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Abstract—Blind source separation of images and voice signals
is a well known and well studied subject. Solutions for this
problem have various applications, such as separation of voices
of multiple speakers in the same room, denoising, separation of
reflections superimposed on images, and more.

Classical time/position invariant Blind Source Separation is
usually solved using Independent Component Analysis (ICA),
which attempts to find statistically independent signals as a linear
combination of the mixed signals, or by using Sparse Component
Analysis (SCA) that estimates the mixing matrix by analyzing
the geometry of the problem and uses scatter plots of the mixed
signals to estimate co-linear centroids of the scattered data, where
each centroid corresponds to a column of the mixing matrix.

Most of the studies in the field assume time/position invariant
signal combinations, although many real life problems are not
such. Recently, in his PhD thesis, Ran Kaftory has proposed
an extension of the SCA method to solve multiple families
of the time/position varying problems. He has shown that for
instantaneous time/position varying mixtures, the problem of
lines estimation transforms to estimation of nonlinear curves.

In this work we explore the separation of instantaneous
time/position varying mixtures for which the parametric struc-
ture of the mixtures family is known apriori .We show that the
geometric approach can also be viewed as Maximum Likelihood
(ML) problem, when sparsification is applied to the mixed signals.
We propose a multi-staged SCA algorithm for separation of
time/position invariant mixtures and extend the solution to a
subset of time/position varying mixtures where the reconstruction
is performed by curve fitting techniques and nearest neighbor
clustering.

In addition to the geometric approach, we extend the well-
known technique of ICA by the ML approach, to the case of
time/position varying instantaneous mixtures. We show that ML
approach to the time/position varying separation problem can be
developed from an information theoretic perspective as a joint
Entropy minimization of the unmixed signals. We prove that
although the problem is non-convex, and may require non-linear
optimization techniques to solve, under certain conditions the
correct signals separation constitutes a global maximum of the
ML optimization problem.

We conclude by showing that the ML approach provides
promising results, but due to the non-linear nature of the prob-
lem, its optimization is challenging and SCA-based approaches
can be used as a complimentary technique to circumvent some of
the difficulties originating from the non-linearities of the problem.

I. INTRODUCTION

Blind source separation (BSS) [12] has attracted a great
deal of attention in recent decades. BSS deals with the
decomposition of given mixtures of signals/images onto the
original signals. This problem arises in real life applications

in communication systems, voice processing, photography and
filmography. The classical formulation of the problem is best
illustrated by the Cocktail Party problem [12]. At Cocktail
Party, a human brain is capable of separating single speaker
from many and from additional background noises. Although
we believe that human brain relies on additional information,
such as visual information and prediction of words from the
context, it is still possible to reconstruct the voice signal
by using only multiple microphones/sensors which provide
sufficient information for estimating the signals up to some
error.

In this work we present results for both time/position vary-
ing and invariant mixtures but most of the focus of this work
is on the BSS of time/position varying mixtures. The classical
BSS approach assumes that the mixtures and weights do not
change with time/position, however in real life application
this assumption is almost never true. Even a simple Cocktail
Party problem as described above is not time invariant due to
the movement of the people and changes of the environment.
Applications assuming that mixtures vary with time/position
are much more complicated than those which assume the
time/position invariance, due to the fact that the space of the
reconstruction contains many degrees of freedom. In general,
we believe that it is impossible to reconstruct signals from
time/position varying mixtures without additional information
or additional assumptions about the mixture families. In this
work we assume that the mixing family is known up to several
parameters. This assumption allows us to develop techniques
for searching the optimal reconstruction parameters.

A. Problem Definition

1) Instantaneous Time/Position invariant BSS:
Time/Position invariant BSS (TPIBSS) separation can
be described as a Multiple Input-Multiple Output (MIMO)
system, where the inputs are linearly mixed signals and
the outputs are the reconstructions of the unmixed signals.
The TPIBSS problem is a well studied problem and various
solutions have been developed for the problem in the past
decades. In many studies, the problem is solved using
Maximum Likelihood (ML) or similar approach [2], [6], [10],
[13], while other use geometric approach based on Sparse
Component Analysis [4],[5],[25].

A formal definition of this problem assumes that there exists

lesley
Text Box
CCIT Report #787     March 2011



2

a set of N signals and T samples of each signal

{{s1(ξ1), ..., s1(ξT )} , ..., {sN (ξ1), ..., sN (ξT )}} .

There also exists some unknown mixing matrix A of size M×
N . The samples are taken at a discrete time/postion grid ξi ∈
Ξ, where Ξ represents time for signals such as voice, and pixel
locations for images. The input of the BSS system can then
be described as a set of samples of M signals

{{x1(ξ1), ...,x1(ξT )} , ..., {xM (ξ1), ..., sM (ξT )}}

given by 
x1(ξ)
x2(ξ)
...

xM (ξ)

 = A


s1(ξ)
s2(ξ)
...

sN (ξ)

 . (1)

The output of the TPIBSS system are
the reconstructed samples of the signals
{{y1(ξ1), ...,y1(ξT )} , ..., {yN (ξ1), ...,yN (ξT )}}, such
that y(ξ) = s(ξ) up to constant amplification factor and
permutations. The amplification and permutation errors arise
from the fact that it is impossible to identify whether these
factors originated from the signals or from the mixing matrix
which can be any general matrix.

The preceding problem is usually solved under the following
assumptions [7], [12] :

• N = M , this assumption is used in all following sections
unless explicitly mentioned otherwise.

• A is an invertible matrix
• The signals {{s1(1), ..., s1(T )} , ..., {sN (1), ..., sN (T )}}

are statistically independent (for each time/position sam-
ple).

• The signals {{s1(1), ..., s1(T )} , ..., {sN (1), ..., sN (T )}}
are non gaussian

Not all of the assumptions above are always necessary. The
motivation for these assumptions and the cases in which some
of them can be omitted will be explained in detail in later
sections.

2) Instantaneous Time/Position Varying BSS: Instantaneous
Time/Position Varying BSS (TPVBSS) is considered to be a
difficult problem. To the best of our knowledge no solution
exists for the general case of TPVBSS. Recently, solutions for
special cases were presented in [1], [15], [24]; here we use the
problem formulation that is based on [15]. The formulation of
TPVBSS is very similar to that of Time/Position invariant.
The only difference is that in the time/position varying case,
we assume that the mixing matrix A is no longer constant,
but varies with time/position. We also assume that the matrix
A belongs to some known parametric family, and depends
on an unknown vector of parameters θ of size K. The input
signals {{x1(ξ1), ...,x1(ξT )} , ..., {xM (ξ1), ...,xM (ξT )}} for
the TPVBSS system are thus given by

x1(ξ)
x2(ξ)
...

xM (ξ)

 = A(ξ, θmix)


s1(ξ)
s2(ξ)
...

sN (ξ)

 , (2)

where θmix is an unknown parameters vector that is used
for creating the mixtures. The outputs of the system, as in

the case of TPIBSS, are the reconstructed samples of signals
{{y1(ξ1), ...,y1(ξT )} , ..., {yN (ξ1), ...,yN (ξT )}} that should
be equal to s(ξ) up to constant amplification factor and
permutations. The solutions of this problem also require the
same assumption as in the TPIBSS case.

Noted that the TPIBSS problem is a subclass of TPVBSS.
As such, TPIBSS can easily be formulated as TPVBSS prob-
lem, where we assume that the parametric space of the mixing
matrix is given by

A(ξ, θ) ≡

 θ1 ... θN
... ...

θNM−M+1 ... θNM

 . (3)

In other words, we constraint the mixing matrix to be in the
space of all constant matrices.

B. Paper Contributions

• Extension of Maximum Likelihood BSS solution for
TPVBSS:
We developed an algorithm which is based on the ML
solution of TPIBSS, that also solves various TPVBSS
problems. We show that under certain conditions this al-
gorithm provides optimal unmixing and analyze possible
sources of errors that may lead to wrong results.

• Staged Sparse Component Analysis algorithm for
TPIBSS:
We developed a new algorithm that is based on existing
Sparse Component Analysis techniques. It allows recon-
struction of the mixing matrix step by step, overcoming
difficulties encountered in estimating multiple maxima
simultaneously.

• Staged Sparse Component Analysis algorithms for
TPVBSS:
We developed an algorithm which solves some of the
TPVBSS cases using the Sparse Component Analysis
approach, and presented comparison of this approach to
the ML-based unmixing.

C. Paper Organization

In Section ?? we present the Maximum Likelihood approach
for the solution of TPIBSS and extend the solution to the case
of TPVBSS in Section III. Section ?? describes an alternative
approach for solving both TPIBSS and TPVBSS problems that
is based on image sparsification. We conclude by discussing
the results of this work and recommendations in section VI.

II. MAXIMUM LIKELIHOOD BLIND SOURCE SEPARATION
OF TIME/POSITION INVARIANT MIXTURES

In this section we briefly review, as a background, com-
monly known Maximum Likelihood (ML) results [11], [12],
[13]. We describe a gradient ascent [3] approach for ML,
although better algorithms (such as fixed point and natural
gradient algorithms) exist [9], [10], [14], we do not present
them, since, they can not be extended for the solution of
TPVBSS problem.

Assumptions needed for ML algorithm derivation for BSS:
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• Source signals are independent and identically distributed
for all ξ.

• Source signals joint probability distribution function is
not defined by its first 2 moments.

• Probability density function ps(si(i)) of the original
signals is known1. Note that although this assumption
might not be correct, consistent estimator of the signals
can still be achieved in some cases [21].

Under these assumptions, the probability density function of
a vector of signals s(ξ) is given by

p(s1(ξ), s2(ξ), ..., sM (ξ)) =
M∏
i=1

ps(si(ξ)), (4)

Let matrix B be the inverse of the mixing matrix A. It can be
easily shown [12], that if the relation between given samples
and the original signals is given by (1), then the probability
distribution function of the given samples is

p(x1(ξ),x2(ξ), ...,xM (ξ)) = |detB|
M∏
i=1

ps(B
T
i xi(i)). (5)

In order to find the probability of a set of samples, we perform
quantization of the probability density function into small
sized buckets. The probability that the set of mixture samples
{xi(ξ)} represents the signals mixed by the given matrix B−1

is:

F (B) ≡ p(x1(ξ),x2(ξ), ...,xM (ξ)|B) =

= △MT
∏
ξ∈Ξ

| detB|
M∏
i=1

ps(B
T
i xi(ξ)), (6)

where △ is an arbitrarily small-sized quantization bucket.
Most of the studies in the field of BSS omit this term, since
it does not affect the optimization problem, adding only a
constant factor. We presented it here for correctness, but
further more it’s important to note that the quantization is
performed in the space of the mixed signals, and not in
the space of the source signals. Although for time/position
invariant BSS it has no difference as will be shown later in this
section, it has a serious impact on the time/position varying
BSS.

Usually instead of maximizing the expression in (6), its log
is maximized. The log likelihood is given by

L(B) = logF (B) =

= T log | detB|+MT log△+

+
∑
ξ∈Ξ

M∑
i=1

log ps(B
T
i xi(ξ)). (7)

L(B) is the log likelihood probability of the given samples.
This expression is usually optimized for matrix B to achieve
reconstruction. Note that although during the derivation of (7),
we used the fact that the original signals are independent,
the maximization of L(B) does not guarantee that the recon-
structed signals will be independent or uncorrelated. Thus the

1This assumption is used for derivation of the algorithm and its justification
will be shown later

expression in (7) is usually optimized under the constraint that
reconstructed signals are uncorrelated and have unit variance.

Lemma 2.1: In the maximization of the expression in (7)
under the constraint that reconstructed signals are uncorrelated
with unit variance, | detB| is a constant.

Proof: From the given constraint we can conclude that
Rss = I . However, since s(ξ) = Bx(ξ), it is known that
Rss = BRxxB

T . Substituting the expressions for the covari-
ance matrices and taking the determinant of both sides we get

1
| detRxx| = | detB|

2 implying that | detB| is a constant.
By omitting all the constant expressions from (7) we end

up with a simpler target function

Q(B) =
∑
ξ∈Ξ

M∑
i=1

log ps(B
T
i xi(ξ)), (8)

which can optimized under the constraint that the original
signals are uncorrelated and have unit variance.

A. Alternative Approach for ML BSS of Time Invariant Mix-
tures

Instead of maximizing the probability that a set of given
samples is generated by the mixing matrix B−1, we can
maximize the probability that reconstructed signals are indeed
signals which match the predefined distribution. The main
difference in the resulting formula arises from the fact that
the quantization of the probability function is performed in
the source signals space, instead of quantization in the mixed
signal space. The probability in this case is

F̂ (B) = △MT
∏
ξ∈Ξ

M∏
i=1

ps(B
T
i xi(ξ)), (9)

The log likelihood of this expression is given by

L̂(B) = MT log(△) +
∑
ξ∈Ξ

M∑
i=1

log(ps(B
T
i xi(ξ))), (10)

Note that the expression in (10) is the same as in (8) up
to a constant, thus we conclude that the ML algorithm for
time/position invariant BSS is obtained from maximization of
probability of mixed signals is the same as maximization of the
probability of unmixed signals. This result is not trivial, since
the quantization of the probability function does not affect the
final probability formula in the same way in the above cases.

B. Predefined signals probability function

In the definition of the ML BSS solution we have assumed,
so far, that the probability density function of the original
signals is known apriori. In fact, in general applications this
assumption is wrong and some approximation should be used.
There exists a simple set of functions that provide surprisingly
good reconstruction results for the BSS problems. One such
function is:

f(v) ≡ log ps(v) ≡ log cosh(v)− v2

2
+ a, (11)

where the constant a does not affect the optimization and
thus can be omitted. Note that without the constant a, f(v)
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is non positive for all v. This function represents a simple
sub-Gaussian distribution and provides a good estimation for
the probability distribution of images, which usually also have
sub-Gaussian histograms [12].

C. Results

Here we show an example of the reconstruction using
the maximization of the likelihood as described above. The
expression in (10) is maximized under the constraint that
the reconstructed signals are uncorrelated. This constraint is
forced by first applying whitening and then performing the
log likelihood maximization in the space of the orthonormal
matrices [12]. Note that there exists more than one optimal
reconstruction, since reconstruction of the negatives of the
original signals is also an optimal reconstruction. In order to
show the images properly they are normalized to be positive
and have positive means. It also should be noted that some
of the reconstructed images might seem lighter/darker due
to the fact that the reconstruction can only be done up to a
scaling factor. At Figure 2 we show 3 mixtures of signals that
were generated with the following randomly generated mixing
matrix  4.9807 0.5333 3.8746

0.3909 4.8095 4.0865
2.2134 0.0232 4.3435

 , (12)

from the original signals at Figure 1. At Figure 3 it can be seen
that the reconstructed signals are very similar to the original
ones up to scaling and permutation.

Fig. 1. Original images

Fig. 2. Mixed images

Fig. 3. Reconstructed images

D. Entropy and Mutual Information Minimization

Another useful approach which leads to the same result
as in the previous sections is the minimization of mutual
information between reconstructed signals. It is a well known
result [8] that Mutual Information of a set of random variables
achieves its minimal value of 0 only for an independent set
of random variables (for non singular distributions). From

Lemma. II we can see, that the determinant of matrix B is
constant, thus for every reconstruction matrix B, the mutual
information of the reconstructed signals is given by

I(Bx(ξ)) =

N∑
i=1

H(BT
i xi(ξ))−H(Bx(ξ)) =

=
N∑
i=1

H(BT
i xi(ξ))−H(x(ξ))− E {log | detB|} .(13)

The last two expression in (13) are constant for any matrix
B during the reconstruction, thus the minimization of mutual
information of the signals boils down to the minimization of
sums of entropies of the reconstructed signals, which leads to
the same solution as in the case of Negentropy maximization
and the ML approach.

III. MAXIMUM LIKELIHOOD BLIND SOURCE SEPARATION
OF TIME/POSITION VARYING MIXTURES

When considering the time/position varying BSS problem,
we assume that the input signals to the unmixing system are
generated by the model described by (2). We also assume that
the parametric model of the mixing matrix A(ξ, θ) is known -
and thus the parametric family of the inverse matrices B(ξ, θ)
is also known.

A. Naive Reconstruction

A naive extension of the method proposed in Section II
can be derived, by starting from the assumption that an
approximation of probability function of the original signals
is known and given by (11). Thus the probability distribution
of input signals of the system for a specific time/space point
is given by

p(x1(ξ),x2(ξ), ...,xM (ξ)) = | detB(ξ, θ)|
M∏
i=1

ps(B
T
i (ξ, θ)xi(ξ)).

(14)
Once again we shall use the approximation of the discrete
probability function to measure the probability of obtaining
the set of given samples. The probability that a given set of
input samples generated with the given probability function
and with the given θ is then given by

F (θ) = △MT
∏
ξ∈Ξ

|detB(ξ, θ)|
M∏
i=1

ps(B
T
i (ξ, θ)xi(ξ)). (15)

Instead of maximizing the function F for the parameters vector
θ, we optimize its log

L(θ) = MT log(△) +
∑
ξ∈Ξ

| log | detB(ξ, θ)|+

+
∑
ξ∈Ξ

M∑
i=1

log(ps(B
T
i (ξ, θ)xi(ξ))). (16)
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Fig. 4. Non normalized cameraman
histogram

Fig. 5. Histogram of cameraman with
zero mean

Fig. 6. Histogram of cameraman with
zero mean and unit variance

Fig. 7. Estimation of the histogram
using (11)

One could expect that optimizing the function in (16) with
respect to θ, under the constraint that reconstructed signals
should be uncorrelated would provide a good reconstruction
of the original signals. In practice, however, this approach does
not perform well on most of the parametric families for various
reasons:

• One of the main problems of the naive approach arises
from the fact that the approximation of a probability
function ps is a good approximation only for signals

with zero mean and unit variance. For example, it can
be seen that the estimation of the histogram at Figure 7
is a much better estimation for the normalized histogram
of the cameraman image (Figure 6) than the histogram
of the non normalized cameraman image (Figure 4)
or of the cameraman image with just the mean value
normalizated (Figure 5). Note that although the quality
of the approximation can be seen by eye, we can define
the quality of approximation using KL divergence as we
will show later. For the time/position invariant case, the
problem of non normalized signals is solved by applying
whitening onto the input signals and then maximizing the
probability in the space of unitary reconstruction matrices
- it preserves the invariant of the zero mean and the unit
variance of the reconstructed signal. In the TPIBSS case
whitening is not an option, since after whitening it is
very likely that there does not exist θ that reconstructs the
signals (whitening changes the family of the parametric
mixtures, since it adds additional linear mixing). For
general parametric families there exist no preprocessing
of the signals that would assure unit variance and zero
mean invariant. We solve this problem in the next sections
by defining regularization of the reconstructed signals at
each step of the algorithm to preserve those statistical
invariants for the reconstructed signals.

• An additional problem with the naive approach is
that for many parametric families the expression∑

ξ∈Ξ | log(| detB(ξ, θ)| is unbounded for the parameters
vector θ and the maximization of the expression in (16)
usually does not converge, since there are paths that lead
to infinite increase of this expression - usually this would
be the dominant element in the log likelihood expression.
The reason that this problem does not occur in the
time/position invariant case can be explained by Lemma
II which proves that for the TPIBSS the analogue of this
expression is a constant, but this Lemma is no longer
valid for the TPVBSS problem and thus this element
causes divergence of the solution. Careful analysis of the
sources of this expression reveals that it appears due to
the fact that quantization of the probability function is
performed in the space of the input signals. The problem
can be resolved by taking the alternative approach as
described in Section II-A.

B. Reconstruction of Signals in The Space of Normalized
Signals

The approach in this section is based on the naive recon-
struction that was described in Section III-A. The problems of
the naive approach are solved by performing a normalization
of the reconstructed signals. For this purpose we define the
vector of the non normalized reconstructed signals for the
given θ as

z1(ξ, θ)
z2(ξ, θ)

...
zM (ξ, θ)

 = B(ξ, θ)


x1(ξ)
x2(ξ)
...

xM (ξ)

 . (17)
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The mean vector of these signals for the given θ is

m(θ) ≡ 1

T

∑
ξ∈Ξ

z(ξ, θ). (18)

We can now define the variance normalization matrix as

N(θ) = diag



√
T−1∑

ξ∈Ξ z1(ξ,θ)2−Tm1(θ)2√
T−1∑

ξ∈Ξ z2(ξ,θ)2−Tm2(θ)2

.

.√
T−1∑

ξ∈Ξ zM (ξ,θ)2−TmM (θ)2


. (19)

The normalized reconstructed signals are now given by

y(ξ, θ) = N(θ) (z(ξ, θ)−m(θ)) (20)

Lemma 3.1: The normalized signals vector y(ξ, θ) has zero
mean2 (with respect to ξ).

Lemma 3.2: Each normalized signal yi(ξ, θ) has unit vari-
ance.

From the results above we can conclude that the signals vector
y(ξ, θ) is a normalized estimation of the reconstructed signals
for the given θ. As in the case of TPIBSS we can now define
the log likelihood for a given set of normalized reconstructed
samples for each θ as

L(θ) =
∑
ξ∈Ξ

M∑
i=1

log(ps(yi(ξ))). (21)

Once again it is useful to note that the expression in (21) can
be seen as an estimation of the sum of the negation of the
entropies of the reconstructed signals, where ps is assumed to
be the probability function of the signals. Note that from the
fact that log(ps(v)) is non positive expression, follows that
L(θ) is also non positive for all θ.

2Note that all claims about statistical measures are actually claims about
their estimates from the signals

Fig. 8. Original images

Fig. 9. Mixed images

Fig. 10. Reconstructed images with no regularization applied

Maximization of the expression in (21) provides good recon-
struction results for many parametric families and solves the
problems which were an inherent part of the naive approach.
However, careful analysis of the proposed approach reveals
that it does not constraint the reconstructed signals to be
independent. In fact, for some parametric families all the
reconstructed signals can be the same. As a simple example
of such a case, we can look at the parametric family for which
the reconstruction matrix is given by

B(ξ, (θ)) =

(
θξ (1− θ)ξ
0 ξ

)
, (22)

for this parametric family, the same signal will be recon-
structed twice for θ = 0 and if this signal has a large
Entropy, then the global maximum will be close to it. Figure 11
illustrates the energy graph for various values of θ. The plot is
presented for images that were mixed with θ = 2, however, as
it can be seen the maximal energy value is achieved at θ = 0.
This happens because the energy function as defined in (21)
does not penalize for reconstruction of correlated signals. As
can be seen at Figure 10 the reconstruction is this case is very
poor, and only one signal is reconstructed.
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Fig. 11. Energy of a mixture of a two images, the mixing parameter is θ = 2.
The point θ = 2 is not even local maximum due to the fact the reconstructed
signals are not constrained to be uncorrelated

One way of solving this problem is performing constrained
optimization of the energy function from (21). We do not
use this approach due to the fact that under the constraint
of uncorrelated signals reconstruction, the function can have
multiple local maxima. With multiple restarts and simulated
annealing [20], the constrained optimization problem is very
expensive computationally. As an alternative for this approach
we present a regularization penalty factor based on the recon-
structed signals covariance matrix Ryy(θ) defined by

Ryy(θ) ≡ E
{
y(ξ, θ)yT (ξ, θ)

}
. (23)

Let us define the penalty factor as:

P (θ) ≡ log |detRyy(θ)| (24)

Lemma 3.3: P (θ) achieves its minimal value of 0 when the
reconstructed signals are uncorrelated.

Proof: From the definition of the correlation matrix, if
the reconstructed signals y(ξ, θ) are uncorrelated, then Ryy(θ)
is diagonal. The elements on the diagonal are exactly the
variance of each signal. From Lemma 3.2 all the variances
are 1, thus for uncorrelated signals reconstruction Ryy(θ) = I
and thus its determinant equals to 1 and the its log is equal to
0.

Fig. 12. The energy of a mixture of a two images, the mixing parameter is
θ = 2. The regularization element is applied with λ = 2, the global maximum
is now located at θ = 2.7 which provides much better reconstruction than
θ = 0.

Using the penalty factor we now define the energy function
which penalizes the reconstruction of correlated signals as

F (θ) = L(θ) (1 + λP (θ)) =

=

∑
ξ∈Ξ

M∑
i=1

log(ps(yi(ξ)))

+

+

∑
ξ∈Ξ

M∑
i=1

log(ps(yi(ξ)))

 log | detRyy(θ)|(25)

The penalty function is multiplicative and non additive in order
to normalize units. The penalty function values are usually
larger than the values L(θ). Therefore, if we would just add
the penalty function, then the problem would become very
similar to decorrelation which is of course an unwanted result.
It should be noted that the regularization factor λL(θ)P (θ) is
always non-positive due to the fact that L(θ) is non positive
and P (θ) is positive for all θ. Thus the regularization factor
achieves its maximal value of 0 for uncorrelated reconstruction
signals. It can be seen on Figure 12, that when the regular-
ization is applied for the same example as in Figure 11 the
maximum is now achieved at 2.7 which is closer to the real
value of the mixing parameter 2, it can also be seen that the
reconstructed signals for this parameter value are now similar
to the original ones (Figure 15).

Fig. 13. Original images

Fig. 14. Mixed images

Fig. 15. Reconstructed images when regularization is applied with λ = 0.1

C. Reconstruction in the Space of Normalized Signals Using
Mutual Information Minimization

As mentioned above, one of the interpretations of the
ML reconstruction in the time/position invariant case is the
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minimization of Mutual Information. It allows development
of similar reconstruction algorithm, which under certain condi-
tions can be proven to be optimal. Thus, we can define our goal
as minimization of the mutual information of the normalized
reconstructed signals (which are defined in (20)):

I(y(ξ, θ)) =
M∑
i=1

H(yi(ξ, θ))−H(y(ξ, θ)) =

=
M∑
i=1

H(yi(ξ, θ))−H(x(ξ))−

−E {log | detN(θ)B(ξ, θ)|} =

=
M∑
i=1

H(yi(ξ, θ))−H(x(ξ))−

−E {log ||detB(ξ, θ)|} −
− log | detN(θ)|. (26)

Lemma 3.4: If the original signals s(ξ) are iid, then θmix

that reconstructs these signals (up to a multiplicative constant)
is a global minimum of the expression in (26).

Proof: The minimal possible value of the mutual informa-
tion is 0 and it is achieved for the reconstruction of indepen-
dent signals. θmix achieves the reconstruction of independent
signals and thus I(y(ξ, θmix)) = 0 is a global minimum (not
necessarily unique).

The expression H(x(ξ)) is constant - it is the Entropy of
the original mixtures. Thus the minimization of the mutual
information can be written as the maximization of

E {log | detB(ξ, θ)|}+ log | detN(θ)| −
M∑
i=1

H(yi(ξ, θ)).

(27)
Once again we assume that the pdf of the reconstructed signals
is known and is equal to ps for all reconstructed signals. Thus
an estimate of the sum of entropies from the samples of the
reconstructed signals is given by

−
M∑
i=1

H(yi(ξ, θ)) =
M∑
i=1

E {log(ps)} ≈

≈ 1

T

M∑
i=1

∑
ξ∈Ξ

log(ps(yi(ξ))). (28)

The expression that should be maximized is given by

FI(θ) =
1

T

M∑
i=1

∑
ξ∈Ξ

log(ps(yi(ξ))) +

+
1

T

∑
ξ∈Ξ

log |detB(ξ, θ)|+ log ||detN(θ)|.(29)

Note that the expression in (29) does not require any additional
regularization since reconstruction of the same signal more
than once can never yield the maximum due to the fact that∑

ξ∈Ξ log | detB(ξ, θ)| will be equal to minus infinity for such
reconstruction.

Lemma 3.5: If the original signals s(ξ) are iid with unit
variance, the pdf of the all of the original signals(normalized to
unit variance and zero mean) is equal to ps and the number of

signal samples tends to infinity then the real mixing parameter
θmix is the global maximum of the expression in FI(θ).

Proof: When the number of samples tends to infinity
then FI(θ) tends to negation of the expression in (26) (up
to a constant), since all the statistical estimates converge to
their real values (the Entropy estimation is also correct since
we assumed that the pdf estimation is perfect). Thus, FI(θ)
achieves its global maximum for the same value of θ as (26),
and from Lemma 3.4 it is achieved for a perfect reconstruction
of θmix.

D. Discussion

The approach described in this section, works well on
numerous parametric families, but still there exist parametric
families for which it would not work well. Here we try to better
understand when does the global maximum of the expression
in (25), (29) indeed corresponds to a good reconstruction.

Some parametric families vary significantly with time. As a
simple example of such a parametric family we can consider
a family with the reconstruction matrix

B(ξ, θ) =

(
1 θ1||ξ||3

θ1||ξ||3 1

)
. (30)

Since the reconstruction approach relies on statistics, it
is desirable that the mixtures will not change rapidly in
time/position. For parametric families, such as those of (30),
the elements for larger values of ||ξ|| become much more
significant than the samples for smaller values of ||ξ||. This
causes the covariance matrix estimation in the regularization
term of (25) to depend primarily on the last samples (samples
of large ||ξ||). In such cases the covariance estimation causes
invalid behavior of the regularization factor. This issue is par-
tially solved, using the predefined probability density function,
which penalizes such singular distribution functions. However
the algorithm will fail to converge in most of such cases.

Another issue that may affect correctness of the reconstruc-
tion is the fact that the Entropy used in the optimization
problem is estimated using a simple probability function.
For each random variable y this approximation introduces an
estimation error that can be formulated as follows

Hy − E{− log ps} = Hy +

∫
py(v) log(ps(v))dv =

= Hy −
∫

py(v) log

(
1

ps(v)

)
dv =

= Hy −
∫

py(v) log

(
py(v)

ps(v)

)
dv +

+

∫
py(v) log(py(v))dv =

= Hy −DKL(py||ps)−Hy =

= −DKL(py||ps). (31)

Thus the introduced error equals to minus the KL divergence
between the probability function of random variable and its
estimate. The error factor is always negative and is zero if
and only if the estimated probability density function coin-
cides with the probability density function itself. From this it
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becomes clear, that if there exist θ2 for which ps constitutes a
better approximation of the probability function, than for the
original signal probability function, it can cause the appearance
of an invalid global maximum. Note that this error function is
highly dependent on the probability distribution of the original
signals, and thus no explicit expression for the error factor can
be derived.

E. Results
In this section we show results of the reconstruction using

the maximization of the expressions in (25) and (29). The
maximization was performed using a gradient ascent algorithm
with golden section algorithm for finding maximum in the
specific direction [3]. In addition we used a multiple restart
strategy and simulated annealing [20] in order to avoid local
maxima. The high level algorithm applied for the reconstruc-
tion is given at Algorithm 1. Note that due to the non-
deterministic nature of the algorithm, for some runs it does
not converge to the correct reconstruction vector. However
if a sufficient number of iterations and restarts is used, the
probability for this tends to 0. It should also be noted that
for all parametric families on which we tested the algorithm,
optimization of (29) always provided similar or better results
than those that were achieved by optimizing (25).

Algorithm 1 Calculate θopt =
R(mixedImages,maxIter,maxRest,maxTemp)

numRestarts← 0
θopt ← randomInitV alue
energyopt ← F (θopt)
while numRestarts ≤ maxRestarts do
θ ← randomInitV alue
i← 0
while i ≤ maxIter do

T = maxTemp
(
1− i

maxIter

)
randMove = makeRandomMove(T )
if shouldMakeRandomMove(T, F (θ), F (θ +
randMove)) then
θ ← θ + radnomMove

else
gradF ← ∇F (θ)
bestStep← argmaxα F (θ + α · gradF )
θ ← θ + α · gradF

end if
if energyopt < F (θ) then
θopt ← θ
energyopt ← F (θopt)

end if
end while

end while

Figure 18 illustrates the reconstruction results for the max-
imization of (25) for a parametric family given by

A(θ, c) =

(
1 1 + θ1c

1 + θ2c 1

)
(32)

where c is proportional to the column number. As can be seen,
the reconstruction provides good, although non perfect, visual

results in this case. The reconstruction using (29) provides
almost similar results and thus we omit it here.

Fig. 16. Original images

Fig. 17. Mixed images

Fig. 18. Reconstructed images when regularization is applied with λ = 0.1

On the other hand, for a simple parametric family, given by
a rotation matrix (varying with parameter r that is proportional
to the row index)

A(θ, r) =

(
cos(θ1r) sin(θ1r)
−sin(θ1r) cos(θ1r)

)
(33)

the reconstruction result is incorrect for the maximization of
(25) as seen in Figure 21. The optimization of the same exam-
ple using the expression in (29) provides good reconstruction
results as can be seen in Figure 22.
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Fig. 19. Original images

Fig. 20. Mixed images

Fig. 21. Reconstructed images when regularization is applied with λ = 0.1

Fig. 22. Reconstructed images using maximization of (29)

IV. SSCA SEPARATION OF TIME/POSITION INVARIANT
MIXTURES

In this section we present the application of Staged Sparse
Component Analysis (SSCA) in solving the BSS problem [15],
[16], [17], [18], [19]. We offer here a different approach here
and extend it to perform on a larger set of parametric families.
In this Section we present the approach for time/position
invariant mixtures and later we extend it to time/position
varying mixtures in Section V.

A. Sparsification

As follows from the title, SSCA is based on the sparse
representation of the signals/images at hand. We assume that
there exists a transformation from the space of source signals
to the space of sparse signals (usually nonlinear), that can be
applied to each of the mixed signals3, Ψ [x] (ξ), and has the
following properties:

3When we use the notation of a transformation to a vector of signals, it
means that the transformation is applied on each of the signals separately and
the result is a vector of the transformed signals

1) At most one signal is active at any given time/position:
for each ξ, the probability that Ψ [s] (ξ) is comprised
of more than one signal larger than zero is significantly
smaller than the probability that only one signal is larger
than zero.

2) Invariance to a mixing process: Ψ [x] (ξ) ≈ AΨ [s] (ξ).
This means that the order of applying the transformation
and the mixing process does not affect significantly the
result.

3) Zero mean: E{Ψ [x] (ξ)} = 0

In order to satisfy these constraints we should restrict ourselves
to the family of sparse transformations that depend on a
parameter δ, for which there exists a continuous function k(δ),
and δ0 ≥ 0, such that for all signals under consideration the
following holds:

p(|Ψδ [si] (ξ)| > 0) ≤ k(δ) ∀i, ξ, δ (34)
p(|Ψδ [si] (ξ)| > δ) > 0 ∀i, ξ, δ > δ0 (35)
p(|Ψδ [si] (ξ)| > 0) = 0 ∀i, ξ, δ0 ≥ δ ≥ 0 (36)

k(δ1) ≤ k(δ2)⇔ δ1 ≤ δ2. (37)

Let us denote by p̃δ(m) the probability that exactly m signals
have value larger than 0. Then if follows immediately from
Lemma.4.1 that every such transformation satisfies property
1. Thus, we should look for the transformation that satisfies
the invariance to the mixing process.

Lemma 4.1: Every transformation Ψδ [s] that has a func-
tion k(δ) that satisfies (34)-(37) satisfies property 1 -
limδ→δ0

∑M
m=2

p̃δ(m)
p̃δ(1)

= 0, for a set of M independent sta-
tionary signals s(ξ) that have the same probability distribution.

Proof: Let us define

pδ ≡ p(|Ψδ [si] (ξ)| > 0). (38)

It is well defined and independent of i, since we assume that
all signals have the same probability distribution. The signals
are independent and, thus, their transformation must also be
independent. The probability that exactly m signals have value
greater than 0 is given by 4

p̃δ,ϵ =
M !

m!M −m!
pmδ (1− pδ)

M−m. (39)

Since limδ→δ0 pδ = 0, for small enough δ the following holds
for m ≥ 2:

m!(1− pδ)
m−1 ≥ 1 (40)

and, thus, for all m ≥ 2 :

p̃δ(m)

p̃δ(1)
=

M !
m!M−m!p

m
δ (1− pδ)

M−m

M !
M−1!pδ(1− pδ)M−1

= (41)

=
M − 1!

m!M −m!

pm−1
δ

(1− pδ)m−1
≤ (42)

≤ M − 1!

M −m!
pm−1
δ ≤ M − 1!

M −m!
k(δ)m−1. (43)

4This expresses merely the probability that in a set of M binomial
experiments there are m times success
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Since M is a finite number and limδ→δ0 k(δ) = 0, it immedi-
ately follows that

lim
δ→δ0

p̃δ(m)

p̃δ(1)
= lim

δ→0

M − 1!

M −m!
k(δ)m−1 = 0 (44)

and also

lim
δ→δ0

M∑
m=2

p̃δ(m)

p̃δ(1)
= 0. (45)

In this work we focus on sparsification using wavelet
transforms. This is done by performing wavelet packet decom-
position of the images for 2 levels, and then for each pixel of
the image we define Φ {si} (ξ) as the closest (spatially) value
at one of the high frequency bands. Then, using the threshold
function

uδ(v) =

{
v v ≥ 1

δ
0 else

, (46)

we can define the transformation

Ψδ [si] (ξ) = uδ(Φ{si}(ξ)). (47)

For most of the images, the number of pixels that contain
high frequencies is small. Therefore for small enough values
of δ the above transformation indeed serves the purpose of
sparsification. Furthermore, it can be easily seen that the
mean value of the transformed signals is zero, since highpass
filtering is used.

The sparsification is almost invariant to linear transforma-
tions, since wavelet transform is invariant to linear transfor-
mations and the only factor that affects this invariance is the
nonlinearity uδ . The mixing coefficients can cause significant
change in the energy of the mixed signal (and thus in the
energies of the channels). Thus values that did not pass the
threshold before the linear transformation, will pass it after
the transformation and vice-versa.

B. Separation of Mixtures

As mentioned in section I, the reconstruction of the signals
can be accomplished up to a constant scaling factor. In the
ML approach we reconstructed the signals with unit variance,
whereas here we take a different approach and reconstruct the
signals with the same magnitude as in the first mixture. We
assume that all the coefficients of the mixing matrix are non
zero for the first row, and thus we can define an alternative
mixing matrix whose elements are defined by

Âi,j =
Ai,j

A1,j
. (48)

Assuming that the mixing matrix is Â instead of A, we should
reconstruct the signals ŝi(ξ) = A1,isi(ξ). Note that if the
original signals si(ξ) are independent, so are the signals ŝi(ξ).

Let us define ΞL = {ξ1, ξ2, ..., ξL} as a set of L values for
which

Ψδ [x1] (ξ) ̸= 0 ξ ∈ ΞL, (49)

where Ψδ is a sparsification that satisfies the conditions stated
in Section IV-A. For all ξ ∈ ΞL we obtain

Ψδ [xi] (ξ)

Ψδ [x1] (ξ)
=

Ψδ

[
ÂT

i ŝ
]
(ξ)

Ψδ [1T ŝ] (ξ)
≈ ÂT

i Ψδ [̂s] (ξ)

1TΨδ [̂s] (ξ)
(50)

and, according to Lemma 4.1, we may conclude that with
high probability only one signal has non-zero value and thus
for each ξ it is useful to define

ri(ξ) ≡
Ψδ [xi+1] (ξ)

Ψδ [x1] (ξ)
i ∈ 1..M − 1. (51)

Treating ri(ξ) as a random variable, we can see that ideally
the probability distribution pri(v) should be a sum of delta
functions, each one corresponding to a different coefficients
of the matrix Âi+1,j .

1) Reconstruction in case of 2 signals: As mentioned
above, in an ideal case, we would have one or two delta
functions as a probability distribution function of r1. In
practice, however, r1(ξ) is usually noisy and no explicit delta
functions exist. This happens since the sparsification is not
ideal and in most cases every value of the sparsified mixture
signals is a sum of values contributed by multiple source
signals (where only one value is large and all the other values
are significantly smaller). Figure 23 illustrates an example plot
of the histogram of r1(ξ) for 2 images with a mixing matrix

Â =

(
1 1
2 6

)
, (52)

where the threshold 1
δ was chosen such that approximately

2% of the pixels of the mixture corresponding to the first row
would pass. The histogram was calculated by quantizing each
value to a bucket of size5 0.1. The two maxima are around
the values 2 and 6, but instead of punctuate distribution, there
are clouds of the values around the two maxima.

Fig. 23. Histogram of r1(ξ) for mixture of two signals, where Â2 = (2, 6)

Using the histogram as a probability function for the means
of finding maxima is challenging due to its non continuous
nature. A smoother estimation of pr1(ξ) can be achieved by
using a kernel approximation for the probability distribution.
In this work we use a Gaussian kernel, defined as

Kσ(v) ≡
1√
2πσ2

e−
v2

2σ2 . (53)

5The term ”bucket size” is used here to specify the quantization resolution
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Using this kernel, the approximation of pr1(ξ) is given by

pr1(v) =
1

L

∑
ξ∈ΞL

Kσ(r1(ξ)− v). (54)

The smooth version of the probability function is depicted in
Figure 24, for σ = 0.5. The maxima of the probability function
appear close to 2 and 6.

Fig. 24. The probability function pr1 for mixture of two signals, estimated
with kernel K0.5(v) for Â2 = (2, 6)

These maxima can now be found by sampling the space
of possible values (it is a one-dimensional, usually bounded,
space), by using a gradient ascent algorithm with multiple
restart points, or by using clustering algorithms such as K-
Means, where each cluster will match a different coefficient
in Â2. An additional algorithm for finding the maxima is
presented later in this section.

Given the two maxima that correspond to the matrix coeffi-
cients Â2,1, Â2,2, the estimation of the source signals is easily
obtained by

s̃(ξ) =

(
1 1

Â2,1 Â2,2

)−1

x(ξ) (55)

Fig. 25. pr1 for mixture of two signals estimated with kernel K0.5(v),
where Â2 = (2, 6)

The signal separation, outlined above, depends on correct
estimation of all the maxima. However, in many cases the
mixing matrix amplifies the energy of one of the signals more
than the other and thus, only one maximum can be found using
the above techniques. The second maximum is obscured in

such cases. This is indeed the case of the probability function
for the mixtures of the cameraman and tissue image depicted
in Figure 25 where, the mixing matrix of 52 was used. In this
case the coefficient value of 6 dominates the distribution (the
maximum is actually at 5.96) but the expected maximum at
2 can not be identified. Using this provisional wrong estimate
of Â2 = (0, 6) the reconstruction is now correct only for one
of the signals (see Figure 29), the second reconstructed signal
contains a mixture of the cameraman and tissue images. The
problem happens because we estimated the second coefficient
to be 0 instead of 2. None of the above mentioned techniques
for finding maxima can cope with this problem. The solution
can be derived from the observation that when one of the
coefficients is estimated correctly, it can be used to ”disable”
one of the signals from the first mixture even without knowing
the value of the second coefficient. Thus we begin by first
finding only one maximum (using a gradient ascent or a similar
optimization algorithm) - this maximum corresponds to one of
the coefficients. After finding one of the coefficients (without
loss of generality we assume that it is Â2,2), we can repeat
the application of the above algorithm, where instead of using
the original mixtures, we now use(

z1(ξ)
z2(ξ)

)
=

(
x1(ξ)− 1

Â2,2
x2(ξ)

x2(ξ)

)
=

=

(
(1− Â2,1

Â2,2
)̂s1(ξ)

Â2,1ŝ1(ξ) + Â2,2ŝ2(ξ)

)
.

Using the vector z(ξ) as the new signals yields:

r1(ξ) =
Ψδ

[
Â2,1ŝ1 + Â2,2ŝ2

]
(ξ)

Ψδ

[
(1− Â2,1

Â2,2
)̂s1

]
(ξ)

≈

≈ Â2,1Â2,2Ψδ [̂s1] (ξ)

(Â2,2 − Â2,1)Ψδ [̂s1] (ξ)
+

Â2
2,2Ψδ [̂s2] (ξ)

(Â2,2 − Â2,1)Ψδ [̂s1] (ξ)
.

The distribution of the element Â2,1Â2,2Ψδ [̂s1](ξ)

(Â2,2−Â2,1)Ψδ [̂s1](ξ)
is ap-

proximately a Gaussian concentrated around Â2,1Â2,2

Â2,2−Â2,1
. The

element
Â2

2,2Ψδ [̂s2](ξ)

(Â2,2−Â2,1)Ψδ [̂s1](ξ)
adds symmetric noise with zero

mean (the signals are uncorrelated and the mean of Ψδ [̂s2] (ξ)
is 0) and thus should not alter the location of the expected
maximum. Therefore, the maximum of the probability function
is now located at Â2,1Â2,2

Â2,2−Â2,1
.

At Figure 26 we can see that the maximum is now achieved
at 4.03 and Â2,1 can be estimated as follows:

Â2,1Â2,2

(Â2,2 − Â2,1)
= 4.03 ⇒

⇒ Â2,1 =
4.03Â2,2

Â2,2 + 4.03
= 2.4 .

This estimation provides a much better reconstruction of the
signals and, in fact, the unmixing achieves visually, close to
perfect results in this case (Figure 30).
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Fig. 26. pr1 for mixture of two signals z1(ξ), z2(ξ) estimated with kernel
K0.5(v), where Â2 = (2, 6)

Fig. 27. Original cameraman and tissue images

Fig. 28. Mixed images with Â2 = (2, 6)

Fig. 29. Reconstructed images, based on the estimation Â2 = (0, 5.96)

Fig. 30. Reconstructed images with maxima estimated using a two-staged
approach, the resultant estimated Â2 = (2.4, 5.96) used for the reconstruction

2) Reconstruction in the general case: In the general case,
where we deal with mixtures of more than two signals,
similar reconstruction techniques can be applied in principle.
However, the following additional difficulties usually arise:

• Ordering is now an issue - even when we know all ele-
ments in each matrix row, we do not know their order and
the matrix can not be inverted. Using an arbitrary ordering
is now not permitted, since the only permutations that
do not affect the result, are permutations of the whole
columns. Arbitrary permutations in each row lead to a
wrong matrix inversion.

• Due to the interference of multiple sources, additional
local maxima that do not correspond to any matrix
coefficient can be found.

In this work we solve the ordering problem by estimating
maximum probability of the joint distribution of vector r =
[r1(ξ), r2(ξ), ..., rM−1(ξ)], where each maximum corresponds
to a column of the mixing matrix Â. Although the approach
for estimating elements of each line separately, followed by
clustering of the maxima to find the columns could be used, it
can not be extended and applied to the time/position varying
case.

The problem of local maxima is solved by using an iterative
approach. We start from the estimation of pr which uses
kernel function with large σ and perform gradient ascent with
simulated annealing. At each additional iteration we perform
the same optimization, but with kernel that uses smaller values
of σ, where the starting point for the optimization is the
maximum found at the previous iteration. This approach can be
seen as finding the maximum at a coarse level, and improving
the resolution of the maximum locations at next steps. The
probability function that we use for the optimization is

pr(v) =
1

L

∑
ξ∈ΞL

Kσ(r(ξ)− (v)), (56)

where Kσ for the M dimensional case (where the dimension
of r is M − 1), is defined by

Kσ(v) =
e−

||v||2
2σ

(2π)
M−1

2 σ
1
2

. (57)

This approach is formalized in Algorithm 2:

Algorithm 2 Calculate v =
FindMax(r(ξ),ΞL, σinit, numIterations)

v← Random (M − 1)× 1 vector
σ ← σinit

count← 0
while count < numIterations do
pr ← approximation using Kσ

v← gradient ascent on pr starting from v
σ ← σ

2
count← count+ 1

end while

As in the case with two signals, this algorithm finds only
one column of the matrix Â. In order to find all columns
we perform the optimization in Algorithm 2, M times. This
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iterative approach consists of multiple steps, where at iteration
m + 1, we assume that the first m columns of the matrix Â
were already estimated correctly, and thus, at iteration m+ 1
we can estimate the m + 1 column of the matrix with the
following steps:

1) Replace x1(ξ) with a new signal z1(ξ) which is a linear
combination of the signals x(ξ), such that it is only a
mixture of signals ŝm+1,...,M (ξ).

2) Sparsify the signals, and calculate r(ξ), where instead
of using x1(ξ) in the denominator, use z1(ξ) (it will be
shown later that in such a case, no maximum in pr will
correspond to any of the first m columns of matrix Â
at step m+ 1).

3) Find maximum in pr.
4) Reconstruct the m+1 column of Â from the maximum

of pr.

We now explain in details how the above steps are performed.
We assume that for all m < M the rank of a sub-matrix
Â2..M,1..m equals to m (for randomly generated matrices with
non singular continuous pdf this assumption holds with a
probability 1). If the rank of Â2..M,1..m is m, there must exist
a subset of m linearly independent rows. For the propose
of clarity we assume that the rows 2, ...,m + 1 are linearly
independent, although the algorithm below would work with
any set of m linearly independent rows. Let Q be the invertible
m×m matrix defined by:

Q ≡ Â2..m+1,1..m, (58)

and let G be the matrix with the remaining columns at these
rows :

G = Â2..m+1,m+1..M . (59)

It should be noted that when the first m columns of the matrix
Â are known, the matrix Q is known, and the matrix G is
unknown. We can define α(ξ) as a subset of m signals of
x(ξ) :

α(ξ) = x2..m+1(ξ). (60)

Based on this definition, it follows that α(ξ) = Qŝ1..m(ξ) +
Gŝm+1..M (ξ). Let w be the m × 1 vector defined by the
equation

w = −Q−T1. (61)

Then, according to Lemma 4.2, the signal wTα(ξ)+x1(ξ) is
a mixture only of signals ŝm+1(ξ), ŝm+2(ξ), ..., ŝM (ξ).

To illustrate the above definitions, let us look at the example
for a mixture of 4 signals, where

x1(ξ)
x2(ξ)
x3(ξ)
x4(ξ)

 =


1 1 1 1

Â2,1 Â2,2 Â2,3 Â2,4

Â3,1 Â3,2 Â3,3 Â3,4

Â4,1 Â4,2 Â4,3 Â4,4




ŝ1(ξ)
ŝ2(ξ)
ŝ3(ξ)
ŝ4(ξ)

 ,

then in the third iteration:

Q =

(
Â2,1 Â2,2

Â3,1 Â3,2

)
G =

(
Â2,3 Â2,4

Â3,3 Â3,4

)
α(ξ) =

(
x2(ξ)
x3(ξ)

)
Lemma 4.2: Let Q, G, α(ξ), be defined as above,

then wTα(ξ) + x1(ξ) is only a mixture of signals
ŝm+1(ξ), ŝm+2(ξ), ..., ŝM (ξ).

We can now define signals transformation

z1(ξ) = wTαi(ξ) + x1(ξ) (62)
zi(ξ) = xi(ξ) i ∈ 2..M (63)

The expression for r̃i(ξ) when calculated for signals, z(ξ) now
becomes

r̃i(ξ) =
Ψδ [zi] (ξ)

Ψδ [z1] (ξ)
=

=
Ψδ [xi] (ξ)

Ψδ [wTα(ξ) + x1(ξ)]
=

=
Ψδ

[
Âiŝ
]
(ξ)

Ψδ [wT (Qŝ1..m(ξ) +Gŝm+1..M (ξ)) + x1(ξ)]
.

Note, that now no maxima of pr̃ will correspond to the first m
signals (and thus to the first m columns of Â), since the signals
ŝ1..m no longer appear in the mixture z1(ξ). When Algorithm
2 is applied to r̃(ξ), without loss of generality, we can assume
that the estimated location of maximum v corresponds to the
(m + 1)th column of matrix6 Â (the order of the columns
does not matter, since the reconstruction is correct only up to
permutations).

Let us define c = G1..m,1 = Â2..m+1,m+1. At points that
contribute to the maximum v, only the m+1 source has high
values and all other sources have almost zero value. Therefore,
similar to the two-dimensional case :

vi =
Ψδ

[
Âi+1ŝ

]
(ξ)

Ψδ [wT (Qŝ1..m(ξ) +Gŝm+1..M (ξ)) + x1(ξ)]
≈

≈
Ψδ

[
Âi+1,m+1ŝm+1

]
(ξ)

Ψδ [wT cŝm+1(ξ) + ŝm+1(ξ)]
≈

≈ Âi+1,m+1

wT c+ 1
.

Recalling that Âi+1,m+1 = ci; ∀i ∈ 1..m, values of the
vector c can now be found by solving a set of linear equations:

vi =
ci

wT c+ 1
.

Let us denote by W a matrix all rows of which are equal to
wT , then

diag(v1..m)(Wc+ 1) = c

c = (I − diag(v1..m)W )−1v1..m .

6Note that the dimensions of v are M − 1× 1
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The (m + 1)th column of matrix Â can now be easily
reconstructed as

Â2:M,m+1 = v(wT c+ 1) . (64)

Based on the above, the high level algorithm for the
reconstruction of matrix Â is outlined by Algorithm 3.

Algorithm 3 Calculate Â =
ReconstructMixingMatrix(x(ξ), σinit, numIterations)

Â←M ×M matrix of ones
[r(ξ),ΞL]← SparsifyAndFindR(x(ξ))
Â2..m,1 ← FindMax(r(ξ),ΞL, σinit, numIterations)
m← 1
z(ξ)← x(ξ)
while m < M do
Q← Â2..m+1,1..m

α(ξ)← x2..m+1(ξ)
w← −Q−T1
z1(ξ)← wTαi(ξ) + x1(ξ)
[̃r(ξ), Ξ̃L]← SparsifyAndFindR(z(ξ))
v← FindMax(r̃(ξ), Ξ̃L, σinit, numIterations)
c← (I − diag(v1..m)W )−1v1..m

Â2..M,m+1 ← v(wT c+ 1)
m← m+ 1

end while

3) Results: Algorithm 3 performs well on most of mixing
matrices. Figure 33 illustrates an example of reconstruction for
4 signals. We used the following, randomly generated mixing
matrix:

Â =


1 1 1 1

0.9262 −1.2253 4.4888 0.1447
1.7310 −0.8314 −2.2299 1.3705
2.0753 3.6444 −1.0580 −3.2559

 . (65)

The mixing matrix, estimated by the algorithm, is

Â ≈


1 1 1 1

0.4696 4.7900 −1.1559 0.1560
2.1144 −2.2772 −0.6993 1.3828
1.5624 −1.3248 3.2993 −3.3289

 . (66)
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The estimation of the matrix is close to the original one
(up to permutation of columns), and provides visually good
reconstruction of the original images (Figure 33).

Fig. 31. Original images (”sources”)

Fig. 32. Four mixtures of images shown in Figure 31

Fig. 33. Reconstructed (separated) images

The reconstruction was performed using gradient descent
with the use of multiple restarts and simulated annealing.

V. SSCA OF TIME/POSITION VARYING MIXTURES

We make the following assumptions about the mixing
model:

• The mixed signals are independent.
• The mixing model is the time/position varying model, as

defined by (2), wherein the parameter vector θmix from
which the mixtures were generated is unknown.

• The parametric model of the mixing matrix A(ξ, θ) is
known and the mixing matrix vary slowly with the
time/position parameter - for small values of ϵ if ||ξ1 −
ξ2||2 < ϵ, then A(ξ1, θ) ≈ A(ξ2, θ) ∀θ. From this
assumption it follows that Ψδ [x] (ξ) ≈ A(ξ, θ)Ψδ [s] (ξ).

• All elements in the first row of the mixing matrix A(ξ, θ)
are non-zero for most of the values of ξ.

As in the case of time/position invariant mixing systems,
our goal in this section is to reconstruct the signals up
to a distortion, i.e, instead of reconstructing si(ξ); ∀i, we
focus on the reconstruction of the distorted signals ŝi(ξ) ≡
A1,i(ξ, θmix)si(ξ). Thus, from here on, we can assume that
our mixing model is:

x(ξ) = Â(θmix, ξ)̂s(ξ),

where

Âi,j(θmix, ξ) =
Ai,j(θmix, ξ)

A1,j(θmix, ξ)
∀j ∈ 1..M.

We first present the algorithm for reconstruction in the case
of mixtures of two signals, and later extend the algorithm to
deal with mixtures of more signals.

A. SSCA of Time/Position Varying Mixtures of Two Signals

In the case of two signals, our general mixing model takes
the form of(

x1(ξ)
x2(ξ)

)
=

(
1 1

Â2,1(ξ, θmix) Â2,2(ξ, θmix)

)(
ŝ1(ξ)
ŝ2(ξ)

)
.

(67)
Let ΞL be defined in the same way as in the time/position
invariant case. We observe that for all ξ ∈ ΞL:

r(ξ) ≡ Ψδ [x2(ξ)]

Ψδ [x1(ξ)]
=

=
Ψδ

[
Â2,1(ξ, θmix)̂s1(ξ) + Â2,2(ξ, θmix)̂s2(ξ)

]
Ψδ [̂s1(ξ) + ŝ2(ξ)]

≈

≈ Â2,1(ξ, θmix)Ψδ [̂s1(ξ)] + Â2,2(ξ, θmix)Ψδ [̂s2(ξ)]

Ψδ [̂s1(ξ)] + Ψδ [̂s2(ξ)]
.(68)

By applying Lemma 4.1, (68) yields

r(ξ) ≈ Â2,i(ξ, θmix); ∃i ∈ {1, 2} . (69)

Let us define two probabilities µi as

µi ≡ p(r(ξ) = Â2,i(ξ, θmix)); i ∈ {1, 2}. (70)

If we assume that the matrix Â(ξ, θmix) is invertible for all
ξ, then it is clear that µ1 +µ2 = 1 (r(ξ) is equal either to the
first or to the second element, but never to both at the same
time). Let us approximate the conditional probability density
functions

fi(θ) ≡ p(r(ξ) = Â2,i(ξ, θ)|θ) i ∈ {1, 2} (71)

as

fi(θ) =
1

L

∑
ξ∈ΞL

Kσ(Â2,i(ξ, θ)− r(ξ)) i ∈ {1, 2}, (72)

where Kσ is a Gaussian defined by (53). Let Fσ(θ) be the
sum of the above conditional probabilities:

Fσ(θ) = f1(θ) + f2(θ), (73)

then according to Lemma 5.1, for small enough σ, the global
maximum of Fσ(θ) is located near θmix, under reasonable
assumptions.

Lemma 5.1: Let Fσ(θ) be defined by (73). If the following
conditions hold

1) For a given sparsification and a given parametric family,
(69) holds for all ξ ∈ ΞL,

2) Â(ξ, θ) is invertible for all ξ ∈ ΞL,
3) p

(
Â2,i(ξ, θ1) = Â2,j(ξ, θ2)

)
= 0, for i ̸= j, ∀θ1, θ2,

then limσ→0 argmax{Fσ(θ)} = θmix.
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Proof: Let µ1 and µ2 be defined by (70), then :

Fσ(θ) = f1(θ) + f2(θ) =

=
∑
ξ∈ΞL

Kσ(Â2,1(ξ, θ)− r(ξ)) +

+
∑
ξ∈ΞL

Kσ(Â2,2(ξ, θ)− r(ξ)) =

= µ1

∑
ξ∈ΞL

Kσ(Â2,1(ξ, θ)− Â2,1(ξ, θmix))

+µ2

∑
ξ∈ΞL

Kσ(Â2,1(ξ, θ)− Â2,2(ξ, θmix)) +

+µ1

∑
ξ∈ΞL

Kσ(Â2,2(ξ, θ)− Â2,1(ξ, θmix))

+µ2

∑
ξ∈ΞL

Kσ(Â2,2(ξ, θ)− Â2,2(ξ, θmix)) =

= µ1

∑
ξ∈ΞL

Kσ(Â2,1(ξ, θ)− Â2,1(ξ, θmix)) +

+Kσ(Â2,2(ξ, θ)− Â2,1(ξ, θmix)) +

+µ2

∑
ξ∈ΞL

Kσ(Â2,2(ξ, θ)− Â2,2(ξ, θmix)) +

+Kσ(Â2,1(ξ, θ)− Â2,2(ξ, θmix)).

According to the last condition,

p
(
Â2,2(ξ, θ) = Â2,1(ξ, θmix)

)
= 0

p
(
Â2,1(ξ, θ) = Â2,2(ξ, θmix)

)
= 0.

In addition, we note that :

lim
σ→0

Kσ(v) = 0 ∀v ̸= 0.

Thus,

lim
σ→0

µ1

∑
ξ∈ΞL

Kσ(Â2,2(ξ, θ)− Â2,1(ξ, θmix)) = 0,

lim
σ→0

µ2

∑
ξ∈ΞL

Kσ(Â2,1(ξ, θ)− Â2,2(ξ, θmix)) = 0,

and

lim
σ→0

argmax{Fσ(θ)} = θmix.

Note that in examples adopted from real life, the assump-
tions of Lemma. 5.1 usually hold only approximately and,
of course we use a finite non-zero (but small) value of σ.
Therefore, we expect that the maximum may be achieved not
at θmix but close to it. For 2 signals the reconstruction is
performed using θ∗, which maximizes the Fσ(θ) expression
in (73). The optimization is performed for a few iterations,
where for each iteration the value of σ is decreased.

As in the time/position invariant case, it is possible that
only one of the columns is dominant; for example when µ2 =
0. It happens if f1(θ

∗) is significantly larger than f2(θ
∗). In

this case θ∗ might approximate one of columns correctly, but
produce incorrect approximation for the second column. We

can perform the same manipulation as in the time/position
invariant case. Define

z1(ξ) = x1(ξ)−
1

Â2,1(ξ, θ∗)
x2(ξ),

z2(ξ) = x2(ξ),

r̃(ξ) =
Ψδ [z2(ξ)]

Ψδ [z1(ξ)]
.

The energy function that we maximize in the second step is

F̃σ(θ) =
∑
ξ∈ΞL

Kσ

(
r̃(ξ)− Â2,2(ξ, θ)

Â2,1(ξ, θ∗)

)
. (74)

Based on our experiments, this function is far from being
smooth for most of the parametric families and the opti-
mization of this function does not provide good results. This
happens due to the fact that the points that pass the threshold
during the sparsification process are mostly points for which
Â2,1(ξ, θ

∗) has small values (and thus 1
Â2,1(ξ,θ∗)

is large). In

this case, small deviations in Â2,2(ξ, θ) cause a significant
change in the value of Â2,2(ξ,θ)

Â2,1(ξ,θ)
and the optimal θ is estimated

incorrectly. Thus the SSCA solution for parametric families
with µ1 or µ2 that are close to 0, remains an open problem.

B. SSCA of Time/Position Varying Mixtures of Multiple Sig-
nals

The approach applied so far for two signals, can easily be
extended to the general case. We define r(ξ) by

ri(ξ) ≡
Ψδ [xi+1(ξ)]

Ψδ [x1(ξ)]
. (75)

Let ΞL be a set of L samples locations, such that Ψδ [x1(ξ)]
∀ξ ∈ ΞL. The extension of the energy function from the case
of 2 signals to the case of M signals produces the energy
function:

Fσ(θ) =
M∑
i=1

∑
ξ∈ΞL

Kσ(r(ξ)− Â2..M−1,i(ξ, θ)). (76)

The full algorithm is presented at Algorithm 4. The mathemat-
ical justification for this algorithm is the same as in the case
with two signals. For σ → 0, in an ideal case, we expect that
the optimization would achieve its optimum at θ∗ = θmix.

Algorithm 4 Calculate θ∗ =
FindMax(r(ξ),ΞL, σinit, numIterations)

θ∗ ← Random vector
σ ← σinit

count← 0
while count < numIterations do
pr ← approximation using Kσ

θ∗ ← gradient ascent on Fσ(θ) starting from θ∗

σ ← σ
2

count← count+ 1
end while
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1) Results: Based on our experiments, we may conclude
that the algorithm performs well on some of the parametric
families, but fails to provide a correct reconstruction for others.
One of the main problems of the algorithm is that it tries to
estimate the parameters using only a small set of samples (the
samples that passed a threshold). At Figure 36 we can see
that the algorithm provides good reconstruction results for the
parametric family

Â(c, r, θ1, θ2) =

 1 1 1
θ1r

2 θ2c 1
θ2c

2 1 θ1r

 , (77)

where r and c are row and column indices normalized by a
constant. In this example

θmix =

(
6.1770
−7.0007

)
(78)

Fig. 34. Original ”source” images

Fig. 35. The three mixtures

Fig. 36. Reconstructed images

VI. DISCUSSION AND RECOMMENDATIONS

In this study we proposed two methods for unmixing sig-
nals/images mixtures that vary with time/position parameter.
It seems that ML reconstruction method performs better than
the SSCA approach on most of the parametric families. On
the other hand, the ML approach can suffer from being highly
nonlinear and the energy function that is optimized under
the ML approach may consequently have numerous local
maxima. It is very useful to test whether a specific maximum
of the ML energy function is local or global maximum. If
the maximum is local, then the temperature of the simulated
annealing may increase in order to avoid the maximum. We
believe that although SSCA method by itself does not provide
good reconstruction, methods based on SSCA can be used
to test whether a specific θ∗ is indeed equal to θmix. This
test can be developed based on the observation that given the
approximations of signals s(ξ). We can observe at the matrix
R(ξ) defined as:

Ri,j(ξ) =
Ψδ [xj(ξ)]

Bi(ξ, θ∗)Ψδ [x(ξ)]
, (79)

where B(ξ, θ∗) = A(ξ, θ∗)−1. The expression in (79) is
very similar to the expression used in calculation of r(ξ)
by the means of the SSCA approach. The difference is that
in the denominator we now use the estimated reconstruction
of the signals instead of x1(ξ). If the assumptions of the
SSCA approach hold, then we can expect that R(ξ) ≈
A(ξ, θmix). Thus, measuring the similarity between such R(ξ)
and A(ξ, θ∗) can provide a measure of the optimality of θ∗.
The proposed measure of optimality can not be used as an
energy function by itself due to the fact that the denominator
can not be differentiated by θ since it involves hard threshold.

We conclude that additional research should be devoted
to the application of the SSCA method in separation of
time/position varying mixtures. Issues that should be addressed
in further research include:

• Multiple sparsification transformations, incorporated into
the SSCA algorithm. Various specific sparsification trans-
formations may be sensitive to different features of im-
ages more than other sparsification and when combined
can provide a larger and better set of data in that it better
satisfies the sparsification properties outlined in Section
IV-A.

• For some parametric families, additional preprocessing of
the given signals could be applied before performing the
sparsification. Such preprocessing should be developed
specifically for each family. For example for time/position
invariant case a whitening preprocessing improves the re-
sults dramatically. For other parametric families different
types of preprocessing could be developed.

• Calculation of additional r(t) signals could be used,
where in denominator instead of Ψδ [x1(ξ)] other signals
(Ψδ [xi(ξ)], i ̸= 1) could be used. This can provide
additional data that can be used for the optimization.

• Combined ML/SSCA algorithm could be used, where ML
algorithm is applied on the sparsified images (with an
appropriate a priori sparse pdf function assumption).

Another important aspect of the problem that remains open
is for which parametric families the reconstruction can be
performed using the ML or SSCA approach and for which
parametric families one should expect that the unmixing will
fail. The main problems that can cause wrong unmixing are:

• Estimated statistical properties like mean/variance that
are biased primarily on a small number of samples are
unreliable.

• Perfect reconstruction parameters are not achieved in
global maximum of the energy function. This can happen
when the reconstructed signals do not satisfy some of the
algorithm assumptions.

• Multiple global maxima exist for the energy function that
is used for the reconstruction. This usually happens when
the problem is ill posed.

Based on experiments conducted with various examples, and
on basic considerations of the fundamental problem, we be-
lieve that in general, no answer exists to this question, since
the unmixing is very dependent on the probability distribution
and sparsification of the unknown mixed signals. Even for
TPIBSS most of the existing techniques fail in some cases of
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signal mixtures. On the other hand, after applying specific
unmixing algorithm, it is possible to develop various tests
that can verify whether the reconstructed signals and mixing
matrix satisfy all the basic assumptions on which the algorithm
is based. As a simple example of such a test, correlation
measure of the reconstructed signals can be used. If there is a
high correlation between the reconstructed signals, then with a
high probability we may say that the reconstruction technique
has failed and another algorithm should be applied for the
given mixtures. As for the SSCA reconstruction as an example
of posteriori test, we can check whether for each ξ after
sparsification only one reconstructed signal has large value. If
this is not the case, then with high probability we say that the
SSCA-based reconstruction failed. Using such test techniques
multiple unmixing algorithms could be combined, where each
algorithm is applied separately and then the reconstructed
signals are chosen from the algorithm that provides best
posteriori test results.

In this research we used the ML and SSCA techniques
for signals unmixing. Although these are two of the most
popular algorithms for BSS, other unmixing algorithms exist.
Additional algorithms based on block decorrelation or similar
techniques [22], [23], could be used for cases with known
parametric family of mixtures. Somewhat better reconstruction
for large number of parametric families may be achieved
using a combination of multiple unmixing algorithms, but this
was not the purpose of the research outlined in this thesis.
Instead, we were concerned with the more fundamental issue
of whether either one of the ML and SSCA technique can be
extended and applied to TPVBSS, and how the performance of
these two techniques compares. This goal was accomplished
with a positive result.
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