

IRWIN AND JOAN JACOBS

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

Timing aware power

minimization in VLSI circuits by

simultaneous multilayer wire

K. Moiseev, A. Kolodny and

S. Wimer

CCIT Report #775
September 2010

DEPARTMENT OF ELECTRICAL ENGINEERING

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

Electronics

Computers

Communications

Timing aware power minimization in VLSI circuits by

simultaneous multilayer wire spacing

K. Moiseev, A. Kolodny and S. Wimer

Abstract

 Due to continuous technology scaling, the interconnect delay and power reduction is

becoming one of the most important design challenges. In this paper, we present a novel

algorithm for simultaneous multilayer interconnect spacing so that on the one hand the total

power of interconnect is reduced and on the other hand, delay constraints are not violated. We

first present an optimization problem and show that it is convex and therefore has unique optimal

solution. Then, we develop algorithm which solves the optimization problem. The optimization

we propose can be applied to individual nets as well as to large layouts due to smart layout

partitioning scheme applied. We demonstrate algorithm effectiveness by showing power

reduction of 5-12% of interconnect power on clips from real industrial layout of 32 nm

technology node. In addition, we show relation of new optimization technique with previously

reported Weighted Power-Delay Sum optimization (WPDS).

1. Introduction

 The continuous scaling of technology process, trend towards mobile battery-operated

electronic products and growing awareness to environmental heating have caused power

minimization to become an important design challenge. Today, in order to produce power-

efficient and high-speed VLSI products, power optimizations should be performed at all stages

of the design flow: starting from architecture through RTL and circuit implementation and up to

layout design. Generally, every opportunity to contribute to power saving is considered. On the

other hand, circuit performance remains the most important design objective and power

optimization cannot neglect timing constraints imposed on circuits. Therefore, any power

optimization should be timing-aware, which is the topic of this paper.

lesley
Text Box
CCIT Report #775 September 2010

 One of the largest power components in VLSI processors is interconnect power, i.e. the

power dissipated due to charging and discharging of wire capacitances ‎[3]. These capacitances

generally are divided in two groups: capacitances between wires on the same metal layer and

capacitances between wires on different metal layers. The contribution of the former, especially

at high metal layers, grows with the nonuniform scaling of technology ‎[7], because wire aspect

ratios (thickness/width) tend to grow. Thus, cross-coupling capacitances between adjacent wires

at the same metal layer have a major effect on both circuit timing and power. The cross-coupling

capacitances can be decreased by increasing of inter-wire spaces. In this paper we show how the

total power dissipation can be improved by reallocation of inter wire spaces without violating

delay constraints, while maintaining the same layout area. We assume that interconnects have

been routed (manually or automatically), and their relative locations are not subject to any

change (i.e. layout topology is unchanged). It is also assumed that wire widths have been set to

satisfy signal delay and other design goals such as reliability, and shield wires have been inserted

to eliminate crosstalk noise on sensitive nodes. Hence, the method aims only to modify wire-to-

wire capacitance densities across the whole layout in each of the top level interconnect layers.

For example, a schematic layout before and after optimization is shown at Figure 1. The inter-

wire space is reallocated according to wire switching activities. The wires with higher activities

are allocated larger spaces while the wires with lower activities are allocated smaller spaces.

Notwithstanding, the space reallocation doesn’t violate wire delay constraints.

 Layout optimization by wire spacing has been discussed in the literature for yield

improvement ‎[4], cross-coupling noise reduction ‎[5], ‎[6], timing optimization [‎[8],‎[9],‎[10],‎[11]],

power optimization ‎[12], or combination of timing and power ‎[1] . The authors in ‎[5],‎[6],‎[12]

used local optimization, optimizing only single net for single objective function. However, since

AF = 0.01

AF = 0.5
AF = 0.1

AF = 0.05

AF = 0.01

AF = 0.5

AF = 0.1

AF = 0.05

Figure 1. Example of layout with 4 nets routed on 3 metal layers before and after spacing optimization. The
dashed rectangles denote wires bounding routing regions, AF stands for activity factor (net’s switching activity).
The wires are distributed according to activitiy factors of corresponding nets. For example, the wires of net with
AF = 0.5 are allocated larger spaces than the wires of net with AF = 0.05.

the power consumption is a cumulative effect, this approach is unacceptable for power

minimization. In ‎[1] simultaneous power-delay optimization is performed for many wires

together. However, our method has several advantages as compared to ‎[1], which are listed

below.

 First, ‎[1] uses Weighted Power-Delay Sum (WPDS) as an objective function. This

method allows tradeoffs between delay minimization and power minimization, but doesn’t

guarantee satisfaction of timing constraints. During wire movement, delays of neighbor wires

may increase and one of the neighbors can violate its maximal allowed delay. Another method

proposed in ‎[1] is wire "freezing", which means that a wire is not moved if such a movement

might cause violation of timing constraints of one of its neighbors. This approach indeed

prevents violation of timing constraints; however, it does not fully exploit available positive

delay slack of neighbor wires. We propose an improvement to the wire freezing method: the wire

is moved until its delay or its neighbor delay reaches their maximum allowed values. Such

approach fully utilizes available slacks, while it guarantees satisfaction of timing constraints.

 Second, the earlier works in this area either optimized a single net residing in several

metal layers, or simultaneously optimized many nets residing on the same metal layer. We have

made an observation that in order to achieve the global minimum both these methods should be

combined. Optimization layer-by-layer neglects interaction between wires residing in the

different metal layers. On the other hand, optimization net-by-net doesn’t take into account

relations between neighbor wires on the same metal layer. Thus, these two optimization

problems, being convex, don’t exploit the full optimization space. In this paper we show that

simultaneous multi-layer multi-net optimization problem is also convex and achieves a global

minimum. This formulation allows a global view of interconnect power and interconnect delay,

while taking into account the delay criticality of individual wires.

 From the design point of view, both WPDS and power optimization under delay

constraints are essential optimization techniques which can be used in different stages of the

design flow. The former is used in earlier stages of the design, when no individual delay

requirements are imposed on nets. Its accuracy is not very high, but it can tune the interconnect

design to the right corner in terms of power-delay optimality. The latter can be used in later

design stages when exact delay requirements are known and delay violations are not possible

because of high sensitivity of the design in its final stages. The power optimization under delay

constraints doesn’t have to be applied to the whole layout and can be used only for tuning most

delay critical or most power consuming nets.

 The rest of this paper is organized as follows. In the next section the layout model is

presented and optimization problem is defined. The solution of optimization problem and

implementation of the algorithm are presented in Section 3. The relation of the problem to

Weighted Power-Delay Sum (WPDS) optimization is discussed in section 4. Algorithm

complexity is analyzed in Section 5. Practical considerations of power-delay optimization are

discussed in Sections 6 and 7. The examples and experimental results are brought in Section 8.

Finally, section 9 concludes the paper.

2. Interconnect modeling and problem definition

The following notation is used through the paper. We summarize it here in order to simplify

reading:

N - Total number of routed nets

L - Total number of metal layers

lN - Total number of wires routed at layer l

lA - Total routing area at layer l

i - The i  th net

(),i p lI - The i  th wire routed on layer l and belonging to p  th net

iQ - Total number of effective loads (pins) of i  th net

1

N

i

i

M Q


 - Total number of effective loads (pins)

iW - Total number of wire segments belonging to i  th net

,ij ld - Length of the common span of wires and routed on layer l

,ij ls -Spacing between wires i and j routed on layer l

The high metal layers in modern VLSI circuits (e.g. layers 5, 6, 7, 8, 9, …) are typically used for

long-range interconnect routing. The wires at these "global routing" levels span distances of

hundreds or thousands of microns across the chip. An example of such interconnect network is

schematically shown in Figure 2, where all wire segments are numbered.

Since the signals connect devices residing at the bottom of the interconnect stack, some portion

of the routing is made on the lower metal layers (1, 2, 3, 4). The effective driver and effective

receiver load are used to represent the local routing, such that resistance of these wires is

included in the driver model, and their capacitance is included in the load model.

Let N be a total number of routed nets 1, N  . We assume that each net is assigned an activity

factor i , 1 ni  , which denotes the amount of signal’s switching relative to the clock signal.

It can range from 0i  if the signal never switches (e.g., shields or power delivery wires) to

1i  if it toggles twice at every cycle (e.g., clocks). Signal activity factors are derived by using

an industrial power simulator which checks the signal activity in different scenarios, and then

averaging activities over all cases ‎[13],‎[14].

2

3

1

4

6

9

5

14

7

8

Metal 5

Metal 6

Metal 7

Driver / receiver

12

11

10

13

Figure 2. Typical structure of global interconnect

The three-dimensional structure of global interconnect consisting of L routing layers can be

represented as a collection of two-dimensional planes, each of which includes all wire segments

routed on the same metal layer l , 1 l L  . We look at wires in areas within each layer which

are bounded by two power grid wires connected to constant voltages. These supply wires serve

as “walls” of the routing area. An example of such representation is shown in Figure 1. The

“wall” wires are dashed.

In modern VLSI circuits at each routing layer almost all wires are routed in the same direction

(i.e. either vertical or horizontal). The only exceptions are “jogs” – short wire segments going in

the direction perpendicular to the main layer direction. Since the number of jogs is usually small

and they are short, their influence on the power and delay is minor, therefore we neglect jogs in

the following discussion. Let’s denote wires routed on the same metal layer l by (),i p lI ,

1 li N  , where lN is number of wires routed at layer l . The index p in brackets means that

2

3

1

4

6

5

7

9

8 10

11

12

14

13

Figure 3. Representation the wire segments from Figure 2 as a collection of three two-dimensional
planes.

the wire iI is a part of net p ,1 p N  . We denote by ,i lw and ,i ld the width and the length of

wire (),i p lI , and by ,ij ls and ,ij ld the spacing and the common span of wires (),i p lI and (),j q lI .We call

two wires routed on the same metal layer visible to each other if their common span ,ij ld is non-

zero and can be connected by the line not crossing other wires.

The 3-dimensional interconnect structure shown in Figures 2 and 3 is represented by a multilayer

visibility graph (,)G V E as follows. For each wire ,i lI we associate vertex ,i lv in the graphG . The

vertices 0,lv and 1,lN lv  corresponds to “wall” wires of each routing layer l . There are two kinds of

edges in the graph. Each two vertices ,i lv and ,j lu which correspond to wires ,i lI and ,j lI visible to

each other are connected by a visibility edge. Each two vertices v and u which are physically

connected to each other (they are usually routed on different layers) are connected by

connectivity edge. The example of a multilayer visibility graph is shown in Figure 4.

Different models exist for modeling cross-coupling capacitances between two adjacent wires

‎[2],‎[15],‎[16]. Most of them involve spacing between wires as well as widths and heights of

coupling wires. It is commonly accepted that coupling capacitance between adjacent wires is a

11

14

13

8

9

12

2

3

1

4

6

9

5

14

7

8

Metal 5

Metal 6

Metal 7

Driver /

receiver

12

11
10

13

1

3 2

4

7

5

10

6 wall

wall

wall

wall

wall

wall

Connectivity edge

Visibility edge

Figure 4. Multidimensional visibility graph on the left for the layout shown on the right. The solid
arrows correspond to visibility edges, the dashed arrows correspond to connectivity edges

monotonically decreasing function of inter-wire spacing and is directly proportional to the length

of common wire span. Denoting by  ,ij lf s a monotonically decreasing function of inter-wire

spacing between two visible wires (),i p lI and (),j q lI and by ,ij ld the length of common span

between wires (),i p lI and (),j q lI , the following expression represents line-to-line capacitance

associated with (),i p lI and (),j q lI :

 , , ,ij l ij l ij lc d f s (2)

 It is commonly accepted that  , ~ 1ij l ijf s s  , where 1  . In this paper we don’t make any

assumption on the special form of function  ,ij lf s except for being convex in ,ij ls (which is true

for the model above). By definition, if wires (),i p lI and (),j q lI are not visible to each other, then

, 0ij ld  , so actually only cross capacitance between visible wires is non-zero in our model.

For a given wire, line-to-line capacitances to its visible wires can influence the dynamic power or

delay associated with the wire’s net. The dynamic power of the net i can be expressed by:

2 2self cross a ll

i i i dd i i ddP P P C V f C V f     . (3)

In (3), i denotes the net’s activity factor, ddV is voltage swing and f is clock frequency. a

iC is

the total net’s self capacitance, contributed by capacitors formed by the net’s wires and lower

and upper layout layers, and ll

iC is the total net’s cross-capacitance, formed by spaces between

net’s wires and their neighbors on the same metal layer. The associated power consumption parts

are denoted selfP and crossP correspondingly. We assume that the widths of the wires are set by

wire sizing optimization performed earlier to satisfy timing requirements ‎[19] and thus are not

subject to change in the spacing optimization. This assumption matches VLSI design practice,

where wire widths are set very early in the design flow according to signal propagation delay

goals. Thus, only crossP part in (3) is of interest. The effective cross-coupling capacitance
ll

iC

depends on neighbor wire mutual activities and is usually modeled using a Miller factor

‎[17],‎[18]. However, since power is a cumulative metric and the exact mutual behavior of any two

neighbor wires is not known, we assume a Miller factor of 1 in the rest of the paper.

 Using (2), given wire (),i p lI , the power contributed by cross-capacitances to its neighbors can be

expressed by:

 (), , ,

1,

'
lN

cross

i p l p ij l ij l

j j i

P k d f s
 

  (4)

where coefficient 'k incorporates supply voltage, clock frequency and technology-dependent

constants. The total power contributed by all wires routed on all metal layers is then expressed

by:

   , ,

1 1 1

'
l lN NL

cross

ij l p q ij l

l i j

P k d f s 
  

  (5)

Let’s denote by pQ the number of driven receivers ()

el

j pC , 1 pj Q  of net p and by pW the

total number of wire segments ()j pI , 1 pj W  of net p .

For delay calculation purposes, each net is represented as an interconnect tree. Each wire

segment or part of the segment is modeled as a  -load so that its total capacitance is equally

divided between two resistor ends. The decoupled line-to-line capacitance is counted together

with the segment self capacitance (Figure 5).

It can usually be accepted that the delay of interconnect path is convex function of spacing of

wire segments appearing on the path. For example, using Elmore delay as the simplest

approximation, the delay from net driver to receiver ()

el

j pC can be expressed as ()

1

pW

j p i ik

i

T C R


 ,

where iC is the capacitance tied at junction i of the interconnect tree and ikR is the total resistance

of the common part of (unique) path from net effective driver to the receiver ()

el

j pC and (unique)

path from net effective driver to junction i . Since capacitance values iC incorporate also

coupling capacitance terms (which are convex in spaces as clamed earlier), the delay from

effective driver of net p to receiver ()

el

j pC can be expressed as

 ()j pT g s (6)

where  1 2, ,s ss - vector of inter wire spaces between wires of net p and their neighbors and

g is convex function in each one of 1 2, ,s s .

Notice that the expression (6) remains true even if much more accurate models ‎[15] are used for

net delay estimation. We used models developed in ‎[15] to check this assumption and found that

for typical design conditions the convexity assumption is true. Again, we don’t make any

assumption on the specific form of function g except for being convex.

We are aiming at finding a set of spaces ijs so that total power (5) is minimized. This

optimization problem is subjected to number of constraints, which are listed below.

C9-11

C2-3

0.5C1-2

0.5C2-3

0.5C2-3
0.5C1-2

0.5C9-11

0.5C9-110.5C9-10,1

0.5C9-10,2

0.5C9-10,1

0.5C9-8,1

0.5C9-8,1
0.5C9-10,2

0.5C9-8,2

0.5C9-8,2

0.5C6-1

0.5C6-7,1

0.5C6-1

0.5C6-7,1

0.5C6-7,2

0.5C6-7,2 Cload

2

3

1

6

9

7

8

11

10

C1-2

C9-10,1

C9-10,2C9-8,1

C9-8,2

C6-7,1 C6-7,2

Notation Ci-j,k :

k-th capacitance between segments i and j

Figure 5. RC tree modeling of the layout. On the left: layout of net (emphasized) with neighbors (only
relevant neighbors are shown). On the right: corresponding RC model. Only cross-soupling
capacitances are shown.

First, each space ijs should satisfy

, min,ij l ls s , (7)

i.e. any two wires should be apart of each other by at least min,ls , which is called minimum

spacing rule. Minimum spacing depends on routing layer and can be different in different

routing layers.

Second, circuit timing requirements should not be violated. Let’s denote by ()j pD the required

arrival time at the receiver j of net p . Then the following constraints should be satisfied:

() ()j p j pT D , (8)

i.e. the delay at each receiver should not exceed the corresponding required time. In the

aggressive design technology the constraint (8) may have form

() ()j p j pT D  ,

where  is a positive margin taken into account due to silicon variatons.

Third, the spacing optimization should be performed within boundaries of each routing layer.

Let’s denote by l a set of all paths in the visibility graph between vertices corresponding to

wall wires of layer l consisting of visibility edges only. Let’s denote by  
1 2 3 4
, , , ,...l i i i iw s w s  a

single path in l and by l the number of wires in l . Then the following set of constraints

should be satisfied:

i l

j l

i j l

w
s

w s A





  for all  and for all l , (9)

where summation is done over all wire widths iw and inter-wire spaces js for all wires lying on

the path l .

Using (5)-(9), the optimization problem can be naturally formulated as follows:

, min,

() ()

min

, 1 1 ,

, 1 1

, 1
l

cross

ij l l l i j

j p j p p

i j l i l j l

P1

P

s s for all l L and i j N such that I and I are visible

T D for all p N and j Q

w s A for all l L and where w and s


  

    

    

      

Program

s.t.

3. Solution of the optimal spacing problem

Observation: Program 1 is convex.

Proof: □ Objective function and delay inequality constraints are convex in ijs by definition.

Minimum spacing and boundary constraints are linear and thus convex. Therefore, the

optimization problem is convex. ■

Although program 1 is convex, it is impractical in its current formulation, since the number of

boundary constraints equals to number of paths in which can be exponential in the number of

wires. The difficulty can be handled by the classical technique of introducing new variables and

partitioning constraints on a path into constraints on path components. Let’s denote by ,i lx

coordinates of centerlines of wires ,i lI . The relation between variables ,i lx and ,ij ls is expressed by

  , , , , , 2ij l j l i l i l j ls x x w w    (10)

Taking into account that wall wire coordinates are 0, 0lx  and 1,lN lx A  and their widths are

zero, it is easy to see that the following program is equivalent to Program P1:

 
() ()

, , , , min,

min

, 1 1

2 , 1 0 , 1

cross

j p j p p

j l i l i l j l l l i j

P2

P

T D for all p N and j Q

x x w w s for all l L and i j N such that I and I are visible

    

        

Program

s.t.

Notice that mutual location constraints also contain boundary constraints. Indeed, summing up

mutual location constraints on some path l l  , we obtain
,

, min,

i l l

l i l l l

w

A w s





   , which is

always true if the problem is feasible.

The convexity of P2 allows us to directly apply Newton's method, providing the Newton step

doesn’t take the solution out of the feasibility region. To ensure this, we use the interior-point

method ‎[20]. The interior point method has been used in the past for transistor sizing ‎[27]. For

current optimization problem the method is applied as follows. We introduce an additional

variable 0  and form a log-barrier function:

      , , , , min, () ()

1 1
0 , 1 1

; log 2 log

l p

j l i l i l j l l j p j p

l L p N
i j N j Q

LB x x x w w s D T 
   

    

         (11)

The domain of function (11) is the set of points which satisfy inequality constraints of P2 strictly.

The logarithmic barrier grows without bound if any of the inequality constraints come close to

equality. The new objective function is formed by

     ' ; ;cross crossP x P x LB x   (12)

and the new optimization problem is simply an unconstrained program

    , , , , min, () ()

1 1
0 , 1 1

min log 2 log

l p

cross

j l i l i l j l l j p j p

l L p N
i j N j Q

P3

P x x w w s D T 
   

    

 
 

       
 
 

 

Program

The program P3 is only an approximation of program P2 and its quality improves as the

parameter  decreases ‎[20]. Let’s denote by
*()x  the solution of P3 for given . The central

path associated with the problem P2 is defined as the set of points
*()x  for 0  . One can

show that the central path
*()x  converges to solution of the problem P2 *x as 0  and that

*()x  is k  suboptimal ‎[20] (k denotes total number of inequality constraints). The problem

P2 is solved by solving sequence of problems P3 for decreasing values of  , starting each

iteration at the solution of the problem for the previous value of  . The algorithm for solving P2

through sequential solving of P3 is shown at Figure 6.

The problem P3 is an unconstrained convex optimization problem and can be solved by

Newton's method as follows. Given initial feasible point x , the Newton step direction is

calculated by 2 ' 1 '() ()cross cross

Nx P x P x    . Then the location is updated by Nx x t x    ,

where t is a step size calculated by line search along direction x . Although Newton method is

known for its fast convergence, the calculation and storage of Hessian
2 ' ()crossP x and its inverse

is not always possible for real cases involving thousands of optimization variables. Even if

Hessian of original function
2 ()crossP x is sparse or close to sparse, log-barrier operation usually

turns the Hessian to dense which makes impossible calculation of its inverse. Therefore, we use

L-BFGS quasi – Newton method ‎[21] which has on the one hand, super linear rate of

convergence, and on the other hand doesn’t require calculation of full Hessian inverse, but the

small number of vector-by-vector or vector-by-matrix multiplications. According to it, the

inverse of original Hessian matrix is replaced by inverse of Hessian approximation matrix, which

is recalculated at each iteration based on its previous iteration’s value. Denoting by g gradient

change 1'() '()cross cross

k kP x P x  and by x variable vector change 1k kx x  , the inverse of

Hessian approximation matrix in 1k   iteration is calculated by

1

T T T

k kT T T

x g g x x x
H I H I

g x g x g x


           
      

        
 (14)

Notice that the calculation of 1kH  involves only vector-by-vector or matrix-by-vector

 1 :

1. Set x
2. Set =
3. Repeat
4. Find x by solving P3 for given starting at x
5. Stop if
6.

current initial

initial

new current

Sequential Power Delay aware Optimization (SPDO)

x

k

 


 





Algorithm

 Update x
7. Update

current newx




Figure 6. Algorithm for sequential solving of P2

multiplications. The value of 0H is chosen to be as close as possible to original Hessian inverse.

The choice of

0

T

T

g x
H I

x x

 

 

 (15)

is reported to be the most successful in practice ‎[22] and therefore used in our implementation.

The scaling factor
T

T

g x

x x

 

 
attempts to estimate the size of the true Hessian matrix along the most

recent search direction.

The storage of kH still can be expensive for real design cases. Instead of storing full matrix kH ,

we save only a few pairs of  ;x g  from the most recent iterations. These pairs are used to

construct the inverse Hessian approximation. Curvature information from earlier iterations which

is less relevant to the Hessian behavior in current iteration is discarded. The optimization

procedure based on this method is processed as follows. In each iteration, first the initial matrix

0

kH is calculated by (15) based on most recent values of x and g . Then, the product of inverse

Hessian approximation by gradient vector '()cross

k kH P x is calculated from 0

kH by recursive

procedure using pairs of  ;x g  stored for last m iterations. Now, the new location is calculated

by 1 '()cross

k k k kx x t H P x     . Finally, new values of 1kx  and 1kg  are calculated and stored

0

 2 : L-BFGS for

1. Set x from last interior point iteration
2. 0
3. Repeat
4. Calculate H according to (16)

5. Calculate iteratively

current

o

k
cro

k

Power Delay aware Optimization

x
k

H P






Algorithm

 
 

1

1 1

1 1

'()

6. Update x '()
7. If
8. remove pair ,

9. Calculate and store ,
10. 1

11. Until

ss

k
cross

k k k k

k m k m

k k

cross

x

x t H P x
k m

x g

x g
k k

P 



   

 

   


 

 
 

 

Figure 7. Algorithm for solving of P3.

instead of least recent pair  1 1,k m k mx g     . The algorithm for solving P3 is shown in Figure 7.

4. Dual problem and relation to Weighted Power-Delay Sum (WPDS) optimization

problem

The native relaxation of the program P2 would be

 , , , , min,

min

,1

2 , 1 0 , 1

cross

i i

j l i l i l j l l l i j

P4

P

T d i M

x x w w s for all l L and i j N such that I and I are visible

  

        

Program

s.t.

where
1

N

i

i

M Q


 and id are optimization variables (the delay constraints can as well be written

as i i iT D d  which is equivalent). This formulation, however, is not very interesting and

equivalent to optimization without delay constrains at all. In order to reflect delay constrains in

optimization, variable id can be incorporated in the objective function in the following way:

 

1

, , , , min,

min

,1

2 , 1 0 , 1

M
cross

i i

i

i i

j l i l i l j l l l i j

P4.1

P d

T d i M

x x w w s for all l L and i j N such that I and I are visible

 


 
  

 

  

        



Program

s.t.

 In P4.1 the optimization is performed over the variables ix and id . The delay awareness is

reflected by including id into objective function. The meaning of P4.1 is the optimization of

power under delay constraints, without explicitly specifying delay requirement for each receiver.

The delay criticality is defined by relation between weights  and i . The program P4.1 is

always feasible while the program P2 might be infeasible. Since program P4.1 is convex, and

Slater’s condition ‎[20] with respect to delay constraints is always satisfied, there exist non-

negative numbers ,1i i M   (Lagrange multipliers) so that solution of the program P4.1 is

equivalent to solution of the following dual program D4.1:

 

 

1 1

, , , , min,

min

2 , 1 0 , 1

M M
cross

i i i i i

i i

j l i l i l j l l l i j

D4.1

P d T d

x x w w s for all l L and i j N such that I and I are visible

  
 

 
    

 

        

 

Program

s.t.

Solving KKT conditions ‎[20] for D4.1 with respect to variables id , obtain:

 
1 1

0
M M

cross

i i i i i i i i i

i ii

P d T d
d

      
 

  
         

  
  (16)

Substituting (16) into objective function of D4.1, it’s transformed to:

 

1

, , , , min,

min

2 , 1 0 , 1

M
cross

i i

i

j l i l i l j l l l i j

D4.2

P T

x x w w s for all l L and i j N such that I and I are visible

 


 
 

 

        



Program

s.t.

Now, solving KKT conditions for D4.2 with respect to variables ix , we have:

1 1

0
M M

cross cross

i i i i

i i

P T P T
x
   

 

  
      

  
  (17)

On the other hand, assume that *

i are values of dual variables for delay constraints in the optimal

point of the problem P2. Then, the problem P2 is equivalent to:

 

 

*

1

, , , , min,

min

2 , 1 0 , 1

M
cross

i i i

i

j l i l i l j l l l i j

D2

P T D

x x w w s for all l L and i j N such that I and I are visible




 
   

 

        



Program

s.t.

Solving KKT conditions for D2 with respect to variables ix results in:

 * *

1 1

0
M M

cross cross

i i i i i

i i

P T D P T
x

 
 

  
        

  
  (18)

Comparing (17) and (18) it can be seen that in order they have the same solution, it is required

that the criticality weights i are equal to optimal Lagrangian multipliers *

i . It is clear also that

the program D4.2 is equivalent (up to power weight ) to the following Weighted Power-Delay

Sum (WPDS) optimization problem:

 

1

, , , , min,

min

2 , 1 0 , 1

M
cross

i i

i

j l i l i l j l l l i j

WPDS

P k T

x x w w s for all l L and i j N such that I and I are visible



 
 

 

        



Program

s.t.

Similar formulation can be found in ‎[25], where delay weighting was used for simultaneous gate

and wire sizing for power. The WPDS problem in its current formulation was discussed in deep

in ‎[1]. It represents optimization of total power contributed by cross-capacitances, weighted by

delays of net pins. Such an optimization is essential in the early stages of the design, when no

individual delay requirements available. The coefficients ik are non-negative numbers

representing pin delay criticalities: for more critical pin the larger weight is set. The criticality

coeficients are set in advance and are constant through the optimization process. The question of

how to set coefficients ik

 optimally remained open in both ‎[1] and ‎[25]. The following theorem

summarizes above developments and claims about values of optimal delay criticality weights.

Theorem. The weighted power-delay optimization (program WPDS) is the relaxation of the

power optimization under delay constraints (program P2). The optimal delay criticality weights

ik in weighted power-delay optimization are equal to optimal values of Lagrangian dual

variables of corresponding delay constraints in power optimization under delay constraints.

From the practical point of view, if one uses WPDS approach for optimization, it is still

unclear how to set delay criticality weights ik in advance. In the following we use interior point

approximation P3 of the P2 and the fact that WPDS is relaxation of P2 to show how these

weights may be initially set.

The optimality conditions for P3 (which is approximation of P2) is  ' * 0crossP x  , i.e

 
 

 
 

*

*

* * *
1, , , , min,

0
2

M
icross i

i j ij l i l i l j l l i i

T xe
P x

x x w w s T x D
 




   

    
  (19)

In the double sum the summation is done only on such i and j so that iI and jI are visible and ie

is a i  th standard basis vector. In this sum each term appears twice – one time for the right side

and one time for the left side of each inter-wire space. In the second sum, by denoting

 
*

*
0i

i iT x D


   


 the third term of (19) turns to be  * *

1

M

i i

i

T x


 . Comparing to (18), it

can be said that Lagrangian dual variables (which serve also as delay weights in WPDS

optimization), are inversely proportional to wire delay slacks. For highly critical wires

 *

i iT x D (small slack) and *

i is large, for less critical wires,  *

i iT x D (large slack) and *

i

is smaller. In general, it can be seen that   * *

i i iD T x   . Let’s denote by 0

iT initial receiver

delays in WPDS. Since WPDS is applied in early design stages, no individual required times iD

available. Assume that D is the single required time (usually clock period) that all wire delays

are tuned to. Then the delay weights for WPDS can be set as:

0i

i

k
D T





, (20)

where  is proportionality coefficient. Thus, the WPDS problem can be re-written in the

following way:

 

0
1

, , , , min,

 1

min

2 , 1 0 , 1

M
cross i

i i

j l i l i l j l l l i j

WPDS

T
P

D T

x x w w s for all l L and i j N such that I and I are visible






 
 

 

        



Program

s.t.

5. Complexity analysis

The run-time complexity of the whole algorithm depends on number of interior (L-BFGS) and

exterior (log-barrier) iterations.

6. Practical considerations

The formulation P2 as a convex optimization problem with constraints is very convenient for

practical optimization cases. In real designs, there are always special nets (such as clock network

nets) that are not likely to be moved. Other wires can be frozen in advance because of a variety

of reasons (noise, delay, slope etc.). Others can be required to keep predefined distance from

their neighbors. All such cases can be easily handled by defining additional constraints on the

wires. For example, if wire iI must have constant location iX , then this limitation can be handled

by defining two additional constraints: 0i ix X  and 0i ix X   both of which are convex

and can be incorporated in log-barrier function. Another example is when two wires should be

hold with constant distance between them, in particular, zero. Consider layout in Figure 10a).

Wire segments 1 and 3 as well as segments 4 and 5 represent pairs of segments of the same

physical wires. Since each wire segment is treated independently, the optimization can end with

the segments shifted relatively to each other, which will result by adding jogs and layout

complication. In aggressive layout-aware design such changes can be too disruptive and

therefore such pairs of wires might be required to be treated as a single wire by the algorithm.

This can be achieved by adding 4 linear constraints: 4 5 0x x  , 5 4 0x x  , 1 3 0x x  ,

3 1 0x x  . In general, any condition which is convex in optimization variables (i.e. wire

coordinates) can be easily handled by the algorithm.

7. Layout partitioning

The optimization method described in previous sections can be applied to the clip of layout

bounded at all metal layers by the immovable wires (“walls”), like shown at Fig.2. However, the

full layout of VLSI circuit can consist of several such clips. Power grids, shields and other wires

fixed in place can serve as such wall wires. Each one of clips can be optimized independently

thus decreasing number of optimization variables and constraints what should be handled

simultaneously. In the following we describe how such partitioning can be performed.

We call two nets visible if they have visible wires on some of routing layers. We build net

visibility graph by assigning vertex to each net and assigning edge to each pair of nets visible to

each other. According to this defintion, the layout from Fig. 1 will be presented by fully

connected graph with 3 vertices and 3 edges, since there are visitibile wires between any two

nets.

Let’s call by active vertex the vertex representing net with at least one movable wire and by

inactive vertex the vertex representing net with all fixed wires. Inactive vertices can represent

power grid nets, shield nets or nets which should not be moved because of some reason. Inactive

vertices form separation groups with respect to groups of active nets. For example, in Fig. 8 the

inactive vertices (shown by dashed boundary) separate the whole graph to three groups of active

vertices (with solid boundary). Each one of the groups can be optimized independently and

doesn’t affect optimization accuracy of other groups. Thus, instead of optimizing single layout

with 7 nodes we optimize 3 layout clips with 1, 2 and 4 nodes correspondingly. The separation to

Figure 8. An example of graph partitioning. The active vertices have solid boundary, while the
inactive vertices (separating group) have dashed boundary. The graph is separated to three
groups.

groups can be easily done with Union-Find algorithm ‎[23]. Assume there are active vertices in

the graph. Then Algorithm 3 finds independent groups:

First, individual group is assigned for each active vertex . Then, vertices

corresponding to visible nets are merged into single group. At the end of the algorithm the

remaining groups will hold separated groups of vertices.

The natural separation formed by power grid lines and other obstacles can be extended by

artifical separation where minimal separating set of active nets is found and used for separation

of the rest of active nodes. The efficient algorithm for such vertex separation is described in ‎[24].

8. Examples and experimental results

The algorithms 1, 2 and 3 were implemented in C++ and tested on Pentium M 1.7 GHz processor

system with 768 MB of memory. We first demonstrate the algorithm on small artificial layout

depicted at Figure 10. The schematic layout of two nets including totally 9 wire segments (all

segements are numbered) is shown at Figure 10 a). The dotted net has driver tied at end of wire 1

and receivers tied at ends of wires 2, 4 and 6; the squared net has driver tied at the end of wire 9

and receiver tied at the end of wire 7. The corresponding layouts of individual layers are shown

at Figure 10 b) and c), the multi-layer visibility graph is shown at figure 10d), where by dotted

edges connectivity relationships are shown while the visibility relationships are shown by solid

edges. The activity factors were: 0.1 for net with segments 1, 2, 3, 4, 5, 6 and 1 for net with

 

 3 : Separation of to independent groups

1. Assign ,1
2. Foreach 1
3. Foreach
4. If nets corresponding to vertices and are visible t

i i

i j

Node Visibility Graph

G v i N
i N
i j N

v v

  
 

 

Algorithm

o each other

5. and

6. End
7. End
8. End

i jG GUnion

Figure 9. The algorithm for separation of node visibility graph.

segments 7, 8 and 9. We performed two tests with this layout. First, the required arrival times at

receivers 2, 4, 6 and 7 were relaxed so that the optimization was guided only by mutual location

constraints. In the second test, the required time of the receiver 6 was tightened so that one of 4

delay constrains was active. The optimization results for both cases are presented in Table I and

the resulting layouts are shown at Figure 11. Power, delay and coordinates are shown in relative

units. It can be seen that in both cases there is significant power improvement: 35% and

28.4%correspondingly. In the second case the optimization impact is smaller than in the first one

and the slack at the receiver 6 reaches 0. Moreover, the delay constraint at receiver 6 influenced

the rest of delay constraints at the same net so that the delays at receivers change less than in

unconstrained optimization.

As large test cases we used clips of real layout of state-of-the-art 32 nm industrial design. The

layout of high metal layers (5, 6, 7, 8) was preserved while parts of nets consisting of the

segments on the lower metal layers were replaced by corresponding effective drivers and

receivers. In implementation we used capacitance models presented in ‎[2], which are consistent

Table I. Optimization results for artificial example.

 Initial state Opt. without delay
constraints

Opt. with delay constraints

W
ir

e
co

o
rd

in
at

es

1 8.50 12.18 10.89

2 5.50 7.46 6.69

3 8.50 12.43 11.25

4 11.50 13.47 10.95

5 11.50 9.50 10.21

6 2.50 1.56 2.42

7 2.50 3.71 3.07

8 5.50 6.53 6.23

9 14.50 13.25 13.85

Total power (Impr. %) 15.37 (0%) 10.00 (35%) 11.00 (28.4%)

W
ir

e
d

el
ay

 d
at

a

Rcv.
number

Delay Delay Diff. vs.
initial

Req.
time

Delay Slack or diff.
vs. initial

2 44 53 -9 - 47 -4

4 59 67 -8 - 62 -5

6 67 77 -10 70 70 0

7 43 31 +12 - 35 +4

with our assumptions on cross-coupling capacitance. For delay estimation we used Elmore delay

model with  model for individual net segments. Although Elmore delay is known as non-

exact metric, it is easy for implementation and its high fidelity property allows using it as a delay

metric for optimization algorithm.

The results for different layout clips are presented in Table 2. The numbers representing power

are given in relative units. It can be seen that the cross-coupling interconnect power is being

reduced by 8% on average, varying from 5% to 12.6%. Notice that after optimization all nets

a)

1 3

6

8

7

9

5
2

4

 b)

1 3

6

8

c)

7

9

5
2

4

 d)

1

2

3

4

5

6
9

8
7

root

root

leaf

leaf

leaf

top wall

bottom wall

right wall

left wall

Figure 10. An artificial example of the layout for multi-layer power optimization. A) The full layout
including two metal layers, two nets and 9 wire segements. B) and C) Horizontal and vertical metal
layers and wires occupying them. D) The multi-layer visibility graph corresponding to layout from A).
The visibility relationships are shown by solid edges, the connectivity relationships are shown by
dashed edges.

satisfy delay constraints. Varience of power reduction results can be explained by different

density and initial stage in different layout clips.

9. Summary, conclusions and future work

In this paper we presented the problem of power optimization by simultaneous multi-layer wire

spacing. Compared to existing spacing algorithms, this technique has some advantages. The

spacing of the wires is performed in the way that total dynamic power is decreased, but delay

constraints imposed on net receivers are not violated. Moreover, simultaneous multi-layer

optimization allows full exploitation of optimization space as compared to existing layer-by-

layer or net-by-net optimization techniques. We have shown that the discussed optimization

problem is convex, providing the interconnect delay is convex as a function of inter wire

spacing. The interior-point algorithm was developed to solve the problem. The technique of

layout partitioning was used in order to simplify optimization. We demonstrated the algorithm on

real industrial cases and showed 5-12% of inter-wire dynamic power reduction. In addition, the

relation between weigthed power-delay optimization and power optimization under delay

constraints was developed and method for chosing optimal delay weights was proposed. The

presented algorithm can be extended for cases with nets initially violating delay constraints. The

extended algorithm then first will repair existing delay violations and then perform power

minimization under delay constraints.

a)

1 3

6

8

7

9

5

2

4

 b)

1
3

6

8

7

9

5

2

4

Figure 11. A) Layout after optimization without timing constraints. B) Layout after optimization with
timing constraints. In the second case delay constraint prevented wires 1, 3 and 6 from moving too
close to the wall as well as wires 2 and 5 from getting too close to each other.

References

[1] K. Moiseev, A. Kolodny and S. Wimer, “Power-delay Optimization in VLSI Microprocessors by

Wire Spacing”, TODAES, vol. 14, issue 4, 2009

[2] F. Stellari and A.L. Lacaita, “New Formulas of Interconnect Capacitances Based on Results of

Conformal Mapping Method”, IEEE Transactions on Electron Devices, vol.47, no,1, January

2000

[3] N. Magen, A. Kolodny, U. Weiser and N. Shamir, “Interconnect power dissipation in a

microprocessor”, proceedings of 2004 international workshop on System Level Interconnect

Prediction, pp. 7-13, 2004

[4] V. K. R. Chiluvuri and I. Koren, “Layout-synthesis techniques for yield enhancement”, IEEE

Transactions On Semiconductor Manufactoring, Vol. 8, Issue 2, pp. 178-187, 1995

Table II. Optimization results for real industrial layout segments

No. of clip Initial

power

Final

power

Impr., % No. of

wires

(variables)

No. of

spaces

(location

constraints)

No. of

delay

constraints

1 863.8504589 817.119679 5.41% 4091 21518 1427

2 2723.372233 2552.8175 6.26% 37177 110962 13860

3 2068.078358 1974.36814 5.67% 14403 51166 2906

4 1685.869617 1550.59565 8.02% 13397 47450 4639

5 3737.549076 3306.77984 11.53% 27639 96031 7003

6 3531.584387 3331.86887 5.66% 25343 89996 7161

7 2058.194188 1799.12777 12.59% 22669 79838 7169

8 3084.118285 2827.55122 8.32% 25537 87810 7331

Total 19752.6166 18160.2287 8.18% 170256 584771 51496

[5] K. Chanundhary, A. Onozawa and E. Kuh, “A spacing algorithm for performance enhancement

and cross-talk reduction”, Proceedings of IEEE / ACM International Conference on CAD, pp.

697-702, 1993

[6] P. Saxena and C. L. Liu, “An algorithm for crosstalk-driven wire perturbation”, IEEE

Transactions on CAD of Integrated Circuits and Systems, Vol. 19, No. 6, pp. 691-702, 2000

[7] International technology roadmap for semiconductors, 2009

[8] J. Cong, L. He, C. K. Koh and Z. Pan, “Interconnect Sizing and Spacing with Consideration of

Coupling Capacitance”, IEEE Transactions on CAD of Integrated Circuits and Systems, vol. 20,

no. 9, pp. 1164-1169, 2001

[9] J. –A. He and H. Kobayashi, “Simultaneous wire sizing and wire spacing in post-layout

performance optimization”, Proceedings of ASP-DAC, pp. 378-378, 1998

[10] S. Wimer, S. Michaely, K. Moiseev and A. Kolodny, “Optimal Bus Sizing in Migration

of Processor Design”, IEEE Transactions on Circuits and Systems, vol. 53, no.5, pp. 1089-1100,

2006

[11] N. Hanchate and N. Ranganathan, “A linear time algorithm for wire sizing with

simultaneous optimization of interconnect delay and crosstalk noise”, Proceedings of the 19
th

International Conference on VLSI Design, pp. 283-290, 2006

[12] E. Macii, M. Poncino and S. Salerno, “Combining Wire Swapping and Spacing for Low-

Power Deep-Submicron Buses”, Proceedings of the 13
th
 ACM Great Lakes Symposium on VLSI,

pp. 198-202, 2003

[13] H. Bakoglu, Circuits, Interconnects and Packaging for VLSI. Addison-Wesley, 1990.

[14] D. Genossar and N, Shamir, “Intel ® Pentium ® M Processor Power Estimation,

Budgeting, Optimization and Validation”, Intel Technology Journal, vol. 7, pp. 43-50, 2003

[15] S.-C. Wong, G.-Y. Lee and D. – J. Ma, “Modeling of Interconnect Capacitance, Delay

and Crosstalk in VLSI”, IEEE Transactions on Semiconductor Manufactoring, vol. 13, no. 1,

2000

[16] C. P. Yuan and T. N. Trick, “A Simple Formula for the Estimation of the Capacitance of

Two-Dimensional Interconnects in VLSI Circuits”, IEEE Electronic Device Letters, Vol. 3, No.

12, pp. 391-393, 1982

[17] A. Kahng, S. Muddu and E. Sarto, “On Switch Factor Based Analysis of Coupled RC

Interconnects”, Proc. Of IEEE Design Automation Conference, pp. 79-84, 2000

[18] P. Gupta, A. Kahng and S. Muddu, “Quantifying Error in Dynamic Power Estimation of

CMOS Circuits”, Analog Integrated Circuits and Signals Porcessing, vol. 42, pp. 253-264, 2005

[19] C.- K. Cheng, J. lillis, S. Lin and N. Chang, Interconnect Analysis and Synthesis. Wiley-

Interscience, 1999

[20] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

[21] L. Luksan and J. Vlcek, “Efficient methods for large-scale unconstrained optimization”,

Nonconvex Optimization and Its Applications, vol. 83, pp. 185-210, 2006

[22] J. Nocedal and S. Wright, Numerical Optimization, Springer, 2006

[23] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms, The MIT

Press, 2005.

[24] J. Liu, “A Graph Partitioning Algorithm by Node Separators”, ACM Transactions on

Mathematical Software, vol. 15, no. 3, pp. 198-219, 1989

[25] J. Cong and C. Koh, “Simultaneous Driver and Wire Sizing for Performance and Power

Optimization”, IEEE Transactions on VLSI, vol. 2, no.4, 1994

[26] N. Gould, D. Orban and P. Toint, “Numerical methods for Large-Scale Nonlinear

Optimization”, Acta Numerica, 14, pp. 299-361, 2005

[27] S. Sapatnekar, V. Rao, P. Vaidya and S.-M. Kang, “An Exact Solution to the Transistor

Sizing Problem for CMOS Circuits Using Convex Optimization”, IEEE Transactions on CAD of

VLSI, vol. 12, no. 11, 1993

