

 IRWIN AND JOAN JACOBS
CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

Context-Sensitive Query
Auto-Completion

Naama Kraus and Ziv Bar-Yossef

CCIT Report #779
November 2010

Electronics
Computers
Communications

DEPARTMENT OF ELECTRICAL ENGINEERING
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

Context-Sensitive Query Auto-Completion∗

Naama Kraus
Department of Computer Science

Technion, Haifa, Israel
nkraus@cs.technion.ac.il

Ziv Bar-Yossef
Department of Electrical Engineering

Technion, Haifa, Israel
and Google Haifa Engineering Center

Haifa, Israel
zivby@ee.technion.ac.il

November 22, 2010

Abstract

Query auto completion is known to provide poor predictions of the user’s query when her input
prefix is very short (e.g., one or two characters). In this paper we show that context, such as the user’s
recent queries, can be used to improve the prediction quality considerably even for such short prefixes.
We propose a context-sensitive query auto completion algorithm, NearestCompletion, which outputs the
completions of the user’s input that are most similar to the context queries. To measure similarity, we
represent queries and contexts as high-dimensional term-weighted vectors and resort to cosine similarity.
The mapping from queries to vectors is done through a new query expansion technique that we introduce,
which expands a query by traversing the query recommendation tree rooted at the query.

In order to evaluate our approach, we performed extensive experimentation over the public AOL
query log. We demonstrate that when the recent user’s queries are relevant to the current query she is
typing, then after typing a single character, NearestCompletion’s MRR is 48% higher relative to the MRR
of the standard MostPopularCompletion algorithm. When the context is irrelevant, however, Nearest-
Completion’s MRR is essentially zero. To mitigate this problem, we propose HybridCompletion, which
is a hybrid of NearestCompletion with MostPopularCompletion. HybridCompletion is shown to domi-
nate both NearestCompletion and MostPopularCompletion, achieving a total improvement of 31.5% in
MRR relative to MostPopularCompletion.

1 Introduction

Query auto completion [3, 20, 12, 2] is one of the most visible features in Web Search today. It is offered
by all major search engines and in almost all their search boxes. Query auto completion helps the user
formulate her query, while she is typing it. Its main purpose is to predict the user’s intended query and
thereby save her keystrokes. With the advent of instant as-you-type search results (a la the recently released
Google Instant1), the importance of correct query prediction is even more acute, because it determines the
speed at which the user sees the suitable results for her intended search and the amount of irrelevant results
that are displayed to her along the way.

The basic principle that underlies most query auto completion systems is the wisdom of the crowds. The
search engine suggests to the user the completions that have been most popular among users in the past (we

∗Despite the affiliation of the first author, this paper did not rely on privileged access to Google’s resources, data, or technologies.
The entire research was done at the Technion.

1http://www.google.com/instant/

lesley
Text Box
CCIT Report #779 November 2010

call this algorithm MostPopularCompletion). For example, for the prefix am, Bing suggests amazon and
american express as the top completions, because these have been the popular queries starting with am. As
the user is typing more characters, the space of possible completions narrows down, and thus the prediction
probability increases. For example, if the user is looking for american presidents in Bing, after typing the
14 characters american presi the desired query becomes the top completion.

Clearly, during the first few keystrokes the user is typing, the search engine has little information about
her real intent, and thus the suggested completions are likely to mispredict her query. In our experiments,
conducted over the public AOL query log [17], we found that after the first character, query auto completion
is likely to predict the correct user’s query with a chance of only 12.8%.

The objective of this study is to tackle the most challenging query auto completion scenario: after
the user has entered only one character, try to predict the user’s query reliably. Being able to predict the
user’s query on her first character rather than, say, on her 10-th character would not only save the user a
few keystrokes, but would also make the whole search experience more interactive, as the feedback cycle
of (query → results → query refinement) would be shortened significantly. In addition, cutting down the
search time for all users implies lower load on the search engine, which translates to savings in machine
resources and power.

But how can we overcome the inherent lack of information when the user has entered only a few char-
acters of her intended query? Our main observation is that the user typically has some context, which can
reveal more information about her intent. For example, if just before entering the characters am the user
searched for richard nickson, it is more likely that the user is looking for american presidents than for ama-
zon or american airlines. Similarly, if the user was browsing a page about President Lincoln or reading an
article about american history. On the other hand, if the user has just tweeted about a planned trip, american
airlines might be the more probable query. Recent queries, recently visited web pages, and recent tweets
are examples of online activities that may indicate the user’s intent and, if available, could be used by the
search engine to better predict the query even after a few keystrokes. This is called context-sensitive query
auto completion. While the idea is very intuitive and context has been used in other scenarios to disam-
biguate user intent (e.g., in search [14, 9] and in query recommendations [8, 11, 7, 4, 19]), to the best of our
knowledge, there is no published work on its application to query completion.

Of the many different possible user contexts, our focus in this study is on the user’s recent queries (within
the same session), as they are readily available to search engines. Based on our empirical analysis of the
AOL log, 49% of the searches are preceded by a different search in the same session, and are thus amenable
to context-sensitive query completion.

One possible approach to use recent queries to improve query auto completion is to generalize Most-
PopularCompletion to rely on the popularity of query sequences rather than just the popularity of individual
queries. Suppose the user’s previous query in the same session is y and that the current user input (query
prefix) is x. Then, the search engine will suggest the completions of x that were most frequently searched for
after y. For example, if after the query richard nixon the most popular successive query starting with am is
american presidents, the search engine will suggest american presidents as its top completion. This is in fact
the main principle underlying most of the work on context-sensitive query recommendations [8, 11, 7, 4, 19].
The main caveat of this approach is that it heavily relies on the existence of reoccurring query sequences in
search logs. Nevertheless, due to the long-tail distribution of query frequencies, many of the query sequences
generated by users have never occurred before (by our estimate, 89% of the query pairs are new).

Some studies tried to mitigate the sparsity of query sequences by clustering similar query sequences
together, based on features extracted from queries, like their topical categories or their terms [8, 7]. Machine
learning techniques, like HMMs, are then used to predict the intended query, if the sequence of previous
queries can be associated with a cluster in the model. This approach is still challenged by long-tail contexts,
i.e., when the most recent query (or queries) have rarely occurred in the log (by our estimates, in 37% of
the query pairs the former query has not occurred in the log before). In this case, the sequence of previous

2

queries may not be easily associated with a cluster in the model. Moreover, none of these previous studies
took the user input (prefix) into account in the prediction, so their applicability to query auto completion is
still unknown.

We take a different approach to tackle this problem. Our algorithm relies on the following similarity
assumption: when the context is relevant to the intended user query, the intended query is likely to be similar
to the context queries. The similarity may be syntactic (e.g., american airlines → american airlines flight
status) or only semantic (e.g., american airlines → continental. By our estimates, 56% of the refinements
are non-syntactic.

Based on the similarity assumption, we propose the NearestCompletion algorithm, which works as
follows: given a user input x and a context y, the algorithm suggests to the user the completions of x that are
most similar to y. Choosing the suitable similarity measure is non-trivial, though, because we would like it
to be both correlated with reformulation likelihood (that is, the more similar two queries A and B are the
more likely they are to be reformulations of each another, and vice versa) and universally applicable (that
is, the similarity is meaningful for any pair of queries A and B). The former requirement guarantees that
the completions that are similar to the context are indeed more likely to be the user’s intended query. The
latter requirement makes sure that the algorithm can deal with any user input.

The above two requirements make many of the state-of-the-art query similarity measures less appealing
for this problem. For example, syntactic measures, like edit distance, do not take all reformulation types into
account. Similarity measures that are based on co-occurrence in search sessions [21, 10], on co-clicks [1, 8],
or on user search behavioral models [4, 16, 7, 19], are not universally applicable to all query pairs. Similarity
measures that are based on search result similarity [5] are not necessarily correlated with reformulation
likelihood.

Given a context, query recommendation algorithms [1, 21, 19] output a list of recommendations that are
likely reformulations of the previous query. So a possible similarity measure would be one that associates
each query with its recommendations. The main caveat with this approach is that query recommendation
algorithms are frequently designed to output only a few high quality recommendations and thus it is plausible
that none of them are compatible with the user’s input. Hence, this technique is not universally applicable.

We propose a new method of measuring query similarity, which expands on the latter recommendations
based approach, but is universally applicable and is thus more suitable to query completion. Similarly
to the result-based similarity of Broder et al. [5], we expand each query to a richer representation as a
high-dimensional feature vector and then measure cosine similarity between the expanded representations.
The main novelty in our approach is that the rich representation of a query is constructed not from its search
results, but rather from its recommendation tree. That is, we expand the query by iteratively applying a black
box query recommendation algorithm on the query, on its recommendations, on their recommendations, and
so on. (In fact, we show that even a non-contextual query auto completion algorithm can be used as an
alternative to a query recommendation algorithm.) The nodes of the traversed tree of recommendations are
tokenized, stemmed, and split into n-grams. These n-grams are the features of the expanded representation
vector and the weight of each n-gram is computed based on its frequency and depth in the tree.

The above representation has two appealing properties. First, as the basic building block in the con-
struction is a black-box query recommendation algorithm, we can leverage any state-of-the-art algorithm
and inherit its power in predicting query reformulations. Second, the above scheme provides a continuous
spectrum of exceedingly rich representations, depending on the depth of the tree traversed. For example,
a depth-0 traversal results in the n-grams of the root query itself, while a depth-2 traversal results in the
n-grams of the query, its recommendations, and their recommendations. The main point is that the feature
space remains the same, regardless of the traversal depth. So even if we cannot traverse the recommendation
tree of a certain query (e.g., because it’s a long-tail query for which there are no recommendations available),
the similarity between its representation and the richer representation of other queries is meaningful. This
property ensures that our query auto completion algorithm is applicable even for long-tail contexts that have

3

never been observed in the log before.
We implemented these algorithms using public recommendation services and evaluated their quality on

the AOL query log. Our empirical analysis shows that when the context is relevant to the user’s intended
query, the MRR of NearestCompletion (with depth-3 traversal) is higher in 48% than that of MostPopular-
Completion. However, when the context is irrelevant to the intended query, NearestCompletion becomes
destructive, so its MRR is 19% lower than that of MostPopularCompletion. To mitigate this problem, our
final algorithm, HybridCompletion, is a hybrid of MostPopularCompletion and NearestCompletion. Each
of the two algorithms provides a list of top k matches. We aggregate the two lists by standardizing the
contextual score and the popularity score of each candidate completion and then computing a final score
which is a convex combination of the two scores. The completions are ranked by these final scores. We
show that HybridCompletion dominates both NearestCompletion and MostPopularCompletion. Its MRR is
31.5% higher than that of MostPopularCompletion.

As our new algorithm relies on the standard cosine similarity measure between vectors, it can be im-
plemented efficiently over standard high-performance search architectures. This is a crucial property of the
algorithm, because query auto completions need to be provided to the user in a split-second as she is typing
her query. Note that the rich representation of the recent queries can be cached and retrieved quickly as the
user is typing her current query. The current query requires no enrichment.

The rest of the paper is organized as follows. After reviewing some related work in Section 2, we provide
a brief background about query auto completion algorithms in Section 3. We describe the NearestComple-
tion algorithm in Section 4 and the HybridCompletion algorithm in Section 5. In Section 6 we provide a
detailed empirical study of the two algorithms and compare them to MostPopularCompletion. We end with
some concluding remarks in Section 7.

2 Related work

Query auto-completion has received relatively little attention in in the literature (see, e.g., [20, 3, 2, 12]). To
the best of our knowledge, there is no published work on context-sensitive auto-completion.

Similarly to query completions, query recommendations assist users in phrasing their intent. Numerous
query recommendation algorithms have been introduced, relying on varied techniques, including topic clus-
tering [1, 19], query co-occurrence analysis [10], session analysis [21, 11, 7], and user search behavioral
models [16, 19, 4]. Query recommendation algorithms and query auto-completion algorithms differ in their
input (a full query vs. a prefix of a query) and in their output (arbitrary reformulations of the query vs.
(mostly) completions of the user’s prefix). Note that our framework can leverage any state-of-the-art query
recommendation algorithm to construct its rich query representations.

Several context-sensitive query recommendation algorithms have been proposed recently. Boldi et al. [4]
compute query recommendations by running Personalized PageRank on their Query Flow Graph. As the
mass of PageRank’s teleportation vector is concentrated on the context queries, the recommendations gen-
erated are context-sensitive. The run time efficiency of this algorithm is questionable, as PageRank compu-
tation is heavy. Cao et al. [8, 7] and He et al. [11] train models for query sequences based on analysis of
such sequences in search logs (using, among others, some machine learning models, like Variable Length
HMM and Mixture Variable Memory MM). At run time, these models are used to predict the next user’s
query from her previous queries. It is not totally clear how these techniques deal with long-tail contexts that
have never occurred in the log before. In comparison, our algorithms are adapted to query auto-completion,
can deal with long tail contexts, have scalable runtime performance, and are robust to irrelevant contexts.

The framework we use in this paper for query auto completion is close to the one used by Broder et
al. [5] to expand long-tail queries for the purpose of matching relevant ads. Broder et al. built an index of
enriched representations of popular and semi-popular queries and in run time retrieved the queries that are

4

most similar to the current user query. These similar queries are then used to retrieve relevant ads. Apart
from the different applications and the different evaluation methodologies, the two frameworks differ in
their core component: the rich query representation. Broder et al. mostly rely on their result-based query
expansion approach [6], while we focus on traversal of the query recommendation tree.

Finally, query expansion is a well established field (see [15] for an overview). Classical methods expand
the query using thesauri. This is limited and non-scalable. Roccio’s method [18] expands the query from
terms that occur in its search results. This is non-trivial to do without adding also a lot of noise that causes
a “topic drift”. More modern methods rely on query log analysis (e.g., [13]). Since query recommendations
usually rely on such query expansion techniques as building blocks, our query expansion algorithm can be
viewed as bootstrapping state-of-the-art expansion techniques to obtain richer vocabularies.

3 Query auto completion

A query auto completion (QAC) algorithm accepts a user input x, which is a sequence of characters typed
by the user in the search engine’s search box. The user input is typically a prefix of a complete query q that
the user intends to enter. The algorithm returns a list of k completions, which are suggestions for queries,
from which the user can select.

A completion c is said to be a hit, if it equals the query q that the user was about to enter. In this
paper we will focus on hits as the main measure of success for QAC algorithms, as it is relatively easy to
estimate hit rates when inspecting search logs. In reality, a QAC algorithm may be successful even if it
returns a completion that is different from the query the user was about to type but that describes the same
information need.

Most QAC algorithms share the following framework. In an offline phase a query database is built. The
database consists of a large collection of queries that are of high quality and represent the intents of the
search engine’s users. Major search engines build this database from their query logs by extracting the most
frequently searched queries. Smaller search engines, which do not have sufficient user traffic, construct the
database from prominent phrases that occur in the corpus being searched.

Each QAC algorithm defines its own criteria for determining whether a query q is an eligible completion
for an input x. Traditional QAC algorithms require that q is a proper string completion of x (i.e., that x is a
prefix of q). For instance, barack obama is a proper completion of the input bar. Advanced QAC algorithms
support also non-proper completions, like mid-string completions (e.g., ob → barack obama) and spell
corrections (e.g., barak → barack obama). We will denote the set of queries that are eligible completions
of an input x by completions(x).

At run-time, the QAC algorithm accepts an input x, and selects the top k eligible completions for x.
Completions are ordered by a quality score, which represents how likely each completion is to be a hit.
Since the algorithm needs to provide the user with the suggested completions as she is typing the query, it
has to be ultra-efficient. To achieve this high performance, the algorithm needs a data structure, like a TRIE
or a hash table, that supports fast lookups into the query database using prefix keys.

MostPopularCompletion is the standard and most popular QAC algorithm. The quality score it assigns
to each query q is the frequency of this query in the log from which the query database was built. That is, for
an input x, MostPopularCompletion returns the k completions of x that were searched for most frequently.

One way to look at this algorithm is as an approximate Maximum Likelihood Estimator. Let p be the
probability distribution of incoming queries. That is, p(q) is the probability that the next query the search
engines receives is q. In an ideal world, the search engine would have known p(q) for all q ahead of time.
Given a user input x, the search engine could have then applied Maximum Likelihood Estimation to predict
the user’s query q as follows:

MLE(x) = argmaxq∈completions(x) p(q).

5

MostPopularCompletion essentially implements this algorithm, except that it approximates the next-query
distribution p by the normalized frequencies of queries in the log.

4 Nearest Completion

As we will see in Section 6, MostPopularCompletion frequently fails to produce hits when the user input
is still very short (say, 1-2 characters long). The NearestCompletion algorithm that we introduce next uses
the user’s recent queries as context of the user input x. When the context is relevant to the query the user is
typing, the algorithm has better chances of producing a hit.

Search sessions. A logical search session is an interactive process in which the user (re-)formulates queries
while searching for documents satisfying a particular information need. It consists of a sequence of queries
q1, . . . , qt (t ≥ 1) issued by the user. The context of a user input x, where x is the prefix of some query qi in
the session, is the sequence of queries q1, . . . , qi−1 preceding qi. Note that if x is the prefix of the first query
in the session, its context is empty.

Since all the queries in a logical session pertain to the same information need, the context of a user input
is always relevant to this input by definition. In reality, however, detecting logical sessions is non-trivial as
a user may switch her information need within a short time frame. Mis-detection of logical search sessions
leads to mis-detection of contexts. In this section we ignore this problem and assume we have a perfect
session detector, so contexts are always relevant. We will address this problem in the next section.

The reader may wonder at this point how a QAC algorithm that runs on the search engine’s server can
access the user’s recent queries at run-time. The most straightforward solution is to keep the user’s recent
queries in a cookie, if the user agrees to it. Every time the user performs a search, the search engine returns
the results and also updates a cookie (that the browser stores on the user’s machine) with the latest search.
When the user types characters in the search engine’s search box, the browser sends the user’s input along
with the cookie to the search engine.

The basic algorithm. A context-sensitive extension of the Maximum Likelihood Estimator described above
works as follows. Let p(q|C) denote the conditional probability that the next query is q given that the current
context is C. If the search engine would have known p(q|C) for all q and C, it could have predicted the next
query as follows:

MLE(x|C) = argmaxq∈completions(x) p(q|C).

Approximating p(q|C) is trickier than approximating p(q), because query logs are too sparse to provide
meaningful estimates of p(q|C) for most (q, C) pairs. We tackle this problem by casting it as an informa-
tion retrieval (IR) problem: we treat the context C as a “query” and the queries in the query database as
“documents”. Indeed, our goal is to sift through the many possible completions of x and find the ones that
are most related to the context C. Under the probabilistic model of information retrieval (cf. [15]) this is
equivalent to looking for the completions q of x that have the highest conditional probability p(q|C).

Looking at this problem through the IR prism, we can now resort to standard IR techniques. The Near-
estCompletion algorithm uses the Vector Space Model. Each context C is mapped to a term-weighted vector
vC in some high dimensional space V . Similarly, each query q in the query database is mapped to a vector
vQ ∈ V . NearestCompletion then outputs the completion q of x whose vector vq has the highest cosine
similarity to vC :

NearestCompletion(x,C) = argmaxq∈completions(x)

⟨vq, vC⟩
||vq|| · ||vC ||

.

More generally, NearestCompletion outputs the k completions of x whose vectors are most similar to vC .

6

Context representation. Contexts and queries are objects of different types, so it may not be clear how to
represent both as vectors in the same space. However, since contexts are sequences of queries, then we can
produce context representations from query representations. Formally, if C = q1, . . . , qt is a context and
vq1 , . . . , vqt are the corresponding vectors, we produce the context vector vC as a linear combination of the
query vectors:

vC =
t∑

i=1

wivqi .

The weights w1, . . . , wt are non-negative. They specify the relative contribution of each context query to
the context vector. As the more recent a context query is, the more likely it is to be relevant to the current
query, the weights need to be monotonically non-decreasing. In our empirical analysis we experimented
with different weight functions: recent-query-only (wt = 1 and wi = 0 for all i < t), linear decay (wi =
1/(t− i+ 1)), logarithmic decay (wi = 1/(1 + ln(t− i+ 1))), and exponential decay (wi = 1/et−i)).

Vector representation via query expansion. The most important ingredient of the NearestCompletion al-
gorithm is the representation of queries as term-weighted vectors. This representation eventually determines
how NearestCompletion ranks the completions of x. Ideally, we need this ranking to be consistent with the
ranking of completions by the conditional probabilities p(q|C). Note that p(q|C) is the probability that the
user reformulates the context queries C to the current query q. Hence, the vector representation of queries
needs to yield a similarity measure so that similar queries are likely reformulations of each other and vice
versa.

A naive approach would be to represent a query by its terms, as a bag of words. The resulting similarity
measure can capture syntactic reformulations, such as my baby is not eating well → baby eating disorder,
but not semantic refinements, like baby eating disorder → infant nutrition. The problem is that queries are
short, and thus their vocabulary is too sparse to capture semantic relationships.

In order to overcome this sparsity problem, we expand each query into a rich representation. Query
expansion [15] is used to augment the textual query with related terms, like synonyms. For example, the
query baby eating disorder may be expanded to baby infant eating food nutrition disorder illness and the
query infant nutrition may be expanded to infant baby nutrition food. The two expanded forms now have
high cosine similarity.

Recommendation-based query expansion. We introduce a new query expansion technique that leverages
a large body of work on query recommendation. A query recommendation algorithm suggests to the user
high quality reformulations of her query. Query recommendation algorithms rely on existing query expan-
sion techniques and in addition are tuned to provide likely reformulations of the query. Hence, a plausible
expansion of a query could be the list of recommendations provided for it by such an algorithm. The advan-
tage is that the added terms are high precision keywords that appear in likely reformulations of the query. It
follows that two queries that have similar expanded forms of this sort share their reformulation vocabulary
and are thus more likely to be reformulations of each other.

The above approach produces high precision query expansions, but may lack coverage. If the query
recommendation algorithm produces a small number of recommendations for each query (as most such
algorithms do), then the resulting expanded forms would be too sparse. To overcome this problem, we
expand each query not just by its direct recommendations but rather by the whole recommendation tree
rooted at this query.

Formally, let A be a query recommendation algorithm, and let us denote by A(q) the top k recommen-
dations that A provides for a query q.

Definition 4.1 (Query recommendation tree). Let d ≥ 0 be an integer. The query recommendation tree
of depth d rooted at q is a tree of depth d whose root is q. The children of node u in the tree are the
recommendations A(u).

7

Note that the same query may occur multiple times in the tree and possibly at different levels of the tree.
The query recommendation tree is the main building block in the construction of the expanded form vq

of a query q. The coordinates of vq correspond to n-grams that occur within the queries in the tree. n-grams
are extracted as follows: each query in the tree is tokenized into terms, stopwords are eliminated, and the
terms are stemmed. The resulting queries are split into overlapping n-grams, where n = 1, . . . , N and N is
an upper bound on the size of n-grams we care about.

Let z be an n-gram. If z was not extracted by the above process, then vq[z] = 0. If z was extracted, let
T (z) denote the nodes of the tree that contain z. We define the weight of z in vq as follows:

vq[z] =

 ∑
u∈T (z)

weight(depth(u))

 · ln(IDF (z)).

This is essentially a TF-IDF weight. The sum counts the number of occurrences of z in the tree, but it assigns
different weights to different occurrences. The weight of an occurrence depends on the depth of the node in
which it is found. Note that the deeper the node is, the weaker is its connection to the root query q, and hence
the function weight(·) is monotonically non-increasing. We experimented with various weighting functions,
including linear decay, logarithmic decay, and exponential decay. IDF (z) is the inverse frequency of z in
the entire query database.

System architecture. Since NearestCompletion relies on the Vector Space Model, it can leverage standard
and optimized information retrieval architectures. In the offline phase, the algorithm computes the rich
representation of each query in the query database. The resulting vectors are indexed in an inverted index.
In addition, each query is indexed by its set of eligible prefixes, so one can retrieve all completions of a
given prefix quickly (note that wildcard operator that is supported by standard search architectures can also
be used for prefix-based retrieval).

In run time, the algorithm accepts the user input x and the context C. The rich representation of the
queries that constitute C should be available in a cache, because these queries have been recently processed
by the search engine. The algorithm can therefore compute the rich representation vC of C. It then retrieves
from the index the queries that are completions of x and whose rich representation is most similar to vC .

5 Hybrid Completion

NearestCompletion is designed to work well when the user input has a non-empty context and this context is
relevant to the query that the user is typing. In practice, however, many queries have no context (51% by our
experiments). In addition, due to incorrect segmentation of search sessions, recent queries that are deemed
as context may not be relevant to the current query at all (by our experiments, 40% of the query pairs have
different information needs). In all of these cases NearestCompletion relies either on no information or on
false information and thus exhibits poor quality.

On the other hand, the standard MostPopularCompletion algorithm is not dependent on context, and thus
can do well even if the context is empty or irrelevant. It would have been nice if one could identify these
cases and use MostPopularCompletion instead of NearestCompletion in them. Recognizing that the context
is empty is easy. However, how can one detect that the context is irrelevant, at run time? HybridCompletion
circumvents this problem by using both algorithms when the context is non-empty.

Given a user input x and a context C, HybridCompletion produces two ranked lists of completions of
x: LNC consists of the top ℓ completions returned by NearestCompletion and LMPC consists of the top ℓ
completions returned by MostPopularCompletion. The final ranked list of completions LHC is constructed
by aggregating the two lists.

8

Note that the results in each of the two lists are ranked by quality scores: LNC is ranked by a similarity
score, which we denote by simscore(·), and LMPC is ranked by a popularity score, which we denote by
popscore(·). The aggregated list LHC is constructed by combining the two scoring functions into a single
hybrid score, denote hybscore(·). Note that simscore and popscore use different units and scales, so they
need to be standardized before they can be combined. In order to standardize simscore, we estimate the
mean similarity score and the standard deviation of similarity scores in the list LNC . The standard similarity
score is then calculated as

Zsimscore(q) =
simscore(q)− µ

σ
,

where µ and σ are the estimated mean and standard deviation. The standard popularity score is calculated
similarly. The hybrid score is defined as a convex combination of the two scores:

hybscore(q) = α · Zsimscore(q) + (1− α) · Zpopscore(q),

where 0 ≤ α ≤ 1 is a tunable parameter determining the weight of the similarity score relative to the weight
of the popularity score. One can think of α as the prior probability that the next query has a relevant context
and thus would require a context-sensitive completion. Note that when α = 0 HybridCompletion is identical
to MostPopularCompletion, and when α = 1 HybridCompletion is identical to NearestCompletion (except
for inputs that have empty context). In Section 6, we experiment with different values of α in order to tune
it appropriately.

HybridCompletion, as described above, uses one global value for α, which is common to all inputs and
contexts. There may be scenarios though where it is desired to alter the value of α adaptively. For example,
if we have some indication that the context is not relevant to the current user input, we may want to reduce
α, while if we have the opposite indication, we may want to increase α. Since the focus of this paper is not
on session segmentation and context relevancy detection, we have not addressed this direction.

6 Empirical study

Our empirical study has two goals: (a) study the effect of the different parameters of our algorithms on the
quality of the results; and (b) compare the best configuration of our algorithms to the standard MostPop-
ularCompletion algorithm. To this end, we came up with an automatic evaluation methodology for QAC
algorithms, which estimates their MRR based on a given query log. We used the AOL query log [17] in
our experiments, as it is publicly available and sufficiently large to guarantee statistical significance (other
public query logs are either access-restricted or are small).

Experimental setup. For performing the empirical study we implemented the standard MostPopularCom-
pletion algorithm and our two algorithms (NearestCompletion and HybridCompletion). The query database
used by all algorithms was constructed from the queries that appear in the AOL log. We segmented the log
into sessions, using a simple standard segmentation heuristic (every interval of 30 minute idle time denotes
a session boundary). We eliminated from the data all click information and merged duplicate queries that
belong to the same session. The final data sets consisted of 21,092,882 queries in 10,738,766 sessions. We
found that 40% of the sessions were of length greater than 1 and 49% of the queries were preceded by one
or more queries in the same session (hence being amenable to context-sensitive QAC).

We partitioned the AOL log into two parts: a training set, consisting of 80% of the log, and a test set,
consisting of the remaining 20%. We computed a rich representation (see Section 4) for a subset of 55,422
of the training set queries. The query recommendation trees required for these rich representations were
built using Google Suggest’s query auto-completion service. We scraped the auto completions using the
public external service (we did not rely on privileged access to internal Google services or data). Since

9

Google poses strict rate limits on scrapers, we did not compute rich query representation for all the queries
in the training set.

The query database used for training each of the 3 algorithms we considered consisted of these 55,422
queries. The frequency counts used by MostPopularCompletion were computed based on the entire training
set, and not based only on the queries in the query database.

NearestCompletion and HybridCompletion were implemented by customizing Lucene2 to our needs.
The experiments were performed in October 2010 on a dual Intel Xeon 3.4GHz processor workstation with
4GB RAM and two 320GB disks.

Evaluation framework. We evaluate a QAC algorithm by how well it predicts the query the user is about
to type. The prediction quality depends on whether the algorithm succeeds to generate a hit, and if it does,
on the position of this hit. Note that our focus on exact hits yields a somewhat pessimistic success metric:
if the QAC algorithm provides a completion that is better than the query the user originally planned to type,
she may well use that completion instead of her own query. We opted for this pessimistic approach, because
it enables automatic evaluation of QAC algorithms on large samples of queries. Note that it provides a lower
bound on the true quality of the algorithm.

Since all the algorithms we evaluate work the same when the current user input has no context, then
our evaluation focused only on queries that have context. We generated sample queries with corresponding
contexts as follows. We randomly sampled 40,000 sessions from the test set. For each selected session, we
picked the first query among the queries in the session that have context (i.e., they are not the first one in the
session) and that have a rich query representation (i.e., we scraped their recommendations/auto-completions
from Google). If the session had no such queries, it was dropped from the sample. This resulted in 7,311
queries and contexts.

Our experiments focused on query auto-completion after having a single character from the current
query. This setting is the most challenging and thus demonstrates the differences among the different algo-
rithms most crisply.

Evaluation metric. Recall that for a particular query q and context C, an algorithm A is said to have
a hit at position ℓ, if after receiving C and the first character of q, the algorithm returns q as the ℓ-th
completion for this character. We write in this case that hitrank(A, q, C) = ℓ (if A has no hit at all, then
hitrank(A, q, C) = ∞). Mean Reciprocal Rank (MRR) is a standard measure for evaluating retrieval that
is aimed at a specific object. The reciprocal rank of an algorithm A on a particular (query, context) pair
(q, C) is 1/hitrank(A, q, C) (note that the reciprocal rank is 0 when the algorithm has no hit). MRR is
the expected reciprocal rank of the algorithm on a random (query, context) pair. To estimate MRR, we take
a random sample S of (query, context) pairs, and compute the mean reciprocal rank of the algorithm over
these pairs:

MRR(A) =
1

|S|
∑

(q,C)∈S

1

hitrank(A, q, C)
.

MRR treats all (query, context) pairs equally. We observe, however, that some user inputs are easier to
complete than others. For example, if the user input is the letter ’z’, then since there are few words that start
with z, the auto-completion task is easier and is likely to produce better predictions. On the other hand, if the
user input is the letter ’s’, the numerous possible completions make the prediction task much harder. This
motivates us to work with a weighted version of MRR (denoted wMRR). Rather than treating all (query,
context) pairs uniformly, we weight them according to the number of completions available for the prefix of
the query.

Comparison experiments. Our first set of experiments compare NearestCompletion and HybridComple-
tion to the standard MostPopularCompletion. The comparison is based on the 7,311 random (query, context)

2http://lucene.apache.org/java/docs/index.html

10

pairs collected from our training set. We used in these experiments the parameter values that we found to
be the most cost-effective: (a) recommendation algorithm: Google’s auto-completion; (b) recommendation
tree depth: 3; (c) depth weighting function: exponential decay; (d) unigram model; (e) used only the most
recent query; (f) α in HybridCompletion: 0.5.

We start with an anecdotal comparison (Table 1) of the completions provided by the three algorithms
on some of the above pairs (note: these are real examples taken from the AOL log). The first two examples
demonstrate the effect of context on query auto completion after the user has typed a single character of
her intended query. In these examples, the user’s intended query and the context are related (in the first
example they are syntactically related and in the second one they are only semantically related). The Near-
estCompletion algorithm detects the similarity and thus provides the correct prediction at one of the top 2
positions. As the intended queries in these cases are not popular, MostPopularCompletion fails to hit the
correct completion even in its top 10 suggestions. The utter failure of MostPopularCompletion has only a
minor effect on HybridCompletion, which suggests the correct completion at one of its top 5 positions.

The third example exhibits the opposite scenario: the context is irrelevant to the user’s intended query
and the intended query is popular. Consequently, MostPopularCompletion hits the correct query at the top
position, while NearestCompletion completely fails. This time HybridCompletion benefits from the success
of MostPopularCompletion and hits the correct completion also at its top spot.

Context Query MostPopularCompletion NearestCompletion HybridCompletion
french flag italian flag internet, im help, irs, ikea, in-

ternet explorer
italian flag, itunes and french,
ireland, italy, irealand

internet, italian flag, itunes and
french, im help, irs

neptune uranus ups, usps, united airlines, us-
bank, used cars

uranus, uranas, university, uni-
versity of chicago, ultrasound

uranus, uranas, ups, united air-
lines, usps

improving
acer laptop
battery

bank of america bank of america , bankofamer-
ica, best buy, bed bath and be-
yond, billing

battery powered ride ons, bat-
tery plus charlotte nc, battery
died while driving, best buy,
battery replacement for palm
tungsten c

bank of america , best buy,
battery powered ride ons,
bankofamerica, battery died
while driving

Table 1: The top 5 completions provided by the 3 algorithms on (query, context) pairs taken from the AOL
log. In the first two examples the context and the query are related, while in the last one they are not.

Figure 1 provides a comparison of weighted MRR of the three algorithms on the 7,311 (query, context)
pairs. The results are all statistically significant. It is very clear that HybridCompletion dominates both
NearestCompletion and MostPopularCompletion. For example, HybridCompletion’s wMRR is 0.246 com-
pared to only 0.187 of MostPopularCompletion (an improvement of 31.5%). It is also clear that the quality
of NearestCompletion is inferior to MostPopularCompletion (by 19.8%), so it cannot be used as is for query
auto completion. The graph also distinguishes between pairs in which the context has a rich representation
(i.e., the recommendations for this context have been scraped from Google) and pairs in which the context
has only a thin representation (based on the context query itself, without the recommendations). Note that
the latter simulates the case the context is long-tail and the search engine has no recommendations for it.
The results indicate that even such long-tail contexts are useful, and thus HybridCompletion is doing much
better than MostPopularCompletion.

We drilled down the results in order to understand the relative strengths and weaknesses of the three
algorithms on different inputs. To this end, we selected a random sample of 198 (query, context) pairs from
the set of 7,311 pairs, and manually tagged each of them as related (i.e., the query is related to the context;
60% of the pairs) and unrelated (40% of the pairs). Table 2 compares the quality of the three algorithms
separately on the related pairs and on the unrelated pairs. The results indicate that when the intended query
is related to the context, NearestCompletion is very successful, achieving wMRR that is 48% higher relative

11

All Rich Thin
0

0.05

0.1

0.15

0.2

0.25

0.3

Context Type

w
M

R
R

Nearest

MostPopular

Hybrid

Figure 1: Weighted MRR of the 3 algorithms on 7,311 (query, context) pairs. Results are for all pairs, for
pairs in which the context has a rich representation, and for pairs in which the context does not have a rich
representation.

to MostPopularCompletion. HybridCompletion is even better because it takes both the context and the
popularity into account. On the other hand, when the query and context are unrelated, NearestCompletion
is essentially useless. HybridCompletion is even better than NearestCompletion for related pairs, while its
quality for unrelated pairs is moderately lower (in 20.3%) than that of MostPopularCompletion.

MostPopular Nearest Hybrid
Related context 0.163 0.242 0.280

Unrelated context 0.227 0 0.181

Table 2: Weighted MRR of the three algorithms, broken down by whether the intended query and the context
are related or not.

Next, we broke down the 7,311 sample pairs into buckets based on the frequency of the intended query
in the query log. The buckets correspond to exponentially increasing frequency ranges. Figure 2 plots the
wMRR of each algorithm in each of the buckets. As expected, MostPopularCompletion is very successful
at predicting popular queries. It supersedes NearestCompletion for such queries, because its success is inde-
pendent of whether the context is related to the intended query or not. On the other hand, when the intended
query is long-tail (low popularity), NearestCompletion manages to use the context to achieve a relatively
high prediction quality, while MostPopularCompletion exhibits very poor quality. Note that HybridCom-
pletion essentially takes the upper envelope of the two algorithms, and manages to achieve almost as high
quality in all popularity ranges.

One peculiar artifact exhibited in this experiment is that the quality of NearestCompletion slightly de-
teriorates for popular queries (whose frequency in the log is above 10,000). We analyzed these queries and
found that the fraction of unrelated contexts such queries have (58%) is much higher than the fraction of
unrelated contexts for low popularity queries (only 36.5%). This explains the lower quality of NearestCom-
pletion for such queries.

Parameter tuning experiments. We conducted a set of experiments in which we examined the effect of
the different parameters of our algorithms on their quality. Figure 3 shows the influence of the depth of
the query recommendation tree used in the construction of the rich query representation on the quality of
NearestCompletion. We examined depths 0 to 3. As expected, the quality of NearestCompletion increases,
as the depth increases, since the vocabulary of the rich representation is richer. Note that the returns are

12

10
1

10
2

10
3

10
4

10
5

10
6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Frequency

w
M

R
R

Nearest

Hybrid

MostPopular

Figure 2: Weighted MRR of the 3 algorithms as a function of the frequency of the intended query in the
query log (log-log scale).

starting to diminish at depth 3. While we could not run the experiment with larger depths, due to Google’s
scraping limitations, we expect this trend to continue as the depth increases. Thus, a recommendation tree
of depth 2 or 3 seems to be the most cost-effective for this application.

All Rich Thin
0

0.05

0.1

0.15

0.2

0.25

0.3

Context Type

w
M

R
R

Depth0

Depth1

Depth2

Depth3

Figure 3: Weighted MRR of NearestCompletion as a function of the recommendation tree depth. Results
are for all sample (query, context) pairs, for the ones in which the context has a rich representation, and for
the ones in which the context does not have a rich representation.

Next, we measured the effect of the context length on the quality of NearestCompletion. Our exper-
iments (see Table 3) demonstrate that increasing the number of recent queries being taken into account
slightly improves the quality of the algorithm, as the vocabulary that describes the context is enriched. The
effect is not as significant as the recommendation tree depth, though.

Table 4 shows the dependence of NearestCompletion’s quality on the query recommendation algorithm
used to generate the recommendation trees. We compared two algorithms: Google’s query auto-completions
and Google’s related search. The results demonstrate that the rich representations generated from Google’s
related searches are more effective (quality improves in 12.4%). Nevertheless, in most of our experiments
we opted to use Google’s query auto completions, because the difference is not huge and since they are
much easier to scrape (the query latency is lower and the rate limits posed by Google are higher). We thus
conclude that the auto completions are more cost-effective for this purpose.

13

Context length 1 2 3
wMRR 0.139 0.154 0.164

Table 3: Weighted MRR of NearestCompletion as a function of the context length. Results are for 2,374
(query, context) pairs in which the context was of length at least 3.

Auto-completions Related searches
wMRR 0.177 0.199

Table 4: Weighted MRR of NearestCompletion using two different query recommendation algorithms (by
Google) for generating recommendation trees of depth 2. Results are only for (query, context) pairs in which
the context has a rich representation.

The parameter α in HybridCompletion controls the balance between NearestCompletion and MostPopu-
larCompletion. Recall that for α = 1 HybridCompletion is the same as NearestCompletion and for α = 0 it
is the same as MostPopularCompletion. Figure 4 analyzes the effect of α on the quality of the algorithm. As
noted above, MostPopularCompletion is better than NearestCompletion when the intended query is popular
and NearestCompletion is better when the context query is related to the intended query. The results show
that α = 0.5 is the best choice in aggregate.

10
1

10
2

10
3

10
4

10
5

10
6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Frequency

w
M

R
R

0

0.25

0.5

0.75

1

Figure 4: Weighted MRR of HybridCompletion as a function of α (log-log scale).

We measured the influence of other parameters of the algorithm, like the choice of the depth weighting
function, the choice of the context weighting function and the N-grams maximum length. We have not found
significant differences in quality among the different alternatives. We suppress the actual results from this
draft, due to lack of space.

7 Conclusions

In this paper we proposed the first context-sensitive algorithm for query auto-completion. The algorithm,
NearestCompletion, suggests to the user completions of her input prefix that are most similar to the recent
queries the user has just entered. We show that when the input prefix is short (1 character) and the context
is relevant to the user’s intended query, then the weighted MRR of NearestCompletion is 48% higher than
that of the standard MostPopularCompletion algorithm. On the other hand, when the context is irrelevant,

14

NearestCompletion is useless. We then propose HybridCompletion, which is a convex combination of
NearestCompletion and MostPopularCompletion. HybridCompletion is shown to be at least as good as
NearestCompletion when the context is relevant and almost as good as MostPopularCompletion when the
context is irrelevant.

NearestCompletion computes the similarity between queries as the cosine similarity between their rich
representations. To produce rich query representation we introduce a new query expansion technique, based
on traversal of the query recommendation tree rooted at the query. This technique may be of independent
interest for other applications of query expansion.

There are a number of possible interesting directions for further development of our techniques. (a)
We used a very simplistic heuristic for segmenting search sessions. This heuristic resulted in many false
positive contexts (i.e., contexts that are not really relevant to the current user query). A combination of
NearestCompletion with a more effective session segmentation technique is likely to improve the quality of
the algorithm considerably. (b) Predicting the first query in a session still remains an open problem. Here
one may need to rely on other contextual signals, like the user’s recently visited page or the user’s long-
term search history. (c) Our measure of quality was based on exact hits, and thus provides only a lower
bound on the true quality of the algorithms. Evaluation using a more relaxed measure of relevance would
be illuminating. (d) The rich query representation may be further fine tuned by promoting the prominent
keywords in the representation and demoting the less prominent ones.

Acknowledgments. We thank Shraga Kraus for his careful review of the paper and for his guidance with
MATLAB.

References

[1] Ricardo Baeza-Yates, Carlos Hurtado, and Marcelo Mendoza. Improving search engines by query
clustering. J. Am. Soc. Inf. Sci. Technol., 58(12):1793–1804, 2007.

[2] Holger Bast, Debapriyo Majumdar, and Ingmar Weber. Efficient interactive query expansion with
complete search. In CIKM, pages 857–860, 2007.

[3] Holger Bast and Ingmar Weber. Type less, find more: fast autocompletion search with a succinct index.
In SIGIR, pages 364–371, 2006.

[4] Paolo Boldi, Francesco Bonchi, Carlos Castillo, Debora Donato, and Sebastiano Vigna. Query sug-
gestions using query-flow graphs. In WSCD, pages 56–63, 2009.

[5] Andrei Broder, Peter Ciccolo, Evgeniy Gabrilovich, Vanja Josifovski, Donald Metzler, Lance Riedel,
and Jeffrey Yuan. Online expansion of rare queries for sponsored search. In WWW, pages 511–520,
2009.

[6] Andrei Z. Broder, Peter Ciccolo, Marcus Fontoura, Evgeniy Gabrilovich, Vanja Josifovski, and Lance
Riedel. Search advertising using web relevance feedback. In CIKM, pages 1013–1022, 2008.

[7] Huanhuan Cao, Daxin Jiang, Jian Pei, Enhong Chen, and Hang Li. Towards context-aware search by
learning a very large variable length hidden markov model from search logs. In WWW, pages 191–200,
2009.

[8] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen, and Hang Li. Context-aware
query suggestion by mining click-through and session data. In KDD, pages 875–883, 2008.

15

[9] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolfman, and
Eytan Ruppin. Placing search in context: the concept revisited. ACM Trans. Inf. Syst., 20(1):116–131,
2002.

[10] Bruno M. Fonseca, Paulo B. Golgher, Edleno S. de Moura, and Nivio Ziviani. Using association rules
to discover search engines related queries. In LA-WEB, page 66, 2003.

[11] Qi He, Daxin Jiang, Zhen Liao, Steven C. H. Hoi, Kuiyu Chang, Ee-Peng Lim, and Hang Li. Web
query recommendation via sequential query prediction. In ICDE, pages 1443–1454, 2009.

[12] Shengyue Ji, Guoliang Li, Chen Li, and Jianhua Feng. Efficient interactive fuzzy keyword search. In
WWW, pages 371–380, 2009.

[13] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. Generating query substitutions. In
WWW, pages 387–396, 2006.

[14] Reiner Kraft, Chi Chao Chang, Farzin Maghoul, and Ravi Kumar. Searching with context. In WWW,
pages 477–486, 2006.

[15] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information
Retrieval. Cambridge University Press, Cambridge, UK, 2008.

[16] Qiaozhu Mei, Dengyong Zhou, and Kenneth Church. Query suggestion using hitting time. In CIKM,
pages 469–478, 2008.

[17] G. Pass, A. Chowdhury, and C. Torgeson. A picture of search. In 1st InfoScale, 2006.

[18] J. J. Rocchio. Relevance Feedback in Information Retrieval. Prentice Hall, 1971.

[19] Eldar Sadikov, Jayant Madhavan, Lu Wang, and Alon Halevy. Clustering query refinements by user
intent. In WWW, pages 841–850, 2010.

[20] Ryen W. White and Gary Marchionini. Examining the effectiveness of real-time query expansion. Inf.
Process. Manage., 43(3):685–704, 2007.

[21] Zhiyong Zhang and Olfa Nasraoui. Mining search engine query logs for query recommendation. In
WWW, pages 1039–1040, 2006.

16

