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Exact Random Coding Exponents for Erasure

Decoding
Anelia Somekh-Baruch and Neri Merhav

Abstract—Random coding of channel decoding with an erasure
option is studied. By analyzing the large deviations behavior
of the code ensemble, we obtain exact single-letter formulas
for the error exponents in lieu of Forney’s lower bounds. The
analysis technique we use is based on an enhancement and
specialization of tools for assessing the moments of certain
distance enumerators. We specialize our results to the setup
of the binary symmetric channel case with uniform random
coding distribution and derive an explicit expression for the
error exponent which, unlike Forney’s bounds, does not involve
optimization over two parameters. We also establish the fact that
for this setup, the difference between the exact error exponent
corresponding to the probability of undetected decoding error
and the exponent corresponding to the erasure event is equal to
the threshold parameter. Numerical calculations indicate that for
this setup, as well as for a Z-channel, Forney’s bound coincides
with the exact random coding exponent.

Index Terms—random coding, erasure, list, error exponent,
distance enumerator

I. INTRODUCTION

IN [1], Forney derived lower bounds on the random coding

exponents associated with decoding rules that allow for

erasure and list decoding (see also later related studies[4]

-[9]). The channel model he considered was a single user

discrete memoryless channel (DMC), where a codebook of

block length n is randomly drawn with i.i.d. codewords having

i.i.d. symbols. When erasure is concerned, the decoder may

fully decode the message, or, decide to declare that an erasure

has occurred. An optimum tradeoff between the probability of

erasure and the probability of undetected decoding error was

investigated. This tradeoff is optimally controlled by a thresh-

old parameter T of the function enT to which one compares

the ratio between the likelihood of each hypothesized message

and the sum of likelihoods of all other messages. If this ratio

exceeds enT for some message, a decision is made in favor of

that message, otherwise, an erasure is declared. Forney’s main

result in [1] is a single-letter lower bound, E1(R, T ), to the

exponent of the probability of the event E1 of not making the

correct decision, namely, either erasing or making the wrong

decision, and a single-letter lower bound, E2(R, T ), to the

exponent of the probability of the event E2 of undetected error.

In [2, Th. 5.11], Csiszár and Körner derived universally

achievable error exponents for a decoder with an erasure

option for DMCs. These error exponents were obtained by

analyzing a decoder which generalizes the MMI decoder for
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constant composition (CC) codes. Unlike Forneys decoder, no

optimality claims were made for this decoder, but, in [3, Sec.

4.4.3] Telatar stated that these bounds are essentially the same

as those in [1].

Inspired by a statistical–mechanical point of view on ran-

dom code ensembles (offered in [10] and further elaborated on

in [12]), Merhav [11] applied a different technique to derive a

lower bound to the exponents of the probabilities of E1, E2

by assessing the moments of certain distance enumerators.

This approach, which also proved fruitful in several other

applications (see [13], [14], [15]), resulted in a bound that is at

least as tight as Forney’s bound. It is shown in [11] that under

certain symmetry conditions (that often hold) on the random

coding distribution and the channel, the resulting bound is

also simpler in the sense that there is only one parameter to

optimize rather than two. Moreover, this optimization can be

carried out in closed form at least in some special cases like

the binary symmetric channel (BSC). It is not clear though,

whether the bounds of [11] are strictly tighter than those of

Forney.

In this paper, we use the approach of distance enumerators

to tackle again the problem of random of channel decoding

with an erasure option. Unlike the approach of [1] and [11],

our starting point is not a Gallager-type bound [16] on the

probability of error, but rather the exact expression. This

approach results in single-letter expressions for the exact

exponential behavior of the probabilities of the events E1, E2

when random coding is used. So far, we have not been able

to determine analytically whether our results coincide with

Forney’s bounds, i.e., we cannot say whether Forney’s bounds

are tight or not, but the tightness of the our expressions

is guaranteed. While our analysis pertains to the ensemble

of codes where each symbol of each codeword is drawn

i.i.d. (mainly in order to enable a fair comparison to [1]),

our technique can easily be used for other ensembles, like

the ensemble where each codeword is drawn independently

according to the uniform distribution within a given type

class. For the case of the BSC with uniform random coding

distribution we have conducted several numerical calculations,

which indicate that Forney’s bound coincides with the exact

random coding exponent.

The outline of this paper is as follows. In Section II,

we present notation conventions and in Section III, we give

some necessary background in more detail. Section IV is

devoted to a description of the main results. In the following

sections, V-IX, we provide detailed derivations of the main

results: in Section V, we derive the exact expression for

the error exponent corresponding to the probability of E1,

and in Sections VI and VII, we study two special cases of
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channels. Section VIII is dedicated to the derivation of the

exact expression for the error exponent corresponding to the

probability of E2, and in Section IX, we specialize the proof

to the case of the BSC with the uniform random coding

distribution.

II. NOTATION

Throughout this paper, scalar random variables (RVs) will

be denoted by capital letters, their sample values will be

denoted by the respective lower case letters, and their alphabets

will be denoted by the respective calligraphic letters, e.g. X , x,

and X , respectively. A similar convention will apply to random

vectors of dimension n and their sample values, which will be

denoted with the same symbols in the boldface font. The set of

all n-vectors with components taking values in a certain finite

alphabet, will be denoted as the same alphabet superscripted

by n, e.g., Xn.

Sources and channels will be denoted generically by the

letter P or Q. Information theoretic quantities, such as en-

tropies and conditional entropies, will be denoted following

the usual conventions of the information theory literature, e.g.,

H(X), H(X|Y ), and so on. When we wish to emphasize the

dependence of the entropy on a certain underlying probability

distribution, say Q, we subscript it by Q, i.e., use notations

like HQ(X), HQ(X|Y ), etc. The divergence (or, Kullback -

Liebler distance) between two probability measures Q and P
will be denoted by D(Q‖P ), and when there is a need to make

a distinction between P and Q as joint distributions of (X,Y )
as opposed to the corresponding marginal distributions of, say,

X , we will use subscripts to avoid ambiguity, that is, we shall

use the notations D(QXY ‖PXY ) and D(QX‖PX). For two

number 0 ≤ q, p ≤ 1, D(q‖p) will stand for the divergence

between the binary measures {q, 1 − q} and {p, 1 − p}. The

expectation operator will be denoted by E{·}, and once again,

when we wish to make the dependence on the underlying

distribution Q clear, we denote it by EQ{·}.

The cardinality of a finite set A will be denoted by |A|.
The indicator function of an event E will be denoted by 1{E}.

For a given sequence y ∈ Yn, Y being a finite alphabet,

P̂y will denote the empirical distribution on Y extracted from

y, in other words, P̂y is the vector {P̂y(y), y ∈ Y}, where

P̂y(y) is the relative frequency of the letter y in the vector y.

For two sequences of positive numbers, {an} and {bn}, the

notation an
.
= bn means that {an} and {bn} are of the same

exponential order, i.e., 1
n ln an

bn
→ 0 as n → ∞. Similarly,

an

·
≤ bn means that lim supn

1
n ln an

bn
≤ 0, and so on. Another

notation that we shall use is that for a real number x, |x|+ =
max{0, x}.

III. PRELIMINARIES

Consider a DMC with a finite input alphabet X , finite

output alphabet Y , and single-letter transition probabilities

{P (y|x), x ∈ X , y ∈ Y}. As the channel is fed by an input

vector x ∈ Xn, it generates an output vector y ∈ Yn accord-

ing to the sequence of conditional probability distributions

P (yi|x1, ..., xi, y1, ..., yi−1) = P (yi|xi), i = 1, 2, ..., n
(1)

where for i = 1, (y1, ..., yi−1) is understood as the null string.

A rate-R block code of length n consists of M = enR n-

vectors xm, m = 1, 2, ...,M , which represent M different

messages. We will assume that all possible messages are

a-priori equiprobable, i.e., P (m) = 1/M for all m =
1, 2, ...,M . A decoder with an erasure option is a partition

of Yn into (M +1) regions, R0,R1, ...,RM . Such a decoder

works as follows: If y falls into Rm,m = 1, 2, ...,M , then a

decision is made in favor of message number m. If y ∈ R0 ,

no decision is made and an erasure is declared. We will refer

to R0 as the erasure event. Given a code C = {x1, ...,xM}
and a decoder R = (R0,R1, ..., Rm), let us now define two

undesired events. The event E1 is the event of not making

the right decision. This event is the disjoint union of the

erasure event and the event E2, which is the undetected error

event, namely, the event of making the wrong decision. The

probabilities of all three events are defined as follows:

Pr{E1} =

M
∑

m=1

∑

y∈Rc
m

P (xm,y) =
1

M

M
∑

m=1

∑

y∈Rc
m

P (y|xm)

(2)

Pr{E2} =

M
∑

m=1

∑

y∈Rm

∑

m′ 6=m

P (xm′ ,y)

=
1

M

M
∑

m=1

∑

y∈Rm

∑

m′ 6=m

P (y|xm′) (3)

Pr{R0} = Pr{E1} − Pr{E2}. (4)

Forney [1] shows, using the Neyman-Pearson Theorem, that

the best tradeoff between Pr{E1} and Pr{E2} is attained by the

decoder R∗ = (R∗
0,R

∗
1, ...,R

∗
M ) defined by

R∗
m =

{

y :
P (y|xm)

∑

m′ 6=m P (y|xm′)
≥ enT

}

,m = 1, 2, ...,M

(5)

R∗
0 =

M
⋃

m=1

(R∗
m)

c
, (6)

where (R∗
m)c is the complement of R∗

m, and where T ≥ 0
is a parameter, henceforth referred to as the threshold, which

controls the balance between the probabilities of E1 and E2 .

Define the error exponents ei(R, T ), i = 1, 2, as the

exponents associated with the average probabilities of error

Pr{Ei}, i = 1, 2, where the average is taken with respect

to (w.r.t.) the ensemble of randomly selected codes, drawn

independently according to an i.i.d. distribution P (x) =
∏n

i=1 P (xi), that is,

ei(R, T ) = lim sup
n→∞

[

−
1

n
ln Pr{Ei}

]

, i = 1, 2. (7)

Forney derives lower bounds, E1(R, T ) and E2(R, T ), to

e1(R, T ) and e2(R, T ), (or, upper bounds to the average

probabilities of error), respectively, given by

E1(R, T ) = max
0≤s≤ρ≤1

[E0(s, ρ) − ρR− sT ] , (8)
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where

E0(s, ρ) = (9)

− ln

[

∑

y

(

∑

x

P (x)P 1−s(y|x)

)(

∑

x′

P (x′)P s/ρ(y|x′)

)ρ]

and

E2(R, T ) = E1(R, T ) + T. (10)

Merhav [11] established tighter (though not necessarily

strictly tighter) upper bounds to e1(R, T ) and e2(R, T ) de-

noted E∗
1 (R, T ) and E∗

2 (R, T ). These bounds take on a very

simple form under the following condition:

Condition 1: The random coding distribution {P (x), x ∈
X} and the channel transition matrix {P (y|x), x ∈ X , y ∈ Y}
are such that for every real s,

γy(s)
∆
= − ln

[

∑

x∈X

P (x)P s(y|x)

]

(11)

is independent of y.

When the condition holds, γy(s) will be denoted by γ(s).
Under Condition 1, the bounds to the exponents are

E∗
1 (R, T ) = sup

s≥0
[Λ(R, s) + γ(1 − s) − sT − ln |Y|] (12)

where

Λ(R, s) =

{

γ(s) −R, s ≥ sR

sγ′(sR), s < sR,
(13)

γ′(s) = dγ(s)
ds and where sR is the solution to the equation

γ(s) − sγ′(s) = R. (14)

Also, similarly as in (10),

E∗
2 (R, T ) = E∗

1 (R, T ) + T. (15)

Let δGV (R) denote the normalized Gilbert-Varshamov (GV)

distance, i.e., the smaller solution, δ, to the equation

h(δ) = ln 2 −R, (16)

where h(δ) = −δ ln(δ)−(1−δ) ln(1−δ) is the binary entropy

function.

For the BSC with uniform1 random coding distribution, the

upper bound is given by

E∗
1 (R, T )

∆
= (17)

sup
s≥0

(

µ(s,R) + s ln
1

1 − p
− ln[p1−s + (1 − p)1−s] − sT

)

where

µ(s,R) =

{

µ0(s,R) s ≥ sR

βsδGV (R) s < sR
, (18)

µ0(s,R) = s ln(1 − p) − ln[ps + (1 − p)s] + ln 2 −R, (19)

and

β = ln
1 − p

p
. (20)

It is noted that the optimal s in (17) has an explicit expression

given in [11].

1By the term uniform random coding distribution, we mean uniform over

{0, 1}n.

IV. MAIN RESULTS

The main results in this paper are stated in Theorems 1 and

2, establishing exact expressions for the random coding error

exponents e1(R, T ) and e2(R, T ) for the general DMC.

For a given probability distribution Q on X × Y define

K(Q,R) = EQ ln
1

P (X)
−HQ(X|Y ) −R

= D(QX‖PX) + IQ(X;Y ) −R, (21)

and for a given probability distribution QY on Y , define

GR(QY )
∆
=
{

QX|Y : K(Q,R) ≤ 0
}

, (22)

where Q is the probability distribution QY ×QX|Y .

Theorem 1: The error exponent e1(R, T ) is given by

e1(R, T ) = min
Q̃

[

D(Q̃XY ||PXY ) + min
QX|Y

K(Q,R)

]

, (23)

where Q̃ is a probability distribution on X×Y , Q and Q̃ share

the same marginal pmf of Y , that is, Q = Q̃Y × QX|Y , and

the inner minimization is over QX|Y ∈ Gc
R(Q̃Y ) such that

Ω(Q̃,Q, T )
∆
= EQ̃ lnP (Y |X) + EQ ln

1

P (Y |X)
− T ≤ 0.

(24)

Corollary 1: Under Condition 1 (see (11)) the error expo-

nent e1(R, T ) is given by

e1(R, T )

= min
Q̃: ξ(Q̃,T )≤γ′(sR)

[D(Q̃XY ‖PXY ) + ψ(s(ξ(Q̃, T )))] −R,

(25)

where

ξ(Q̃, T ) = T + EQ̃ ln
1

P (Y |X)
, (26)

s(ξ) is the solution of the equation γ′(s) = ξ, sR is defined

as in (14), and

ψ(s)
∆
= γ(s) − sγ′(s). (27)

Corollary 2: For the BSC with uniform random coding

distribution, if R ≥ ln 2 − h(p + T/β), e1(R, T ) = 0 and

otherwise

e1(R, T ) = (28)

min
q∈[p,δGV (R)−T/β]

[D(q‖p) − h(q + T/β)] + ln 2 −R,

where β is defined in (20).

It is easy to verify, by equating the derivative of D(q||p) −
h(q+T/β) to zero, that the minimizing q is either a boundary

point of the interval [p, δGV (R)−T/β], or q that satisfies the

quadratic equation

q2(1 − e−β) + q

(

T

β
(1 − e−β) + 2e−β

)

− e−β = 0, (29)
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that is, denoting τ
∆
= e−β

q =
−
(

T
β (1 − τ) + 2τ

)

+

√

(

T
β (1 − τ) + 2τ

)2

+ 4(1 − τ)τ

2(1 − τ)
.

(30)

We note that in the BSC case, the exact exponent e1(R, T )
has a surprisingly simple explicit expression (28) in the sense

that there is an optimization over one parameter only and that

its optimum value is found in closed form.

Theorem 2: The error exponent e2(R, T ) is given by

e2(R, T ) = min
QY

[

D(QY ‖PY ) + min
Θ≤Θ0(QY )

{EA(QY ,Θ)

+EB(QY ,Θ)} −R

]

, (31)

where

Θ0(QY )

= min
QX|Y ∈GR(QY )

[

EQ ln
1

P (X,Y )
−HQ(X|Y )

]

−R, (32)

with Q = QY ×QX|Y ,

EA(QY ,Θ) =

min
QX|Y : EQ ln P (Y |X)=T−Θ

[

EQ ln
1

P (X)
−HQ(X|Y )

]

,

(33)

EB(QY ,Θ) =

min
QX|Y : EQ ln P (Y |X)≤−Θ

[

EQ ln
1

P (X|Y )
−HQ(X|Y )

]

.

(34)

Corollary 3: For the BSC with uniform random coding

distribution,

e1(R, T ) = e2(R, T ) + T. (35)

Discussion: The relation e1(R, T ) = e2(R, T ) + T , which is

proved to hold in the case of the BSC with uniform random

coding distribution, is not surprising. The intuition behind it

can be explained as follows: Recall that the decision rule

(5) was chosen to minimize the tradeoff between Pr{E1} and

Pr{E2}, and consider an equivalent problem of minimizing

a Lagrangian which is a linear combination of Pr{E1} and

Pr{E2}, where the Lagrange multiplier is enT . Had e1(R, T )
been different from e2(R, T ) +T , the exponents of these two

terms would differ, and hence one could improve the overall

exponent by changing their balance.

While our results imply that ei(R, T ) ≥ Ei(R, T ) and

ei(R, T ) ≥ E∗
i (R, T ), i = 1, 2, we have not been able

to determine analytically whether or not there are cases in

which at least one of these inequalities is a strong one. If

such cases will be found, then the conclusion will be that

we have strictly improved on the results of [1] or [11] or

both. If not, then the conclusion would be that the exponents

of [1] and [11] are tight, a fact which was not determined

unequivocally before. In either case, the tools proposed in this

paper provide us with a yardstick to determine the tightness

of the results in [1] and [11]. As mentioned earlier, we have

conducted a numerical study for the case of the BSC with

uniform random coding distribution which indicates that in

this case, ei(R, T ) appearing in (28) is equal to E∗
i (R, T )

(see (12)) and to Ei(R, T ). We have shown analytically for

this case that the lowest rate for which e1(R, T ) = 0 is equal

to that of E∗
1 (R, T ). A numerical study of the Z-channel (i.e.,

a binary channel for which P (Y = 0|X = 1) = 0) indicates

that ei(R, T ) = Ei(R, T ) also for this case. In light of these

two examples, we conjecture that Forney’s exponent is tight

in general.

V. PROOF OF THEOREM 1

The probability of error given that the message that was

sent is m, averaged over the codebooks is given by

Pr(E1|m) =
∑

xm

P (xm)
∑

y

P (y|xm)

· Pr







∑

m′ 6=m

P (y|xm′) > P (y|xm)e−nT

∣

∣

∣

∣

xm,y







.

(36)

Next, let Q be an empirical probability distribution defined

on X × Y and let Ny(Q) denote the number of codewords

(excluding xm) whose joint empirical probability distribution

with y is Q, and denote f(y, Q)
∆
= Ny(Q)enEQ ln P (Y |X)

then

Pr







∑

m′ 6=m

P (y|xm′) > P (y|xm)e−nT

∣

∣

∣

∣

xm,y







= Pr







∑

Q

Ny(Q)enEQ ln P (Y |X) > P (y|xm)e−nT

∣

∣

∣

∣

xm,y







= Pr







∑

Q

f(y, Q) > P (y|xm)e−nT

∣

∣

∣

∣

xm,y







(a).
= Pr

{

max
Q

f(y, Q) > P (y|xm)e−nT

∣

∣

∣

∣

xm,y

}

= Pr







⋃

Q

{

f(y, Q) > P (y|xm)e−nT
}

∣

∣

∣

∣

xm,y







.
=
∑

Q

Pr

{

f(y, Q) > P (y|xm)e−nT

∣

∣

∣

∣

xm,y

}

.
= max

Q
Pr

{

Ny(Q) > P (y|xm)e−n[EQ ln P (Y |X)+T ]

∣

∣

∣

∣

xm,y

}

,

(37)

where (a) follows from monotonicity and continuity of the
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exponent 2 in T . Now, we calculate

Pr
{

Ny(Q) > P (y|xm)e−n[EQ ln P (Y |X)+T ]
}

.

Recall the definition of Ω(Q̃,Q, T ) (24), and note that

1

n
ln
(

P (y|xm)e−n[EQ ln P (Y |X)+T ]
)

= EP̂xm,y
lnP (Y |X) − EQ lnP (Y |X) − T

= Ω(P̂xm,y , Q, T ), (38)

so we will be interested in evaluating

Pr
{

Ny(Q) > e
nΩ(P̂xm,y ,Q,T )

}

. There are two cases

to consider depending on the sign of Ω = Ω(P̂xm,y , Q, T ).
The case Ω ≤ 0: Here enΩ ≤ 1 and since Ny(Q) takes on

integer values,

Pr
{

Ny(Q) > enΩ
}

= Pr
{

Ny (Q) ≥ 1
}

.
= 1 −

[

1 − en[HQ(X|Y )+EQ ln P (X)]
]M−1

.
= exp

{

−n |−HQ(X|Y ) − EQ lnP (X) −R|
+
}

= exp
{

−n |K(Q,R)|
+
}

, (39)

where K(Q,R) is defined in (21), the first exponential equality

is because the random variable Ny (Q) is equal to the sum

of the i.i.d. binary-p random variables 1

{

P̂Xi,y = Q
}

, i =

1, ..., enR − 1, with

p
.
= en[HQ(X|Y )+EQ ln P (X)], (40)

and the second exponential equality is because if a ∈ [0, 1],
then

1

2
min{1, aM} ≤ 1 − (1 − a)M ≤ min{1, aM} (41)

(see Lemma 1 in [17]).

The case Ω > 0: There are two sub-cases to consider:

• If Ω > 0 and Ω ≥ −K(Q,R) we can use the Chernoff

bound, similarly to [12] Appendix B

Pr
{

Ny (Q) > enΩ
}

(42)
·
≤ min

{

1, exp
{

−enΩ [n {K(Q,R) + Ω} − 1]
}}

.

This term decays at least double–exponentially rapidly and

hence is negligible in the exponential scale.

• If 0 < Ω ≤ −K(Q,R) we prove in the following lemma

(see Appendix A) that Pr
{

Ny(Q) > enΩ
}

is very close to

one.

Lemma 1: If Q ∈ GR and Ω < R + HQ(X|Y ) +
EQ lnP (X), then Pr

{

Ny(Q) ≤ enΩ
}

vanishes superexpo-

nentially.

2Formally, the difference between
P

Q f(y, Q) and maxQ f(y, Q), which

is O(log n/n) in the exponential scale, can be absorbed in the parameter
T . Thus, one can derive upper and lower bounds in terms of e1(R, T +
O(log n/n)) and e1(R, T − O(log n/n)), with e1(·, ·) defined as in (23).
These are asymptotically the same wherever e1(R, T ) is continuous in T .
And, in fact, since e1(R, T ) a monotonically non-increasing function of T
for a given R, it is continuous in T almost everywhere.

Therefore, for Ω > 0, we have

Pr
{

Ny (Q) > enΩ
} .

= 1 {0 < Ω ≤ −K(Q,R)} (43)

Combining this with the expression for the range where

Ω ≤ 0 (39), we get.

Pr
{

Ny (Q) > enΩ
} .

= 1 {Ω ≤ 0} exp
{

−n |K(Q,R)|
+
}

+1 {0 < Ω ≤ −K(Q,R)} . (44)

This can be rewritten as

Pr
{

Ny (Q) > enΩ
}

.
= 1

{

Q ∈ Gc
R(P̂y),Ω ≤ 0

}

exp {−n (K(Q,R))}

+ 1

{

Q ∈ GR(P̂y),Ω ≤ −K(Q,R)
}

. (45)

Recall that, in fact, Ω = Ω(Q̃,Q, T ) (with Q̃ = P̂xm,y , see

(38)), so the condition in the second term,

Ω ≤ −K(Q,R) = HQ(X|Y ) + EQ lnP (X) +R (46)

is equivalent to

EQ̃ lnP (Y |X)−T ≤ R+EQ lnP (X,Y )+HQ(X|Y ). (47)

Thus, after maximizing over Q and taking the expectation w.r.t.

(xm,y), the resulting exponent is

e1(R, T ) = min {Ea(R, T ), Eb(R, T )} (48)

where

Ea(R, T ) = min
Q̃

[

D(Q̃XY ||PXY )

+ min
QX|Y : Q∈Gc

R
(Q̃Y ), Ω(Q̃,Q,T )≤0

K(Q,R)

]

, (49)

Eb(R, T ) = min
Q̃∈LR,T

D(Q̃XY ||PXY ), (50)

with Q = Q̃Y ×QX|Y , and where

LR,T =

{

Q̃(X,Y ) : EQ̃ lnP (Y |X) ≤ R+ T+

maxQ∈GR(Q̃Y ) [EQ lnP (X,Y ) +HQ(X|Y )]

}

,

(51)

and the probability distributions Q̃ are defined on the set X ×
Y . Next, we show that Ea(R, T ) is the dominant term in the

minimization (48):

Ea(R, T ) =

min
Q̃

[

D(Q̃XY ||PXY )) + min
Q∈Gc

R
(Q̃Y ): Ω(Q̃,Q,T )≤0

K(Q,R)

]

≤ min
Q̃∈LR,T

[

D(Q̃XY ||PXY ) + min
Q∈Gc

R
(Q̃Y ): Ω(Q̃,Q,T )≤0

K(Q,R)

]

(a)
= min

Q̃∈LR,T

[

D(Q̃XY ||PXY ) + min
Q∈Gc

R
(Q̃Y )

K(Q,R)

]

(b)
= min

Q̃∈LR,T

D(Q̃XY ||PXY )

= Eb(R, T ), (52)
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where (a) follows since when Q̃ ∈ LR,T , the constraint

Ω(Q̃,Q, T ) ≤ 0 becomes inactive, and (b) is by definition

of GR(Q̃Y ), and by the fact that when the rate R is below

capacity, the boundary of Gc
R(Q̃Y ) is non empty3.

This results in the exponent e1(R, T ) = Ea(R, T ).

VI. PROOF OF COROLLARY 1

To prove the corollary we use the general expression (23)

of Theorem 1. For a measure Q̃ on X × Y define

Z(Q̃, R, T )
∆
= min

QX|Y

{EQ ln[1/P (X)] −HQ(X|Y )} (53)

where Q = Q̃Y × QX|Y and the minimum over QX|Y

being across Gc
R(Q̃Y )

⋂

{Ω(Q̃,Q, T ) ≤ 0}. Assuming that the

condition of Theorem 1 holds, it is easy to see (using Lagrange

multipliers) that the minimizing QX|Y of Z is always of the

form

µs(x|y) =
P (x)P s(y|x)

∑

x′ P (x′)P s(y|x′)
, (54)

and it is easy to check that for Qs = Q̃Y × µs

EQs
ln[1/P (X)] −HQs

(X|Y ) = γ(s) − sγ′(s), (55)

and that EQs
ln[1/P (Y |X)] = γ′(s). Therefore, the compu-

tation of Z(Q̃, R, T ) boils down to a problem of minimizing

over one parameter only, that is s. Specifically,

Z(Q̃, R, T ) = min{ψ(s) : ψ(s) ≥ R, γ′(s) ≤ ξ(Q̃, T}
(56)

where

ξ(Q̃, T ) = T + EQ̃ ln[1/P (Y |X)]. (57)

Now, γ(s) is a monotonically non–decreasing concave func-

tion (as γ′(s) ≥ 0, γ′′(s) ≤ 0), and so, ψ′(s) = −sγ′′(s) ≥ 0,

which means that ψ is a non–decreasing function. Therefore,

minimizing ψ is equivalent to minimizing s subject to the con-

straints. Now, the constraint ψ(s) ≥ R is equivalent to a con-

straint s ≥ sR (see the definition of sR preceding (14)), and

the constraint γ′(s) ≤ ξ is equivalent to s ≥ s(ξ(Q̃, T )), s(ξ)
being the solution to the equation γ′(s) = ξ. Thus, to satisfy

both constraints s must be larger than max{sR, s(ξ(Q̃, T ))}.

So, the optimum s is s∗ = max{sR, s(ξ(Q̃, T ))}. We there-

fore obtain from (23) that the exponent is equal to

min
Q̃

{D(Q̃XY ‖PXY ) + ψ(max{sR, s(ξ(Q̃, T ))})} −R.

(58)

We now argue that the achiever Q̃ must satisfy

s(ξ(Q̃, T )) ≥ sR, and so, and alternative expression of the

above is

min
Q̃: s(ξ(Q̃,T ))≥sR

[D(Q̃XY ‖PXY ) + ψ(s(ξ(Q̃, T )))] −R.

(59)

3To realize this, note that for rates below the capacity P ∈ Gc
R

(Q̃Y )
since [−HQ(X|Y )− EQ ln P (X)]|Q=P − R = IP (X; Y )− R ≤ 0, and

obviously GR(Q̃Y ) is not empty, e.g., it contains QXY = P (X)QY which
yields [−HQ(X|Y ) − EQ ln P (X)] − R = −R hence, and by continuity
there exists a linear combination of these two probability distributions that

lies on the boundary of Gc
R

(Q̃Y ).

or, equivalently,

min
Q̃: ξ(Q̃,T ))≤γ′(sR)

[D(Q̃XY ‖PXY ) + ψ(s(ξ(Q̃, T )))] −R.

(60)

To see why this is true, assume conversely, that the

achiever Q̃∗ satisfies s(ξ(Q̃∗, T )) < sR, or equivalently,

EQ̃∗ ln[1/P (Y |X)] > γ′(sR) − T . In this case we get,

e1(R, T ) = D(Q̃∗
XY ‖PXY ) + ψ(sR) −R = D(Q̃∗

XY ‖PXY ).
(61)

But we know already that EPXY
ln[1/P (Y |X)] = H(Y |X) <

γ′(sR) − T . Thus, if we look at the convex com-

bination Q(t) = (1 − t)Q̃∗ + tPXY , and choose t
such that EQ(t) ln[1/P (Y |X)] = γ′(sR) − T (namely,

s(ξ(Q(t), T )) = sR), we have, by convexity of the divergence,

D(Q
(t)
XY ‖PXY ) ≤ (1 − t)D(Q̃∗

XY ‖PXY ) < D(Q̃∗
XY ‖PXY ),

which contradicts the optimality of Q̃∗ and hence proves the

claim.

VII. PROOF OF COROLLARY 2

Consider the general expression (23) of Theorem 1. For the

BSC, P (Y |X), we have

EQ̃ lnP (Y |X) − EQ lnP (Y |X)

=
[

Q̃(X 6= Y ) −Q(X 6= Y )
]

· β. (62)

We also note that since P (X) = 1
2 , for all Q, EQ lnP (X) =

− ln 2, thus the expression we get from (23) is

min
Q̃

[

D(Q̃XY ||PXY ) + min
QX|Y ∈S

(−HQ(X|Y ) + ln 2 −R)

]

(63)

where Q = Q̃T ×QX|Y and

S1
∆
=

{

QX|Y :
−HQ(X|Y ) + ln 2 −R ≥ 0,

Q(X 6= Y ) ≤ Q̃(X 6= Y ) + T/β

}

. (64)

Consequently, (63) is equal to

min
Q̃

[

D(Q̃XY ||PXY )

+

∣

∣

∣

∣

min
QX|Y ∈S2

(−HQ(X|Y ) + ln 2 −R)

∣

∣

∣

∣

+
]

. (65)

where S2
∆
= {QX|Y : Q(X 6= Y ) ≤ Q̃(X 6= Y ) + T/β}.

Now, on one hand we have

HQ(X|Y ) = HQ (1 {X 6= Y } |Y ) ≤ HQ

(

1{X 6=Y }

)

, (66)
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thus,

min
Q̃

[

D(Q̃XY ||PXY )

+

∣

∣

∣

∣

min
QX|Y ∈S2

(−HQ(X|Y ) + ln 2 −R)

∣

∣

∣

∣

+
]

≥ min
Q̃

[

D(Q̃XY ||PXY )

+

∣

∣

∣

∣

min
QX|Y ∈S2

(

−HQ(1{X 6=Y }) + ln 2 −R
)

∣

∣

∣

∣

+
]

= min
q̃

[

D(q̃||p) +

∣

∣

∣

∣

min
q≤q̃+T/β

(−h(q) + ln 2 −R)

∣

∣

∣

∣

+
]

, (67)

where the last step follows since the minimizing Q̃ is such

that Q̃X = PX to obtain minimal D(Q̃XY ‖PXY ), and it is

also easy to verify that given Q̃(X 6= Y ) = q̃ the divergence

D(Q̃XY ‖PXY ) is minimized for a symmetric Q̃(Y |X), that

is,

Q̃(y|x) =

{

q̃ x = y
1 − q̃ x 6= y

, (68)

for which we have D(Q̃XY ‖PXY ) = D(q̃‖p).
On the other hand, one can choose

Q(y|x) =

{

q x = y
1 − q x 6= y

, (69)

which obtains the inequality in (67) with equality and thus is

the minimizer.

Next, we observe that −h(q) is decreasing in q for q ∈ [0, 1
2 ]

and increasing for q ∈ [ 12 , 1] so,

min
q̃

[

D(q̃||p) +

∣

∣

∣

∣

min
q≤q̃+T/β

(−h(q) + ln 2 −R)

∣

∣

∣

∣

+
]

= min
q̃

[

D(q̃||p) +

∣

∣

∣

∣

−h

(

min

{

1

2
, q̃ + T/β

})

+ ln 2 −R

∣

∣

∣

∣

+
]

= min
q̃

[D(q̃||p) − h (min {q̃ + T/β, δGV (R)}) + ln 2 −R] .

(70)

Finally, we see that the minimum over q̃ cannot be attained

at q̃ > δGV (R)−T/β, because beyond δGV (R)−T/β, D(q̃‖p)
grows while h(min{q̃ + T/β, δGV (R)}) = h(δGV (R)) re-

mains constant. Thus, it is enough to limit the range of the

minimization to q̃ ∈ [p, δGV (R) − T/β] in which case the

minimization within the argument of h(·) becomes redundant.

In summary,

e1(R, T )

= min
q̃∈[p,δGV (R)−T/β]

[D(q̃‖p) − h(q̃ + T/β)] + ln 2 −R.

(71)

VIII. PROOF OF THEOREM 2

The exponent e2(R, T ) is associated with the probability

that y falls in Rk for some k while the true message sent was

m, m 6= k. Since Rk, k = 1, ..., enR are disjoint sets

Pr{E2|m,y}

=
∑

k 6=m

Pr







e−nTP (y|xk) ≥
∑

l 6=k

P (y|xl)

∣

∣

∣

∣

∣

∣

xm,y







. (72)

Now, fix k and consider the following chain of equalities (on

the exponential scale):

Pr







e−nTP (y|xk) ≥
∑

l 6=k

P (y|xl)

∣

∣

∣

∣

∣

∣

xm,y







·
=Pr







P (y|xk)

enT
≥ max

{

P (y|xm),
∑

l 6=k,m

P (y|xl)
}

∣

∣

∣

∣

∣

∣

xm,y







=Pr

{

P (y|xm) ≤ e−nTP (y|xk),
∑

l 6=k,m P (y|xl) ≤ e−nTP (y|xk)

∣

∣

∣

∣

xm,y

}

,

(73)

where, as mentioned, xm is the true message transmitted.

Consider now the random selection of the codebook, where

the random codewords will be denoted by capital letters. Then,

Pr{E2}

=
∑

k 6=m

∑

y∈Yn

∑

Θ

P (y) · Pr{e−nTP (y|Xk) = e−nΘ|y}

×Pr{P (y|Xm) ≤ e−nΘ|y}

×Pr







∑

l 6=k,m

P (y|X l) ≤ e−nΘ|y







∆
=

∑

k 6=m

∑

y∈Yn

∑

Θ

P (y) · Pr(A|y) · Pr(B|y) · Pr(C|y).(74)

Now,

Pr(A|y)

=
∑

x: ln P (y|x)=n(T−Θ)

P (x)

·
= exp

{

n×

max
QX|Y : EQ ln P (Y |X)=T−Θ

[HQ(X|Y ) + EQ lnP (X)]

}

= exp

{

− n×

× min
QX|Y : EQ ln P (Y |X)=T−Θ

[EQ ln 1/P (X) −HQ(X|Y )]

}

∆
= e

−nEA(P̂y ,Θ)
. (75)
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Similarly, letting P (x|y) =
∏n

i=1 P (xi|yi) denote the poste-

rior induced by P (x,y) =
∏n

i=1 P (xi)P (yi|xi), we have:

Pr(B|y)

=
∑

x: ln P (y|x)≤−nΘ

P (x|y)

·
= exp

{

n×

× max
QX|Y : EQ ln P (Y |X)≤−Θ

[HQ(X|Y ) + EQ lnP (X|Y )]

}

= exp

{

− n×

min
QX|Y : EQ ln P (Y |X)≤−Θ

[EQ ln 1/P (X|Y ) −HQ(X|Y )]

}

∆
= e

−nEB(P̂y ,Θ)
. (76)

As for Pr(C|y), we proceed as follows.

Pr(C|y)

= Pr







∑

Q

Ny(Q) · enEQ ln P (Y |X) ≤ e−nΘ

∣

∣

∣

∣

∣

∣

y







·
= Pr

{

max
Q

[

Ny(Q) · enEQ ln P (Y |X)
]

≤ e−nΘ

∣

∣

∣

∣

y

}

= Pr







⋂

Q

{

Ny(Q) ≤ en[EQ ln 1/P (Y |X)−Θ]
}

∣

∣

∣

∣

∣

∣

y







.(77)

Now, if Θ is such that there exists QX|Y ∈ GR(P̂y)

such that Q = P̂y × QX|Y satisfies EQ ln 1/P (Y |X) −
Θ < R + HQ(X|Y ) + EQ lnP (X) (or equivalently,

Θ > minQX|Y ∈GR(P̂y)[EQ ln 1/P (X,Y )−HQ(X|Y )]−R),

then this Q alone is responsible for a double–exponential

decay of Pr(C|y), let alone the intersection over all Q.

Thus, in this range of large Θ, the contribution is double-

exponential. Conversely, in the complementary event, namely,

if Θ is such that for all QX|Y ∈ GR(P̂y), the mea-

sure Q = P̂y × QX|Y satisfies EQ ln 1/P (Y |X) − Θ >
R + HQ(X|Y ) + EQ lnP (X) (or equivalently, Θ <
minQX|Y ∈GR(P̂y)[EQ ln 1/P (X,Y ) −HQ(X|Y )] −R), then

Pr(C|y) is close to unity because it is lower bounded by

1−
∑

Q Pr{Ny(Q) > en[EQ ln 1/P (Y |X)−Θ]}, where the sum-

mation is over polynomially many terms that decay at least

exponentially rapidly (at least exponentially in Gc
R(P̂y) and

at least double–exponentially in GR(P̂y)). Thus, Pr(C|y) can

be approximated exponentially tightly by an indicator for the

event Θ < Θ0(P̂y)
∆
= minQX|Y ∈GR(P̂y)[EQ ln 1/P (X,Y ) −

HQ(X|Y )] −R. Putting it all together, we then have:

Pr{E2}
·
=
∑

k 6=m

∑

y

∑

Θ≤Θ0(P̂y)

P (y)×

× exp

{

− n[EA(P̂y ,Θ) + EB(P̂y ,Θ)]

}

= exp

{

− nmin
QY

[

D(QY ‖PY )

+ min
Θ

{EA(QY ,Θ) + EB(QY ,Θ)} −R
]

}

, (78)

where the minimization is over Θ ≤ Θ0(QY )

IX. PROOF OF COROLLARY 3

First, we compute EA(QY ,Θ) and EB(QY ,Θ) for

this case. Clearly we have EQ ln 1/P (X) = ln 2 and

EQ lnP (Y |X) = −Q(X 6= Y ) · β + ln(1 − p), therefore,

EA(QY ,Θ

= min
QX|Y : EQ ln P (Y |X)=T−Θ

[EQ ln 1/P (X) −HQ(X|Y )]

= min
QX|Y : −Q(X 6=Y )·β+ln(1−p)=T−Θ

[ln 2 −HQ(X|Y )]

= ln 2 − h ([ln(1 − p) + Θ − T ]/β) , (79)

where the last step is because we have (66) so the expression

is minimized by choosing QX|Y as in (69) with q = Q(X 6=

Y ) = ln(1−p)+Θ−T
β .

As for EB(QY ,Θ), we have similarly

EB(QY ,Θ)

= min
QX|Y : EQ ln P (Y |X)≤−Θ

[EQ ln 1/P (X|Y ) −HQ(X|Y )]

= min
QX|Y : −Q(X 6=Y )·β+ln(1−p)≤−Θ

[Q(X 6= Y ) · β

− ln(1 − p) −HQ(X|Y )]

= min
q≥

Θ+ln(1−p)
β

[q · β − ln(1 − p) − h (q)]

= max {p, qm}β − ln(1 − p) − h (max {p, qm}) , (80)

where the last step of (80) is because the unconstrained

minimization is achieved at q = p and the function qβ−h(q)
is convex for q ∈ [0, 1].

Next, we calculate Θ0(QY ) similarly

Θ0(QY )

= min
QX|Y ∈GR(QY )

[EQ ln 1/P (X,Y ) −HQ(X|Y )] −R

= min
q: ln 2−h(q)−R≤0

qβ − ln(1 − p) + ln 2 − h(q) −R

= max {p, δGV (R)}β − ln(1 − p) + ln 2

− h (max {p, δGV (R)}) −R. (81)

To conclude we note that since all of the relevant expressions

EA(QY ,Θ), EB(QY ,Θ),Θ0(QY ) actually do not depend on

QY , the optimal QY is PY to minimize the divergence, and

therefore we get (35).
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APPENDIX

To prove Lemma 1, we shall use the lower bound on the

divergence given in [12, eq. (27)]

D(a‖b) ≥ a
(

ln
a

b
− 1
)

+ b. (82)

Using the Chernoff bound for Ω < R + HQ(X|Y ) +
EQ lnP (X) we get

Pr
{

Ny(Q) ≤ enΩ
}

≤ exp
{

(1 − enR)D
(

e−n(R−Ω)‖e−n(−HQ(X|Y )−EQ ln P (X))
)}

≤ exp
{

−enRD
(

e−n(R−Ω)‖e−n(−HQ(X|Y )−EQ ln P (X))
)}

·
≤ exp

{

− enΩn (−HQ(X|Y ) − EQ lnP (X) −R+ Ω − 1)

− en(HQ(X|Y )+EQ ln P (X)+R)
}

. (83)

Now, it is evident that for Q ∈ GR, the term

en(HQ(X|Y )+EQ ln P (X)+R) increases exponentially and the

term

enΩn (−HQ(X|Y ) − EQ lnP (X) −R+ Ω − 1) is negative

but with exponent Ω which is smaller than HQ(X|Y ) +
EQ lnP (X) + R and therefore negligible, hence this prob-

ability vanishes superexponentially.
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