

 IRWIN AND JOAN JACOBS
CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

An exact algorithm for energy
efficient acceleration of task
trees on CPU/GPU architectures

Mark Silberstein

CCIT Report #783
January 2011

Electronics
Computers
Communications

DEPARTMENT OF ELECTRICAL ENGINEERING
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

An exact algorithm for energy-efficient acceleration of tas k
trees on CPU/GPU architectures.

Mark Silberstein
marks@cs.technion.ac.il

Electrical Engineering Department
Technion – Israel Institute of Technology

ABSTRACT
We consider the problem of energy-efficient acceleration of
applications comprising multiple interdependent tasks form-
ing a dependency tree, on a hypothetical CPU/GPU system
where both a CPU and a GPU can be powered off when idle.
Each task in the tree can be invoked on both a GPU or a
CPU, but the performance may vary: some run faster on a
GPU, others prefer a CPU, making the choice of the lowest-
energy processor input dependent. Furthermore, greedily
minimizing the energy consumption for each task is sub-
optimal because of the additional energy required for the
communication between the tasks executed on different pro-
cessors.

We propose an efficient algorithm, which accounts for the
energy consumption of a CPU and a GPU for each task, as
well as for the communication costs of data transfers between
them, and constructs an optimal acceleration schedule with
provably minimal total consumed energy.

We evaluate the algorithm in the context of a real appli-
cation having task dependency tree structure, and show up
to 2.5-fold improvement in the expected energy consump-
tion versus CPU only or GPU only schedule, and up to 50%
improvement over the communication unaware schedule on
real inputs. We also show another application of this algo-
rithm which allows to achieve up to a 2-fold speedup in real
CPU/GPU systems.

1. INTRODUCTION
Energy efficiency has become one of the central goals in
contemporary hardware designs, in particular for embed-
ded processors and SoCs, often at the expense of the peak
performance. To this end, many systems already implement
software-controlled dynamic power management, sometimes
allowing to completely shut down idle components, quickly
turning them back on when necessary. For example, NVIDIA
Optimus technology [1] enables dynamic switching between
power-hungry high-performance discreet GPU to the inte-

Time

40

60

80

100

120

140

160

180 GPU Power
CPU Power

GPU task invocation

CPU task invocatoin

Figure 1: An example of power consumed by CPU
and GPU when running the same task.

grated low-power GPU to extend the battery life.

We believe that similar capabilities will be also available in
the GP-GPU world, allowing for almost complete power off
and zero-overhead power up of both a CPU and a GPU to
enable prolonged battery life in mobile platforms.

However, without appropriate software support, energy-efficient
hardware by itself will not allow energy-efficient execution.
Consider an application which comprises two independent
tasks. Both can be executed on a CPU or a GPU, but their
performance vary: while the first runs faster on a GPU, the
second does not benefit from the massive parallelism. In
fact, it is easy to minimize makespan of the application by
executing tasks where they perform best.

In order to achieve energy-efficient execution we also need to
know the actual power dissipated by each processor. To il-
lustrate the difference between the CPU and GPU power
consumption today, Figure 1 shows the power consumed
when executing the same task on all 4 cores of AMD Phenom
9500 Quad-core processor and a GTX285 NVIDIA GPU.
While the GPU requires slightly less time, the CPU con-
sumes about 50% less energy in total. Predicting GPU
power consumption by statistical methods or via modeling
has been investigated before [7], and can be used by the
application scheduler to assign the tasks accordingly.

1

lesley
Text Box
CCIT Report #783 January 2011

1 2 3

40

60

80

100

Po
w

er
(W

at
t)

GPU Power
CPU Power

Memory transfers

CPU task execution

Figure 2: Power measurements of three memory
transfers of 500,600 and 700 MB between CPU and
GPU. A small CPU task was invoked before the
transfer, followed by memory transfer and sleep()
call.

A greedy assignment of tasks to processors becomes subop-
timal when there are data dependencies between the tasks.
Addition energy is required to move the data between the
tasks if they are executed on different processors.

We illustrate this problem using the example in Figure 3.
The figure shows a task dependency graph of a program for
computing A×B +C for three matrices A, B, C. The nodes
and edges of the graph denote kernels and their data de-
pendencies respectively. Computations are performed by
traversing the graph according to the directionality of the
edges. The computations of a node can be started only if all
its predecessors in the graph are complete. In this example
the first kernel computes A×B and the second one adds C

to the result. The respective graph node labels denote the
expected energy consumption in some abstract units (the
lower the better) of the task on a CPU or a GPU. Edge la-
bels denote the energy used by the data transfers given that
the adjacent nodes are executed on different processors. In-
put data nodes represent the original input data residing in
CPU memory.

Were the schedule to consider the energy consumption of
each task alone, it would assign the product task to a CPU
and the summation task to a GPU, consuming the total
energy of 70 units. However, the best schedule requires only
65 energy units to complete, assigning both tasks to a GPU.
Note that the higher energy cost of the data transfer between
two tasks would increase the performance gap between the
greedy and the optimal schedules.

To estimate the power consumption of data transfers in con-
temporary GPUs, we ran a few experiments using the same
hardware as above. We transferred data from a GPU to a
CPU using asynchronous memory copy calls, running the
experiments with 500,600 and 700 MB (transferring from
a CPU to a GPU produces exactly the same results). For
validation we first ran a small CPU task to highlight the
CPU power consumption due to the memory transfers. Our

Figure 3: An illustration of the program task de-
pendency graph for computing A×B +C of matrices
A, B, C. The graph edge labels denote the time of
the data transfer between a CPU and a GPU. The
best schedule is to invoke both computations on a
GPU despite the better CPU performance of the
first kernel.

findings suggest that at least in this configuration the CPU
is fully occupied by the memory transfers whereas the GPU
power consumption increases by about 10% above the idle.
We conclude that the communications indeed may incur a
non-negligible power overhead.

The scheduling problem of finding an energy-efficient sched-
ule for task dependency graphs resembles the well-known of-
fline Directed Acyclic Graph (DAG) scheduling for parallel
heterogeneous systems with communication costs. Unfor-
tunately finding the optimal parallel schedule, even for the
DAGs without undirected cycles (task dependency trees), is
NP-hard [4].

We believe that energy-efficient scheduling problem is simi-
lar but different, and allows tractable optimal solution. The
reason is as follows. Assume that we found an optimal as-
signment of tasks which minimizes the total consumed en-
ergy. Now consider two different executions: one where the
tasks are invoked in parallel on the processors designated by
the schedule, if such parallelism is available; and another one
where they are executed on the respective processors using
only one processor at a time. Provided that the energy con-
sumption of an idle processor is negligible, both executions
will result in the same total energy consumption. Thus, the
energy-efficient scheduling permits only one processor to be
busy at any given instant. Note that such schedule does
not preclude parallel execution and leaves it as a secondary
optimization.

We call this new problem the energy-efficient acceleration
scheduling, and describe an efficient and easy-to-implement
optimal algorithm for energy-efficient execution of task de-
pendency trees. The algorithm produces the schedule which

2

minimizes the energy consumption of the complete applica-
tion by evaluating all the tasks assignments jointly, includ-
ing the overhead of the data transfer between the devices.
To the best of our knowledge this is the first formulation of
this problem and its optimal solution in general,and in the
context of CPU/GPU architectures in particular.

The optimality of the algorithm ensures that it will pro-
duce minimal-energy acceleration schedule for any task tree.
Furthermore, it is easy to build the worst case input where
the algorithm would result in an arbitrary high power sav-
ings versus only-CPU, only-GPU or communication unaware
greedy schedules. Consider the following task tree contain-
ing nodes A,B,C with the chain dependency (A->B->C),
such that A is arbitrarily more efficient on a CPU than
on a GPU, C is arbitrarily more efficient on a GPU than
on a CPU, and B is marginally better on a GPU, but has
arbitrarily large input to be transferred. Apparently the
optimal schedule A(CPU)->B(CPU)->C(GPU) will be ar-
bitrarily better than any of the trivial ones above.

Yet, to provide a more realistic evaluation we use a real
application for inference in probabilistic graphical models.
The computations comprises multiple tasks that form task
dependency tree structure. We use six real inputs, each with
hundreds of tasks and complex tree topology. We measure
the actual execution times of each task on both a CPU and
a GPU, and also the respective data transfer times for each
task. We then compute the expected total energy cost of
different schedules using various hardware parameters.

We found that the potential energy reduction of the opti-
mal schedule over the best only-CPU or only-GPU schedule
may reach about a factor 2.5 assuming realistic energy con-
sumption observed in the experiments. The communication-
unaware schedule may waste as much as 50% more power
than the optimal one.

The algorithm can be also used to speed up the computa-
tions rather than minimize the power. Although it does not
produce an optimal parallel schedule in that case, it ideally
fits the programming model where a GPU is considered a
co-processor. In such an asymmetric setup, a GPU cannot
operate on its own; the CPU must dedicate some of its time
to GPU management. Hence the algorithm optimizes the
runtime for the case where the CPU or GPU do not concur-
rently execute tasks. The main advantage of this method
is that it does not require changing the original sequential
program flow, complementing other optimizations such as
overlapping the data transfers with the GPU execution. We
demonstrate 40% improvement over the greedy algorithm
and up to 100% improvement over the fastest CPU-only or
GPU-only execution on real-life inputs.

2. RELATED WORK
Task dependency graph scheduling minimizing the some tar-
get function for multi-processor systems has been an active
research subject at least for the last 30 years. In the most
general case this problem is NP-hard. Specifically, min-
imization of the makespan for the case of non-unit time
communication delays and task execution times, there is no
polynomial-time exact solution (unless P = NP) even when
there is a fixed number of processors, all the processors have

the same speed and the task graph is a tree [4]. There are
some algorithms that provide good approximation [8], as
close to the optimum as the maximum ratio between the
task duration and the communication delays. There are
numerous heuristics which do not provide any performance
guarantees, but work well in many practical settings [6].

Several works attacked the problem of power-efficient schedul-
ing in heterogeneous systems, proposing heuristic solutions
and demonstrating their practical benefits. For example,
the most recent work by Sanjeev [3] demonstrates success-
ful heuristics for dual optimization of both the power and
processing time.

Makespan minizaion of the DAG execution in the context of
GPU-accelerated systems has been implemented in STARPU
system [2], demonstrating substantial performance benefits.
Yet, they do not account for the communication delays and
apply dynamic, rather than static scheduling in this work.

Realization of the high variability in the GPU performance
and the use of learning techniques to predict the running
time of a task has been shown in [5].

Our work differs from the previous in that we present a new
scheduling problem which has not been addressed before,
and we provide exact, rather than approximate solution to
it.

3. NOTATIONS AND PROBLEM STATEMENT
In this section we provide a more formal definition of the
energy-efficient acceleration scheduling problem. To sim-
plify the notation we will use only two processors: a CPU
and a GPU, but it is easy to generalize the following to any
number of processors.

Hardware model. Each processor has its own local mem-
ory which is not directly accessible to the other one. Proces-
sors communicate via message passing and explicitly trans-
fer the data between their memories. The communication
channel between the processors has finite bandwidth and is
much slower than the local access, which in turn is assumed
to have zero latency and infinite bandwidth.

We assume that the processors have negligible power con-
sumption when idle, and incur no overhead when switched
back on. On the other hand, data transfers are assumed to
incur non-zero energy costs.

Task execution model. Each task is executed to comple-
tion without preemption. The execution cost of a task is
the cost to complete the task on a given processor assuming
that the task data is already in the processor’s local memory.
Similarly, the communication cost between two processors i

and j is the cost of data transfer from the local memory of
i to that of j.

Each task can be executed on all processors, but the task
performance may vary substantially, and different tasks may
perform favorably on different devices.

Task dependency graph. Task dependency graph
T (V, E, P, D) is a directed acyclic graph (DAG), where the

3

nodes V represent the tasks and the edges E denote the
precedence constraints, or data dependencies, between the
tasks. In this paper we focus on a particular case of a DAG
whose underlying undirected graph is a tree and the edge
are directed from the leaves to the root (in-tree).

There are two sets of weights P and D associated with the
graph nodes and edges respectively. The weight of a node
v is a task cost vector Pv ∈ P with two entries for the
task execution cost on a CPU and a GPU. The weight of
an edge is a transfer cost matrix Dv ∈ D with four en-
tries for the cost of the data transfer across that edge for
all the combinations of sources and destinations: GPU→
CPU, CPU→GPU, GPU→GPU, CPU→CPU. We assume
Dv[CPU → CPU] = Dv[GPU → GPU] = 0.

Energy efficient acceleration schedule. Consider task
graph T (V, E, P, D). An acceleration schedule of T onto
a CPU-GPU system is a function S : V → {CPU, GPU}
which assigns each task v ∈ V for execution on a CPU or a
GPU. The cost of a schedule S of a graph T , is defined as

c(S, T) =
X

v∈V

Pv[S(v)] +
X

w∈Nv

Dv[S(w) → S(v)]

!

, (1)

where Nv is a set of the direct ancestors of v in T .

Energy-efficient acceleration schedule is a schedule with the
minimum cost, provided that P and D represent the energy
consumed by the processors for executing tasks and trans-
ferring the data respectively.

4. ALGORITHM FOR ENERGY-EFFICIENT
SCHEDULING OF TASK TREES

The key observation which enables efficient algorithm is that
the assignment of a task in one tree branch does not influ-
ence the assignment of a task in another branch. Hence, a
dynamic programming approach can be used.

The algorithm presented in Figure 4 runs in two steps: cost
update and backtacking.

In the cost update step the algorithm traverses the tree ac-
cording to the precedence constraints. It updates the exe-
cution costs for each task v twice: first for v execution on a
CPU, and second for a GPU. For each update it chooses the
best processor for the direct ancestors of v while considering
their own subtree costs for each assignment, and the cost of
data transfer from them to v.

For every node v ∈ V , the algorithm maintains the following
variables:

1. Subtree processing cost vector Sv of the subtree rooted
at v, with two entries Sv[CPU] and Sv[GPU], each for
the best processing cost of that subtree assuming v is
executed on a CPU or a GPU respectively.

2. Subtree scheduling decision vector Ov, containing the
task assignment Od

v [CPU] and Od

v [GPU] for every im-
mediate ancestor (parent) d of v corresponding to Sv[CPU]

Input: T (V, E) - Task dependency tree, R - traversal order of T

which complies with the precedence graph.
Output: Scheduling decisions Av for all the nodes v ∈ V .

Forward traversal
while R is not empty do

//get next tree node
v ← pop(R)

push v → R̂ // maintain reverse order for backtracking
for all device ∈ CPU, GPU do

// set the cost of v on device

Sv[device] ← Pv [device]
// compute the costs assuming d is executed on a CPU (GPU)
and v on device

for all d ∈ child nodes of v do
CPUCOST ← Sd[CPU] + Dv [CPU → device]
GPUCOST ← Sd[GPU] + Dv [GPU → device]
// choose the best schedule for d assuming v is executed
on device

if CPUCOST > GPUCOST then
Od

v
[device] ← GPU

Sv [device] ← Sv [device] + GPUCOST

else
Od

v
[device] ← CPU

Sv [device] ← Sv [device] + CPUCOST

end if
end for

end for
end while

Backtrack

v ← pop(R̂)
// choose the device to compute the root node
if Sv [CPU] > Sv [GPU] then

Av ← GPU
else

Av ← CPU
end if
// traverse in reverse order

while R̂ is not empty do
for all d ∈ child nodes of v do

// schedule d on the device which led to the best cost for v

Ad ← Od

v
[Av]

end for
v ← pop(R̂)

end while

Figure 4: Acceleration scheduling algorithm.

and Sv[GPU]. This variable stores d’s assignment
which resulted in the best total cost including the data
transfer from d to v were d executed on a CPU or a
GPU. It is used in the backtracking step.

When this step completes, every node holds the best costs
of computing its subtree for both its schedules on a CPU
or a GPU. The backtracking step then traverses the tree
starting from the last node being traversed and determines
the assignment for all the nodes, using the optimal schedul-
ing decision for their respective parents and generating an
optimal schedule.

It is easy to see that the algorithm indeed minimizes the
expression in Eq.1. The sketch of the proof is as follows.
The algorithm always maintains two partial schedules for
each subtree in the tree - one for the case when the root
of that subtree is invoked on a CPU, and another one for
the GPU invocation. The main step of the forward traversal
is to unify the subtrees of a given root into a larger tree by
pruning the partial schedules of the subtrees with larger total
cost when the communication cost to the root is taken into
account as well. Assuming that the two schedules for each
subtree are indeed optimal, this step creates two optimal
schedules for the root, but without deciding where to invoke

4

the root itself. This decision is left for the backtracking step,
which iteratively chooses the best total cost for the tree root
first, given the costs of its subtrees. Note that the costs of
the partial schedules are computed recursively, but if the
recursion is ”unrolled” the result is exactly as in Eq 1.

The complexity of the algorithm is O(|V |) for two processors
and O(N |V |) for N processors, since each node is visited
twice in the forward step and once in the backtracking, and
the amount of computations per node is linear in the number
of processors.

5. APPLICATION TO SUM-PRODUCTS
The general sum-product computation is defined as:

X

M

N

i
f i(Xi), M ⊆

[

i

Xi
, f

i ∈ F, (2)

where F is the set of all input probability functions (dis-
crete), M is the set of summation variables, and bigcup is a
tensor product.

Sum-product computations arise in a wide variety of real-life
applications in artificial intelligence, statistics, image pro-
cessing, and digital communications. Our motivation origi-
nated in the context of computing the likelihood of a hypoth-
esis in large probabilistic models used in genetic analysis.

At a very high level, computing sum-products is similar to
computing the chain matrix product of multi-dimensional
matrices. Recall that in the chain matrix product the ma-
trices are multiplied in a certain order, and the result of one
product is used later as an input to some other product.
If each product of two matrices is represented as a task,
these tasks can be represented as a task dependency tree,
traversed from the leaves to the root.

The same principle of building a task dependency tree is
applicable to the sum-product computations. We omit all
the details on how such a tree is built, and refer the reader
to an in-depth overview of this subject [9].

In our implementation we allow each task in the tree to be
executed both on a CPU and a GPU. The GPU implemen-
tation is not trivial and is described eslewhere [10].

One important characteristics of the tasks is that their per-
formance on both GPU and CPU varies substantially. In [10]
we show that the speedup of executing the kernel on GPU
may range between factor of 50 to as low as 0.02! Thus, they
present the realistic usecase for our scheduling algorithm.

6. EVALUATION
We evaluated the performance of the algorithm on six real
probabilistic networks used for genetic analysis. The prop-
erties of the task dependency trees used for the evaluation
are presented in Table 1.

We invoked each task on a CPU and a GPU and measured
the actual execution time. We then used the peak power
consumption for each processor to scale the execution time
to estimate the task power consumption on that processor.
This approximation is wrong in general case, since not all

tasks actually bring the processor to the peak power. How-
ever for our tasks it appears to be valid, since in the mea-
surements of different kernels the power variation did not
exceed 10%.

Similarly to the task power, the energy spent on the data
transfer is computed by deriving the transfer time from the
hardware parameters and the data size, and scaling it by the
respective power consumption.

6.1 Energy-minimal acceleration schedule
Table 2 shows the energy costs of different schedules assum-
ing bandwidth of 1GB/s between the processors (average
value measured for this input), 140 Watt due to the data
transfer, 90 and 180 Watt peak consumption by a CPU and
a GPU respectively, and zero idle time consumption.

We compare 4 different schedules: the optimal one pro-
duced by the algorithm, only-CPU, only-GPU and the hy-
brid greedy schedule, which ignores the communication over-
head and assigns the device with the lowest expected energy
consumption for a given task. We see that the optimal sched-
ule results are substantially better than either CPU-only or
GPU-only schedules. The optimal schedule is also tangibly
better than the greedy schedule for the inputs with high
communication demands, such as BN1, BN2 and BN6, but
only marginally reduces the cost otherwise. Apparently, any
optimization of the communication cost requires that cost to
be relatively high to have any significant impact.

6.2 Applying the algorithm to running time
minimization

The algorithm can be also applied to minimizing the run-
ning time of a task dependency tree execution. To improve
the performance in such case, we partially relax the con-
straint of no concurrency between CPU and GPU execution
by implementing CPU execution and GPU management in
two different CPU threads. Thus, a CPU and a GPU may
execute their tasks concurrently, until they run out of work
because there are no ready tasks assigned to that processor
by the schedule.

To make this experiment even more realistic, we did not
rely on the existing task runtime measurements, but built a
simple regression tree basted predictor from the profiles of
the previous task invocations.

The experiments were invoked on a 4-core Intel Core 2,
2.33GHz CPU with the NVIDIA GTX285 GPU. The per-
formance results are shown in Table 3.

We observed that the best CPU-only multi-threaded version
or GPU-only version can be each up to a factor of two slower
than the combined CPU-GPU execution using the schedule
produced by our algorithm. Observe that the optimal ac-
celeration schedule produced by the algorithm (the column
marked in bold) usually results in more nodes being mapped
to a GPU. Figure 5 shows a part of the task tree, with the
diamonds denoting the nodes scheduled on a GPU by both
schedules and the circles denoting those scheduled by the ac-
celeration schedule only. Observe that the latter effectively
reschedules the “islands”of CPU-scheduled nodes to a GPU.

5

Tasks in tree CPU time (msec) GPU time (msec) Speedup Transfer sizes (kbytes)
BN1 390 0.01/2/196 0.15/0.3/10.5 0.04/1.4/77.08 0.016/8889/1061680
BN2 529 0.01/1/108 0.16/0.3/6.7 0.06/1.11/77.13 0.016/6371/1019220
BN3 268 0.02/23/274 0.18/1.5/32.7 0.08/6.62/62.92 0.128/999.688/33554
BN4 595 0.01/10/224 0.16/0.5/4.4 0.06/7.87/97.08 0.072/429.583/12754
BN5 1194 0.01/11/667 0.16/0.5/15.9 0.06/7.68/104.15 0.072/633.874/12754
BN6 505 0.01/3/370 0.15/0.4/14.9 0.06/1.33/115.79 0.032/76418.3/1630750

Table 1: Properties of the task dependency trees used in the experiments. Each entry is in the form
minimum/average/maximum value.

Optimal acceleration cost Energy waste(%)
Hybrid-greedy CPU-only GPU-only

BN1 9 15 682 126
BN2 11 42 402 142
BN3 70 2 709 5
BN4 39 1 1361 28
BN5 87 3 1270 27
BN6 17 17 931 88

Table 2: Comparative performance analysis of the energy costs of different schedules.

We found, however, that for the task trees having a set of
dominating complex tasks for which GPU performance sub-
stantially exceeds CPU performance and the I/O to CPU
ratio is low, mapping kernels with larger input sizes is suf-
ficient for achieving the best performance. Still, even then,
the dynamic schedule that combines CPU and GPU execu-
tion remains superior to the static schedules that use only
one or the other.

7. CONCLUSIONS
In this work we presented a new scheduling problem and
the exact solution on a heterogeneous architectures. One
clear conclusion of this work is that hybrid schedule which
uses both a CPU and a GPU performs much better than
only-CPU or only-GPU solution because of the substantial
performance variability of GPUs.

Another important observation is that the low power con-
sumption in the idle state can significantly simplify the al-
gorithmic problem and enable more efficient solution.

Finally, while the benefit from using the exact algorithm
may become higher with the increased amount of commu-
nications in the task graph, we see that a simple greedy
algorithm may perform quite well for the case of the modest
communication requirements.

8. ACKNOWLEDGMENTS
We would like to thank Dr. Naoya Maruyama for helping
us with the power measurements.

9. REFERENCES
[1] Nvidia optimus technology.

http://www.nvidia.com/object/optimus_technology.html.

[2] C. Augonnet, S. Thibault, R. Namyst, and P.-A.
Wacrenier. A unified platform for task scheduling on
heterogeneous multicore architectures. In Euro-Par

2009 Parallel Processing, volume 5704, pages 863–874.
Springer Berlin / Heidelberg, 2009.

[3] S. Baskiyar and R. Abdel-Kader. Energy aware dag
scheduling on heterogeneous systems. Cluster
Computing, 13:373–383, 2010.

[4] S. Fujita and M. Yamashita. Approximation
algorithms for multiprocessor scheduling problem.
IEICE Transactions on Information and Systems,
83:503–509, 2000.

[5] V. Jimenez, L. Vilanova, I. Gelado, M. Gil, G. Fursin,
and N. Navarro. Predictive runtime code scheduling
for heterogeneous architectures. In High Performance
Embedded Architectures and Compilers, volume 5409,
pages 19–33. Springer Berlin / Heidelberg, 2009.

[6] Y.-K. Kwok and I. Ahmad. Benchmarking and
comparison of the task graph scheduling algorithms. J.
Parallel Distrib. Comput., 59(3):381–422, 1999.

[7] X. Ma, M. Dong, L. Zhong, and Z. Deng. Statistical
Power Consumption Analysis and Modeling for
GPU-based Computing. In Workshop on Power Aware
Computing and Systems (HotPower ’09), 2009.

[8] A. Munier. Approximation algorithms for scheduling
trees with general communication delays. Parallel
Computing, 25(1):41 – 48, 1999.

[9] P. Pakzad and V. Anantharam. A new look at the
generalized distributive law. IEEE Transactions on
Information Theory, 50(6):1132–1155, June 2004.

[10] M. Silberstein, A. Schuster, D. Geiger, A. Patney, and
J. D. Owens. Efficient computation of sum-products
on GPUs through software-managed cache. In 22nd
ACM International Conference on Supercomputing,
pages 309–318, June 2008.

6

Figure 5: Part of the 268-node task tree with the hybrid-näıve and hybrid transfer-aware schedule. Nodes
marked with black diamonds denote the tasks assigned to a GPU by both schedules. Red circles denote only
the tasks assigned to a GPU according to the transfer-aware schedule. All unmarked nodes are assigned to
a CPU.

Tasks in tree Runtime (seconds) Nodes mapped to GPU
Optimal acceleration Hybrid-greedy CPU-only GPU-only Optimal acceleration Hybrid-greedy

390 110 126 213 211 25 14
529 86 86 119 174 41 28
268 55 55 408 67 86 62
595 21 25 174 33 139 111
1194 35 44 364 60 301 230
505 126 140 494 250 46 21

Table 3: Comparative performance analysis of the dynamic schedule for several real genetic analysis inputs.
The optimal acceleration schedule is the one produced by the algorithm described here. The hybrid-greedy
schedule considers only single kernel performance.

7

