

IRWIN AND JOAN JACOBS

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

CAFÉ: Scalable Task Pools with
Adjustable Fairness
and Contention

Dmitry Basin, Rui Fan, Idit Keidar,
Ofer Kiselov and Dmitri Perelman

CCIT Report #790
May 2011

DEPARTMENT OF ELECTRICAL ENGINEERING

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

Electronics

Computers

Communications

CAFÉ: Scalable Task Pools with

Adjustable Fairness and Contention

Dmitry Basin∗ Rui Fan† Idit Keidar∗ Ofer Kiselov∗ Dmitri Perelman∗

Abstract

Task pools have many important applications in distributed and parallel computing. Pools are typ-

ically implemented using concurrent queues, which limits their scalability. We introduce CAFÉ, Con-

tention and Fairness Explorer, a scalable and wait-free task pool which allows users to control the

trade-off between fairness and contention. The main idea behind CAFÉ is to maintain a list of TreeCon-

tainers, a novel tree-based data structure providing efficient task inserts and retrievals. TreeContainers

don’t guarantee FIFO ordering on task retrievals. But by varying the size of the trees, CAFÉ can provide

any type of pool, from ones using large trees with low contention but less fairness, to ones using small

trees with higher contention but also greater fairness.

We demonstrate the scalability of TreeContainer by proving an O(log2 N) bound on the step com-

plexity of insert operations when there are N inserts, as compared to an average of Ω(N) steps in a

queue based implementation. We further prove that get operations are wait-free. Evaluations of CAFÉ

show that it outperforms the Java SDK implementation of the Michael-Scott queue by a factor of 30, and

is over three times faster than other state-of-the-art non-FIFO task pools.

∗Department of Electrical Engineering, Technion, Haifa, Israel {sdimbsn@tx,idish@ee,sopeng@t2,dima39@tx}.technion.ac.il
†School of Computer Engineering, Nanyang Technological University, fanrui@ntu.edu.sg

lesley
Text Box
CCIT Report #790 May 2011

1 Introduction

A task pool is a data structure consisting of an unordered collection of objects, a put operation to add an

object to the collection, and a get operation to remove an object1. Pools have a number of important appli-

cations in multiprocessor computing, such as maintaining the set of pending tasks in a parallel computation.

A key challenge in such an application is to ensure the pool does not become a bottleneck when it is concur-

rently accessed by a large number of threads. Another challenge is to ensure fairness — although strict FIFO

ordering is not necessary, we nevertheless want to avoid starvation and limit the number of overtakings2.

In this paper, we present CAFÉ (Contention And Fairness Explorer), an efficient randomized wait-free3

task pool algorithm. CAFÉ maintains a list of scalable bounded pools called TreeContainers. When one

TreeContainer becomes full, a new TreeContainer is appended to the end of the list. Retrievals follow the

FIFO order of the TreeContainers, but each TreeContainer can return its tasks in any order. This way, the

tree size is a system parameter controlling the trade-off between fairness and contention. Using smaller

trees, the system provides better fairness but also has more contention.

A TreeContainer stores jobs in a complete binary tree, in which every node can store one task. Each

node keeps presence bits indicating whether its child subtrees contain tasks. This allows get operations to

find tasks by walking down the tree from the root, following a trail of presence bits. At the same time, the

bits do not change frequently, even when there are a large number of concurrent puts and gets, so they do

not cause much contention. We show that TreeContainers are dense: a tree with height h contains at least

2(1−ǫ)h tasks with high probability, for any ǫ > 0. We also show that TreeContainers perform well under

contention. When there are N concurrent put operations and an arbitrary number of gets, each put finishes

in O(log2 N) steps, whp.

CAFÉ combines TreeContainers in a FIFO linked list, to provide the following properties. 1) The

number of overtaken tasks in CAFÉ is bounded by the size of a tree. 2) In most workloads, producers and

consumers operate on different TreeContainers, which decreases contention and improves performance. 3)

Puts are wait-free with probability 1, and gets are deterministically wait-free.

Our algorithm offers some significant advantages over other approaches for task pools. The most com-

mon approach to implement pools is using FIFO queues (e.g., Java ThreadPoolExecutor). However, non-

blocking queue-based algorithms suffer Ω(N) contention at the head and tail, while our algorithm has

O(log2 N) contention for puts, whp. Other queue-based algorithms are blocking, and require puts and gets

to wait for each other. In contrast, all operations in our algorithm are wait-free. The recent ED pools in [1]

also use trees, but in a different way. Unlike our algorithm, [1] does not provide any upper bounds on step

complexity, nor on the number of times a task can be overtaken.

We have implemented CAFÉ in Java, and tested its performance on a 32-core machine4. Our results

show that CAFÉ is over 30 times faster than a pool based on Java’s implementation of the Michael-Scott

queue, and over three times faster than a pool using Java’s state-of-the-art blocking queue (even though

CAFÉ does not block). Also, CAFÉ is over three times faster than ED pools, while providing stronger

fairness guarantees.

The remainder of the paper is organized as follows. In Section 2, we describe related work. We present

CAFÉ in Section 3, and analyze its theoretical properties in Section 4. We discuss our experimental results

in Section 5. Finally, we conclude in Section 6.

1We sometimes refer to task pools as producer-consumer pools; producers do puts, and consumers do gets.
2One task overtakes another task if it is inserted after the other task, but retrieved before it.
3A randomized algorithm is wait-free if each thread executing an operation performs a finite number of steps with probability 1.
4The code is publicly available at http://code.google.com/p/cafe-pool/.

1

2 Related Work

A common approach to implementing concurrent task pools is to use FIFO queues for task management.

However, due to their strong ordering guarantees, such implementations are not scalable, suffering from

Ω(N) contention in the worst case. CAFÉ makes the observation that strict FIFO ordering is not necessary

for a task pool, and thereby achieves a much more scalable algorithm.

Another approach for reducing contention is using elimination, as proposed by Moir et al. [7]. Here,

producers and consumers can “eliminate” each other at predefined rendezvous points. This approach best

suits workloads in which there are more consumers than producers. Elimination is less useful if the queue

remains non-empty most of the time, or when concurrency is low. In contrast, CAFÉ performs well under

both high and low concurrency, and regardless of the ratio between producers and consumers.

Afek et al. [1] also propose a task pool foregoing FIFO ordering for scalability. Their Elimination

Diffraction (ED) pools yield significantly better results than FIFO implementations. ED pools use a fixed

number of queues along with elimination for reducing contention. However, as we show in Section 5.2, ED

pools do not scale well on multi-chip architectures. In addition, unlike CAFÉ , ED pools are not wait-free,

and offer no fairness guarantees between puts and gets.

The idea of using concurrent tree-based data structures for reducing contention has appeared in previous

works not related to task pools [3, 2]. Unlike these works, we prove formal bounds on the worst case step

complexity of our TreeContainer algorithm.

3 CAFÉ: A Task Pool with Adjustable Fairness

In this section, we describe CAFÉ, a wait-free, scalable task pool algorithm, whose fairness can be adjusted

arbitrarily by the user. The main idea behind CAFÉ is to keep a linked list of scalable task pools called

TreeContainers, each with bounded size. The algorithm for a single TreeContainer is given in Section 3.1.

Tasks are stored at tree nodes, which can be occupied at most once. When a tree becomes full, a new tree is

added to the list. The algorithm for combining TreeContainers in a FIFO list is described in Section 3.2.

3.1 TreeContainer

A TreeContainer consists of a bounded complete binary tree, in which each node can store one task. A node

with a task is occupied, and otherwise it is free. Each node can be occupied at most once, as indicated by

an isDirty flag. In addition, the node keeps a presence bit for each child subtree; the bit is zero when all

the nodes in the respective subtree are free. Presence bits allow get operations to find a task in the tree by

walking down from the root following a trail of non-zero bits. Since presence bits summarize the occupancy

of an entire subtree, they change infrequently even under highly concurrent workloads, which allows our

algorithm to achieve low step complexity.

TreeContainer is shown in Algorithm 1. Level i of the tree is implemented using an array tree[i], which

allows O(1) access to any node in a level. The root is the only node at level 0. Each node also keeps pointers

to its father and children, as well as a bit side, indicating whether it is the left or right child of its father.

3.1.1 Task Insertion

Tasks are inserted in a tree using the put() operation. First, put finds a free node to insert the task. Then it

updates the presence bits of the node’s ancestors. Because a tree has bounded size, task insertions can fail if

they do not find a free node in the tree. Below, we describe the main steps in a put.

2

Algorithm 1 TreesContainer, a scalable bounded task pool algorithm.

1: TreeNode data structure:

⊲ ver: version of the metadata

⊲ p indicates presence of tasks in left/right subtrees

⊲ 〈ver, p〉 is kept by a single AtomicInteger in Java

2: [〈ver, p〉, 〈ver, p〉]: meta

3: int: pending

4: boolean: isDirty ⊲ true if the node has been already used

5: Data: task

6: int: side ⊲ 0 for the left child, 1 for the right child

7: Tree data structure:

⊲ tree[i] keeps an array of size 2i with the nodes of level i

8: TreeNode[][]: tree

9: Function hasTasks(node):

10: if (node.meta[0].p ∨ node.meta[1].p)

11: then return 1
12: else return (node.task 6= ⊥) ? 1 : 0

13: Function put(task):

14: node← findNodeForPut(task)

15: if (node = ⊥) then return false

16: updateNodeMetadata(node, 1)

17: return true

18: Function findNodeForPut(task):

19: for level = 0, 1, . . . do

20: trials← (level < height(root)) ? 1 : k

21: for i = 1, . . . , trials do

22: node← random node in tree[level]

23: reserved← putInNode(node)

24: if (reserved 6= ⊥) return reserved

25: return ⊥ ⊲ did not succeed in this tree

26: Function putInNode(node, task)

27: if (node.father 6= ⊥∧ node.father.task = ⊥)

28: return putInNode(node.father, task)

29: if (node.isDirty.CAS(false, true))

30: node.task← task; return node

31: else return ⊥

32: Function get()

33: while(true):

34: if (hasTasks(root) = 0) return ⊥
35: node← findNodeForGet()

36: task← node.task

37: if (task 6= ⊥ ∧ node.task.CAS(task,⊥) = false) continue

38: updateNodeMetadata(node, 0)

39: if (task 6= ⊥) return task

40: Function findNodeForGet()

41: node← root

42: while(true)

43: if(node.task6=⊥ ∨ node.meta[0].p=node.meta[1].p=0)

44: return node

45: node← random child among those with p = 1

46: Function updateNodeMetadata(node, myVal)

47: trials← 0;

48: while(node.father 6= ⊥)

⊲ check if my operation has been eliminated

49: if (myVal 6= hasTasks(node)) return

50: fk← father.meta[node.side].p

51: if (fk 6= hasTasks(node) ∨ node.pending > 0)

52: trials← trials +1
53: if (updateFather(node) 6= success ∧ trials < 2)

54: continue ⊲ try again on this node

55: node← node.father; trials← 0

56: Function updateFather(node)

57: node.pending.FetchAndInc()

58: new← old← father.meta[node.side]

59: new.ver← new.ver +1; new.p← hasTasks(node)

60: success← father.meta[node.side].CAS(old, new)

61: node.pending.FetchAndDec()

62: return success

Finding an unoccupied node. Function findNodeForPut() finds a free tree node for task insertion. It

iterates over the tree levels starting from the root (lines 19–24). At each level, a random node x is chosen,

and the algorithm tries to put the task in the highest free node on the path from x to the root. This is done

using the recursive function putInNode() (lines 27–31). Nodes are reserved by CASing the isDirty flag.

Having nodes search for a free ancestor increases put’s step complexity from O(h) to O(h2) for a tree with

height h (see Appendix A.3). However, it also creates denser trees with a more balanced node occupation,

as we show in Appendix A.1.

If neither x nor its ancestors can be reserved, another random node is checked. At each level except the

last one, a single node is checked. The number of nodes checked at the last level is defined by a parameter

k, with higher k’s resulting in denser trees. In Appendix A.2, we show that in a tree with height h, at least

2
k+2
k+3

h
nodes are occupied before a put operation fails, whp.

Updating ancestors’ metadata. After a task is inserted in node x, function updateNodeMetadata() up-

dates the presence bits of x’s ancestors (lines 48–55). At each node the function checks that the metadata of

the father is correct. Contention remains low because in the common case, the presence bits of upper level

nodes are not updated when a new task is inserted or removed.

Though the general outline of the algorithm is simple, ensuring linearizability, wait-freedom and low

3

contention require special care, as we describe below.

1. Ensuring linearizability. A naı̈ve approach to update x’s father’s metadata could be to first read the

old presence bit of x’s father (line 50), then calculate whether x’s subtree contains tasks (line 58), and finally

CAS a new metadata value if the old value is incorrect (line 60). If the CAS fails, the updater retries. Version

numbers are attached to the presence bits in order to avoid ABA problems.

Unfortunately, this simple approach can violate linearizability. Consider nodes x, y and z, where y is

the right child of x and z is the right child of y. Node y has a task, so that x.meta[1].p = 1. There are two

concurrent threads, a consumer tc that removes the task from y and a producer tp that inserts a task in z.

tc starts updating the metadata of B’s father. It reads the right presence bit at x, which is 1, and decides to

update it to 0. We then suspend tc right before it performs its CAS operation. At this time, tp starts updating

the ancestors of z. It first changes y.meta[1].p from 0 to 1, and then checks the right presence bit at x. Since

tc is paused, x.meta[1].p is still 1, and so tp decides this value is correct, and terminates. Now tc resumes,

and successfully changes x.meta[1].p to 0. This makes future gets think the tree is empty, so that no get

will retrieve tc’s task, violating linearizability.

We solve this problem by letting other threads know about concurrent pending updaters. Whenever a

thread t plans to change the metadata of x’s father, it increments a pending counter at x (line 57); after the

update, it decrements the counter (line 61). If a concurrent updater sees x.pending > 0, it will update x’s

father’s metadata, regardless of its current value (line 51). This, along with the use of version numbers, will

cause the pending thread’s CAS to later fail.

2. Limiting the number of CAS failures. In the simple algorithm described earlier, an updater thread t
that fails to CAS the metadata of x’s father will retry the update. This makes t’s worst case step complexity

linear in the tree size, since every thread that successfully performed an operation in x’s subtree can cause

t’s CAS to fail. However, as we show in Section B, it suffices for t to only try to update x’s father’s metadata

twice (line 53). The idea is that if t fails two CASes, then some other thread will have already updated x’s

father’s metadata to the correct value.

3. Producer/consumer elimination. We have also adopted the elimination technique used in [7] and

[1]. Consider a thread t that inserted a new task at a node, and started updating the node’s ancestors. Let x
and y be two such ancestors, where y is the father of x. In the function updateNodeMetadata, t updated

y’s metadata (on x’s side) to 1 while t was still at x. Thus, if t later arrives at y and sees y’s x-side metadata

is now 0, it means there has been consumer thread that already removed the task t inserted. In this case, t
doesn’t need to update any more ancestors, and can terminate early (line 49). This optimization improves

performance in scenarios where multiple producers and consumers are working on the same tree.

In Appendix A.4, we show that put operations in TreeContainer are wait-free. Intuitively, this is because

the tree is bounded, and because a thread only tries two updates per node. If the tree has height h, the put

performs O(h2) steps. We show in Section 4 that our insertions create a balanced tree, whp. Hence, when

the tree contains N tasks, the complexity of a put is O(log2 N).

3.1.2 Task Retrieval

The get() function in TreeContainer runs in a loop (lines 33–39). If there are no tasks in the tree, as indicated

by the presence bits at the root, the function returns ⊥ (line 34). get() first finds a task at a random node to

retrieve from using findNodeForGet(), and then updates the metadata of the node’s ancestors.

Function findNodeForGet() searches for a node to get a task from. When it reaches an unoccupied node,

it randomly chooses a nonempty subtree to go down. The randomization reduces contention.

A task T is removed from node x by CASing x.task from T to ⊥ (line 37). If the CAS succeeds, then

the metadata of x’s ancestors need to be updated. Otherwise, the algorithm starts a new retrieval attempt.

Note that if findNodeForGet() finds a node x with x.task = ⊥, it means that another consumer tc removed

4

x’s task but still hasn’t updated x’s ancestors. In order to be wait-free, a consumer needs to make sure that it

will not arrive to this empty node infinitely many times. Hence, a consumer that arrives at an empty node x
updates x’s ancestors even though it did not take x’s task (line 38). Updating the ancestors is done the same

way as after a task insertion, using updateNodeMetadata().

In Section A.5, we show that get operations are wait-free. Intuitively, this is because a get thread tc
can only fail to take a task from a previously occupied node x if some other thread took x’s task. Then, tc
updates the metadata on the path to the root, so that tc does not go down the same path again. The bounded

number of nodes in a tree then limits the number of unsuccessful get attempts.

3.2 Combining TreeContainers in a FIFO List

As stated earlier, CAFÉ maintains a linked list of TreeContainers, adding new trees as old ones become full

(see Figure 1). Tasks are returned in FIFO order, up to the tree they are inserted into. This guarantees that the

maximum number of overtakers in CAFÉ is bounded by the tree size. Therefore, the tree size is a parameter

that determines the trade-off between fairness and contention. Using bigger trees, CAFÉ performs more like

a TreeContainer, and so has low contention but less fairness. Using smaller trees, CAFÉ performs more like

a FIFO list, so there is higher contention but greater fairness.

id=10 id=11 id=12

PT

cur><prev

id=9

garbage
collected

GT

Figure 1: CAFÉ keeps a linked list of scalable task trees. The tree

height defines the fairness of the protocol.

Basic approach. A simple way to manage a

linked list of trees is to keep one pointer (PT) for

producers, which references the tree for puts, and

another (GT) for consumers, referencing the tree

for gets. Whenever the current insertion tree be-

comes full, PT is moved forward. Whenever no

tasks are left in the retrieval tree, GT is moved for-

ward. Old trees are garbage collected automatically

in managed memory systems as they become unreachable.

This straightforward approach, however, violates correctness, as we now demonstrate. Consider the fol-

lowing scenario. tp inserts a task in tree T and pauses before changing the metadata of T ’s root. Consumers

assume that T is empty and increment GT to continue to later trees. When tp finally resumes, we have

GT > PT , and no consumer will ever retrieve tp’s task.

One way to solve this problem is to reinsert the task in a later tree whenever tp notices its task may

be lost. However, this approach might lead to livelocks, in which producers constantly chase consumers,

never finishing their operations. Another method is to maintain a non-zero indicator on each tree (e.g., using

SNZI [2]) indicating whether there are concurrent producers working on the tree. But this approach incurs

high overhead, for managing both indicators and lists of “pending and active” trees. Our solution is instead

based on the idea of moving the consumer pointer GT backwards when a task is added in an old tree.

Managing the list of trees. The pseudo-code for the list of trees pool is shown in Algorithm 2. A put

operation tries to insert the task into the tree pointed to by PT (call this tree T). If the insert fails, the

algorithm moves to the next tree in the list by incrementing PT (lines 16–17). New trees are created and

appended to the end of the list as needed. For reasons we explain later, the pointer for consumers GT
actually points to two consecutive trees, GT.cur and GT.prev. When an insert succeeds, the producer

checks that its task will be retrievable in the future. To this end, it checks that GT.cur does not point to a

tree that succeeds T in the linked list (line 13). If it does, the GT pair is moved backwards to 〈⊥, T 〉 in the

function moveGTBack.

5

Algorithm 2 CAFÉ algorithm for adjustable fairness and contention.

1: Data structures:

2: Node:

3: int: id

4: ScalableTree: tree

5: Global variables:

6: Node: PT ⊲ tree for producers

7: 〈prev, cur〉: GT ⊲ tree for consumers

8: int: oldProducers ⊲ for producers that move GT backwards

9: Function put(task)

10: while(true)

11: latest← PT

12: if (latest.tree.put(task) = true) then

13: if (GT.cur.id > latest.id) moveGTBack(latest)

14: return

15: else

16: if(latest.next = ⊥) insertNewTree()

17: PT.CAS(latest, latest.next)

18: insertNewTree()

19: newNode← Node()

20: cur← PT ⊲ go to the end of the list

21: for(; cur.next 6= ⊥; cur← cur.next);

22: newNode.id← cur.id +1
23: cur.next.CAS(⊥, newNode) ⊲ return even if CAS fails

24: Function moveGTBack(Node: prodTree)

25: oldProducers.FetchAndInc()

26: while(true)

27: gtVal← GT

28: if (gtVal.cur.id ≤ latest.id) break

29: newGT← 〈⊥, latest〉
30: if (GT.CAS(gtVal, newGT) = true) break

31: oldProducers.FetchAndDec()

32: Function get()

33: ptVal← PT

34: gtVal← GT

35: while(true)

36: task← gtVal.prev.getTask(); if (task 6= ⊥) return task

37: task← gtVal.cur.getTask(); if (task 6= ⊥) return task

⊲ could not find a task in the tree

38: if (ptVal.id ≤ gtVal.cur.id) return ⊥
39: if (oldProducers = 0) then

40: newGT← 〈gtVal.cur, gtVal.cur.next〉
41: GT.CAS(gtVal, newGT)

42: gtVal← GT

43: else

44: gtVal← 〈gtVal.cur, gtVal.cur.next〉

In moveGTBack, a producer repeatedly tries to CAS GT to T until a CAS succeeds, or it reads

GT.cur ≤ T . As we want producers to be wait-free, we need to ensure this loop eventually terminates.

Thus, we do not allow the GT pointers to move forward while there are pending producers that want to

move GT backwards. We increment a counter oldProducers at the start of moveGTBack, and decrement

it at the end. If a consumer does not find a task in the GT trees, but sees oldProducers > 0, it advances to

a later tree, but does not increment GT (line 44).

A consumer tries to retrieve a task from the trees pointed to by GT.prev and GT.cur (lines 36–37). If

both trees are empty, and if PT points to a later tree than GT.cur, then GT is updated to 〈GT.cur, GT.cur.next〉.
This update is performed by first creating a pair with the new tuple values (line 40), and then CASing GT
from the old pair to the new one (line 41). Note that the ABA problem does not occur during the CAS,

because every newly created pair is a new object whose address is different from the addresses of any old

pairs, which are not deallocated throughout the function’s execution.

Finally, we explain the reason for using two consumer pointers, GT.cur and GT.prev. Suppose GT
only pointed to one tree, and consider the following situation. GT and PT both point to a tree T . Producer

tp inserts a new task in T and pauses. Meanwhile, other producers insert new tasks, append new trees and

move PT . Suppose a consumer tc comes to retrieve a task, does not find any tasks in T , and pauses right

before changing GT to T.next. When tp resumes, it inserts its task to T , checks that GT is still pointing

to T and terminates. When tc resumes, it changes GT to T.next. Now, tp’s task is lost. As we show in the

next section, keeping two pointers allows us to solve this problem in a simple and efficient way.

In the next section, we show that both put and get operations in CAFÉ terminate within a finite number

of steps with probability 1. Thus, CAFÉ is wait-free.

6

4 CAFÉ’s Properties

In this section, we present the correctness and performance properties of CAFÉ. We only state the main

results and describe the ideas behind them, deferring the full proofs to Appendices A and B. For all the

results we assume that an adversary controls thread scheduling but cannot influence the randomness threads

use. We let h denote the height of a TreeContainer, and k denote the number of insertion attempts in the last

layer of TreeContainer (line 20 in Algorithm 1).

4.1 Safety Properties

We start by showing CAFÉ implements a linearizable job pool. Intuitively, if the job pool is nonempty,

then a get must be able to find a job. Formally, we prove in Lemma 16 that after any put operation finishes,

no subsequent get operation will return ⊥, until the put’s task has been returned. Proving this consists of

two parts. First, we prove in Theorem 1 that each TreeContainer CAFÉ uses is itself a linearizable job

pool. Second, we show in Lemma 15 that after a put inserts a task in some TreeContainer, subsequent get

operations will not skip this TreeContainer when looking for a job. Specifically, we show that GT.cur ≤
PT + 1.

The key to proving Theorem 1 is Lemma 13, which says that after a put operation has inserted a task

in some node of a TreeContainer, hasTasks(x) = 1 for every node x on the path from that node to the

root of the TreeContainer, until the node’s task is removed. We say that the nodes on the path are marked.

Get operations follow a path of marked nodes, and so will always find a job as long they have not all been

removed. We briefly describe the proof of Lemma 13. Let x and y be two nodes a put operation p passes

through during updateNodeMetadata, where y is the father of x. The invariant we maintain is that the

value of hasTasks(x) has been fixed to 1 by the time p starts updating y’s metadata. Since p tries to set y’s

metadata to hasTasks(x), then hasTasks(y) will also be fixed to 1 after p finishes processing y. Thus, all

the hasTasks values on the path from p’s insertion node to the root will be fixed to 1 inductively.

Next, we briefly describe the proof of Lemma 15. After a put operation has inserted a task in a tree T , it

does moveGTBack to ensure the value of GT is at most T . There are two ways the put checks this condition.

Either it successfully CASed the value 〈⊥, T 〉 into GT , or it read that GT.cur is at most T . Becauses the

CASes on GT can be linearized, we can show in the first case that later gets see T (or a smaller value) when

they read GT . In the second case, we need to be careful that while the put is checking GT.cur is at most T ,

there may be a paused get operation, which then increases GT as soon as the put’s check finishes. However,

even if this happens, GT.cur only moves forward by 1. Since a get operation checks both GT.cur and its

preceding tree GT.prev, the get will still see the tree that the put inserted into.

The last correctness property we show is that gets return jobs in FIFO order, up to the TreeContainer

they were inserted into. This follows simply because jobs are inserted and removed based on the linked list

order of the TreeContainers.

4.2 Performance Properties

We first show that our trees are dense: by choosing an appropriate k we can guarantee that a tree with height

h is populated with at least 2(1−ǫ)h tasks for an arbitrary 0 < ǫ < 1, with high probability. In Appendix A.1,

we also show that this density is higher than that achieved by a simple random walk based insertion. More

formally, we prove the following lemma in Appendix A.2:

Lemma 1. In a TreeContainer of height h, if a put operation fails, then the tree contains at least 2
k+2
k+3
·h

tasks with probability at least 1 − 1

2
(3− 7

k+3
)h+k+1

.

7

We further demonstrate that TreeContainer performs well under contention. For N concurrent put op-

erations and an arbitrary number of get operations, each put finishes in O(log2 N) steps, whp (the proof

appears in Appendix A.3):

Lemma 2. Consider a TreeContainer after N successful put operations. Then each of these operations has

taken O(log2 N) steps with probability at least 1 − 1

2(N+1)
4
3

.

We next intuitively demonstrate the wait-freedom of CAFÉ. We first show that put operations are wait-

free with probability 1, and then argue that get operations are deterministically wait-free.

A put operation traverses the linked list of TreeContainers until it succeessfully inserts a task in one of

them; new TreeContainers are appended if the insertions keep failing. Intuitively, it might seem that this

traversal could go on forever. For example, a slow thread tp could repeatedly try to insert a task in some

tree, then pause until all other producers proceed to a new tree, fail its current insert, and have to retry in a

new tree. Fortunately, this situation does not happen. Due to the randomness in the algorithm, other threads

are likely to have left unoccupied nodes in tp’s tree, which tp can acquire once it resumes. We formalize this

intuition in the following lemma, proven in Appendix A.4.

Lemma 3. If P producer threads and any number of consumer threads use CAFÉ, then any TreeContainer’s

put operation succeeds with probability at least (1 − 1
2h)k(P−1) · [1 − (1 − 1

2h)k].

Using Lemma 3, we prove the following. Note that CAFÉ using TreeContainers of height 0 is equivalent

to a linked list.

Lemma 4. If the height of TreeContainer is greater than zero, then CAFÉ’s put operations are wait-free

with probability 1.

In order to show CAFÉ ’s get operations are wait-free, we need to show that a consumer does not need

to traverse an unbounded number of trees when looking for a task. This is true because each get operation

keeps a pointer to the latest TreeContainer when it starts (line 33 in Algorithm 2), and subsequently only

checks trees that had tasks before it started. In a linearizable execution, the get is allowed to return ⊥ when

all these trees are empty (in line 38), as all their tasks will have been taken by other gets concurrent with or

preceding the current get. We conclude with the following lemma, proven in Appendix A.5.

Lemma 5. Every get operation of CAFÉ terminates in a finite number of steps.

5 Evaluation

In this section we evaluate the performance of Java implementation of CAFÉ. We present the compared al-

gorithms in Section 5.1. In Section 5.2 we analyze the performance of the algorithms. Section 5.3 considers

the influence of tree height on CAFÉ, and Section 5.4 analyzes its fairness.

5.1 Experiment Setup

We compare the following task pool implementations:

• CAFÉ-h – CAFÉ with height h for each tree. Unless stated otherwise, we use h = 12.

• CLQ – The standard Java 6 implementation of a (FIFO) non-blocking queue by Michael and Scott [6]

(class java.util.concurrent.ConcurrentLinkedQueue), which is considered to be one

of the most efficient non-blocking algorithms in the literature [4, 5].

8

• LBQ – The standard Java 6 implementation of a (FIFO) blocking queue that uses a global reader-

writer lock (class java.util.concurrent.LinkedBlockingQueue).

• ED – The original elimination-diffraction tree implementation [1] (downloaded from the web page of

the project), in its default configuration. Tasks are inserted into a diffraction tree with FIFO queues

attached to each leaf. The queues are implemented using Java LinkedBlockingQueues. Every tree

node contains an elimination array where producers can pass tasks directly to consumers. Chang-

ing the tree depth, pool size and spinning behavior did not have a significant effect on the pool’s

performance. Note that ED trees, like CAFÉ , do not enforce FIFO ordering.

• WSQ – Work stealing queues, which do not ensure FIFO. There is one CLQ per consumer. A producer

chooses a random queue to insert a task; a consumer tries first to retrieve a task from its own queue,

and if it fails, attempts to retrieve a task from the CLQ of another consumer. In the worst case, all

consumer queues are checked.

We use a synthetic benchmark for the performance evaluation, in which producer threads work in loops

inserting dummy items, and consumer threads work in loops retrieving dummy items.

Unless stated otherwise, tests are run on a dedicated shared memory NUMA server with 8 Quad Core

AMD 2.3GHz processors and 16GB of memory attached to each processor. JVM is run with the Aggressive-

Heap flag on. We run up to 64 threads on the 32 cores. The influence of garbage collection was negligible

for all algorithm5.

5.2 System Throughput

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 8 16 24 32 40 48 56 64

Ta
sk

s/
m

se
c

Threads number

CAFÉ-13

LBQ

CLQ

EDQ

WSQ

(a) Task insertion rate.

0

500

1000

1500

2000

2500

3000

3500

2 4 8 16 24 32 40 48 56 64

Ta
sk

s/
m

se
c

Threads number

CAFÉ-13

LBQ

CLQ

EDQ

WSQ

(b) Task removal rate.

Figure 2: Task insertion and retrieval rates (equal numbers of producers and consumers). The throughput of CAFÉ-13 increases up to 32 threads

(the number of hardware threads in the system). In this configuration it is ×30 faster than the Michael-Scott ConcurrentLinkedQueue and over

three times higher than all other implementations, including the ones not providing FIFO. CAFÉ continues demonstrating high throughput even

when the number of threads increases up to 64.

Workloads with the same number of producers and consumers. In Figure 2 we show the average

insertion and retrieval rates in a system with an equal number of producers and consumers. Both graphs

demonstrate the same behavior. The throughput of CAFÉ increases up to 32 threads, the number of hardware

threads in our architecture. At this point, the throughput of CAFÉ is ×30 higher than the Michael-Scott

queue or the ED pool. It is also over three times higher than the blocking queue. When the number of

working threads exceeds the number of hardware threads in the system, the throughput of CAFÉ decreases

moderately, but still outperforms the other algorithms.

5This was checked using the verbose:gc flag in JVM.

9

0

1

2

3

4

5

6

1 Nehalem chip 2 Nehalem chips 3 AMD quad-cores
(6 HT cores) (6 HT cores) (no HT)

CAFÉ-13

LBQ

CLQ

EDQ

WSQ

Figure 3: Throughput on different hardware architectures, normalized

by the throughput of LBQ. There are 6 producer threads and 6 consumer

threads.

As we can see in Figure 2, the results of both the

Michael-Scott concurrent queue and ED pools are

lower than those of other algorithms. This differs

from the results demonstrated by Afek et al. [1],

where ED pools were shown to clearly outperform

standard Java queues. This discrepancy seems to

follow from differences in the hardware architec-

tures used in our experiments. Afek et al. use

a Sun UltraSPARC T2 machine with 2 processors

of 64 hardware threads each, while in our system

there are 8 quad-cores. The difference in architec-

ture is significant due to the non-uniform memory

access time in multi-processor systems: accessing

a memory location from multiple processors is sig-

nificantly slower than accessing it from multiple hardware threads on the same chip, which usually share a

last-level cache. We now show how the non-uniformity of memory accesses influences performance.

Figure 3 demonstrates the throughput of the algorithms in three different configurations: a single Ne-

halem chip with 6 hyper-thread cores, two Nehalem chips with 6 hyper-thread cores and three AMD quad-

cores with no hyper-threading. The algorithms are run with 6 producers and 6 consumers (corresponding

to the number of hardware threads available in a single Nehalem chip); the throughput is normalized by the

throughput of the Java LinkedBlockingQueue.

We observe that, consistent with the findings of Afek et al., both ED pools and MS non-blocking queue

perform twice as well as Java’s linked blocking queue when running on a single chip. However, their

performances decrease significantly in systems with two or more chips, when memory sharing becomes

more expensive. The same is relevant for the work stealing queue, which is the best option when run on a

single chip, but behaves worse in multi-chip architectures. Nevertheless, it is worth mentioning that in [1],

ED pools achieved the best results when run on many threads (up to 64) on the same core. We were unable

to reproduce these results as we do not have an access to a machine with more than 12 HW threads per chip.

0

500

1000

1500

2000

2500

3000

3500

4000

4/28 8/24 12/20 16/16 20/12 24/8 28/4

Ta
sk

s/
m

se
c

Threads number (producers/consumers)

CAFÉ-13

LBQ

CLQ

EDQ

WSQ

(a) Various producer-consumer ratios.

0

500

1000

1500

2000

2500

3000

3500

4000

32/32 32/28 32/24 32/20 32/16 32/12 32/8 32/4 32/1

Ta
sk

s/
m

se
c

Threads number (producers/consumers)

(b) Constant number of producers, various number of con-

sumers.

Figure 4: Task insertion rate for various combinations of producers and consumers. Insertion rate of CAFÉremains significantly higher than that

of the competitors for both consumer and producer dominant workloads.

10

Workloads with different numbers of producers and consumers. In some real-world scenarios, tasks

can arrive in bursts and the number of producers varies in time. In such cases, the aim of a task pool is not

to delay the producer threads, which typically stay in a critical path. An insertion throughput should remain

high even if there are more producers than consumers.

We demonstrate the task insertion rate of the algorithms for the workloads with different numbers of

producers and consumers in Figure 4. The insertion rate of CAFÉ is the best when the number of producers

is equal to the number of consumers (16/16 case in Figure 4(a)). However, it remains high for all other

configurations as well, as CAFÉ does not assume any behavioral pattern in order to achieve its performance.

This is in contrast to WorkStealingQueue, which needs many consumers in order to disperse the tasks

between — its insertion throughput degrades as the number of producers becomes higher than the number

of consumers.

5.3 Choosing the Tree Height

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
A

S
fa

ilu
re

s
p

e
r

o
p

e
ra

ti
o

n

Tree height of CAFÉ

(a) CAS failures per operation as a function of tree height.

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ta
sk

s/
m

se
c

Tree height of CAFE

CAFÉ

LBQ

CLQ

EDQ

WSQ

(b) CAFÉ throughput as a function of tree height.

Figure 5: CAS failures and system throughput as a function of CAFÉ’s tree height for 16 producers and 16 consumers. Small trees induce high

contention because of linked list manipulations and reduced tree randomization. Excessively large trees induce contention among producers and

consumers operating in the same tree.

In Figure 5 we demonstrate CAFÉ’s performance for 16 producers and 16 consumers as a function of

tree height. Figure 5(a) shows the average number of CAS failures per insertion / removal operation. For

height = 0, CAFÉ is equivalent to the Michael-Scott concurrent queue, and there are 4 CAS failures per

operation. The rate of CAS failures drops quickly for larger trees, becoming less than 0.1 for CAFÉ-8.

The statistics of CAS failures match the throughput graph shown in Figure 5(b). Increasing the tree

height improves throughput up to a certain point (12 in our workload), but beyond this performance plateaus.

This is because for intermediate tree sizes, producers and consumers usually find themselves in different

trees (the latter lagging behind the former), while for heights larger than 13, most of the threads operate in

the same tree, which increases contention and decreases performance.

5.4 Fairness

We now show the fairness presented by CAFÉ algorithm. In order to measure fairness we choose to measure

the maximal number of tasks that overtake any task in the system (maximal overtakers number). Note that

measuring maximal waiting time would be misleading because this number depends on the execution time

of each single task, which is not a system parameter.

11

We did not want our measurements to introduce additional contention points, therefore we check the

real-time order only between the tasks inserted by the same producer. We simulate dummy tasks of different

length, with ratio of 95%/5% of short over long tasks. There are 16 producers and 16 consumers in each

test.

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
al

 o
ve

rt
ak

e
rs

 n
u

m
b

e
r

Tree height of CAFE

CAFE

CLQ

EDQ

WSQ

Figure 6: The maximal number of overtakes as a function

of tree height.

Figure 6 depicts the maximal number of overtakers of

the non-blocking systems. Note that for height h the max-

imal number of overtakers at CAFÉ is upper bounded by

2h+1 − 1. We see that in practice this number remains

much lower, arriving to 600 overtakers for tree height = 12.

On the opposite, the maximal number of overtakers of

WSQ is 2300. This happens because a long running task

in the queue-per-consumer pools can block other tasks in

its queue, while a large number of short tasks pass in the

queues of the other consumers.

6 Conclusions

We presented CAFÉ, an efficient wait-free task pool with

adjustable fairness and contention. CAFÉ uses a scalable

TreeContainer building block, which greatly improves on the performance of queue-based alternatives and

provides polylogarithmic step complexity for its put operations. Our evaluations show that CAFÉ signif-

icantly outperforms both FIFO and non-FIFO task pool algorithms in multi-chip architectures. As we’ve

seen, existing task pools make different trade-offs between fairness and contention. We believe an inter-

esting theoretical question is whether this trade-off is inherent: is it always more expensive to implement a

FIFO queue than an unordered set?

12

References

[1] Y. Afek, G. Korland, M. Natanzon, and N. Shavit. Scalable producer-consumer pools based on

elimination-diffraction trees. In Euro-Par 2010 - Parallel Processing, pages 151–162. 2010.

[2] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. Snzi: scalable nonzero indicators. In PODC ’07: Proceed-

ings of the twenty-sixth annual ACM symposium on Principles of distributed computing, pages 13–22,

2007.

[3] J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficient synchronization primitives for large-scale

cache-coherent multiprocessors. In Proceedings of the third international conference on Architectural

support for programming languages and operating systems, ASPLOS-III, pages 64–75, 1989.

[4] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, 2008.

[5] E. Ladan-Mozes and N. Shavit. An optimistic approach to lock-free fifo queues. Distributed Computing,

20:323–341, 2008.

[6] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking concurrent

queue algorithms. In Proceedings of the fifteenth annual ACM symposium on Principles of distributed

computing, PODC ’96, pages 267–275, 1996.

[7] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Using elimination to implement scalable and lock-free

fifo queues. In Proceedings of the seventeenth annual ACM symposium on Parallelism in algorithms

and architectures, SPAA ’05, pages 253–262, 2005.

13

A Analysis

We now formally prove the algorithm properties that were presented in Section 4. Let ht be the highest

level of TreeContainer containing occupied nodes and Xi be the number of occupied nodes of level i of

TreeContainer (i varies from 0 to h). In the procedure findNodeForPut(), a producer thread tries to reserve a

random node while traversing different levels of TreeContainer. Let ri be the number of unsuccessful trials

that a producer can do at level i before it continues to level i + 1 (lines 21-24 of TreeContainer). Recall that

rh = k, i.e., there are k trials at the last level.

A.1 TreeContainer Insertions vs Random Walk

The choice of TreeContainer node for task insertion is determined by findNodeForPut() function. The func-

tion has two purposes: 1) in order to reduce contention between the threads the function distributes them

randomly between different nodes; 2) in order to improve memory utilization and insertion/retrieval latency

the function increases the density of occupied nodes.

The straightforward approach for choosing a node for task insertion is a mere random walk (RW) down

from the root, where the task is inserted to the first unoccupied node. This simple algorithm achieves low

contention, however, as we show in the following lemmas, RW approach yields trees with lower task density.

Claim 1. If tasks are inserted into TreeContainer by RW, the probability that an insertion increases a current

value of ht is

PrRW (increase ht) =
Xht

2ht

(1)

Proof. Consider the paths from the root to nodes at level ht. Every path has equal probability to be chosen

by RW. Thus, the probability to increase the height equals to the portion of paths that end at occupied nodes

at level ht out of all paths of length ht. The total number of paths from the root to level ht equals 2ht . The

number of paths ending at occupied nodes equals Xht
. So, the probability to increase ht is

Xht

2ht
.

Claim 2. Assume that N tasks have been inserted into TreeContainer by RW. Then the probability that the

next insertion by RW increases ht is at least

PrRW (increase ht) ≤
N + 1

2ht+1
(2)

Proof. Note that Xi-s have the following constraints:

1. Total number of tasks: N =
∑h

i=1 Xi

2. Tasks, inserted by RW, are structured into a binary tree, therefore ∀0≤i≤ht−1Xi+1 ≤ 2 · Xi

The constraints ensure that Xht
≤ N+1

2 (equality holds in case of a complete tree with a full last level). By

Claim 1, we get (2).

Claim 3. The probability to increase ht by inserting a task with TreeContainer put() operation is

Pr(increase ht) = (Pr(increase ht by RW))rht
+1 · Pr(reached level ht) (3)

14

Proof. The TreeContainer put() function calls to findNodeForPut() in order to find a node for task insertion.

findNodeForPut traverses levels from 0 up to ht + 1. At each level it makes ri trials to choose a free

node uniformly at random. Once an unoccupied node is found, the task is inserted into the highest free

predecessor. Such an insertion increases ht with probability

Pr(increase ht) = Pr(reached level ht) · Pr(failed rht
times at ht|reached level ht)×

×Pr(occupy level ht + 1|failed rht
times at ht)

The probability to pick an occupied node at level ht for rht
times is

Pr(failed rht
times at ht|reached level ht) = (

Xht

2ht

)rht

If all rht
trials fail at level ht, then the inserter picks a random node at level ht + 1. The insertion occupies

level ht + 1 only if the parent of the chosen node is occupied. The number of nodes at level ht + 1 that have

an occupied parent is 2 · Xht
. Hence, the probability to occupy the level ht + 1 is:

Pr(occupy ht + 1|failed rht
times at ht) =

2 · Xht

2ht+1
=

Xht

2ht

By Claim 1, Pr(increase ht by RW) =
Xht

2ht
, so we get (3).

Lemma 6. Insertion by TreeContainer put() function always has strictly lower probability to increase the

tree height than the insertion by RW.

Proof. In findNodeForPut() procedure of TreeContainer rht
= 1 for ht < h and rht

= k for ht = h, so the

lemma follows from Claim 3.

A.2 TreeContainer Density Guaranties

Lemma 7. Assume N tasks that have been inserted into an empty TreeContainer using put() function. Then

the probability that the last occupied level ht does not exceed hu, 0 < hu ≤ h, is at least 1− (N+1)rhu
+2

2(hu+1)·(rhu
+1)

Proof. We order the insertions in a run by the time they succeed to occupy nodes in the tree from 1 (first)

to N . Let {Yi}
N
i=1 be a set of events, so that Yi corresponds to the case that insertion number i increases

the tree height to hu + 1. The tree height remains hu after N insertions if none of the these events occurs.

According to the union bound theorem

Pr(

N⋃

i=1

Yi) ≤

N∑

i=1

Pr(Yi)

When insertion i samples tree nodes, there are at most i − 1 occupied nodes in the tree. By Claims 2, 3

Pr(Yi) ≤ (
i + 1

2hu+1
)rhu

+1

Thus,

Pr(

N⋃

i=1

Yi) ≤

N∑

i=1

(
i + 1

2hu+1
)rhu

+1 <
(N + 1)rhu

+2

2(hu+1)·(rhu
+1)

The lemma follows.

The following lemma demonstrates the density properties of TreeContainer: it shows that TreeCon-

tainer’s put() operation fails only if most of the nodes in the tree have already been occupied.

15

Lemma 1 (restated). In a TreeContainer of height h, if a put operation fails, then the tree contains at least

2
k+2
k+3
·h

tasks with probability at least 1 − 1

2
(3− 7

k+3
)·h+k+1

.

Proof. Recall that at last level of TreeContainer there are k trials to occupy node in findNodeForPut() pro-

cedure, i.e. rh = k. By Lemma 7, the if N = 2
rh+2

rh+3
·h

= 2
k+2
k+3
·h

the probability that all N nodes enter the

tree of height h is at least 1 − 2
(k+2)2

k+3
·h

2(h+1)·(k+1) = 1 − 1

2
(3− 7

k+3
)·h+k+1

.

A.3 TreeContainer Step Complexity

In the current section we investigate the step complexity of TreeContainer’s put() operations. We say that

step is either read, write or CAS operation.

Claim 4. Assume that thread T performs put() operation in TreeContainer. If ht is the last occupied level

at the end of this operation, then T has done at most O(ht
2) steps in findNodeForPut() function.

Proof. According to the state of the lemma, the last occupied level is ht, hence findNodeForPut() iterates

over at most ht + 1 levels. At each level T makes an attempt to reserve a random node v (k attempts at the

last tree level). Function putInNode(v) is called for each such attempt. During this function T traverses the

path from v to the root looking for the highest unoccupied node. If an unoccupied node has been found, T
tries to mark its dirty bit using CAS operation. CAS may fail if some concurrent thread has outrun T . In

this case, T returns back on the path to v trying to CAS isDirty variable of the nodes on the way. If some

CAS succeeds, the reservation has done. However, in the worst case, T may fail in putInNode() call at every

level up to level ht. Therefore, in the worst case, for every level except ht, T climbs to the root and goes

back with CAS failures. Hence, the number of steps is bounded by
∑ht

i=1 2 · i · consti ∈ O(ht
2).

Claim 5. The step complexity of updateNodeMetadata(v) for a node v with height hv is O(hv).

Proof. In function updateNodeMetada(v) a thread traverses the nodes on the path from v to the root updating

the metadata of some v’s predecessors. At each node the thread makes the pre-defined constant number of

reads/writes and at most two CAS operations (limited by trials variable in lines 52, 53 of TreeContainer).

Hence, the total number of steps is O(hv).

Lemma 8. Every put() operation of TreeContainer makes at most O(h2) steps.

Proof. Function put() of TreeContainer performs one call to findNodeForPut() and at most one call to up-

dateNodeMetada() functions. The lemma follows from Claims 4, 5.

Lemma 2 (restated). Consider a TreeContainer after N successful put operations. Then each of these

operations has taken O(log2(N)) steps with probability at least 1 − 1

2·(N+1)
4
3

.

Proof. According to Lemma 1, the height of the tree constructed by N insertions is bounded by hu with

probability at least 1 − (N+1)rhu
+2

2(hu+1)·(rhu
+1) . At all levels except the last one there are rhu

= 1 trials to reserve

unoccupied node. If we take hu , 4
3 · log2(N), by Lemma 1 the last occupied level is at most 4

3 · log2(N)
with probability at least 1 − 1

2·(N+1)
4
3

.

Function put() of TreeContainer performs one call to findNodeForPut() and at most one call to updateN-

odeMetada(). If ht is bounded by 4
3 · log2(N) at the end of each of N put() operations, by Claims 4, 5 each

of these operations makes at most O(log2(N)) steps.

16

A.4 Probabilistic Wait Freedom of Producers

Lemma 3 (restated). If P producer threads and any number of consumer threads use CAFÉ, then any

TreeContainer’s put operation succeeds with probability at least (1 − 1
2h)k·(P−1) · [1 − (1 − 1

2h)k].

Proof. Consider a put() operation by some thread T . Assume that an adversarial scheduler tries to fail T ’s

operation. By CAFÉ algorithm, T reads the latest tree from PT (let C denote this tree) and runs TreeCon-

tainer’s put() operation on C. T ’s operation fails if T does not succeed to reserve an unoccupied node in C.

The optimal strategy for the adversary to cause the failure is to suspend T and let other threads occupy the

nodes of C.

TreeContainer’s put operation can fail even if there are unoccupied nodes in C. This happens if there

are occupied nodes at level h and findNodeForPut() picks k times one of this nodes (TreeContainer lines

21-24). If some thread fails to put a task into C, this thread runs its following put() operations on the next

trees in the CAFÉ linked list and, thus, cannot affect T ’s operation anymore.

Let ST be an event of T success to put a task in C. Let Ei be an event when all the threads except T
(T has been suspended by the adversary) have failed to insert a task in C and that there are exactly 2h − i
unoccupied nodes at level h. After Ei occurs, the adversary cannot affect T ’s operation anymore, because

all threads except T stop working on C and move to next trees. Note that Ei are disjoint events and have the

property Pr(
⋃2h

i=1 Ei) =
∑2h

i=1 Pr(Ei) = 1. Hence, we can write

Pr(ST) =

2h∑

i=1

Pr(ST

⋂
Ei) =

2h∑

i=1

Pr(ST |Ei) · Pr(Ei)

T makes k trials to reserve a uniformly random node at level h, therefore, for 1 ≤ i < 2h, Pr(ST |Ei) =
1 − Pr(¬ST |Ei) = 1 − (i

2h)k; for i = 2h, Pr(ST |E2h) = 0 (all nodes of C are occupied). Thus,

Pr(ST) =

2h−1∑

i=1

[1 − (
i

2h
)k] · Pr(Ei) ≥ [1 − (

2h − 1

2h
)k] ·

2h−1∑

i=1

Pr(Ei)

As
∑2h

i=1 Pr(Ei) = 1,

Pr(ST) ≥ [1 − (
2h − 1

2h
)k] · (1 − Pr(E2h)) (4)

Let Aj be the event corresponding to the situation at which exactly j of P −1 adversarial threads have failed

to put a task in C before 2h − 1 nodes of level h become occupied. Note that events {Aj}
P−1
j=0 are disjoint

and have the property Pr(
⋃P−1

j=0 Aj) =
∑P−1

j=0 Pr(Aj) = 1, so we can write

Pr(E2h) =
P−1∑

j=0

Pr(E2h

⋂
Aj) =

P−1∑

j=0

Pr(E2h |Aj) · Pr(Aj)

For j < P − 1, the probability that at least one of P − j adversarial threads succeeds to occupy the last

unoccupied node in the following put operation is Pr(E2h |Aj) = 1 − (2h−1
2h)k·(P−j). For j = P − 1,

Pr(E2h |AP−1) = 0, because Pr(E2h

⋂
AP1) = 0. Hence, we get

Pr(E2h) =

P−2∑

j=1

[(1 − (1 −
1

2h
)k·(P−j)) · Pr(Aj)] ≤ [1−(1−

1

2h
)k·(P−1)]·

t−2∑

j=0

Pr(Aj) ≤ 1−(1−
1

2h
)k·(P−1)

By substituting the inequality result into (4), we finish the proof.

17

Lemma 9. Every producer thread makes a finite number of steps during the function moveGTBack() of

CAFÉ algorithm.

Proof. Let T be a producer thread that has called to moveGTBack(). Let t1 be the moment of time at

which T has finished fetchAndInc() (line 25), and t2 be the moment of time at which T performs a call to

fetchAndDec() (line 31) (if this never happens, t2 = ∞).

The consumer threads that start get() operations in the interval (t1, t2) do not update GT because they

do not satisfy the if condition of line 39.

There may be consumer threads that have started and not terminated get() operations before t1. We

call such consumers t1-active. A number of these consumers is bounded by the number of threads t using

CAFÉ. t1-active consumer may update GT at most once in the interval (t1, t2), because in its next loop

iteration (lines 35-44), starting after t1, it cannot satisfy if condition at line 39. Hence, t1-active consumers

can update GT at most t times in (t1, t2) interval.

Note that GT.curr.id never exceeds PT.id. PT.id only increases and, according to line 38, a con-

sumer never increases GT.curr.id beyond the value of ptV al.id, which is read at the beginning of its get()

operation (line 33).

Let idt1 be the value of PT.id at the moment t1. Note that GT.curr.id ≤ idt1 . t1-active consumers

execute at most t GT updates and, thus, can increase GT.curr.id up to idt1 + t value.

The producers that start put() operations after t1 insert tasks into nodes with id ≥ idt1. The producers,

which put tasks into nodes with id ∈ [idt1, idt1 + t−1], may discover that GT.curr.id > latest.id (line 13)

and, as a result, try to move GT backward. However, GT can be moved backward at most t times, because

after at most t updates of GT by t1-active consumers, no consumers move GT forward anymore. Hence,

producers that start put() operation during (t1, t2) interval make at most t updates on GT.

Consider now the producers that have started and have not completed their put() operations before t1.

The number of such producers is bounded by the number t of threads that use CAFÉ simultaneously and

each of these threads makes at most one update of GT (line 30).

To summarize, there are three types of threads that can update GT concurrently with T , but all these

threads can do at most 3 · t updates. Therefore, after at most 3 · t trials, T succeeds in CAS at line 30 and

terminates moveGTBack() call.

Lemma 4 (restated). If the height of TreeContainer is greater than zero, then CAFÉ’s put operations are

wait free with probability 1.

Proof. CAFÉ put() operation has two stages: 1) it invokes TreeContainer’s put() operation on the TreeCon-

tainer objects until the first success; 2) it then can possibly call to the function moveGTBack().

By Lemma 8, every TreeContainer’s put operation takes O(h2) steps. By Lemma 3, if h > 0, every

TreeContainer’s put() operation succeeds with non-zero probability. Therefore, the first stage terminates in

a finite number of steps with probability 1. By Lemma 9, the second stage terminates in a finite number of

steps, which finishes the proof.

A.5 Consumers Wait Freedom

We now show that get operations of CAFÉ are wait-free.

Lemma 10. After O(h · 2h) steps without concurrent updates on a TreeContainer by producers every

TreeContainer get() operation terminates.

18

Proof. We say that a node in TreeContainer is reachable from the root, if for every node on the path to the

root parent node has predicate 1 in metadata describing the child node. As there are only consumer threads

running and their updates write only 0 value to metadata predicates, number of reachable nodes can only

decrease.

Consider the function findNodeForGet() of TreeContainer. As the function looks for a node by metadata

predicates, it always returns a node that is reachable at the moment when the function call has started.

According to findNodeForGet() (line 43), it can return either the node with a task, or a node with predi-

cates 0 for both of its children.

In the first case: if a consumer thread succeeds to take the task from the returned node at line 37, the

get() operation terminates after a call to updateNodeMetada(); otherwise some other consumer thread has

already taken the task. In both cases, the task is taken from the node and the same node can be returned by

the following calls only in the context of the second case.

In the second case: the returned node does not have a task, so updateNodeMetadata() is called and

the returned node becomes unreachable. As a result, this node cannot be returned in the following calls to

findNodeForGet().

Therefore, after at most 2 · (2h+1−1) (twice the size of TreeContainer) invocations of findNodeForGet()

TreeContainer does not have reachable nodes.

The get() function of TreeContainer runs a while loop, at which every iteration makes a single call to

findNodeForGet() and at most one call to updateNodeMetadata() function. If at the beginning of a loop

iteration there are no reachable nodes, the get() operation terminates (line 34 of TreeContainer). Therefore,

there are at most 2 · (2h+1 − 1) loop iterations.

findNodeForGet() traverses only one path from the root to some inner node and thus makes O(h) steps

— by Lemma 5, updateNodeMetada() makes at most O(h) steps. Hence, the total number of steps during

the get() operation is O(h · 2h).

Lemma 11. Every get() operation of TreeContainer terminates in a finite number of steps.

Proof. According to TreeContainer, a node can be occupied only once. Hence, there is a finite number of

put() operations that succeed to find an unoccupied node. The number of these operations is bounded by the

number of nodes in TreeContainer and, by Lemma 8, every such operation makes O(h2) updates. Thus, the

number of producer updates is bounded by constp · h
2 · 2h for some constant constp.

By Lemma 10, there exists a constant constc, s.t. after at most constc · h · 2h steps without concurrent

updates by producers a get() operation of TreeContainer terminates. As we noted before, producers can

update TreeContainer at most constp ·h
·2h times, therefore every TreeContainer’s get() operation terminates

after at most constc · h · 2h · (constp · h
2 · 2h + 1) steps.

Lemma 5 (restated). Every get operation of CAFÉ terminates in a finite number of steps.

Proof. Let Tc be a consumer thread performing get() operation. Let gtF irst be a pointer to the first tree

inserted into the linked list of TreeContainers. Let consts be a bound on the number of steps taken by a

get() operation of TreeContainer (by Lemma 11, such a bound exists).

At the beginning of get() operation, Tc stores PT and GT values in ptV al and gtV al respectively.

If (ptV al.id ≤ gtV al.curr.id), then Tc performs at most two get() operations of TreeContainer and

terminates.

Otherwise, Tc has to execute get() operation on all the trees between gtV al.curr and ptV al in the linked

list of trees. Meanwhile, producers can move GT back up to firstGt. However, if starting from some

19

moment Tc can take (ptV al.id− firstGt.curr.id) · 2 · consts steps with no producer threads concurrently

moving GT, Tc terminates its get() operation.

Note that the producers, which start their put() operations after the moment Tc reads PT (line 33), do

not move GT before Tc’s ptV al. Thus, these producers do not affect the termination of Tc get() operation.

Hence, the only producers that can affect Tc are the producers that started and have not terminated before

Tc has read PT. The number of such producers is bounded by the number t of threads using CAFÉ, so, the

number of times that GT can be moved back during Tc’s get operation is t. Therefore, after t · (ptV al.id −
firstGt.curr.id) · 2 · consts steps of Tc, either Tc terminates or producers move GT t times. Hence, after

at most (t + 1) · (ptV al.id − firstGt.curr.id) · consts steps, Tc terminates its get() operation.

B Safety Proofs

In this section, we show that TreeContainer and CAFÉ implement linearizable job pools. We will refer to

line number r in Algorithms 1 and 2 by 〈Tr〉 and 〈Cr〉, resp.

B.1 Safety of TreeContainer

We first show that a single TreeContainer implements a linearizable job pool. That is, a get operation on

a TreeContainer only returns ⊥ if the tasks of all put operations that completed before the get have been

taken. The basic idea, stated in Lemma 13, is that between the time when a put operation finished inserting

a task in a node and when the task is removed, the entire path between the node and the root is marked. This

implies that as long as there are some unremoved tasks in the TreeContainer, there is a marked path which

leads get operations to a task.

We first prove a lemma which says that each CAS on a node’s metadata sees the value of the previous

CAS. This allows processes to correctly transfer information to each other.

Lemma 12. Let T be any TreeContainer, let x ∈ T be any node, and let y be x’s father. Consider the

sequence of successful CASes (at 〈T60〉) C1, . . . , Cm on y.meta[x.side], and let R1, . . . , Rm be the corre-

sponding reads (at 〈T58〉) preceding each such CAS. Then for i = 2, . . . ,m, Ri occurs after Ci−1.

Proof. From 〈T59〉 and 〈T60〉, we see that each successful CAS on y.meta[x.side] increments the version

number y.meta[x.side].ver. Thus, if some Ri occurred before Ci−1, the value y.meta[x.side].ver Ri read

would be less than y.meta[x.side].ver after Ci−1, and so Ci would fail. This is a contradiction.

In the following, given a node x and a time t, we write hasTasks(x) at t to mean the value that the

function hasTasks(x) would return if evaluated at time t.

Lemma 13. Consider any TreeContainer T , and let p be a completed put operation that inserted a task in

node x0 ∈ T . Suppose that by some time τ , no get operation has removed the task from x0, i.e. 〈T37〉 with

node = x0 has not occurred. Then for every node x on the path from x0 to the root of T , hasTasks(x) = 1
at τ .

Proof. We first show the lemma holds for x0. Since p finished its operation, it inserted a task in x0 at 〈T30〉
at some time t < τ . Also, since a get for x0 has not occurred by τ , then x0.tasks 6=⊥ from t to τ . So

hasTasks(x) = 1 at τ .

To show the lemma for the other nodes on the path, we first prove the following claim, which says that if

p passes through some node whose hasTasks = 1 from some point onwards, then p will also pass through

the node’s father, and the father’s hasTasks = 1 from some point onwards.

20

Claim 6. Let x be a node on the path from x0 to the root of T , let y be x’s father. Suppose there’s a time

t < τ such that p.node = x, and also hasTasks(x) = 1 from t until τ . Then there’s another time t′ > t
such that p.node = y, and hasTasks(y) = 1 from t′ until τ .

Proof. Since p finished its operation by time τ , then it returned either from 〈T48〉 or 〈T49〉. Also, because

p is a put operation, p.myV al = 1. So since p.node = x at t and hasTasks(x) = 1 = p.myV al from t
till τ , then p did not return from 〈T49〉 while p.node = x. Thus, p does 〈T55〉 at some time t′ > t, and the

first part of the claim holds.

To show the second part, consider 3 cases. Either the if on 〈T51〉 was false, or the if on 〈T51〉 was

true and the if on 〈T53〉 was true at some time, or the if on 〈T51〉 was true and the if on 〈T53〉 was always

false. In the first case, let t′′ be the time when p did 〈T51〉. Then t < t′′ < t′, and so hasTasks(x) =
1 = y.meta[x.side].h at t′′, and x.pending = 0 at t′′. Consider any step which changes the value of

y.meta[x.side].h between t′′ and τ . By inspection, we see that this must be a successful CAS step C on

〈T60〉, say by process q. Let R be the read on 〈T58〉 by q before C. Then R must have occurred after t′′,
because if R occurred before t′′, then q also did 〈T57〉 before t′′, and did 〈T61〉 after t′′, so that x.pending >
0 at t′′, which is a contradiction. Since R occurred at t′′ > t, then new.h = hasTasks(x) = 1 when q
performs 〈T59〉, and so after C, y.meta[x.side].h = new.h = 1.

In the second case, let t′′ be the time when p did a successful CAS to y.meta[x.side] in 〈T60〉 during

one of its executions of updateFather. Since hasTasks(x) = 1 from t to t′′, then p CASed the value 1 into

y.meta[x.side].h, and so y.meta[x.side].h = 1 right after t′′. Consider any (CAS) step C by a process q
that changes the value of y.meta[x.side] between t′′ and τ , and let R be the read at 〈T58〉 by q right before

C. Then R occurs after t′′, by Lemma 12. So R reads hasTasks(x) = 1 sometime after t′′ > t, and after

C, we have y.meta[x.side].h = 1.

In the last case, let C1, C2 be the two failed CASes on 〈T60〉 that p performed during its 2 executions

of updateFather, and let R1, R2 be the reads on 〈T58〉 preceding C1, C2, resp. Since C1 failed, then there

must be a successful CAS C ′1 which occurred between R1 and C1; otherwise, C1 would have succeeded.

Similarly, there must be a successful CAS C ′2 by a process q between R2 and C2. Let R′2 be the read

at 〈T58〉 by q before C ′2. Then by Lemma 12, R′2 occurs after C ′1. So, since R1 occurs after t, and R′2
occurs after C ′1 which occurs after R1, then q sees hasTasks(x) = 1 when it does 〈T59〉 after R′2. Thus,

y.meta[x.side].h = 1 after C ′2.

The above 3 cases show that y.meta[x.side].h = 1 from t′ until τ , and so hasTasks(y) ≥ y.meta[x.side].h =
1 from t′ until τ .

We now complete the proof of the lemma. As stated earlier, hasTasks(x0) = 1 from some t < τ to τ .

Then by repeatedly applying Claim 6, we have hasTasks(x) = 1 for every x on the path from x0 to T ’s

root, from some time before τ until τ . So the lemma holds. �

Corollary 1. Let T be a TreeContainer, and suppose a get operation g performs T.getTask() at time t1,

and returns ⊥ at time t2. Let p be a task that was put into T before t1. Then p was removed from T before

t2.

Proof. Suppose for contradiction that p’s task was not removed before t2. Let x be the node that p’s task was

inserted into. Then by Lemma 13, every node x′ on the path from x to the root of T has hasTasks(x′) = 1
during [t1, t2]. Thus, g does not return ⊥ in 〈T34〉. g also doesn’t return ⊥ in 〈T39〉, as this would imply that

some other get successfully took x’s task in 〈T37〉. Hence, g does not return ⊥, which is a contradiction.

Theorem 1. TreeContainer implements a linearizable producer-consumer pool.

21

Proof. From 〈T37〉, we see that every task can be returned by at most one task. Also, Corollary 1 shows

that a get operation only returns ⊥ if all the put operations that finished before it started have been returned.

So, the theorem follows.

B.2 Safety of CAFÉ

We now show that CAFÉ implements a linearizable job pool. Since CAFÉ uses a list of linearizable

TreeContainers, the main property we show, in Lemma 15, is that if there is an unremoved job in some

TreeContainer T , then a get operation will start looking for jobs starting from T or an earlier TreeContainer.

This implies that if a get operation returns ⊥, then all the jobs that were put into some TreeContainer before

the get started have been removed. This implies CAFÉ is linearizable.

We begin by showing that processes can correctly pass information to each other by performing CAS on

GT . Note that GT is only changed by a CAS at either 〈C30〉 or 〈C41〉. In each case, there’s a preceding

read on GT , at either 〈C27〉 for a CAS at 〈C30〉, or 〈C34〉 or 〈C42〉 for a CAS at 〈C41〉. Given an execution

of CAFÉ , denote the sequence of CASes on GT by C1, . . . , Cm, and denote the sequence of corresponding

reads by R1, . . . , Rm.

Lemma 14. For i = 2, . . . ,m, Ri occurs after Ci−1.

Proof. Each time a CAS occurs, we try to set GT to a new value created on 〈C29〉 or 〈C40〉. As mentioned

earlier, since CAFÉ is implemented in Java, each of the new values is a Java reference, and hence, is unique

for the entire execution of CAFÉ . Thus, if Ri occurs before Ci−1, for some i, then Ci−1 will change the

value of GT that Ri read, and hence Ci will fail, which is a contradiction.

Lemma 15. Let p be a completed put operation that inserted a task in TreeContainer T . Suppose at some

time τ , p’s task has not been removed. Then GT.cur.id ≤ T.id + 1 at τ .

Proof. We will prove a stronger statement than the lemma. Define a time t as follows. Since p completed

its operation, it returned from moveGTBack either at 〈C28〉 or 〈C30〉. In the first case, let t be when p did

〈C27〉, and in the second case, let t be when p did 〈C30〉. The lemma follows from the following claim.

Claim 7. GT.cur.id ≤ T.id + 1 from t until τ .

Proof. Consider the sequence of successful CAS operations on GT between t and τ . Note that these are the

only operations that change GT ’s value. We prove the claim using induction on the sequence of CASes.

The base case is time t, when no CASes have occurred yet. If t is defined as in the first case above, then

GT.cur.id = gtV al.cur.id ≤ T.id at t. If t is defined as in the second case, then after p’s CAS at 〈C30〉,
we also have GT.cur.id ≤ T.id.

Next, assume inductively that GT.cur.id ≤ T.id + 1 after some number of CASes on GT . We show

the condition still holds after the next CAS. This CAS occurs at either 〈C30〉 or 〈C41〉. If the CAS oc-

curs at 〈C30〉, then the corresponding read occurred at 〈C27〉. By induction, we have gtV al.cur.id =
GT.cur.id ≤ T.id+1 from this read. Since 〈C30〉 occurred, the if in 〈C28〉 was false, and so gtV al.cur.id >
latest.id. Then, the CAS on 〈C30〉 sets GT.cur.id to latest.id < gtV al.cur.id ≤ T.id + 1, and so

GT.cur.id ≤ T.id + 1 after the CAS.

In the other case, the CAS occurs at 〈C41〉. We claim that at most one such CAS occurs after t, and

GT.cur.id ≤ T.id + 1 after this CAS. Let C be the last successful CAS on GT before t, and C ′ be the

first successful CAS on GT after t. Then by Lemma 14, the read operation R′ on GT corresponding to C ′

occurs after C. Since GT.cur.id ≤ T.id immediately after t, and C was the last CAS to change GT ’s value

before t, then R′ read GT.cur.id ≤ T.id. From 〈C40〉, we see that C ′ increased GT.cur.id by 1, and so

22

GT.cur.id ≤ T.id + 1 after C ′, which proves the second part of the (sub)claim. To show that C ′ is the

only successful CAS on GT between t and τ , consider the read R corresponding to any CAS attempt on

GT after t, say by a process q. If R occurs before C ′, then q’s CAS will fail, by Lemma 14. Otherwise,

R occurs after C ′, which occurs after t, which occurs after p finished 〈C12〉. If gtV al is the value of GT
that R read, then by induction, we have gtV al.prev.id = T.id or gtV al.cur.id = T.id. Thus, q will do

T.getTask() either in 〈C36〉 or 〈C37〉. Since p’s task has not been removed by time τ , then by Corollary

1, T.getTask() 6=⊥. Thus, q will not advance past 〈C37〉, and will not do a CAS on GT . This shows that

C ′ is the last CAS on GT from t till τ .

Lemma 16. Suppose a get operation g in CAFÉ returns ⊥ at a time t. Then for every put operation p that

completed before the start of g, p’s task was removed by some get operation before t.

Proof. Suppose for contradiction there is some p that finished inserting a task in a tree T , and the task was

not removed before t. Then by Lemma 15, we have GT.cur.id ≤ T.id + 1 when g does 〈C33〉 and 〈C34〉.
Thus, in some iteration of g’s while loop at 〈C35〉, g does T.getTask(). By Corollary 1, T.getTask() 6=⊥,

and so g does not return ⊥, which is a contradiction.

Theorem 2. CAFE implements a linearizable producer-consumer pool.

Proof. Clearly, each get operation only returns puts that start before the get finishes. Lemma 16 shows that

a get only returns ⊥ if all the puts that finished before it started are taken by other gets. Together, these

define the semantics of a producer-consumer pool.

Lemma 17. Let p1, p2 be two put operations inserting into trees T1, T2, resp., with T1.id < T2.id. Suppose

that p1 and p2’s tasks are not removed at time t1. Then if p1 and p2’s tasks are both removed by gets that

start after t1, p1 is removed before p2.

Proof. Let t2 be the first time when either p1 or p2’s task is removed. Then by Lemma 15, at any time

between t ∈ [t1, t2], we have GT.id ≤ T1.id + 1 ≤ T2.id. Let g be any get operation that starts after t1.

Then from 〈C36〉 and 〈C37〉, g does T1.getTask() before T2.getTask(). Also, by Corollary 1, up to time

τ1, g’s T1.getTask() does not return ⊥. Thus, p1’s task is removed before p2’s.

23

