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Abstract. Newly developed combinatorial Laplacians and curvature op-
erators for grayscale, as well as color images are tested on 2D synthetic
and natural images. This novel approach is based upon more general con-
cepts developed by R. Forman and is inspired by the Bochner-Weitzeböck
formula which is an essential identity in Riemannian Geometry. After
the presentation of the operators as they operate on images we further
demonstrate the implementation of them as diffusion kernels. The differ-
ences between the various Laplacians we define, are illustrated by these
examples as each of the operators is shown to be adequate for different
type of image processing tasks such as sharpening anomaly detection
smoothing and denoising.

1 Introduction and Related Works

Diffusion methods, and in particular those based upon the Laplacian in general,
and the heat equation in particular, belong by now to the basic repertoire of
methods available to the (geometric) Image Processing community (see, e.g. [25],
[1], [13], [23], [24], [27] and references therein). As such, the relevant literature
is by far too extensive for us to attempt here even an incipient bibliography.

Also, curvature analysis is of great importance in Image Processing, Com-
puter Graphics, Computer Vision and related fields, for example in applications
such as reconstruction, segmentation and recognition (e.g. [6], [14], [22], [28],
[13], [1]). The conventional approach embraced in most studies implements cur-
vature estimation of a polygonal (or, more generally, polyhedral) mesh or a grid,
approximating the supposedly smooth (C2) image under study. The curvature
measures of the mesh converge in this case to the classical, differential, curvature
measure of the investigated surface.

Stimulated by Perelman’s seminal work on the Ricci flow [18], [19], and by its
application in the proof of Thurston’s Geometrization Conjecture, and, implicitly
of the Poincaré Conjecture ([17]), resulting in discrete versions of the Ricci flow
and related flows ([5], [10], [15]), Ricci curvature (and Ricci flow) penetrated the
main stream of Imaging and Graphics, starting with the works of Gu et al (see,
e.g. [29]).

Ricci curvature measures the deviation of the manifold from being locally
Euclidean in various tangential directions. More precisely, it appears in the sec-
ond term of the formula for the (n − 1)-volume Ω(ε) generated within a solid
angle (i.e. it controls the growth of measured angles).
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v · Ricci(v) =
n − 1

vol
(

Sn−2
)

∫

w∈Tp(Mn), w⊥v

K(< v,w >) , (1)

where < v,w > denote the plane spanned by v and w, and K(< v,w >) is
the sectional curvature relative to that plane via the exponential map. i.e. Ricci
curvature represents an average of sectional curvatures. The analogy with mean
curvature is further emphasized by the fact that Ricci curvature behaves as the
Laplacian of the metric g ([4]).

We should note that while sectional curvature measures geodesic deviation,
i.e. the relative separation of geodesics close to a reference geodesic (see, e.g.
[4], [4]), Ricci curvature measures the average geodesic deviation over all planes
containing a given initial direction (as can be inferred from the mentioned prop-
erty of sectional curvature and from Equation (1.1)). It is precisely this property
that it is used in [7], [3] to analyze the stability, coherence of brain fibers using
DTI (Diffusion Tensor Imaging).

It is also important to note that in dimension n = 2, which is the most rele-
vant to classical Image Processing and its related fields, Ricci curvature reduces
to the classical Gauss curvature.

Bochner-Weitzenböck Identity Given a function f defined in some R
n its

Laplacian is (up to sign) the well known differential operator

∆f = div∇f = tr(Hessf) =
∑ ∂2

(∂xi)2
f

Yet, on Riemannian manifold the situation is different and there are several self
adjoint operators named Laplacian. In general, each of which acts on differential
forms ([4], [20], [4]).
Differential forms represent an important theoretical tool of differential geometry
and modern analysis. Roughly speaking these are generalization of the notion
of differential of function defined on R

n, to functions defined on Riemannian
manifolds. In this terminology functions are 0-order differential forms. Recently
they found their way in imaging and graphics, starting with the work of Gu and
Yau [11].

A property that relates Laplacians on a manifold with its geometry (through
curvature )– and the one that stands at the heart of this paper – is the classical
Bochner-Weitzenböck formula, that for functions, has the form (see, e.g. [4],
[20]),

−
1

2
∆

(

||df ||2
)

= ||Hessf ||2− < df, ∆df > +Ric(df, df) . (2)

Here Hessf denotes the Hessian of a function f : Hessf = ∇df = ∇2f and < ·, · >

as usual, the inner product, and ∆ is the Laplacian operator.
For a proof, the reader can consult, e.g. [20], but he can find a shorter and

somewhat less technical proof along the same lines in [12]. Both variants of the
proof emphasize Ricci curvature as appearing in the formula for the Jacobian
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determinant of the exponential map. However, a different proof, based upon
Eulerian approach to mechanics arguments can also be found in [26].

Extended to differential forms, the Bochner-Weitzenböck identity relates the
rough laplacin ¤ and the Bochner Laplacian, and, in its most compressed version
states that,

¤p = dd∗ + d∗d = ∇∗
p∇p + Curv(R) , (3)

We adopt the notation ¤ for the rough Laplacian (also known as Hodg de-
Rahm Laplacian) from [8] which we will follow more closely in the next section.
It is defined as the trace of the Hessian (se [4], [20])of the p-form ω:

¤ω = −trg∇
2ω ,

Acting on functions (0-differential forms) it coincides with the Laplace-Beltrami
operator. ∇∗

p∇p is the Bochner Laplacian and Curv(R) is a quite complicated
expression with linear coefficients of the curvature tensor R ([4], [20]). (Here ∇p

is the covariant derivative operator.)
In the work of Forman [8], combinatorial analogues of the rough Laplacian

, bochner Laplacians and curvature are defined. These operators are introduced
in [8] in the context of cell-complexes. We will not elaborate herein on the basics
of cell-complexes and their essential role in topology and geometry and just
state that, roughly speaking, one can think of a grid, mesh or triangulation as
examples of cell complexes. Every Riemannian manifolds possesses a cell complex
structure ([16]).

The paper is organized as follows. In Section 2 we will describe our proposed
adaptation of the combinatorial operators defined by Forman to images and give
some examples of their computations. In Section 3 we describe applications of
these operators for diffusion processes implemented on images, and bring some
experimental results. Finally, Section 4 summarizes the paper and some work in
progress and future studies are discussed.

2 Applications - From Riemannain Manifolds to Images

In this section we introduce our proposed implementation of the operators cou-
pled in the Weitzenbock identity namely, the rough and Bochner Laplacians and
the curvature term, for images. This is based on the operators as defined in [8].
We will not describe Forman‘s formulation in details, but introduce only the
adaptation we took for images. Before defining the operators we have to intro-
duce the cellular decomposition we attach to images. This comes natural, as it
is induced by the grid of an image. The 2-cells are the pixels themselves while
the 1-cells are the vertical and horizontal edges formed by adjacent pixels. This
is illustrated in Figure 1. In fact, one should bare in mind that since we regard
images as manifolds (usually surfaces) we need the cellular decomposition to be
defined on the image surface. In this context, the 2-cells are actually the surface
elements of the form I(p), where p = (i, j) is the (i, j) pixel of the image I,
and the 1-cells are the arcs I(e) where e is either vertical or horizontal edge
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Fig. 1. Cell decomposition of an image

between adjacent pixels. Along the following expressions, all terms w represents
weight functions ([8]). These functions are supposed to reflect geometric entities
such as length, area, volume etc. All terms including 3-cells in the definitions of
the operators are assumed to vanish since we regard images as surfaces, i.e. cell
complexes of maximal dimension 2.

A word about notation: When α represents a p-dimensional cell (p-cell - in
the framework of this paper p = 1, 2), the notation β < α (resp. α < β), means
that β is a (p−1)-cell ((p+1)-cell)which is a face of α (α is a face of β). Following
[8] we define,

2.1 Combinatorial Operators

1-forms: Rough Laplacian, Ricci Curvature and Bochner Laplacian

Definition 1. 1. The combinatorial rough Laplacian of I at e0 is defined as

¤1(e0) = =
w(e0)

w(c1)
−

w(e0)

w(c2)
. (4)

2. The Ricci curvature of I along e0 is given as

Ric(e0) = w(e0)
[

(w(e0)

w(c1)
+

w(e0)

w(c2)

)

−
(

√

w(e0)w(e1)

w(c1)
+

√

w(e0)w(e2)

w(c2)

)]

. (5)

3. We define the Bochner 1-Laplacian of I at e0, to be

B1(e) = ¤1(e) − Ric(e) (6)

2-forms: Rough Laplacian, Curvature and Bochner Laplacian

Definition 2. With the same notation as before regarding 3-dimensional as zero
weighted, we define the following.
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Fig. 2. Ricci curvature of a test image. Vertical, Horizontal and coupled

1. The rough Laplacian ¤2, is given by

¤2(c1, c2) =
w(e0)

√

w(c1)w(c2)
. (7)

2. The 2-curvature measure F2 say, for the 2-cell (pixel) c1, is defined to be,

F2 =
∑

e<c1

w(e)

w(c1)
−

5
∑

i=2
e<c1,e<ci

w(e)
√

w(c1)w(ci)
. (8)

Note that for pixels in the boundary of an image, some of the terms in the
second summand vanish, since not all four neighboring pixels exist. However,
for pixels that are not boundary pixels the expression of the curvature F2 can
be simplified to,

F2 =
∑

e<c1

(
w(e)

w(c1)
−

w(e)
√

w(c1)w(ci)
) . (9)

3. The Bochner 2-Laplacian B2, is set to be,

B2 = ¤2 − F2 . (10)

2.2 Weightening

In this subsection we address the issue of which weights should be imposed for the
w‘s. We will review two essential schemes for weightening, a purely combinatorial
one and a geometric one. While it is unlikely to have an optimal set of weights,
the geometric scheme seems to be superior over the combinatorial one in terms
of quality of obtained results however, more expensive in terms of computing
resources. As noted in the previous subsection, in both schemes 3-dimensional
cells are zero weighted. Considering 3-cells, as well as, applying the methods
presented herein for higher dimensional signals, and also to computer graphic
oriented tasks, is currently in progress or left for future work.

Combinatorial Weightening In this scheme the weights are taken to be
merely the gray level at a given pixel for w(c) of a 2-cell, and the average of
gray levels of pixels adjacent along an edge e is taken as w(e). Figure 3 show
examples of Ricci curvature with combinatorial weights.
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Fig. 3. Ricci curvature with combinatorial weights

Geometric Weights While combinatorialy weightening of cells is simple and
efficient for computation, we would still like to account for the image geometry.
The most natural way to do this would be to define the weights w(e) and w(c)
in a way so they would reflect length and area respectively. The basic way to do
that is through the metric of the image as it is considered as a surface embedded
in R

n, through the embedding I(X, Y ). For gray level images the embedding
is into R

3 while for color images R
5 is taken ([23]). Using standard differential

geometry [4], [4] and its adaptation to images ([23], [13], [24] and many others),
the metric of a gray level image is given by the matrix

Gi,j =

(

1 + I2
x IxIy

IyIx 1 + I2
y

)

(11)

As a matter of fact one can take a parameterized version of the metric with a
parameter β in the form of

Gi,j =

(

β + I2
x IxIy

IyIx β + I2
y

)

(12)

The parameter β scales the differential change of the image dI with respect to
the spatial differential of X and Y , dX, dY respectively thus enabling one to
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be more sensitive or less sensitive to image gradient (i.e. presence of edges - see
[23]).

For color images rendered as surfaces embedded in R
5 with coordinate system

I = (X, Y,R(X,Y ), G(X, Y ), B(X, Y )) the parameterized metric is given by

Gi,j =

(

β + R2
x + G2

x + B2
x RxRy + GxGy + BxBy

RxRy + GxGy + BxBy β + R2
x + G2

x + B2
x

)

(13)

However, for simplicity considerations, in this work we are taking into account
the stretch only in the horizontal and vertical directions which amounts to re-
placing the full metric tensor with the following horizontal(resp. vertical) length
element of a horizontal(vertical) edge ex(ey) (the weight of e) is defined as

w(ex) = ds(ex) =
√

β + I2
xdx ; w(ey) = ds(ey) =

√

β + I2
ydy . (14)

The area element above a pixel can be given at a “first order approximation”
by,

dA = dsxdsy . (15)

A more comprehensive version of area element would be obtained by subdividing
a pixel to triangles say, and taking the sum of areas of the triangles.

Examples Figures 4 to 6 show the results of computing ¤, Ricci curvature and
Bochner Laplacian with geometric weights.

Fig. 4. ¤ with geometric weights: From left to right, original image, ¤1 and ¤2

In Figure 7 the significance of the parameter β is illustrated. It is observed
that as β is increased from 5 to 15 to 25 more edges are detected.
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Fig. 5. Ricci curvature with geometric weights. Notice the explicit detection of edges.
This should be expected, as at the presence of edges curvature is expected to be sig-
nificantly higher than in homogenous areas

Fig. 6. B with geometric weights: Left to right - Original, B1 and B2

3 Uses - Diffusion Processes

In recent years diffusion processes have become state of the art in images process-
ing playing an important role in a variety of image processing tasks. Applications
range from denoising to segmentation to texture analysis and anomaly detection
and many more ( see [1], [13], [23], [24], [9], [27]). The basic linear diffusion of
an image, I(X,Y) is the operation defined by

∂I

∂t
= △I . (16)

Where △I == tr(HessI) = I2
x + T 2

y is the Laplacian of the image regarded
as a function of X and Y . When considering images as Riemannian manifolds it
is common, and very useful to deal with color images to replace the Laplacian
above with the Laplace-Beltarmi operator which acts on the metric of the image
([13], [24], [27], [21]). The diffusion in the Beltrami framework takes the form of

∂I

∂t
= △GI . (17)
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Fig. 7. Ricci curvature with different values of β: From left to right β ranges from 5
to 15 to 25. As the value of β increases the scaling between the gradient of the image
dI with respect to the change of image coordinates dX, dY changes and consequently
sensitivity to edges. High values of β detects more edges than small values.

△GI is the Laplacian of the metric of I (Laplace-Beltrami operator) given in
coordinates by, ([4], [20])

△GI =
1

√

det(G)

2
∑

i,j=1

∂

∂Xi
(
√

det(G)Gi,j ∂I

∂Xj
) . (18)

We used the convention that (X1, X2) = (X,Y ) are the spatial coordinate of the
image (pixels). In light of the above and equipped with the Laplacian operators
described in the previous section we have followed in two directions. One was to
use each of the operators defines previously as a diffusion kernel instead of the
Laplace-Beltrami operator. Meaning that we have applied the following process,

∂I

∂t
= OpI (19)

while at each time substituting Op with each of the operators ¤1 and ¤2.
Additionally, in the spirit of the Weitzenbock identity, we have applied Bochner
Laplacian from its decomposition to ¤ and Curv, and compaired the obtained
results to a straight foreword implementation of Beltrami flow.

3.1 Results

In all applications shown below weights where taken as geometric weights as
these tend to produce better results.

¤1 as a sharpening operator The 1-form laplacin ¤1 acts on 1-cells and as
such have the tendency to flatten edges. Taken with a minus sign in a diffusion
process of the form

∂I

∂t
= −¤1I .
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will in turn enhance its edges as seen in Figure 8. This results with a good
candidate for image sharpening task. Figure 8 shows an image that is sharpened
using the process defined above.

Fig. 8. Applying ∂I

∂t
= −¤1I: Top shows the original image and on the bottom its

sharpened version

¤2 Detects anolmalies As the Laplacian ¤2 acts on two cells it can be re-
garded as the dual of the 1-Laplacian ¤1. Applied on an image in a diffusion
process as

∂I

∂t
= ¤2I ,
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tend to flatten areas that look alike while enhancing transitions between re-
gions of different characteristics. Such a process showed excellent in identifying
anomalies such as man made objects in satellite images mostly compose of nat-
ural environment. Refer to Figure 9.

Fig. 9. ∂I

∂t
= ¤2I : On the left the original image is shown while on the right shown

the image after diffusion was applied. Notice the enhancement of the man made objects
relative to the degradation of the natural environment at the background

Bochner Laplacian for Smoothing In Figure 10 a part of an image is shown,
represented as a surface in R

3. The part shown in the figure contains some sharp
gradient. After 30 iterations of Bochner diffusion

∂I

∂t
= BI = (¤ − Curve)I

the surface is smoothed apart from the sharp gradient. As such it makes a good
candidate for image denoising. In Figure 11 we see a noisy image that is denoised
as it goes through diffusion under the Bochner Laplacian.

4 Summary and Future Study

Summary In this paper we introduced diffusion processes that are based on
newly developed Laplacian operators for images. The operators are base of a
discretized version of the rough and Bochner Laplacian and curvature measures
as introduced in [8]. These operators showed good results for a variety of image
processing related issues amongst are edge detection sharpening and denois-
ing. Anomaly detection in the context of man-made object detection in satellite
imaging was also demonstrated.
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Fig. 10. ∂I

∂t
= BI = (¤ − Curve)I : On the left, initial surface representation of a

gray level image. On the right, the surface smoothed after 30 diffusion iterations using
the Bochner Laplacian. The diffused surface is generally smoother than the original
alas the sharp gradient (probably an edge in the original image) remains intact.

Current Directions and Future Studies Amongst these we include,

– Implementation of the Laplacians and curvature measures suggested herein
to higher dimensions. This is most suitable for computer graphics applica-
tions tomography and video processing related issues.

– As the Ricci curvature shows excellent results as an edge detector it used
in our current study as a basis for non-linear adaptive interpolation and
super-resolution.

– Another application which is in progress is the implementation of the Ricci
flow for images. This flow is in fact a diffusion process with the exception
that instead of the image, it is its metric that is evolved.

∂G(I)

∂t
= −2Ric(I) (20)

After evolving the metric one has to go through integration phase in order
to restore the image out of its gradient field Ix, Iy. In our current study we
use the Poisson based technique presented in [2]
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