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Abstract—Image contrast can deteriorate significantly in scat-
tering media, such as underwater, due to backscatter. This affects
the performance of many computer vision techniques developed
for open-air conditions, including the stereo matching algorithms,
when applied to images acquired in these environments. It has
been demonstrated that the backscatter field embodies depth
information, thus can potentially provide an effective visual
cue for 3-D reconstruction. In this paper, we address the
estimation of the backscatter component in stereo images, in
order to employ it as an additional cue for disparity estimation.
More precisely, we decouple the stereo images into signal and
backscatter components, and thus are able to make use of
depth cues offered by both components in order to devise a
more robust technique for disparity computation. Our method
is invariant to illumination setup, and requires neither lighting
calibration nor the knowledge of medium optical properties.
Results of experiments with synthetic and real data are provided
to demonstrate the performance of our new method.

Index Terms—Stereo, Scattering.

I. INTRODUCTION

FEATURE matching, the primary challenge in stereovi-
sion, has been studied over several decades; e.g. [1].

Despite extensive work dealing with open-air images, only a
small number of studies has addressed the problem when the
images are taken in scattering media, e.g., in fog, haze, and
underwater [2], [3], [4], [5]. Most computer vision methods
face significant difficulties if employed directly for underwater
images [6], and those recorded in other scattering environ-
ments.

In such domains, the backscatter field can significantly cor-
rupt the scene radiance, which comprise the signal component
of the image. Additionally, the signal component undergoes
attenuation due to the medium absorption and scattering as
the light rays travel from the object to the camera. Since
backscatter increases with the distance between the camera
and the scene, this leads to a contrast decay that varies across
the image [7]. In low-light environments, artificial sources are
necessary, adding other complexities.

In this case, corresponding patches in stereo images might
have different brightness levels with dissimilar backscatter
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Fig. 1. Turbidity affects the performance of stereo matching methods. Left
image of a stereo pair in (a)open air, (b)turbid water. (c)Ground truth disparity
map: pixels with brighter gray value are closer to the camera. (d)Contrast map:
pixels with higher contrast values are shown in brighter pixels, . Validity map
of the estimated depth map using normalized SSD in (e)open air, (f)turbid
water. Pixels with correct estimated disparity are shown in white.

components. These effects make stereo matching even more
challenging in scattering media. To demonstrate the negative
impact of these effects on stereo matching results, we picked
the standard normalized SSD method and run it on original
Poster image from Middlebury dataset [1] and its correspond-
ing synthetic stereo pair in turbid water. The validity map of
estimated disparities are illustrated in Fig. 1. Comparing the
validity maps of open air and turbid water images, one can
readily see that the depth map estimation over the low-contrast
areas is affected due to the signal attenuation and backscatter
presence. Standard deviation of pixel values in a local window
is used as the contrast measure and the contrast map is
shown in Fig. 1 for reference. In scattering media, backscatter
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component lowers the contrast of the image and wherever the
backscatter dominates the signal, the stereo matching methods
will have more difficulties in finding correspondences.

Some open-air methods that relax the brightness constancy
assumption may be applied in clear water, where the scattering
is negligible and the lighting is relatively uniform; e.g., [8],
[9]. In other work targeted directly for underwater mapping,
the images have been acquired under good visibility, and thus
negligible backscatter [2], [3], [4], [5]. In [7], the authors
propose the recovery of de-scattered stereo views to enable
the application of a traditional stereo algorithm. Their method
requires the estimation of the optical properties of the medium
in order to compute the backscatter field from the depth map.
Moreover, the depth cue in the backscatter field is totally
ignored. In [10], the authors make use of both the polarization
and stereo cues for image enhancement. In producing the de-
scattering image, the scene depth map computed from the
signal component is applied. This method also makes use
of the known optical properties of the medium and does not
exploit the depth cue of the backscatter component. The use of
depth cue in the backscatter component has been demonstrated
in [11], where two images acquired with different polarization
filter settings from a single viewpoint are exploited for image
enhancement by de-scattering.

Another possible solution includes recovering the object
radiance using the methods of single image backscatter re-
moval and hence increase the contrast of the image. Different
methods are developed to address single image backscatter
removal [12], [13], [14]. However, all these methods are
designed for atmospheric airlight and assume uniform lighting
and thus limits their applicability. Furthermore, the method in
[12] is based on dark channel prior and might not work for
images with invalid dark-channel prior.

In this paper, we make use of both the scattering field
and binocular stereo in solving the correspondence problem,
the first step towards the 3-D scene reconstruction. We show
how to estimate the backscatter field without the knowledge
of the medium optical properties. The method is invariant
to illumination source, applying to both natural illumination
and artificial lighting. Therefore, our method requires neither
parametric lighting calibration nor knowledge of medium
optical properties. We make use of representing the backscatter
field in a local patch as a scaling of the backscatter at infinity,
which can be readily estimated. By determining the scaling
within the support region of each pixel, we exploit the depth
cue in the backscatter field. Our results with both synthetic
and real data verify the improved robustness and accuracy with
respect to the cases where one or the other, but not both visual
cues are employed.

II. STEREO MODELING IN SCATTERING MEDIA

Consider two calibrated cameras viewing the scene (Fig. 2).
For simplicity, assume that their coordinate systems and
optical axes are parallel, and that their baseline vector is
D = (D, 0, 0) in the global coordinate system. Hence, the
epipolar lines are parallel to the x axis. We denote the
corresponding image coordinates of the same scene point in
the left and right images by xi

obj, i ∈ L, R where x = (x, y).

L camera

R camera

Artificial Light source

Object
LOSR
LOSL

objZ
Z

X

Natural Light source

Fig. 2. Stereo setup in a scattering media.

In scattering media, the left IL and right IR images may
be modeled by the attenuated signal S and the backscatter B
components [10]:

IL(xL
obj) = SL(xL

obj) +BL(xL
obj) (1)

IR(xR
obj) = SR(xR

obj) +BR(xR
obj) (2)

Since the camera coordinates systems and their optical axes
are parallel, we can write:

xR
obj = xL

obj + (d, 0) (3)

where d is the disparity for two corresponding points in the
left and right views. More details and formulation of the signal
and the backscatter components can be found in [10].

III. ESTIMATION OF BACKSCATTER AND SIGNAL
COMPONENTS

Our goal is to decompose each image in a stereo pair
recorded in a scattering media into its backscatter and signal
components. Consider local patches around the corresponding
pixels in the left and the right views which we call them ΩxL

obj

and ΩxR
obj

, respectively.We define the following fields in terms
of the signal and backscatter components of the two views:

S(ΩxL
obj

,ΩxR
obj

) = SL(ΩxL
obj

) + SR(ΩxR
obj

) (4)

B(ΩxL
obj

,ΩxR
obj

) = BL(ΩxL
obj

) +BR(ΩxR
obj

) (5)

ρ(ΩxL
obj

,ΩxR
obj

) =
BL(ΩxL

obj
)−BR(ΩxR

obj
)

BL(ΩxL
obj

) +BR(ΩxR
obj

)
(6)

It is noted that where the propagation path from target to the
two cameras is roughly the same, the brightness constancy
assumption may be applied to the attenuated signals:

SL(ΩxL
obj

) = SR(ΩxR
obj

) (7)

For simplicity hereafter we omit the arguments ΩxL
obj

,ΩxR
obj

from the equations, in the remainder.



TECHNICAL REPORT CLASS FILES, VOL. 6, NO. 1, AUGUST 2010 3

Using Eqs.(1) and (2) and the definitions for B, S and ρ, the
following equations can be derived for local patches around the
corresponding points {xL

obj,x
R
obj} in the left and right images:

IL + IR = B + S (8)

IL − IR = ρB (9)

Suppose that we can estimate ρ and the backscatter at
infinity in the left and right images, BL

∞ and BR
∞, respectively.

(We show how these are estimated in the next section.) These
are denoted ρ̂, B̂L

∞ and B̂R
∞. Then, B can be readily estimated

from (9):
B̂ = (IL − IR)/ρ̂ (10)

Referring to Eq. (6), it is noted that ρ could be close to (or
equal to) zero, where there is not enough difference between
the left and right backscatter fields. Therefore, B in Eq.(10)
will be overestimated. To avoid that, we restrict the ρ̂ to a
lower bound ρ̂0. The final formulation of B would be

B̂ = ± IL − IR

max(ρ̂, ρ̂0)
(11)

We used the value 0.1 for ρ̂0 in all results shown in this
paper. The ± sign will assure that the value of estimated
backscatter is positive. Following [12], we assume backscatter
is uniform across a local patch. Similarly, we assume the
backscatter at infinity for a local patch is uniform across
the entire local patch but it might have different intensity
values in left and right views. Once we have an estimate
for B, it is distributed between BL and BR according to their
corresponding backscatter at infinity:

B̂L = ŝL B̂; ŝL =
B̂L

∞

B̂L
∞ + B̂R

∞
(12)

B̂R = ŝR B̂; ŝR =
B̂R

∞

B̂L
∞ + B̂R

∞
(13)

By substituting the estimates of BL and BR into Eq. (1) and
(2), the signal component of the left and right images can be
estimated:

ŜL = IL − B̂L (14)

ŜR = IR − B̂R (15)

We emphasize that the above equations hold for the matching
{xL

obj,x
R
obj} in the left and right images. This fact plays a key

role in the development of our method. To illustrate this fact
more explicitly, we demonstrate an example here. Suppose
we are searching along an epipolar line for matches by
incrementing disparity from dmin to dmax. At each disparity,
we extract local patches around the pixels in the left and the
right images, i.e. ΩxL

obj
and ΩxR

obj
. Using Eqs (6), (10), (12),

we estimated BL for ΩxL
obj

and showed in second row of Fig.3.
Comparing to BL

∞ shown in the first row of Fig.3, it can be
seen that at correct disparity, the estimated BL is smooth and
similar to backscatter at infinity. Also, note that the estimated
backscatter at correct disparity has lower intensity value than
B̂L

∞ which is the upper limit for B̂L.

A. Estimation of ρ and Backscatter at Infinity

We can estimate BL
∞ and BR

∞ by taking an image with no
object in the field of view of the camera. This means that
SL = SR = 0. By substituting this into Eq.(1) and Eq.(2), one
can conclude

B̂L
∞ = IL∞ (16)

B̂R
∞ = IR∞ (17)

Using equal-path-length assumption, in a homogenous
medium, ρ for a local patch can be estimated as follows:

ρ̂ =
B̂L

∞(ΩxL
obj

)− B̂R
∞(ΩxR

obj
)

B̂L
∞(ΩxL

obj
) + B̂R

∞(ΩxR
obj

)
=

IL∞(ΩxL
obj

)− IR∞(ΩxR
obj

)

IL∞(ΩxL
obj

) + IR∞(ΩxR
obj

)

(18)

IV. DISPARITY ESTIMATION

Having estimated the backscatter and the signal components
for both images, we can formulate the stereo matching prob-
lem as a minimization of the following energy function:

ET = ES + EB (19)

Here ES and EB are the energy functions for the estimated
signals and estimated backscatters respectively.

A number of different frameworks, e.g., the weighted
support windows, hierarchical techniques, occlusion handling
methods, etc., can be utilized in defining our energy functions.
Among these, the weighted support windows is the simplest
implementation, where we can analyze the results from our
method with those obtained by processing the raw images, or
the signal components only.

For the signal part, we use the commonly adopted nor-
malized Sum of Squared Distances (SSD) as the similarity
measure:

ES = SSD(ŜL, ŜR, d) (20)

Next, we recall that we assumed the backscatter is uniform
across a local patch. Thus, at correct disparity, the estimated
backscatter in the left and right images for a local patch are the
scaled versions of their corresponding backscatter measures
at infinity. Therefore, a suitable energy function EB is the
square of the discrepancy between the estimated left/right
back-scatter and the prediction by the scaled left/right back-
scatter at infinity:

EB =
∑
ΩxL

obj

(|BL
∞ − kLB̂L|) +

∑
ΩxR

obj

(|BR
∞ − kRB̂R|) (21)

Here, any suitable norm can be applied within the support
windows ΩxL

obj
and ΩxR

obj
, centered at the left point xL

obj

and the assumed match xR
obj. The scales kL,R can be easily

estimated by dividing estimated backscatter of local patch by
the corresponding backscatter at infinity and averaging over
the whole local patch; i.e.

kL,R = avg(
BL,R

∞

B̂L,R
) (22)

The solution is taken as the disparity gives the minimum
total energy:

d̂T = argmin(ET) (23)
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dmin dmaxdtrueEnergy
Fig. 3. Illustration of estimated backscatter in a local patch at different disparity. (First row) Corresponding backscatter at infinity for local patch in the
left image, (Second row) estimated backscatter for local patch in the left image, (Bottom) energy function which shows the similarity between estimated
backscatter and backscatter at infinity around the local patch.

A. Implementation

The performance of our method can be demonstrated
through a simple implementation. For each pixel, we compute
the energy function for the disparity range of interest, and
determine the solution based on the minimum energy point.
The computation steps are as follows:

for d = dmin : dmax do
- Compute Backscatter components using Eq. (10) fol-
lowed by Eqs. (12) and (13).
- Compute signal components using Eqs. (14) and (15).
- Compute the scales kL, kR by dividing the estimated
backscatter to the corresponding backscatter at infinity
over the support window.
- Compute the total energy from the energy for the signal
and the backscatter components, as given by Eqs. (20)
and (21).

end for
- Select the disparity with minimum energy as the final
solution

V. EXPERIMENTS AND RESULTS

We contrast the performance in disparity computation by ap-
plying the normalized SSD solution to the raw stereo data and
the signal component, as well as with our method that utilizes
the depth cues in both the backscatter and signal components.
To quantify the accuracy of the computed correspondences, we
have determined the percentage of correctly matched points,
utilizing the ground truth. We present the results for synthetic
and real data sets.

A. Synthetic Images

To evaluate the impact of backscattering and signal attenu-
ation on disparity estimation, we have generated synthesized
images for different ocean environments with varying degree
of backscatter. We have applied the camera and lighting
settings from our experiments with real data (see next section).
The stereo baseline is assumed to be 17 [cm], with the light
source placed between the two cameras at (8,-4,0) [cm] w.r.t
the left camera (see Fig. 2). We have assumed a (non-uniform)
Gaussian distribution for the illumination field.

We have chosen samples from the standard Middlebury
stereo data set [1] for the scene radiance, namely the Poster,

Venus, Sawtooth, Teddy, and Cones. These images contain ob-
jects with different shapes and texture. The matching window
size is set to 21 [pix] ×21 [pix] for the entire data set. With
the ground truth disparity maps, we have utilized the models
of the falloff and backscatter functions [10], and the values
given for the optical properties of different ocean water [15],
to compute the backscatter and signal components of the left
and right images. The signal component is computed by the
multiplication of the falloff function with the object radiance.
The synthetic images are the sum of the signal and backscatter
components, as indicated in Eqs. (1) and (2). Finally, we have
applied additive random noise with variance of one gray level.

Fig. 4 shows the left and right Poster data, and the synthetic
images in Turbid Harbor. The target scene is assumed to be
at an average distance of 70 [cm] from the camera.

The disparity range, dmax − dmin, was set to 30 pixels for
all synthetic data. The results of applying the normalized SSD
on the raw image intensities and our method are shown in
Fig. 4. The ground truth disparity map and validity map of
the estimated disparity map using the original Poster images
are shown for reference. As can be seen, the SSD-based
method applied to the raw images cannot accurately recover
the disparity in regions with weak texture. In contrast, our
method successfully estimates the disparity in these regions,
and its performance is close to the performance of SSD-based
method when applied to open-air images. This fact shows that
despite significant signal deterioration in scattering media, this
is alleviated by the recovery of the signal and backscatter, and
exploiting the depth cues in both components.

Fig. 5 shows four more synthetic images and corresponding
results. The contrast map and disparity map of each image
are shown for reference. Standard deviation of intensities of
a local window of size 21[pix] × 21[pix] around each pixel
is used as the contrast measure for that pixel. As expected,
the backscatter becomes more dominant with increasing scene
distance from the cameras. Moreover, it affects more those
regions with low contrast. Not surprising, this leads to poor
estimation performance in distant scene points with weak
surface texture. Most of these faults has been compensated
when we decouple signal and backscatter. For more detailed
assessment of these results, we categorize the pixels into
Textured and Non-Textured regions. We assign a pixel to the
Textured region if the average gradient within its support
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Left (a) and right (b) open-air images. (c,d) Turbid-water stereo
images synthetically generated from a-b. Results of disparity computation in
the form of binary validity maps for good (white) and bad (black) pixels,
with threshold set at one-pixel disparity error. Validity maps are given for
normalized SSD applied to (f) open air images in a-b, (g) synthetic turbid-
water images in c-d, and (h) for the proposed method to scattering and signal
components.

window is above a given threshold. Otherwise, it belongs
to a Non-Textured region. Since the labeling depends on the
threshold, we evaluate the results for a range of thresholds (see
Fig. 6). For Textured regions, increasing the threshold means
including points with stronger surface markings. Conversely,
we capture points with weakest texture within the Non-
Textured regions,when we lower the threshold. The gradient
magnitude computation has been carried out for both the
original and synthetic images.

As we note in Figs. 6 (top row and second row), the
performance of the competing methods converge in higher
textured regions (greater thresholds), and the improvement
from our method becomes negligible. It must be noted that the
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Fig. 7. Percentage of Pixels with correct disparity for all synthetic dataset
in (a)Textured region, (b)Non-Textured region, and (c) Whole image. The
Textured and Non-Textured regions are provided in Middlebury dataset [1]

number of pixels in these regions decrease as the threshold is
raised. Also, the gradient magnitude of the synthetic images
is typically smaller in comparison to the original images.

In the Non-Textured regions, our method produces more
pixels with correct disparity pixels as the threshold decreases.
See Fig. 6 (third row and bottom row). This emphasizes the
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Fig. 8. Percentage of pixels with correct disparity as a function of gradient
magnitude threshold for real data; Textured (top row) and Non-Textured
(bottom row) regions. Image intensities are normalized and gradient magnitude
of the image ranges from 0 to 0.2

role of the backscatter field in the disparity estimation since
it dominates the signal component in the low textured areas.
In this analysis, we have discarded the occluded areas.

Fig. 7 shows the improvement within Textured and Non-
Textured regions, as well as the entire image for the Mid-
dlebury data set [1]. The results illustrate that although we
gain by performing the stereo matching on the recovered
signal component, the proposed method performs better by
exploiting the depth cues by both the signal and backscatter
components. More importantly, the improvement is notably
more significant over the low textured regions, where the
backscatter can dominate the signal component.

1) Comparison with Backscatter Removal Methods: As
mentioned in the introduction, one solution to achieve better
stereo matching results in scattering media is to remove
backscatter using single image backscatter removal methods
and then apply the stereo matching on enhanced images.
Amongst different existing methods for single image backscat-
ter removal, we selected the method introduced in [12] which
is one of the most promising methods. The method is devel-
oped for uniform lighting. It means that the backscatter at
infinity would be uniform for the entire field of view. First,
we tried to use a constant value for B∞. For that purpose,

Fig. 10. (top row) stereo images in clear water, (middle row) stereo images
of the same scene in turbid water made by adding milk to water, (bottom
row) Backscatter at infinity for the left and the right images.

we used both the the average of B∞ and maximum of B∞
as an approximation for entire field of view. The first row and
second row in Fig. 9 shows the corresponding validity maps.
Also, we used the backscatter at infinity for the entire filed
of view without assuming that the B∞ is constant. This way,
each pixel has its corresponding B∞. The results are shown
in third row in Fig. 9. The corresponding percentage of valid
pixels are shown below each validity map. In addition, we
show the results of our method in bottom row of Fig. 9. As
can be seen, overall the results of our method is better than
all other cases especially in images with planar objects, i.e.
Venus and Sawtooth. Also, if we look at the contrast maps of
these two images we can see that Venus and Sawtooth contain
more low contrast areas than the other two images, i.e Teddy
and Cones.

B. Real Images

We next evaluate the performance of our method with real
data, comprising the stereo images of known targets in a
water tank. We have recorded images in both clear water (for
reference) and with the addition of a known volume of highly
scattering low-fat milk (see Fig. 10 for comparison). Referring
to bottom row of Fig. 10, we also recorded backscatter at
infinity, i.e. BL

∞ and BR
∞, by imaging a void area where

there is no object in front of the camera setup except water
column. All real images are recorded at the 768 × 1024 pixel
resolution.

The water tank data set comprises three objects, namely a
planar mat, a cylindrical object, and a custom-made chart of
various patterns and images that are often used to demon-
strate/assess the performance of various image processing
methods; e.g., B&W cameraman image, alphabet letters at
different sizes and distances, bar codes at different thickness
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. (a) Real image, (b) ground truth disparity map, (c)Contrast map:
pixels with higher contrast value are brighter. The binary validity maps show
good (white) and bad (black) pixels (with threshold set at one-pixel error) for
the disparity computed from (d)raw data , (e) signal component, and (f) our
method.

and separation distances, etc. Placed at a slanted orientation, it
covers a distance of 1-1.5 [m] relative to the cameras. The mat
has a stronger texture and is placed closest to the stereo setup
at about 70 [cm]. The cylinder is positioned at a distance of
roughly 125 [cm] from the two cameras. A spotlight at about
2-3 [m] over the scene above the water surface provides a
relatively uniform natural lighting, while the main light source
positioned midway between the two cameras provides non-
uniform illumination. We have computed the disparity map
for the stereo images recorded in clear water with the known
scene geometry, namely, target shapes and configurations. This
serves as the ground truth in this experiment.

In our performance assessment for real data, we have set
the threshold at 5 pixels in labeling the estimated disparity as
accurate/inaccurate; i.e. a discrepancy disparity of 5 or more
pixels relative to the ground truth is labeled as inaccurate
estimate (see later results below). This is to account for various
uncertainties in the estimation of the ground truth disparity
map.

Knowing the minimum and the maximum distance of the
objects from the camera setup, we set the disparity range,
dmax − dmin, to 200 pixels for Tank data set. The results for
our method and those obtained by utilizing solely the signal
component exhibit comparable performance with low error in
areas where the signal is dominant, e.g., the close-range tex-
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Fig. 13. Percentage of pixels with correct disparity over the entire image
for different thresholds for disparity difference

tured mat. Where the backscatter is negligible, both methods
have difficulties over texture-less areas, although our method
performs marginally better. The main difference lies in the
areas where the signal is veiled and the backscatter dominates.
Some examples are the regions include the cameraman, some
textured regions of the poster, the cylindrical object. In these
region, the superiority of our method is significant.

For a more detailed examination of these results, we again
concentrate on the performance within Textured and Non-
Textured regions, as we described for the synthetic data sets.
Referring to Fig. 8, we note that the results are consistent
with our conclusions drawn from the experiments with syn-
thesized data; in Non-Textured areas our method has a better
performance while we obtain comparable accuracy in highly-
textured regions. Here, as the threshold on the gradient mag-
nitude is increased, the number of pixels within the Textured
region decreases significantly.

As can be seen in Fig. 10, different regions have dif-
ferent amount of backscatter due to the non-uniformity in
illumination. This results in a different amount of contrast
degradation. For more exploration of the results shown in
Fig. 11 , we extracted different regions in the image which
represent low, medium and hight contrast areas. We picked
5 regions which is shown in Fig. 12. We name them as
Fruits, Cylinder, Camera Man, Letters and Mat. The Fruits
and Cylinder represent low contrast, Camera Man represents
medium contrast and finally, Letters and Mat represent high
contrast areas. The corresponding contrast map of each area
along with the results of applying SSD on raw data and the
results of our method are shown in Fig. 12. As can be seen our
method over performs other methods in low contrast areas. The
percentage of improvement over each area are shown below
its column.

As stated above, these earlier results are based on an error
threshold of 5 pixels to assess the accuracy of the estimated
disparity. We depict in Fig. 13 how the performance varies
with different thresholds. As illustrated, a larger threshold
leads to a slightly greater improvement over the competing
methods.

Finally, we have also performed experiments with stereo
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images in a Marina and Outdoor pool, under natural light-
ing. By knowing the shape of the objects in the scene, we
computed ground truth disparity maps by manually picking
some corresponding points and interpolating for the rest of the
object. Left images along with ground truth disparity maps and
the validity maps for different methods are shown in Fig. 14.
We compare the results using raw image data, by removing
backscatter from images using haze removal method and our
method. The percentage of valid points are shown below each
validity map. As can be seen, our method improves the results
of disparity map estimation by 6% in Marina and 10% in
Outdoor pool data comparing to using raw data. Moreover, the
haze removal method improves the result by 2% in Outdoor
pool while it worsens the results by 9% in Marina image. A
possible reason for this behavior in haze removal method is
that since the left and the right images enhance separately, this
might result in un-even enhancement in corresponding patches
and consequently amplify the difference between them.

VI. CONCLUSIONS

We have proposed a new method to estimate the backscatter
in stereo images acquired in scattering media. Based on
this, we have devised a new technique to estimate binocular
disparity that exploit the depth cues in both the backscatter
and the signal components of the raw stereo pair. By taking
advantage of these two independent cues, instead of treating
the former as noise which has been done in previous stere-
ovision work for scattering media, we are able to improve
the performance in disparity map estimation. The improved
accuracy is significant in the areas where signal is dominated
by the backscatter component. Quantitative assessment of our
method has been demonstrated in experiments with synthetic
and real data, and knowledge of the ground truth. Future work
involves a number of algorithmic enhancements, including the
treatment of image regions where the proposed decomposition
is ill-conditioned, and incorporating occlusion detection. In
particular, the new paradigm can be utilized within other stereo
matching techniques.
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Venus Sawtooth Teddy Cones

Fig. 5. Synthetic Turbid harbor images (Top row). Ground truth disparity map (Second row). Binary validity maps with good (white) and bad (black) pixels
(with threshold set at one-pixel error) are given for the disparity computed from raw data (Third row), signal component (Fourth row), and our method (Bottom
row).
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Fig. 6. Percentage of pixels with correct disparity as a function of gradient magnitude threshold for the Synthetic dataset in Textured and Non-Textured regions.
Results for Textured regions by thresholding gradient magnitude of (Top row) synthetic images and (Second row) Original images. Results for Non-Textured
regions by thresholding gradient magnitude of (Third row) synthetic images and (Bottom row) Original images. Gradient magnitude in all images ranges from
0 to 0.3.
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Venus Sawtooth Teddy Cones
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Fig. 9. Comparison of estimated disparity maps by removing backscatter using single image haze removal method and Our method. Validity map of Haze
removal method for different images using (top row) the mean of the backscatter at infinity image as a constant value for backscatter at infinity, (second row)
the maximum of the backscatter at infinity image as a constant value for backscatter at infinity, (third row) original backscatter at infinity image. (fourth row)
Validity maps of different images using our method
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Fig. 12. (first row) parts of the Tank image in clear water, (second row) parts of the Tank image in turbid water, (third row) Contrast map, Binary validity
maps with good (white) and bad (black) pixels are given for the disparity computed from (fourth row)raw data and (fifth row) our method. Percentage of
improvement in disparity map estimation over each area is shown below its column.
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Fig. 14. Results of different methods using images taken in Marina and Outdoor pool: (top row) Left images, (second row) ground truth disparity maps,
(third row) validity maps using normalized SSD on raw data, (fourth row) validity maps using normalized SSD on enhanced images after removing backscatter
using haze removal method in [12], (bottom row) validity maps using our method.




