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D-Mod-K Routing Providing  
Non-Blocking Traffic for Shift Permutations  

on Real Life Fat Trees  
Eitan Zahavi  

Abstract—As the size of High Performance Computing clusters 
grows, the increasing probability of interconnect hot spots 
degrades the latency and effective bandwidth experienced by 
MPI collectives.  This report presents a proof that using D-Mod-
K routing scheme for real life constant bisectional-bandwidth fat-
tree topologies solves this problem for Shift Permutations traffic 
patterns.  
 

Index Terms—Network Topologies, Routing Algorithms and 
Techniques 

I. INTRODUCTION 
N recent years, the ever increasing demand for compute 
power is addressed by building multiple thousand nodes 

High Performance Computing (HPC) clusters exceeding the 
peta-flop per second barrier  [1]. State of the art parallel 
programs running on these clusters utilize the standard 
Message Passing Interface (MPI). Message passing 
overcomes the need to implement concurrent shared memory 
among the distributed processes at the cluster nodes. Many 
MPI applications exhibit a ratio of communication to 
computation time which is proportional to the number of 
nodes they use. For these parallel applications, the network 
latency and bandwidth may inhibit the desired linear 
performance acceleration with cluster size. There are two 
main network topologies used by HPC clusters: fat-trees and 
3D tori. Fat-trees are commonly used for variable and diverse 
traffic patterns. 
 

With the rise in HPC cluster size, a recent study  [2] has 
measured degradations of network performance, down to 40% 
of the nominal bandwidth provided by fat-trees to MPI 
communication. The source of the degradation is attributed to 
cases where traffic from multiple sources congests a particular 
network link, creating a “hot spot”. Our simulations 
reproduced these results, predicting the average degradation is 
40% of the nominal network bandwidth for random job 
assignment. Furthermore, for adversarial job assignment, 
degradation to 7.1% of the network bandwidth was simulated.  
 
 

 
Traditionally, it was assumed that the primary bottleneck 

for performance scalability in HPC is the operating-system 
latency jitter. However, with the availability of and clock 
synchronization protocols and Collectives Offloading 
solutions to the jitter, network hot spots has recently become 
the new limiting factor for system growth  [19].  

 
This report holds a proof that a d-mod-k routing solution 

for a class of practical fat-tree topologies is able to route shift 
permutation traffic with no hot-spots.  

 
The report is organized as follows: Background for fat-tree 

topologies is provided in section II. Section  III describes the 
problem of network scalability. The D-Mod-K routing is 
presented in section  IV and the proof in section   V.  

II. REAL LIFE FAT-TREE FORMULATION  
This section forms the basis for the discussion of non 

blocking routing in fat-trees. Although there are several fat-
tree representations in the literature, there is no existing 
formulation that is sufficient to describe real life fat-trees used 
within today’s HPC clusters. The progress from k-ary-n-trees 
 [11] [12] through Extended Generalized Fat-Trees  [13], to this 
paper contribution of Parallel Ports Fat-Trees (PGFTs) and 
their sub-classification into Real Life Fat-Trees (RLFTs) will 
be discussed in the following.  The notations developed in this 
section are used later in the proof of the proposed routing non-
blocking properties (presented in the appendix). 

A. Why Parallel Ports Generalized Fat-Trees are 
required? 
The term fat-tree stems from the idea that if a single rooted 

tree of cross-bar-switches could be built (each node with K 
connections down and one connection up towards the root of 
the tree), in order to preserve bandwidth, its links towards the 
root of the tree should be K times “fatter” then it’s down links. 
Such a tree of height h requires the top link to have a 
bandwidth which is larger by a factor of Kh than the 
bandwidth of a leaf link. This requirement renders such trees 
impractical as different speeds are required from switches and 
links at different levels in the tree. To overcome this 
requirement, the concept of a multi-rooted topology was 
introduced. However, in multi-rooted trees the non-blocking 
nature of the single rooted tree is replaced by a weaker 
attribute: they are rearrangeably-non-blocking i.e. given a 
permutation of source and destination pairs the routing on the 
tree can be made non-blocking. 

I 
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Several families of fat-trees are known. The k-ary-n-tree is 
the basic type of tree built out of switches with an equal 
number of connections going up or down the tree  [11] [12]. 
These were extended by  [13] with the introduction of 
Generalized Fat-Trees (GFT) which allow for a different 
number of up and down connections. Extended Generalized 
Fat-Trees (XGFT) further extends the possible topologies 
allowing for a different number of connections at each level. 
However, even though XGFTs expand the family of GFTs 
they still can not capture existing real life topologies. For 
example an XGFT with a minimal number of 8 port switches 
for connecting 16 end-ports is represented in Figure 1 (a). 
Since XGFTs allow only a single connection between 
switches, the resulting family does not preserve Cross 
Bisectional Bandwidth (CBB), i.e. the case where bandwidth 
towards the top of the tree is not equal to that of the leaves. To 
overcome this limitation we extend the XGFT definition by 
introducing the concept of Parallel ports Generalized Fat 
Trees (PGFT). The PGFT in Figure 1 (b) uses two parallel 
ports to maintain the CBB. 

 

B. PGFTs Formal Definition 
PGFTs are canonically defined as: 

1 1 1( ; , ... ; , ... ; , ... )h hPGFT h m m w w p ph
where  is the number of 

levels in the tree;  is the number of different lower level 

nodes  connected to nodes on level ;  is the number of 

different upper level nodes connected to nodes on level

h

lm

l lw
1l −  

and is the number of parallel links connecting between 

nodes in level and . The XGFT defined by [13] is 
extended to PGFT by introducing up-going and down-going 
port objects.  Like in XGFT tuples notation, each node is 
assigned a tuple ( , where  is its level and the vector 

of digits  describe the sub-trees the node is located at. 

Starting with for the top most sub-tree and recursively 

for the index of the sub-tree within that first sub-tree. 
PGFT adds ports to the nodes of the XGFT. Figure 2 (a) 
shows a single node (circle) and its ports (hexagons). There 
are  up going ports and  down going ports. Each 
port is assigned a tuple of the form:  which is 

equal to its node tuple with the addition of a port number - .  

lp

l 1l −

1, ,... )hl a a

,... )... ,h ll a a a q+

l

ia

ha

1ha −

1 1l lw p
+ + l lw p

1( , ,... ),hl a a q

q
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( )1, ,...hl a a

1 1 1l lw p+ + −

1l lm p −

1lb +

(3,0,1,0)

1la +

(2,1,1,0)

3 3m =

3 2w =
3 2p =

0 1

0 1

Up
0 1 2 3 4 5

0 1 2 3

Down

( )1, ,...hl a a

1 1 1l lw p+ + −

1l lm p −

1lb +

(3,0,1,0)

1la +

(2,1,1,0)

3 3m =

3 2w =
3 2p =

To construct a PGFT one can first draw the nodes and ports 
on each level and then connect the ports between the levels 
using the following rules: ports ( ,  and 

 are connected if and only if all the digits 
11

11( 1, ,..., )... ,h ll b b b r++

i ib a= except for i l 1= + , and the first of the 1lp +  connections 

will be between the up-going port and the down-going 

port
1lq b
+

=

1lr a += . The  connection is between the up going port k

1lq b kw 1l+ += + and the down going km port 1 1l lr a + ++ . 
Figure 2 (b) demonstrates these connections for two nodes at 
levels 2 and 3: the 2 LSB digits of these two nodes match – so 
they must be connected. The first connecting link is between 
port number 0 of the lower node (which equals the 3

=

rd digit of 
the upper node) and port number 1 of the upper node (which 
equals the 3rd digit of the lower nodes). 
 
A formal definition of PGFT is given below, including the set 
of nodes and their up and down going ports for level :  l

[ )
[ )

1 1

,

( , , ... ... ) | : 0..

: 0 0..
: h h l j j

j j

l h

l a a a a j l j h a m

j j l a w
S −

∀ < ≤ → ∈ ∧

∀ < ≤ → ∈

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

  

 
Up-going ports and down-going ports are defined by: 

[ ) [ )
1 1 1 1

,

( , , ... ... , ) | 0 0
:

: 0.. : 0

h h l U l lU

l h

j j j j

l a a a a q l h q w p
P

j l j h a m j j l a w

− + +
≤ < ∧ ≤ < ∧

=
∀ < ≤ → ∈ ∧ ∀ < ≤ → ∈ 0..

⎧ ⎫
⎨ ⎬
⎩ ⎭

[ ) [ )
1 1

,

( , , ... ... , ) | 0 0
:

: 0.. : 0

h h l D l lD

l h

j j j j

l a a a a q l h q m p
P

j l j h a m j j l a w

−
< ≤ ∧ < ≤ ∧

=
∀ < ≤ → ∈ ∧ ∀ < ≤ → ∈ 0..

⎧ ⎫
⎨ ⎬
⎩ ⎭

 The graph edges connecting up-going ports or down-going 
ports to their switches are:  

{ }1 1

,

1 1 1 1

( , , ... ), ( , , ... , ) | 0
:

0 ( , , ... )
h h UU

l h

l l h h h

l a a l a a q l h
E

q w p l a a a V
+ + −

≤ < ∧
=

≤ < ∧ ∈

⎧ ⎫
⎨ ⎬
⎩ ⎭
{ }1 1

,

1 1

( , , ... ), ( , , ... , ) | 0
:

0 ( , , ... )
h h DD

l h

l l h h h

l a a l a a q l h
E

q m p l a a a V
−

< ≤ ∧
=

≤ < ∧ ∈

⎧ ⎫
⎨ ⎬
⎩ ⎭

 

 
The set of connections between up and down-going ports (of 
different nodes) are defined as: 

FIGURE 2 INTRODUCING PGFT NODES, PORTS AND THEIR CONNECTIONS

(a) A single switch (b) Two levels with 2 parallel ports 

(a) XGFT(2;4,4;1,2)

1;0 1;1

0;0 0;1 0;2 0;3

(a) XGFT(2;4,4;1,2)

1;0 1;1

0;0 0;1 0;2 0;3

1;0 1;1

0;0 0;1 0;2 0;30;0 0;1 0;2 0;3

(b) PGFT(2;4,4;1,2;1,2)

1;0 1;1

0;0 0;1 0;2 0;3

(b) PGFT(2;4,4;1,2;1,2)

1;0 1;1

0;0 0;1 0;2 0;30;0 0;1 0;2 0;3

FIGURE 1 AN EXAMPLE OF A NON-MAXIMAL FAT-TREE SHOWING 
XGFT CAN NOT DESCRIBE FULL CBB WHILE PGFT CAN 
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C. Descendants Criteria 
Two following two relations are later used by the routing 

algorithm:  represents the relation between node 

 to be located in the sub-tree of node: 

 and 

( , )v a bS SD

1 1( , , ... ... ) a h h lS l a a a a−=

1( , , ... ... )b h h lS m b b b b
−

= 1 ( , )p a bS PD  describes that 

 is min-hop accessible through the 

down-going port:

1( , , ... ... )b h h lS m b b b b−= 1

1 1( , , ... ... , )D

b h h lP m b b b b q−= : 

[ ]

1 1 1 1( , , ... ... ), ( , , ... ... ) |

( , )

1.. (( ) ( )) ( )

h h l h h l

v a b

j j

l a a a a m b b b b

S S l m

j h j m j l a b

− −
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∀ ∈ > ∨ ≤ → =

⎧ ⎫
⎪
⎨
⎪
⎩
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⎪
⎬
⎪
⎭

⎫
⎪
⎪
⎬
⎪
⎪⎭

w p+ +=

switches have the same number of ports. At each level > 0: 

 

[ ]

1 1 1 1( , , ... ... ), ( , , ... ... , ) |

( , )
1.. (( )

( )) ( ) mod

h h l h h l

p a b

j j k k k

l a a a a k b b b b q

l k
S P

j h j k

j l a b a q m a

− −

< ∧
=

∀ ∈ > ∨

≤ → = ∧ = =

⎧
⎪
⎪
⎨
⎪
⎪⎩

D

 

D. Real Life Fat Trees (RLFT) 
XGFTs and PGFTs support the definition of a large variety 

of topologies. Not all of them are practical to build. This 
section describes the characteristics of the Real Life Fat-Trees 
(RLFT), a sub-class of PGFTs, which are further studied by 
the rest of this paper. The set of attributes that makes a PGFT 
into an RLFT are presented below. 

 
The first restriction for a PGFT to be routed in a non 

blocking manner is that it preserves a constant bisectional 
bandwidth. If CBB is not constant and is reduced going up the 
tree, some links must carry more than one flow at a given 
communication stage of a Shift CPS (since in each stage all of 
the nodes send data). The constant CBB requirement means 
that the nodes input BW equals their output BW 
or: m p . 1 1l l l l

 
The second restriction applied to the PGFT is that the end-

ports are actually not switches but host network interface 
cards which connect to the PGFT via a single cable i.e. 

.  1 1 1w p= =

 
The third restriction stems from the practical cost aspect of 

large HPC PGFTs: Real life HPC are always designed using 
the highest port-count cross-bar switch available, and the 

same switch is used at all levels in the tree. So PGFTs 
addressed in the rest of the paper will assume all of the 

1 1l l l lm p w p+ ++ .  
It is common to define switch arity K≡  which is half of the 
switch ports: ( )1 1 2l l l lK m p w p

+ +
= + . The top level of the tree 

as only down-going ports and thus K=  .  

Combining the above restrictions for RLFTs: 

h 2h h

 
m p

1 1{1.. 1} : 2
h h

l l l l

m pl h K m p w p
+ +

∀ ∈ − = = =   (1) 

1

1

2 h
h

i hi

kk

K
N m

p=

=

= =∏
∏

 (2) 

 

2 8X slots (supporting 

III. MPI COLLECTIVES SCALABILITY WITH FAT TREE SIZE 
The measurements performed by  [2] have shown that the 

effective bandwidth for various collectives may degrade to 
~40%  of the network capacity. This bandwidth loss is 
attributed to hot-spots caused by the communication pattern. 
These results were reproduced by a simulation of a 1944 
nodes InfinibandTM cluster using a OMNet++  [20]. The 
simulation model is calibrated against InfinibandTM QDR links 
(4000MBps unidirectional bandwidth) of IS4 switches (36 
ports) connected to hosts with PCIe Gen
3250MBps unidirectional bandwidth). 

FIGURE 3 S ECTIVES  
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Traffic is injected from each end-port according to a 
predefined destination sequence. The end-ports progress 
through this predefined destinations sequence independently 
when their previous message has been sent to the wire. The 
Shift and the Recursive-Doubling CSS were simulated and the 
resulting normalized effective bandwidth for different 
message sizes is provided in Figure 3 (normalized to the full 
PCIe bandwidth). A random assignment of the MPI “rank” to 
cluster nodes is used.  It can be seen from the graph that as the 
message size is increasing the effective bandwidth is 
decreasing. The reason for that is the buffering available in the 
fabric is able to compensate for short hot spots. Only when the 

HIFT AND RECURSIVE DOUBLING COLL
NORMALIZED BW VS. MESSAGE SIZE  

Message Size [KB]

Shift / Random Rank
RecDbl / Random Rank
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buffers fill-up congestion trees are built and reach the source 
end-ports resulting in actual bandwidth lost.  

8. The normalized effective 
bandwidth ratio obtained is ~7%. 

 as the latency of 
the worst pair in each stage is accumulated. 

IV. NON BLOCKING ROUTING FOR SHIFT PERMUTATIONS ON 

or 
hen proves it is n

 
To further illustrate the importance of correct routing and 

ordering of end-ports (i.e. MPI “rank” assignment), a 
simulation is performed for a Ring permutation sequence with 
adversary routing and node “rank” assignment. The adversary 
assignment was made such that all of the nodes of each leaf 
switch send data to nodes of other leaf switches. The selection 
of the particular destinations for each node is done to 
maximize the sharing of the leaf up-going port. The results 
show that the effective bandwidth can drop by a factor of 14 
for a Ring permutation sequence. The measured average 
bandwidth for this traffic pattern is 231.5MBps which is close 
to the network bandwidth of 4000MBps divided by the worst 
possible link oversubscription of 1

 
In all of the above simulations it was assumed that end-

ports progress through the stages of the permutation sequence 
in asynchronous manner. When synchronization is performed 
the impact of hot-spots can be even worse,

RLFTS 
This section describes the proposed routing solution f

shift permutations on RLFTs and t on-
blocking.  Shift permutation with { }1 1s N∈ − i efined 

as the set of s rce

s d

ou  destination pai  sends 

data to node :  

rs such that node in

jn

 ( ) ( ){ } 1

0
, | mod

N

i j i
n n j i S N

−

=
= +  

 
Several previous studies  [14] [15] [16] [17] [18] have 

addressed this topic for specific topologies. Most of them 
describe routing which we refer to as d-mod-k which is 
defined later in this section. We extend the common d-mod-k 
to RLFTs making it practical to real-world topologies. The 
basic property of the d-mod-k routing is that each down-going 
port is used to pass traffic to a single end-port, so blocking 
may only happen for traffic going up the tree. This section 
focuses on providing routing for Shift permutations that route 
each pair on a different up-going port while maintaining a 
single destination allocated to each down-going port. These 
two properties of the routing are then proved by theorems 1 
and 2.  The section starts with an intuitive description of the 
routing principles followed by formal definition of the routing 
a ocking for all Shift permutations. 

ree levels provides a non 
bl ng routing for the Shift CPS.  

gh port number 
q=( ) mod 4, and the same property holds.  

 

nd then proves it is non-bl

A. Routing Description 
Consider traffic flowing up the tree from a fully populated 

leaf switch (switch at level 1). A Shift permutation sequence 
guarantees that for a contiguous set of traffic sources the set of 

traffic destinations is also contiguous and in the same order. 
To avoid congestion on up-going links, the proposed routing 
scheme spreads the traffic among all up-going ports. For the 
lowest level leaf-switches, the index of the up-going port 
route for a given destination is set to be the destination index 
modulo the total number of up-going ports. The up-going port 
assignment is cyclical with the destination number such that at 
any given stage of the Shift, the contiguous range of 
destinations is evenly distributed through all of the up-going 
ports in a non-overlapping manner. Destinations routed 
through a second level switch share the same port index at the 
first level switches. These destinations form an arithmetic 
sequence with a difference equal to the number of up-going 
ports of the first level switches. Such a sequence can be spread 
without overlaps on the up-going ports of the second level 
switches by dividing the destination index by the sequence 
distance modulo the number of up-going ports. Applying this 
principle recursively on all of the t

ocki
 
Figure 4 holds a fragment of a PGFT to demonstrate the 

routing described above. Up-going ports are marked with their 
port number and the level 1 routing is shown to be through 
port number q=j mod 4. The set of destinations through each 
port is provided on the right most leaf switch. For example, 
consider traffic flowing from the right most node at level 1 
toward destination 9. Traffic traverses the node at level 1 
through port 1 and then the node at level 2 through port 2. 
Note that every 4 contiguous destinations are to be routed 
through different up-going ports. For the second level 
switches the routing to destination j is throu

j/4

B. RLFT D-Mod-K Routing Formulation 
Unlike the traversal based approach presented in  [18], it is 

preferable to have a closed form routing solution following 
the same principles outlined in  [17]. Such formulation for 
RLFT is described below. Beyond the benefit of being non-
blocking for shifts, the formulation allows for a parallel 
implementation of the routing configuration, solving another 
important scalability issue. The most known routing 
algorithm, Dijkstra’s SPP  [21] runtime is O(N2) and there is 
no parallel version for this algorithm that can be easily fit the 
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cluster topology. However, an algorithm which is expressed in 
a closed form can be easily executed in parallel on every 
sw

e, the rou

itch node and thus achieve an O(N) run time.  
The routing is based on the tuple formulation of the tree. 

The assignment of tuples to the tree nodes may be performed 
using the algorithm provided in  [18]. Following this step, end-
ports are marked with an increasing index. Then the routing 
tables in the switches are programmed such that traffic to an 
end-port is either forwarded through an up-going or a down-
going port. For destinations which are descendants of the 
nod ting is through the descendant port (satisfying 
the ( , )p a bS PD  criterion). For the routing in the up direction 

we define the up-going port to be used for routing packets to a 
destination as:  

( ) ( , .. , ) | ( ) / mod
l

U U U ( )1 1 1
1

l h l l k l l
k

P j l s s q q j j w w p≡ = ⎢ ⎥
+ +

=
⎢ ⎥⎣ ⎦
∏ (3) 

he same up-going port index to route to 
the same destination.  

. D-MOD-K PROVIDES NON BLOCKING SHIFT ON RLFTS 

down and 
p directions for all Shift permutations on RLFTs 

 

network, for all stages of the Shift CPS on a 
co plete RLFT . 

The following lemmas are used to prove theorem 1: 
 

 set of des
cluding the top nodes, is a 

sub-set of the algebraic sequence: 

This routing is not a function of the switch, i.e. all switches 
at a specific level use t

V
 
The following two theorems state that the above routing 

formulation provides non blocking routing in both 
u

Theorem 1: The routing according to (3) guarantees that no 
more than one destination is routed through any of the up-
going ports in the 

m
 

Lemma 1: The tinations routed through up-going 
ports of a node ( )1, , ...hl b b , not in

( )1

1

, ,...
1 1 1 1

| 0
h

t l ll

t k k ll b b
t k k k

J b w i w i N w
−

= = = =

= + ≤ <⎧ ⎫
⎬
⎭

⎨
⎩
∑ ∏ ∏ ∏  (11) 

uted through the up-going ports (but 
th down-going ports).  

s: Each end-point may send data to 
al f the other end-points:

 
The motivation for using the super-set described by (11) 

rather than the actual sequence is that the expression for the 
accurate set is much more complex than (11) and is not 
required for proving theorem 1. Note that in the accurate 
sequence, destinations that are descendants of a node pass 
through it but are not ro

e 
 
The proof of lemma 1 is based on a recursion starting with 

the destinations of end-port
l o  ( ) { }

10, ,... | 0
hb bJ i i N= ≤ <  

 
Based on the routing (3) for level 0: ( )0 1( ) modUq j j w p=  1

1l+and the PGFT connection rule  the sequence 

of destinations passing through the parent with 
1 modlb q w+ =

1b q=  start 

with destination  and a step of  so 1b 1w

( ) { }
11, ,... 1 1 1| 0

hb bJ b iw i N w= + ≤ < . Since all of the children 

nodes of ( )11, , ...hb b  connect to it through 1b q=  they all 
pass the same sequence of destinations to that parent. 

 
Similarly the sequence of destinations passing through 

second level nodes, is obtained using the Routing (3) on each 
element of the set : ( )11, ,...hb bJ

( ) { }
1 1 2 1 1 2 1 22, ,... | 0

hb bJ b b w iw w i N w w= + + ≤ < . 

 
Finally for a node at arbitrary level the sequence of 
destinations passing through it is:  

( )1

1

, ,...
1 1 1 1

| 0
h

t l ll

t k k ll b b
t k k k

J b w i w i N w
−

= = = =

= + ≤ <⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ ∏ ∏ ∏  

 
Lemma 2: Routing (3) is non-blocking for any continuous 

sub-sequence of destinations passing through a node (not 
including the top level nodes) of size equal to the number of 
up-going ports.  

 
Proof of lemma 2: Given a destination of index , from the 

above sequence, the up-going port obtained by (1) is: 
i

( )

1

1 1 1
1 1

1

( ) mod

t ll

t k k
U t k k
l ll

k
k

b w i w
q j w p

w

−

= = =
+ +

=

+
=

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∏ ∏

∏
l  (12)   

( ) ( )1 1( ) modU
lq j C i w p+ += + l l   (13) 

 
So a contiguous sub-sequence of destinations which 

makes a contiguous range of index values maps to a cyclic set 
of 

1 1l lw p
+ +

1 1l lw p+ +  up-going ports. So for such sub-sequence all up-

going ports are used, each for exactly one destination  
 
Lemma 3: For RLFTs routing (3) is non-blocking for any 

contiguous sub-sequence of destinations passing through a 
node (not including the top level nodes) of size equal to the 
number of up-going ports which may wrap around from the 
last possible index to the first element of the destination 
sequence 

 
Proof of lemma 3: To prove lemma 3 we show that the up-

going port used for routing the next destination past the last 
one is the same as the one used for routing to the first 
destination. This condition is met if the expression for the 
number of destinations in the sequence is a multiple of 
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1 1l lw p+ + . 
 

For RLFTs the number of nodes was given in (2). The 
index after the last index is: 

1 1 1

2 2h h

l l h h

k k kk i k k l

N K

w w p

−

= = = = +

= =
∏ ∏ ∏ ∏ 1

l

k

K

p
 (14) 

Expression (14) is a product of  if 1 1l lw p K
+ +

=
1

2 h l

h

kk l

K

p

−

= +∏
 

is an integer. On RLFTs with constant radix for all levels: 
1

1

1

2
2 2

h l
h h

kh k l k l
kkk l

K K
m

pp

− −

= + = +

= +

= =∏ ∏
∏ 1

 (15) 

which is an integer  
 
Lemma 4: For each switch at levels  the sub-

sequence of destinations routed through it, in every stage of a 
Shift CPS is contiguous or wraps around the last destination 
and do not exceed K elements. 

1.. 1l h= −

 
Proof of lemma 4: A switch at level  may receive up-

going traffic from its descendent leafs. Based on the recursive 

nature of the tree there are  such descendant leafs 

for switch at level .  If these descendants end-ports send to a 
contiguous set of destinations (Shift CPS) the switch will only 

route the subset which fulfils (2) i.e. are apart.  

l

1

l

kk
m

=∏
l

1

l
kk

w
=∏

The number of destinations passing through a switch in a 
single Shift CPS stage is: 

 
1

1

1 2

l
l

k
kk k =l l
kk k

k

K
m p KKw

p

=
=

= =

=
∏∏

∏ ∏
 (16) 

 
Proof of theorem 1: Since lemma 4 show that there will be 

no more than K destinations routed up through a switch in an 
RLFT Shift permutation sequence stage and lemma 3 show 
that routing of these destinations is through different up-going 
ports the result is that the routing through that switch is non-
blocking  
 

Theorem 2: The routing according to (3) guarantees that no 
more than one destination is routed through all the network 
down-going ports of a complete RLFT 
 

The following lemmas are used to prove theorem 2: 
 
Lemma 5: For routing (3) a single top level switch is 

passing all the flows to a specific destination  
 

We prove by induction on the tree levels and show that 
routing towards a destination j  from an arbitrary end-port 

( )10, ..hs s  at level  the traffic will pass trough switch 

whose  first tuple digits are independent of the source end-
port. The result is that all the digits of the top level switch that 
a packet will traverse, are independent of the originating end-
port. Which means a single top level switch will pass the 
traffic to a specific destination. 

l
l

The base of the induction is for : The up-going port is 
obtained using the Routing (3) formulation 

0l =

( )0 ( ) modUq j j w p= 1 1 ; then using the PGFT connections 
rule: 

 

{ }

[ ]

1 1 1 1

1 1 1 1

1 1

1 1

(0, , ... ... , ) , (1, , ... ... , ) |

0 0

2.. ( ) mod

mod

h l U h l D

j j

a a a q b b b r

q w p r m p

j h a b b q w

a r m

+ +

≤ < ∧ ≤ < ∧

∀ ∈ = ∧ = ∧

=

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 (17) 

Since q is known and constant,  is also known and 
constant which prove that routing from arbitrary end-port to 
destination 

1b

j  is going through first level switches sharing the 
first  digit of the tuple. 

 
The induction step assumes at level  the first l  digits are 

known and constant and show that the PGFT connection rule 
adds the digit at place  

l

1l +  : 
{ }

[ ]

1 1 1 1

1 1 1 1

1 1 1 1

1 1

( , , ... ... , ) , ( 1, , ... ... , ) |

0 0

1.. ( 1 )

/ / mod

mod

h l U h l D

l l l l

j j

l l l l

l l

l a a a q l b b b r

q w p r m p

j h j l a b

q p r p b q w

a r m

+ +

+ + + +

+ + + +

+ +

+

≤ < ∧ ≤ < ∧

∀ ∈ ≠ + → = ∧

= ∧ =

∧ =

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪
⎪ ⎪⎩ ⎭

 (18) 

All digits with jb 1j l≠ +  are preserved and 

1 modlb q w 1l+ +
=  is constant since q is independent of the 

lower level switch  
 
Lemma 6: The number of destinations passing through an 

RLFT top level switch is at most the number of its ports 
 
Proof of lemma 6: Using expression (11) 

( )1

1

, ,...
1 1 1 1

| 0
h

t l ll

t k k kl b b
t k k k

J b w i w i N
−

= = = =

w⎧ ⎫
= + ≤ <⎨ ⎬
⎩ ⎭
∑ ∏ ∏ ∏  

for the top level we get the number of destination is: 

1 1 1 1

2 2h h

h h h h

k k kk k k k

N K

w w p p
= = = =

= =
∏ ∏ ∏ ∏ k k

K

w
 

For RLFT the first level is of single connection and the rest 
of the levels have K connections so: 
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1

1 11 2

2 2
2

h h

h h h

k k kk k

N K K
K

Kw p w p w −

= =

= =
∏ ∏

=  

 
Proof of theorem 2: Combining lemmas 5 and 6 different 

sets of exactly 2K destinations are routed through each top 
level switch which as 2K ports. So each port may be assigned 
just one destination. Applying these lemmas to sub-trees in a 
recursive manner show that theorem 2 holds for every switch 
in the tree 

VI. CONCLUSION 
In this report we present formal definition for Real Life Fat 

Trees which are used in today’s High Performance Clusters. 
We extend D-Mod-K routing for this class of Fat Trees and 
prove that this routing will be able to provide non blocking 
traffic for Shift permutations.  
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