediction messages, the sender should
recognize the different predictions and refrain from mistakenly
recognizing the messages as duplicate acknowledgments. For
that end we use a similar mechanism to the one used for
handling successive different window advertisements.

Alternatively, The new PRED-COMB command can be used.
PRED-COMB enables the receiver to combine several chunks
into a single range, as the sender is not bounded to the anchors
originally used by the receiver’s algorithm. The combined range
has a new hint that is a XOR of the chunks’ hints, and a
new signature that is a SHA-1 of the concatenated content
of the chunks. To clarify how all these commands can be put
together in practice, we present here an example of such a PACK
message in Fig. 11.

Enabling a variable prediction size introduces the notion of
a virtual window, which is the current receiver’s window for
virtual data. The virtual window, defined by each prediction, is
the number of bytes in the prediction, derived from the specified
offset till the end of the predicted range. The virtual window is
first set to a minimal value, which is the receiver’s flow control

32|bits
T

Cmd Len Block Size
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Hint SHA-1 Signature
1-20 LSB Bytes (by “Len”)

Fig. 10: PACK command, prediction with combined chunks: PRED-
COMB
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Fig. 11: PACK full message example of a large range prediction, using
combined chunks command

window. The receiver increases the virtual window with each
prediction success, according to the following description.

Upon a first chunk match, the receiver sends its initial size
prediction. Before receiving a PRED-ACK, it is likely that
some of the following real data segments that were already
sent, arrived at the receiver (the sender may have sent a full
window). At this point, the receiver can partially confirm its
prediction, and increase its prediction range along the matched
chain. For this phase, when the prediction is partially confirmed,
PACK increases its prediction range by a moderate linear factor.
Upon the reception of successive PRED-ACK confirmations
from the sender, PACK becomes more aggressive and increases
its prediction range exponentially. This is similar to the slow
start part of TCP. When a mismatch occurs, the receiver returns
to its initial virtual window size.

Proc. 1 describes the basic algorithm performed at the re-
ceiver side. The code starting at line 2 describes PACK behavior
when a data segment arrives after a prediction is sent. Each time
data that reinforces the prediction is received, the prediction
range is increased linearly. Proc. 5 describes the receipt of a
successful acknowledgement message (PRED-ACK) from the
sender. The receiver reads the data from the local disk. It then
modifies the next byte sequence number to the last byte of the
redundant data just read plus one, and sends the next TCP ACK,
piggybacked with its new prediction. This time, the prediction
range is increased to twice the range of the last prediction.

The increase in the prediction range introduces a trade-off in
case the predicted chain data is not completely identical to the
real data, and the sender sends its original raw data. The code
in Proc. 4 line 3 describes the receiver’s behavior when new
data arrives that does not match its recently sent predictions.
This new chunk may of course start a new match. Following
the reception of the data, the receiver reverts to a normal TCP
mode until a new match is found in the chunk store, and resets
the virtual data window range back to the regular window size.
Note that even a minor change at the sender data, compared
with former saved chain, causes the entire prediction block



range to be sent to the receiver, even if the majority of the data
is identical. Hence, using large block sizes at the prediction
introduces a tradeoff between the potential rate gain and the
recovery effort in the case of a miss-prediction.

Proc. 4 predAttemptAdaptive()

1. {obsoletes Proc. 2}

2. if received chunk overlaps recently sent prediction and they
do not match then

3. predSizeReset()

4. end if

5. if received chunk matches one in local storage then

6.  predSizeLinear()

7

8

9

if foundChain(chunk) then
calculate prediction PRED according to predSize
: send TCP ACK with PRED
10. exit

11. end if
12. else

13.  store chunk

14.  append chunk to current chain
15. end if

16. send TCP ACK only

Proc. 5 processPredAckAdaptive()

1. {obsoletes Proc. 3}

2. for all offset € PRED-ACK do
3. read data from disk

4. put data in TCP input buffer

5

6

. end for
. predSizeExponent()

B. A Hybrid Approach

PACK is less efficient for data with the same amount of
redundancy if the changes are scattered along the data. This
happen since the prediction sequences are interrupted frequently
by misses. This in turn forces the sender to revert to raw data
transmission until a new match is found at the receiver and
reported back to the sender. To that end, we suggest a hybrid
PACK approach. When PACK recognizes a pattern of dispersed
changes, it may select to trigger a sender driven approach in the
spirit of [1][7][8][15].

However, as was explained earlier, we would like to revert
to the sender driven mode with a minimal computational and
buffering overhead at the server in the steady state. Therefore,
our approach is to first evaluate at the receiver the need for a
sender driven operation, and report it back to the sender. At this
point the sender can decide if it has enough resources to process
a sender based TRE for some of its receivers. To support this
enhancement, an additional command (DISPER) is introduced
(Fig.12). Using this command the receiver sends periodically its
estimated level of dispersement, ranging from O for long smooth
chains, up to 255.

| 32‘bits
T T

| Cmd | Len |
7 1

Dispersement
0-255

Fig. 12: PACK command, level of dispersement: DISPER

A good way to compute the data dispersement parameter over
time is by an exponential smoothing function, as follows:

D~aoaD+(1-a)M (1)

Where « is a smoothing factor with recommended value of
0.9 or more. The value M equals 255 when a chain break is
detected and 0 otherwise. We evaluate the data dispersement
value of several data sets in Section V-E.

Proc. 6 Receiver Segment Processing Hybrid

1. {obsoletes Proc. 1}

2. if segment carries payload data then
3. calculate chunk

4.  if reached chunk boundary then

5. activate predAttempt()

6 {new code for Hybrid}

7 if detected broken chain then

8 calcDispersement(255)

9

) else
10. calcDispersement(0)
11. end if
12.  end if

13. else if PRED-ACK segment then
14.  processPredAck()

15.  activate predAttempt()

16. end if

Proc. 7 processPredAckHybrid()

1. {obsoletes Proc. 3}

2. for all offset € PRED-ACK do
3 read data from disk

4. put data in TCP input buffer

5. {new code for Hybrid}

6. for all chunk € offset do

7 calcDispersement(0)

8 end for

9. end for

V. EXPERIMENTS

In this section we present TRE experiments using the al-
gorithms and protocols described above. We focus on several
content examples that demonstrate the ideas behind PACK
and the different trade-offs involved in speculative vs. sender
based implementations. Our experiments are based on the three
following data collections:
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1) Linux - HTTP download of the entire Linux 2.0.x kernel
source code collection (the entire 40 files 1 GB). Contains
77% chunk redundancy.

2) Emaill - Download of 1,140 email messages (1.1 GB)
one at a time, over IMAP. Contains 46% redundancy.

3) Email2 - A different email account with 2.5 GB and 26%
redundancy.

A. Redundant Chain Length

PACK works better when redundancy is correlated and chains
are long, especially when end-to-end communication delays are
not negligible. We expect to find long chains in the retrans-
missions of unmodified or slightly modified large files. Fig. 13
presents the chain length distribution of the Linux and Emaill
data collections. Indeed, in Emaill about 88% of all redundant
chunks are found in chains of length 40 chunks and over,
compared to only 54% of the redundant chunks in Linux. It
is considerable to assume that PACK will yield better results
for Emaill than for Linux, and it may also suggest that mail
servers would benefit greatly from a TRE solution.

B. Download Speed Over Time

In the following experiments we assume that the commu-
nication speed between the sender and the receiver is limited
by both the network and the end host local copy operations
speed limit (we assume it is faster than the network speed). If
TRE is not utilized, the communication rate is governed only
by the network bandwidth. However, TRE virtually “increases”
the network speed and thus the machines speed becomes a
bottleneck.

Our experiments assume 50 Mbps machines connected over
5 Mbps line. According to our measurements, PACK is capable
of performing at much more than x10 speedup by using TRE,
but given that in practice one server serves many receivers we
assume in this experiment a maximal speed that the server is
willing to grant for a given receiver.

Fig. 14a describes the PACK transmission performance for
Linux over time. The graph represents the average sampled
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Fig. 14: Amount of data delivered to the application at the receiver
side during 10 seconds intervals

speed in which data is delivered to the application at the receiver
side during 10 seconds intervals. Therefore the shadowed area
under the graph represents the accumulated amount of data
delivered to the application at any given time. The lower (light
gray) area is the actual data that was transmitted over the net-
work and the upper (dark gray) area is the additional virtual data
loaded to the application from the receiver’s local chunk store.
Clearly, the high redundancy of Linux (over 76%), exploited
by PACK, speeds up the communication. It is interesting to
see that in all the intervals the speed rarely goes beyond 20
Mbps, despite the ability of the receiver to operate at 50 Mbps.
This results from the fact that matching chains are too short to
increase the rate of “virtual” transmissions for a long time.

Fig. 14b demonstrates the operation of PACK with less
redundancy but longer chains. This experiment delivers Email2
(2.5 GB Email account with 26% redundancy). The differences
between the two cases (a) and (b), stem from the differences
between the data redundancy and chain lengths.

C. Sender Effort: Receiver-Driven vs. Sender-Driven

PACK is a receiver driven TRE algorithm that places most
of the computational burden on the receiver. This approach is
optimized for the typical Web scenario of a heavily loaded



2,000

(o) [e) [e]
Q © (o} o ° o _ o
1800 0o Pa® O o P00 o0 gh0 o000 o Lo%
w “Ooo DOP, © 00 O Fo Lo W og
= o o) © © o
o

2 1,600
7] o o
c o
& 1400 o Sender driven
< . .
S & Receiver driven
$ 1,200 .
v
]
T 1,000
£ A
c
S 800
=] A A
E iy Py 4
]
2 600
o
T 400
< A
I
] A A A

A
200 N

v o & A A o s
0 L2 taan® a8 2 Coniaasmn n s BOAaA A B B s iEpor B pA a1
Time

Fig. 15: Difference in computation efforts between receiver and sender

driven modes for the transmission of Emaill

server that needs to send traffic concurrently to a large number
of clients.

In the following experiment we repeat the experiment of
section V-B only now we account for the computational effort of
the SHA-1 operations at the sender’s side. In the receiver driven
mode the sender is required to perform a SHA-1 operation
over a defined range of bytes (the prediction determines a
starting point, i.e., offset, and the size of the prediction) only
after it verifies the hint sent in the prediction matches its data
(a 1-byte XOR over the predicted range). In a sender driven
TRE solutions the sender is required to first compute Rabin
fingerprint to slice the stream into chunks and then to compute
a SHA-1 signature for each chunk prior to sending it.

Fig. 15 compares the difference in computation efforts be-
tween these two modes for the transmission of Emaill, accumu-
lating operations over time intervals of 30 seconds. The sender-
driven mode constantly consumes processing power while the
receiver-driven mode has a low computational demand with
occasional peaks. Fig. 16 reveals the nature of the receiver-
driven mode computational peaks. The figure draws the results
of the same experiment using a redundancy speed axis that
expresses the virtual speed achieved with a TRE of x10 speedup.

This clearly demonstrates that the sender-driven solution
requires a high computational effort irrespective of the redun-
dancy while the receiver-based solution triggers the sender’s
operations only when it is beneficial. Note, that these results
are very dramatic for all sender-receiver sessions that contain
no redundancy at all. Such sessions may be the majority of the
server-client sessions and therefore may significantly impair the
server throughput for the sender-driven mode.

D. RTT Impact: Receiver-Driven vs. Sender-Driven

Sender-driven TREs ([5][8][7]) are designed to optimize
network bandwidth. They eliminate the transmission of any
redundant chunk by sending the receiver a list of all future
chunk signatures and waiting for acknowledgements before the
data itself can be sent. PACK on the other hand does not delay
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Fig. 16: Rearrangement of Fig. 15 using a redundancy speed axis that
expresses the virtual speed

sender transmissions and therefore is expected to send more data
than sender-driven TREs but achieve a shorter response time to
data requests. Since the virtual data speed is higher than the
network bandwidth, the total download time presents a tradeoff
between the amount of redundancy elimination and the sender
response time. This tradeoff depends on network and virtual
transmission speeds, round-trip time, number of transmitted file,
their size, the redundancy level and PACK redundant chunk
chain lengths.

The experiment presented in Fig.17 delivers Emaill (1,140
emails and 46.6% redundancy), over a single TCP connection,
between two machines similar to the experiments presented
above. The horizontal axis presents the amount of data that
arrives to the receiver, assuming that initially the receiver
has an empty chunk store. At the beginning PACK has a
clear download time advantage over the sender-driven TRE,
as the sender-driven spends at least one extra RTT for each
downloaded email while there is hardly any redundancy at
this stage. When the chunk store fills up the redundancy level
gets higher. With large RTT and short chains PACK misses
some redundant chunks that are already sent before the receiver
predication reached the sender. This lowers the download time
difference, and in some of the sampled intervals the sender-
driven TRE performs faster.

E. Dispersement Level

Fig. 18 compares the difference in dispersement levels for
the transmission of two collections. It plots the values sent by
the receiver every 500 chunks, using the DISPER command.

Clearly Linux has higher dispersement levels most of the time
because it has more frequent chain breaks than Email2. For
example, assume that a single sender serves concurrently two
receivers that report two dispersement levels similar to Fig. 18.
In case the server can afford only one concurrent sender-
based TRE operation (due to limited computational resources or
buffers), it should prefer the receiver with the Linux download
profile.
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VI. SUMMARY

In the last years, Internet and intranet traffic has been evolved
to the shipment of large application files and rich data content.
This shift has motivated the development and deployment of
proprietary, middlebox based TRE solutions that address the
need of large corporations. Clearly, the same traffic character-
istic trends continue to dominate the new generation of mobile
and wireless networks. As most of the data redundancy already
happens at the end-to-end exchange, the need for a universal,
standard, software based TRE is evident.

In this work we have presented PACK, a universal solution
for a server friendly, end-to-end TRE which is based on novel
speculative principles that place the majority of the TRE com-
putational burden on the receiving client. We have chosen to
implement it as a TCP extension, making it both easy to adopt
as a standard and transparent to the majority of applications and
to IPsec encryption. Our evaluation has shown that PACK meets
the expected design goals and has clear advantages over sender
based TRE when the server effort and buffering requirements
are important. Several additional simple enhancements of PACK
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Fig. 18: Dispersement level in two collections: Linux (40 kernel
sources) and Email2 (2.5 GB email messages)

makes it the best of both worlds solution for an end-to-end TRE
standard.
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