

 IRWIN AND JOAN JACOBS
CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

D-Mod-K Routing Providing
Non-Blocking Traffic for Shift
Permutations on Real Life Fat
Trees

Eitan Zahavi

CCIT Report #776
September 2010

Electronics
Computers
Communications

DEPARTMENT OF ELECTRICAL ENGINEERING
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

 1

D-Mod-K Routing Providing
Non-Blocking Traffic for Shift Permutations

on Real Life Fat Trees
Eitan Zahavi

Abstract—As the size of High Performance Computing clusters
grows, the increasing probability of interconnect hot spots
degrades the latency and effective bandwidth experienced by
MPI collectives. This report presents a proof that using D-Mod-
K routing scheme for real life constant bisectional-bandwidth fat-
tree topologies solves this problem for Shift Permutations traffic
patterns.

Index Terms—Network Topologies, Routing Algorithms and
Techniques

I. INTRODUCTION
N recent years, the ever increasing demand for compute
power is addressed by building multiple thousand nodes

High Performance Computing (HPC) clusters exceeding the
peta-flop per second barrier [1]. State of the art parallel
programs running on these clusters utilize the standard
Message Passing Interface (MPI). Message passing
overcomes the need to implement concurrent shared memory
among the distributed processes at the cluster nodes. Many
MPI applications exhibit a ratio of communication to
computation time which is proportional to the number of
nodes they use. For these parallel applications, the network
latency and bandwidth may inhibit the desired linear
performance acceleration with cluster size. There are two
main network topologies used by HPC clusters: fat-trees and
3D tori. Fat-trees are commonly used for variable and diverse
traffic patterns.

With the rise in HPC cluster size, a recent study [2] has
measured degradations of network performance, down to 40%
of the nominal bandwidth provided by fat-trees to MPI
communication. The source of the degradation is attributed to
cases where traffic from multiple sources congests a particular
network link, creating a “hot spot”. Our simulations
reproduced these results, predicting the average degradation is
40% of the nominal network bandwidth for random job
assignment. Furthermore, for adversarial job assignment,
degradation to 7.1% of the network bandwidth was simulated.

Traditionally, it was assumed that the primary bottleneck

for performance scalability in HPC is the operating-system
latency jitter. However, with the availability of and clock
synchronization protocols and Collectives Offloading
solutions to the jitter, network hot spots has recently become
the new limiting factor for system growth [19].

This report holds a proof that a d-mod-k routing solution

for a class of practical fat-tree topologies is able to route shift
permutation traffic with no hot-spots.

The report is organized as follows: Background for fat-tree

topologies is provided in section II. Section III describes the
problem of network scalability. The D-Mod-K routing is
presented in section IV and the proof in section V.

II. REAL LIFE FAT-TREE FORMULATION
This section forms the basis for the discussion of non

blocking routing in fat-trees. Although there are several fat-
tree representations in the literature, there is no existing
formulation that is sufficient to describe real life fat-trees used
within today’s HPC clusters. The progress from k-ary-n-trees
 [11] [12] through Extended Generalized Fat-Trees [13], to this
paper contribution of Parallel Ports Fat-Trees (PGFTs) and
their sub-classification into Real Life Fat-Trees (RLFTs) will
be discussed in the following. The notations developed in this
section are used later in the proof of the proposed routing non-
blocking properties (presented in the appendix).

A. Why Parallel Ports Generalized Fat-Trees are
required?
The term fat-tree stems from the idea that if a single rooted

tree of cross-bar-switches could be built (each node with K
connections down and one connection up towards the root of
the tree), in order to preserve bandwidth, its links towards the
root of the tree should be K times “fatter” then it’s down links.
Such a tree of height h requires the top link to have a
bandwidth which is larger by a factor of Kh than the
bandwidth of a leaf link. This requirement renders such trees
impractical as different speeds are required from switches and
links at different levels in the tree. To overcome this
requirement, the concept of a multi-rooted topology was
introduced. However, in multi-rooted trees the non-blocking
nature of the single rooted tree is replaced by a weaker
attribute: they are rearrangeably-non-blocking i.e. given a
permutation of source and destination pairs the routing on the
tree can be made non-blocking.

I

Manuscript received Aug 16, 2010. This work was supported in part
by Mellanox Technologies LTD.

Eitan Zahavi is with the Electrical Engineering Department, Technion,
Haifa, 32000 Israel and with Mellanox Technologies, Yokneam, 20692
Israel (phone: +972-544-478803; e-mail: ezahavi@tx.technion.ac.il).

mailto:EZahavi@tx.technion.ac.il
lesley
Text Box
CCIT Report #776 September 2010

 2

Several families of fat-trees are known. The k-ary-n-tree is
the basic type of tree built out of switches with an equal
number of connections going up or down the tree [11] [12].
These were extended by [13] with the introduction of
Generalized Fat-Trees (GFT) which allow for a different
number of up and down connections. Extended Generalized
Fat-Trees (XGFT) further extends the possible topologies
allowing for a different number of connections at each level.
However, even though XGFTs expand the family of GFTs
they still can not capture existing real life topologies. For
example an XGFT with a minimal number of 8 port switches
for connecting 16 end-ports is represented in Figure 1 (a).
Since XGFTs allow only a single connection between
switches, the resulting family does not preserve Cross
Bisectional Bandwidth (CBB), i.e. the case where bandwidth
towards the top of the tree is not equal to that of the leaves. To
overcome this limitation we extend the XGFT definition by
introducing the concept of Parallel ports Generalized Fat
Trees (PGFT). The PGFT in Figure 1 (b) uses two parallel
ports to maintain the CBB.

B. PGFTs Formal Definition
PGFTs are canonically defined as:

1 1 1(; , ... ; , ... ; , ...)h hPGFT h m m w w p ph
where is the number of

levels in the tree; is the number of different lower level

nodes connected to nodes on level ; is the number of

different upper level nodes connected to nodes on level

h

lm

l lw
1l −

and is the number of parallel links connecting between

nodes in level and . The XGFT defined by [13] is
extended to PGFT by introducing up-going and down-going
port objects. Like in XGFT tuples notation, each node is
assigned a tuple (, where is its level and the vector

of digits describe the sub-trees the node is located at.

Starting with for the top most sub-tree and recursively

for the index of the sub-tree within that first sub-tree.
PGFT adds ports to the nodes of the XGFT. Figure 2 (a)
shows a single node (circle) and its ports (hexagons). There
are up going ports and down going ports. Each
port is assigned a tuple of the form: which is

equal to its node tuple with the addition of a port number - .

lp

l 1l −

1, ,...)hl a a

,...)... ,h ll a a a q+

l

ia

ha

1ha −

1 1l lw p
+ + l lw p

1(, ,...),hl a a q

q

0 1

0 1

Up
0 1 2 3 4 5

0 1 2 3

Down

()1, ,...hl a a

1 1 1l lw p+ + −

1l lm p −

1lb +

(3,0,1,0)

1la +

(2,1,1,0)

3 3m =

3 2w =
3 2p =

0 1

0 1

Up
0 1 2 3 4 5

0 1 2 3

Down

()1, ,...hl a a

1 1 1l lw p+ + −

1l lm p −

1lb +

(3,0,1,0)

1la +

(2,1,1,0)

3 3m =

3 2w =
3 2p =

To construct a PGFT one can first draw the nodes and ports
on each level and then connect the ports between the levels
using the following rules: ports (, and

 are connected if and only if all the digits
11

11(1, ,...,)... ,h ll b b b r++

i ib a= except for i l 1= + , and the first of the 1lp + connections

will be between the up-going port and the down-going

port
1lq b
+

=

1lr a += . The connection is between the up going port k

1lq b kw 1l+ += + and the down going km port 1 1l lr a + ++ .
Figure 2 (b) demonstrates these connections for two nodes at
levels 2 and 3: the 2 LSB digits of these two nodes match – so
they must be connected. The first connecting link is between
port number 0 of the lower node (which equals the 3

=

rd digit of
the upper node) and port number 1 of the upper node (which
equals the 3rd digit of the lower nodes).

A formal definition of PGFT is given below, including the set
of nodes and their up and down going ports for level : l

[)
[)

1 1

,

(, ,) | : 0..

: 0 0..
: h h l j j

j j

l h

l a a a a j l j h a m

j j l a w
S −

∀ < ≤ → ∈ ∧

∀ < ≤ → ∈

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

Up-going ports and down-going ports are defined by:

[) [)
1 1 1 1

,

(, , ,) | 0 0
:

: 0.. : 0

h h l U l lU

l h

j j j j

l a a a a q l h q w p
P

j l j h a m j j l a w

− + +
≤ < ∧ ≤ < ∧

=
∀ < ≤ → ∈ ∧ ∀ < ≤ → ∈ 0..

⎧ ⎫
⎨ ⎬
⎩ ⎭

[) [)
1 1

,

(, , ,) | 0 0
:

: 0.. : 0

h h l D l lD

l h

j j j j

l a a a a q l h q m p
P

j l j h a m j j l a w

−
< ≤ ∧ < ≤ ∧

=
∀ < ≤ → ∈ ∧ ∀ < ≤ → ∈ 0..

⎧ ⎫
⎨ ⎬
⎩ ⎭

 The graph edges connecting up-going ports or down-going
ports to their switches are:

{ }1 1

,

1 1 1 1

(, , ...), (, , ... ,) | 0
:

0 (, , ...)
h h UU

l h

l l h h h

l a a l a a q l h
E

q w p l a a a V
+ + −

≤ < ∧
=

≤ < ∧ ∈

⎧ ⎫
⎨ ⎬
⎩ ⎭
{ }1 1

,

1 1

(, , ...), (, , ... ,) | 0
:

0 (, , ...)
h h DD

l h

l l h h h

l a a l a a q l h
E

q m p l a a a V
−

< ≤ ∧
=

≤ < ∧ ∈

⎧ ⎫
⎨ ⎬
⎩ ⎭

The set of connections between up and down-going ports (of
different nodes) are defined as:

FIGURE 2 INTRODUCING PGFT NODES, PORTS AND THEIR CONNECTIONS

(a) A single switch (b) Two levels with 2 parallel ports

(a) XGFT(2;4,4;1,2)

1;0 1;1

0;0 0;1 0;2 0;3

(a) XGFT(2;4,4;1,2)

1;0 1;1

0;0 0;1 0;2 0;3

1;0 1;1

0;0 0;1 0;2 0;30;0 0;1 0;2 0;3

(b) PGFT(2;4,4;1,2;1,2)

1;0 1;1

0;0 0;1 0;2 0;3

(b) PGFT(2;4,4;1,2;1,2)

1;0 1;1

0;0 0;1 0;2 0;30;0 0;1 0;2 0;3

FIGURE 1 AN EXAMPLE OF A NON-MAXIMAL FAT-TREE SHOWING
XGFT CAN NOT DESCRIBE FULL CBB WHILE PGFT CAN

 3

{ }

[]

1 1 1 1

1 1 1 1

,

1 1

1 1 1 1

(, , ,) , (1, , ,) |

0 0 0
:

1.. (1) / /

mod mod

h l U h l D

l l l lp

l h

j j l l

l l l l

l a a a q l b b b r

l h q w p r m p
E

j h j l a b q w r m

b q w a r m

+ +

+ + + +

+ +

+ + + +

+

≤ < ∧ ≤ < ∧ ≤ < ∧
=

∀ ∈ ≠ + → = ∧ = ∧

= ∧ =

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪
⎪ ⎪⎩ ⎭

C. Descendants Criteria
Two following two relations are later used by the routing

algorithm: represents the relation between node

 to be located in the sub-tree of node:

 and

(,)v a bS SD

1 1(, ,) a h h lS l a a a a−=

1(, ,)b h h lS m b b b b
−

= 1 (,)p a bS PD describes that

 is min-hop accessible through the

down-going port:

1(, ,)b h h lS m b b b b−= 1

1 1(, , ,)D

b h h lP m b b b b q−= :

[]

1 1 1 1(, ,), (, ,) |

(,)

1.. (() ()) ()

h h l h h l

v a b

j j

l a a a a m b b b b

S S l m

j h j m j l a b

− −

= < ∧

∀ ∈ > ∨ ≤ → =

⎧ ⎫
⎪
⎨
⎪
⎩

D
⎪
⎬
⎪
⎭

⎫
⎪
⎪
⎬
⎪
⎪⎭

w p+ +=

switches have the same number of ports. At each level > 0:

[]

1 1 1 1(, ,), (, , ,) |

(,)
1.. (()

()) () mod

h h l h h l

p a b

j j k k k

l a a a a k b b b b q

l k
S P

j h j k

j l a b a q m a

− −

< ∧
=

∀ ∈ > ∨

≤ → = ∧ = =

⎧
⎪
⎪
⎨
⎪
⎪⎩

D

D. Real Life Fat Trees (RLFT)
XGFTs and PGFTs support the definition of a large variety

of topologies. Not all of them are practical to build. This
section describes the characteristics of the Real Life Fat-Trees
(RLFT), a sub-class of PGFTs, which are further studied by
the rest of this paper. The set of attributes that makes a PGFT
into an RLFT are presented below.

The first restriction for a PGFT to be routed in a non

blocking manner is that it preserves a constant bisectional
bandwidth. If CBB is not constant and is reduced going up the
tree, some links must carry more than one flow at a given
communication stage of a Shift CPS (since in each stage all of
the nodes send data). The constant CBB requirement means
that the nodes input BW equals their output BW
or: m p . 1 1l l l l

The second restriction applied to the PGFT is that the end-

ports are actually not switches but host network interface
cards which connect to the PGFT via a single cable i.e.

. 1 1 1w p= =

The third restriction stems from the practical cost aspect of

large HPC PGFTs: Real life HPC are always designed using
the highest port-count cross-bar switch available, and the

same switch is used at all levels in the tree. So PGFTs
addressed in the rest of the paper will assume all of the

1 1l l l lm p w p+ ++ .
It is common to define switch arity K≡ which is half of the
switch ports: ()1 1 2l l l lK m p w p

+ +
= + . The top level of the tree

as only down-going ports and thus K= .

Combining the above restrictions for RLFTs:

h 2h h

m p

1 1{1.. 1} : 2
h h

l l l l

m pl h K m p w p
+ +

∀ ∈ − = = = (1)

1

1

2 h
h

i hi

kk

K
N m

p=

=

= =∏
∏

 (2)

2 8X slots (supporting

III. MPI COLLECTIVES SCALABILITY WITH FAT TREE SIZE
The measurements performed by [2] have shown that the

effective bandwidth for various collectives may degrade to
~40% of the network capacity. This bandwidth loss is
attributed to hot-spots caused by the communication pattern.
These results were reproduced by a simulation of a 1944
nodes InfinibandTM cluster using a OMNet++ [20]. The
simulation model is calibrated against InfinibandTM QDR links
(4000MBps unidirectional bandwidth) of IS4 switches (36
ports) connected to hosts with PCIe Gen
3250MBps unidirectional bandwidth).

FIGURE 3 S ECTIVES

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

Ef
fe

ct
iv

e
B

W
 R

at
io

Traffic is injected from each end-port according to a
predefined destination sequence. The end-ports progress
through this predefined destinations sequence independently
when their previous message has been sent to the wire. The
Shift and the Recursive-Doubling CSS were simulated and the
resulting normalized effective bandwidth for different
message sizes is provided in Figure 3 (normalized to the full
PCIe bandwidth). A random assignment of the MPI “rank” to
cluster nodes is used. It can be seen from the graph that as the
message size is increasing the effective bandwidth is
decreasing. The reason for that is the buffering available in the
fabric is able to compensate for short hot spots. Only when the

HIFT AND RECURSIVE DOUBLING COLL
NORMALIZED BW VS. MESSAGE SIZE

Message Size [KB]

Shift / Random Rank
RecDbl / Random Rank

 4

buffers fill-up congestion trees are built and reach the source
end-ports resulting in actual bandwidth lost.

8. The normalized effective
bandwidth ratio obtained is ~7%.

 as the latency of
the worst pair in each stage is accumulated.

IV. NON BLOCKING ROUTING FOR SHIFT PERMUTATIONS ON

or
hen proves it is n

To further illustrate the importance of correct routing and

ordering of end-ports (i.e. MPI “rank” assignment), a
simulation is performed for a Ring permutation sequence with
adversary routing and node “rank” assignment. The adversary
assignment was made such that all of the nodes of each leaf
switch send data to nodes of other leaf switches. The selection
of the particular destinations for each node is done to
maximize the sharing of the leaf up-going port. The results
show that the effective bandwidth can drop by a factor of 14
for a Ring permutation sequence. The measured average
bandwidth for this traffic pattern is 231.5MBps which is close
to the network bandwidth of 4000MBps divided by the worst
possible link oversubscription of 1

In all of the above simulations it was assumed that end-

ports progress through the stages of the permutation sequence
in asynchronous manner. When synchronization is performed
the impact of hot-spots can be even worse,

RLFTS
This section describes the proposed routing solution f

shift permutations on RLFTs and t on-
blocking. Shift permutation with { }1 1s N∈ − i efined

as the set of s rce

s d

ou destination pai sends

data to node :

rs such that node in

jn

 () (){ } 1

0
, | mod

N

i j i
n n j i S N

−

=
= +

Several previous studies [14] [15] [16] [17] [18] have

addressed this topic for specific topologies. Most of them
describe routing which we refer to as d-mod-k which is
defined later in this section. We extend the common d-mod-k
to RLFTs making it practical to real-world topologies. The
basic property of the d-mod-k routing is that each down-going
port is used to pass traffic to a single end-port, so blocking
may only happen for traffic going up the tree. This section
focuses on providing routing for Shift permutations that route
each pair on a different up-going port while maintaining a
single destination allocated to each down-going port. These
two properties of the routing are then proved by theorems 1
and 2. The section starts with an intuitive description of the
routing principles followed by formal definition of the routing
a ocking for all Shift permutations.

ree levels provides a non
bl ng routing for the Shift CPS.

gh port number
q=() mod 4, and the same property holds.

nd then proves it is non-bl

A. Routing Description
Consider traffic flowing up the tree from a fully populated

leaf switch (switch at level 1). A Shift permutation sequence
guarantees that for a contiguous set of traffic sources the set of

traffic destinations is also contiguous and in the same order.
To avoid congestion on up-going links, the proposed routing
scheme spreads the traffic among all up-going ports. For the
lowest level leaf-switches, the index of the up-going port
route for a given destination is set to be the destination index
modulo the total number of up-going ports. The up-going port
assignment is cyclical with the destination number such that at
any given stage of the Shift, the contiguous range of
destinations is evenly distributed through all of the up-going
ports in a non-overlapping manner. Destinations routed
through a second level switch share the same port index at the
first level switches. These destinations form an arithmetic
sequence with a difference equal to the number of up-going
ports of the first level switches. Such a sequence can be spread
without overlaps on the up-going ports of the second level
switches by dividing the destination index by the sequence
distance modulo the number of up-going ports. Applying this
principle recursively on all of the t

ocki

Figure 4 holds a fragment of a PGFT to demonstrate the

routing described above. Up-going ports are marked with their
port number and the level 1 routing is shown to be through
port number q=j mod 4. The set of destinations through each
port is provided on the right most leaf switch. For example,
consider traffic flowing from the right most node at level 1
toward destination 9. Traffic traverses the node at level 1
through port 1 and then the node at level 2 through port 2.
Note that every 4 contiguous destinations are to be routed
through different up-going ports. For the second level
switches the routing to destination j is throu

j/4

B. RLFT D-Mod-K Routing Formulation
Unlike the traversal based approach presented in [18], it is

preferable to have a closed form routing solution following
the same principles outlined in [17]. Such formulation for
RLFT is described below. Beyond the benefit of being non-
blocking for shifts, the formulation allows for a parallel
implementation of the routing configuration, solving another
important scalability issue. The most known routing
algorithm, Dijkstra’s SPP [21] runtime is O(N2) and there is
no parallel version for this algorithm that can be easily fit the

F 4 E R PGFT SUB-SECTION

0 2 31 0 2 31 0 2 31 0 2 31

0 1 2 3 0 1 2 3 0 1 2 3 0 12 3

j % 4 = 0
=1

=2
=3 0,4,8,12,16,20…

…

2,6,10,14,18,22…

3,7,11,15,19…

(j /4) %
 4 = 0

 2

1,17,33
5,41

5,
21

,3
7

13
,2

9,
45

IGURE XAMPLE OUTING ON A

1,5,9,13,17,21

(j /4) %
 4 =

9,2

0 2 31 0 2 31 0 2 31 0 2 31

0 1 2 3 0 1 2 3 0 1 2 3 0 12 3

j % 4 = 0
=1

=2
=3 0,4,8,12,16,20…

…

2,6,10,14,18,22…

3,7,11,15,19…

(j /4) %
 4 = 0

 2

1,17,33
5,41

5,
21

,3
7

13
,2

9,
45

1,5,9,13,17,21

(j /4) %
 4 =

9,2

 5

cluster topology. However, an algorithm which is expressed in
a closed form can be easily executed in parallel on every
sw

e, the rou

itch node and thus achieve an O(N) run time.
The routing is based on the tuple formulation of the tree.

The assignment of tuples to the tree nodes may be performed
using the algorithm provided in [18]. Following this step, end-
ports are marked with an increasing index. Then the routing
tables in the switches are programmed such that traffic to an
end-port is either forwarded through an up-going or a down-
going port. For destinations which are descendants of the
nod ting is through the descendant port (satisfying
the (,)p a bS PD criterion). For the routing in the up direction

we define the up-going port to be used for routing packets to a
destination as:

() (, .. ,) | () / mod
l

U U U ()1 1 1
1

l h l l k l l
k

P j l s s q q j j w w p≡ = ⎢ ⎥
+ +

=
⎢ ⎥⎣ ⎦
∏ (3)

he same up-going port index to route to
the same destination.

. D-MOD-K PROVIDES NON BLOCKING SHIFT ON RLFTS

down and
p directions for all Shift permutations on RLFTs

network, for all stages of the Shift CPS on a
co plete RLFT .

The following lemmas are used to prove theorem 1:

 set of des
cluding the top nodes, is a

sub-set of the algebraic sequence:

This routing is not a function of the switch, i.e. all switches
at a specific level use t

V

The following two theorems state that the above routing

formulation provides non blocking routing in both
u

Theorem 1: The routing according to (3) guarantees that no
more than one destination is routed through any of the up-
going ports in the

m

Lemma 1: The tinations routed through up-going
ports of a node ()1, , ...hl b b , not in

()1

1

, ,...
1 1 1 1

| 0
h

t l ll

t k k ll b b
t k k k

J b w i w i N w
−

= = = =

= + ≤ <⎧ ⎫
⎬
⎭

⎨
⎩
∑ ∏ ∏ ∏ (11)

uted through the up-going ports (but
th down-going ports).

s: Each end-point may send data to
al f the other end-points:

The motivation for using the super-set described by (11)

rather than the actual sequence is that the expression for the
accurate set is much more complex than (11) and is not
required for proving theorem 1. Note that in the accurate
sequence, destinations that are descendants of a node pass
through it but are not ro

e

The proof of lemma 1 is based on a recursion starting with

the destinations of end-port
l o () { }

10, ,... | 0
hb bJ i i N= ≤ <

Based on the routing (3) for level 0: ()0 1() modUq j j w p= 1

1l+and the PGFT connection rule the sequence

of destinations passing through the parent with
1 modlb q w+ =

1b q= start

with destination and a step of so 1b 1w

() { }
11, ,... 1 1 1| 0

hb bJ b iw i N w= + ≤ < . Since all of the children

nodes of ()11, , ...hb b connect to it through 1b q= they all
pass the same sequence of destinations to that parent.

Similarly the sequence of destinations passing through

second level nodes, is obtained using the Routing (3) on each
element of the set : ()11, ,...hb bJ

() { }
1 1 2 1 1 2 1 22, ,... | 0

hb bJ b b w iw w i N w w= + + ≤ < .

Finally for a node at arbitrary level the sequence of
destinations passing through it is:

()1

1

, ,...
1 1 1 1

| 0
h

t l ll

t k k ll b b
t k k k

J b w i w i N w
−

= = = =

= + ≤ <⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ ∏ ∏ ∏

Lemma 2: Routing (3) is non-blocking for any continuous

sub-sequence of destinations passing through a node (not
including the top level nodes) of size equal to the number of
up-going ports.

Proof of lemma 2: Given a destination of index , from the

above sequence, the up-going port obtained by (1) is:
i

()

1

1 1 1
1 1

1

() mod

t ll

t k k
U t k k
l ll

k
k

b w i w
q j w p

w

−

= = =
+ +

=

+
=

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∏ ∏

∏
l (12)

() ()1 1() modU
lq j C i w p+ += + l l (13)

So a contiguous sub-sequence of destinations which

makes a contiguous range of index values maps to a cyclic set
of

1 1l lw p
+ +

1 1l lw p+ + up-going ports. So for such sub-sequence all up-

going ports are used, each for exactly one destination

Lemma 3: For RLFTs routing (3) is non-blocking for any

contiguous sub-sequence of destinations passing through a
node (not including the top level nodes) of size equal to the
number of up-going ports which may wrap around from the
last possible index to the first element of the destination
sequence

Proof of lemma 3: To prove lemma 3 we show that the up-

going port used for routing the next destination past the last
one is the same as the one used for routing to the first
destination. This condition is met if the expression for the
number of destinations in the sequence is a multiple of

 6

1 1l lw p+ + .

For RLFTs the number of nodes was given in (2). The
index after the last index is:

1 1 1

2 2h h

l l h h

k k kk i k k l

N K

w w p

−

= = = = +

= =
∏ ∏ ∏ ∏ 1

l

k

K

p
 (14)

Expression (14) is a product of if 1 1l lw p K
+ +

=
1

2 h l

h

kk l

K

p

−

= +∏

is an integer. On RLFTs with constant radix for all levels:
1

1

1

2
2 2

h l
h h

kh k l k l
kkk l

K K
m

pp

− −

= + = +

= +

= =∏ ∏
∏ 1

 (15)

which is an integer

Lemma 4: For each switch at levels the sub-

sequence of destinations routed through it, in every stage of a
Shift CPS is contiguous or wraps around the last destination
and do not exceed K elements.

1.. 1l h= −

Proof of lemma 4: A switch at level may receive up-

going traffic from its descendent leafs. Based on the recursive

nature of the tree there are such descendant leafs

for switch at level . If these descendants end-ports send to a
contiguous set of destinations (Shift CPS) the switch will only

route the subset which fulfils (2) i.e. are apart.

l

1

l

kk
m

=∏
l

1

l
kk

w
=∏

The number of destinations passing through a switch in a
single Shift CPS stage is:

1

1

1 2

l
l

k
kk k =l l
kk k

k

K
m p KKw

p

=
=

= =

=
∏∏

∏ ∏
 (16)

Proof of theorem 1: Since lemma 4 show that there will be

no more than K destinations routed up through a switch in an
RLFT Shift permutation sequence stage and lemma 3 show
that routing of these destinations is through different up-going
ports the result is that the routing through that switch is non-
blocking

Theorem 2: The routing according to (3) guarantees that no
more than one destination is routed through all the network
down-going ports of a complete RLFT

The following lemmas are used to prove theorem 2:

Lemma 5: For routing (3) a single top level switch is

passing all the flows to a specific destination

We prove by induction on the tree levels and show that
routing towards a destination j from an arbitrary end-port

()10, ..hs s at level the traffic will pass trough switch

whose first tuple digits are independent of the source end-
port. The result is that all the digits of the top level switch that
a packet will traverse, are independent of the originating end-
port. Which means a single top level switch will pass the
traffic to a specific destination.

l
l

The base of the induction is for : The up-going port is
obtained using the Routing (3) formulation

0l =

()0 () modUq j j w p= 1 1 ; then using the PGFT connections
rule:

{ }

[]

1 1 1 1

1 1 1 1

1 1

1 1

(0, , ,) , (1, , ,) |

0 0

2.. () mod

mod

h l U h l D

j j

a a a q b b b r

q w p r m p

j h a b b q w

a r m

+ +

≤ < ∧ ≤ < ∧

∀ ∈ = ∧ = ∧

=

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 (17)

Since q is known and constant, is also known and
constant which prove that routing from arbitrary end-port to
destination

1b

j is going through first level switches sharing the
first digit of the tuple.

The induction step assumes at level the first l digits are

known and constant and show that the PGFT connection rule
adds the digit at place

l

1l + :
{ }

[]

1 1 1 1

1 1 1 1

1 1 1 1

1 1

(, , ,) , (1, , ,) |

0 0

1.. (1)

/ / mod

mod

h l U h l D

l l l l

j j

l l l l

l l

l a a a q l b b b r

q w p r m p

j h j l a b

q p r p b q w

a r m

+ +

+ + + +

+ + + +

+ +

+

≤ < ∧ ≤ < ∧

∀ ∈ ≠ + → = ∧

= ∧ =

∧ =

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪
⎪ ⎪⎩ ⎭

 (18)

All digits with jb 1j l≠ + are preserved and

1 modlb q w 1l+ +
= is constant since q is independent of the

lower level switch

Lemma 6: The number of destinations passing through an

RLFT top level switch is at most the number of its ports

Proof of lemma 6: Using expression (11)

()1

1

, ,...
1 1 1 1

| 0
h

t l ll

t k k kl b b
t k k k

J b w i w i N
−

= = = =

w⎧ ⎫
= + ≤ <⎨ ⎬
⎩ ⎭
∑ ∏ ∏ ∏

for the top level we get the number of destination is:

1 1 1 1

2 2h h

h h h h

k k kk k k k

N K

w w p p
= = = =

= =
∏ ∏ ∏ ∏ k k

K

w

For RLFT the first level is of single connection and the rest
of the levels have K connections so:

 7

1

1 11 2

2 2
2

h h

h h h

k k kk k

N K K
K

Kw p w p w −

= =

= =
∏ ∏

=

Proof of theorem 2: Combining lemmas 5 and 6 different

sets of exactly 2K destinations are routed through each top
level switch which as 2K ports. So each port may be assigned
just one destination. Applying these lemmas to sub-trees in a
recursive manner show that theorem 2 holds for every switch
in the tree

VI. CONCLUSION
In this report we present formal definition for Real Life Fat

Trees which are used in today’s High Performance Clusters.
We extend D-Mod-K routing for this class of Fat Trees and
prove that this routing will be able to provide non blocking
traffic for Shift permutations.

ACKNOWLEDGMENT
Thanks to my advisors A. Kolodny and I. Cidon.

REFERENCES
[1] http://www.top500.org

[2] Torsten Hoefler, Timo Schneider, Andrew Lumsdaine “Multistage

Switches are not Crossbars: Effects of Static Routing in High-
Performance Networks,” Cluster Computing, IEEE International
Conference, pp.116-125, 2008

[3] K. Asanovic et al. “The landscape of parallel computing research: a view

from Berkeley,” Technical report, Electrical Engineering and Computer
Sciences, University of California at Berkeley, 2006

[4] Kerbyson D.J., Barker K.J, “Automatic Identification of Application

Communication Patterns via Templates”. Int. Conf. on Parallel and
Distributed Computing Systems (PDCS), Las Vegas, NV, 2005

[5] Alme H.J., Hoisie A., Petrini F., Wasserman, H.J., Gittings M.L.,

Kerbyson D.J., “Predictive Performance and Scalability Modeling of a
Large-scale Application”, SC'01, Denver, CO. 2001

[6] Wolfgang E. Denzel , Jian Li , Peter Walker , Yuho Jin, “A framework

for end-to-end simulation of high-performance computing systems,”
Proceedings of the 1st international conference on Simulation tools and
techniques for communications, networks and systems & workshops,
March 03-07, 2008, Marseille, France

[7] Petrini, J. Fernandez, E. Frachtenberg, and S. Coll F., ”Scalable

collective communication on the asci q machine,” Hot Interconnects 12,
08 2003

[8] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of Collective

communication operations in MPICH,” Int’l Journal of High
Performance Computing Applications, 19(1):49–66, Spring 2005

[9] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel, and

J. J. Dongarra, “Performance Analysis of MPI Collective Operations,”
Proceedings of the 19th International Parallel and Distributed
Processing Symposium, 4th International Workshop on Performance
Modeling, Evaluation, and Optimization of Parallel and Distributed
Systems (PMEO-PDS 05), Denver, CO, April 2005

[10] OpenMPI implementation of tuned collectives layer:

 http://svn.open-mpi.org/svn/ompi/trunk/ompi/mca/coll/tuned/

[11] C.E. Leiserson, “Fat-trees: Universal Networks for Hardware-Efficient

Supercomputing,” IEEE Transactions on Computers, 34(10):892-901,
Oct. 1985

[12] Fabrizio Petrini, Marco Vanneschi, “k -ary n -trees: High Performance

Networks for Massively Parallel Architectures,” 11th International
Parallel Processing Symposium (IPPS '97), ipps, pp.87, 1997

[13] Sabine R. Öhring , Maximilian Ibel , Sajal K. Das , Mohan J. Kumar,

“On generalized fat trees,” Proceedings of the 9th International
Symposium on Parallel Processing, p.37, April 25-28, 1995

[14] S, Heller. [ed.] K. Bolding and L. Synder. “Congestion-Free Routing on

the CM-5 Data Router,” First International Workshop PCRCW, Seattle,
Washington, LNCS, Vol. 853, pp. 176-184, May 1994

[15] Sameer Kumar, Laxmikant V. Kale, “Scaling All-to-All Multicast on

Fat-tree Networks,” Proceedings of the Parallel and Distributed
Systems, Tenth International Conference, p205 2004
DOI:10.1109/ICPADS.2004.77

[16] Xuan-Yi Lin, Yeh-Chin Chung, and Tai-Yi Huang. “A Multiple LID

Routing Scheme for Fat-Tree-Based InfiniBand Networks,” IEEE
International Parallel and Distributed Processing Symposium
(IPDPS'04). pp. 1-13, 2004

[17] C. Gomez, F. Gilabert, M.E. Gomez, P. Lopez, J. Duato, “Deterministic

versus Adaptive Routing in Fat-Trees,” IEEE International Parallel and
Distributed Processing Symposium, (IPDPS’07), pp.292, 2007

[18] Eitan Zahavi, Gregory Johnson, Darren J. Kerbyson, and Michael Lang.

“Optimized InfiniBand Fat-tree Routing for Shift All-To-All
Communication Patterns,” Concurrency and Computation: Practice and
Experience. Volume 22 Issue 2, Pages 217 – 231. 2009. DOI:
10.1002/cpe.1527

[19] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan, “The Influence of

Operating Systems on the Performance of Collective Operations at
Extreme Scale,” in IEEE International Conference on Cluster
Computing, 2006

[20] OMNeT++: an extensible, modular, component-based C++ simulation

library and framework: http://www.omnetpp.org/

[21] Mikkel Thorup. Undirected single-source shortest paths with positive

integer weights in linear time. J. ACM, 46(3):362–394, 1999

[22] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker, A Message Passing

Standard for MPP and Workstations," Comm. ACM, Vol. 39, No. 7, July
1996, pp.~84--90

http://svn.open-mpi.org/svn/ompi/trunk/ompi/mca/coll/tuned/
http://www.omnetpp.org/

	INTRODUCTION
	Real life Fat-Tree Formulation
	Why Parallel Ports Generalized Fat-Trees are required?
	PGFTs Formal Definition
	Descendants Criteria
	Real Life Fat Trees (RLFT)

	MPI Collectives Scalability with Fat Tree size
	Non Blocking Routing for Shift Permutations on RLFTs
	Routing Description
	RLFT D-Mod-K Routing Formulation

	D-Mod-K Provides Non Blocking Shift on RLFTs
	Conclusion

