

IRWIN AND JOAN JACOBS

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

Multi-Amdahl: Optimal

Resource Sharing with Multiple

Program Execution Segments

Tsahee Zidenberg, Isaac Keslassy,

and Uri Weiser

CCIT Report #791

June 2011

DEPARTMENT OF ELECTRICAL ENGINEERING

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

Electronics

Computers

Communications

1

Multi-Amdahl: Optimal Resource Sharing with

Multiple Program Execution Segments
Tsahee Zidenberg, Isaac Keslassy, and Uri Weiser

Abstract—This paper presents Multi-Amdahl, a resource al-
location analytical tool for heterogeneous systems. Our model
includes multiple program execution segments, where each one is
accelerated by a specific hardware unit. The acceleration speedup
of the specific hardware unit is a function of a limited resource,
such as the unit area, power, or energy. Using the Lagrange
theorem we discover the optimal resource distribution between
all specific units. We then illustrate this general Multi-Amdahl
technique using several examples of area and power allocation
among several cores and accelerators.

I. INTRODUCTION

I
N the past few years, chip designers have increasingly taken

into account resource constraints, most notably power,

as a design goal. Their focus has shifted from improving

performance to improving performance within a limited power

envelope. Heterogeneous cores have been suggested for per-

formance/power ratio improvement. These units are designed

for specific workloads, trading efficiency for flexibility. The

shift towards special-purpose hardware can be seen in today’s

CPU products, which add a graphic accelerator to the general-

purpose cores [1], [2], [3]. Another example of this trend can

be seen inside the general-purpose core; special-purpose logic

is added, supporting specific computation, such as CRC or

cryptography [4].

In multicore environment it is necessary to correctly bal-

ance the performance of parallel and serial code segments

to overcome the Amdahl law ceiling [5]. Parallel code runs

most efficiently when splitting the available area into many

processors, while the serial code can only run on a single

processor. The difference between the requirements of the two

sections created the asymmetric-cores approach [6]. An opti-

mal point for the asymmetry can be found using Amdahl’s law

for balancing the importance of parallel and serial execution,

along with the fact that all processors share a common resource

[7].

As hardware becomes more specialized and diverse, Am-

dahl’s law becomes multidimensional. In this environment not

only some code segments are accelerated while others are

not, but also different accelerated segments might rely on

different types of accelerators. Some of these segments could

represent high-level computation sections, such as matrix

multiplication and FFT, while others could represent low-level

computation sections, such as sections with many floating-

point instructions.

All writers are with the department of Electrical Engineering, Technion,
Haifa 32000, Israel. As usual, this technical report has not been peer-reviewed
and does not count as a publication. It simply presents a few preliminary
results.

A limited resource, such as power or area, is shared among

the various specific units on the chip. Our target is to find the

optimal way to distribute that resource between the specific

HW units, balancing the efficiency of different hardware units

with their importance and performance.

This paper presents two main contributions:

• We propose Multi-Amdahl, an analytical tool to optimize

resource allocation among n different specific HW units

running n segments of execution code. The architect

may impose constraints on the design, such as total area,

power, or energy, and expect optimal outcome, such as

maximum speedup. In our model, we take into account

the differences in efficiency and scalability of hardware

units, and the workload distribution among the different

segments.

• Initial results and intuitions obtained from Multi-Amdahl

are presented. These results suggest that the opportunities

that exist in heterogeneity might surpass the cost of

inflexibility. In other words, the occasional use of an

accelerator might exceed the costs resulting from its

frequent inactivity.

The paper structure is as follows: Section II covers the

related work, Section III presents the Multi-Amdahl technique.

Our technique is compared with Amdahl’s law in Section IV.

In Sections V and VI, we present a few examples for extending

the basic model. Section VII presents results from our model

and their implications, and Section VIII concludes and points

to potential future extensions of our work.

II. RELATED WORK

The move towards accelerators

Venkatesh et al. [8] explored the problem of “dark silicon”.

Today, threshold voltage no longer scales when technology

advances. The result is that a shrinking percent of the chip may

be activated simultaneously. To achieve peak performance,

we must make sure that minimal power is spent for each

function, so that more functions could be executed in parallel.

The article suggested an architecture with many heterogeneous

cores, each designed for optimal power efficiency of a dif-

ferent software function. Those automatically-generated units

provided up to 30x efficiency (work/J) over general-purpose

MIPS. The article also suggested “patchable” versions of those

units with lower (16x) improvements.

Shee et al. [9] tested a few architectures for a heterogeneous

chip built especially to encode JPG images. Each core was

optimized for one specific pipeline stage. Mostly, optimiza-

tion was done by removing unnecessary components from a

lesley
Text Box
CCIT Report #791 June 2011

2

general-purpose core. Hameed et al. [10] created an even more

specific processor for video encoding by adding custom-made

“magic” instructions. The final chip was about 256× faster

than the original RISC processor, while consuming about 1%

of the energy and 126% of the area.

Chung et al. [11] compared the power efficiency of general-

purpose cores with three forms of “unconventional cores”:

FPGA, GPGPU and custom logic. Depending on the bench-

mark, custom logic was shown to be around 100x times as

power-efficient (performance ratio / power ratio) as a CPU.

The ratio for FPGAs and GPGPUs was, depending on the

benchmark, around 10x and 5x respectively.

A large body of work by both academia and industry is ded-

icated to supporting the heterogeneous compute environment.

Various frameworks have been suggested for different aspects

of the heterogeneous environment, including programing [12],

run-time [13] and hardware [14].

Analytical models for the multiprocessor

Hill and Marty [7] created an initial analytical model

revealing the relationship between single thread execution

speedup gained from using larger cores, and the multi-threaded

phase execution speedup gained from using more cores, under

a total budget. The model shows that the optimal results are

achieved by asymmetric multicores, with one large core for

accelerating the single-threaded phase and many small cores

for accelerating the multi-threaded phases.

Woo et al. [15] extended this model for

Performance/Watt and Performance/Joule measures.

Three systems are modeled: symmetric full-blown processors,

symmetric efficient processors, and asymmetric ones. The

three systems can be compared with one another by limiting

them to an equal power budget. Once again, the asymmetric

multicore shows better results for almost any measure.

Chung et al. [11] also extended Hill’s model. Their model

took into considerations three different budgets: total area (as

in [7]), total power (similar to [15]), and total bandwidth.

Three models of chips were tested - symmetric multicore,

asymmetric multicore, and heterogeneous. The last model

is an extension of the asymmetric one, where the efficient

cores are in fact “unconventional cores” and therefore even

more power efficient. The flexibility of unconventional cores

was not modeled. All the unconventional cores in the model

can execute the entire parallel portion of the workload. The

authors of the article have made a few projections on the

future technology nodes and the changes in overall bandwidth

budget, and have reached the conclusion that bandwidth,

rather than power, would be the main reason for performance

limitation in the future.

Our technique is different from the ones presented above,

by the fact that we provide optimal solution for n different

execution segments rather than only two segments. Multi-

Amdahl models the cost of the inflexibility introduced in the

heterogeneous system.

t0 t1 tn

a0

a1

f0(a0)t0 fn(an)tn

(a)

f0
f1 fn

(b)

(c)

(d)

an

(e)

TBGP

Figure 1. Basic model (a) BGP execution time, (b) aggregated BGP execution
time, (c) resource allocation (e.g. area), (d) acceleration function, (e) final
execution time

III. MULTI-AMDAHL

A. Entities

Multi-Amdahl is a strategy for finding the optimal resource

assignment for different accelerators sharing common limited

resources.

Figure 1 illustrates an example for the three basic entities

of the technique:

The Workload — Figure 1(a) presents execution time as

measured running on a Basic General-Purpose core (BGP).

Figure 1(b) presents execution time when it is aggregated

and divided into n segments, each of which will run on a

different accelerator. For simplicity, we do not model any cost

for moving context between segments. This is common in such

models (e.g. [7], [15], [9]). Segment i takes ti seconds to

execute on the BGP. The parameters ti, 0 ≤ i < n represent

the workload’s distribution between the different execution

segments.

TBGP =
∑

ti

Resource and Constraint — Figure 1(c) illustrates how

the chip is divided into n hardware units. The units share a

common resource (e.g. area, power, energy). The chip design

aims at resource allocation under a specific constraint. For

example, when allocating area A to different hardware units,

the constraint is the total die area A,

∑

xi ≤ A (1)

The resource units are normalized so that the BGP uses

one unit. Different resources and constraints are presented in

Section V.

Efficiency — Figure 1(d) presents unit efficiency, which is

a function determining how long section i will take to execute

when assigned xi resource.

Ti = tifi(xi)

Each unit may be described by a different function. The

function represents the unit’s technology. For example, when

considering number of transistors (normalized to BGP transis-

tor number) as a resource, the function:

3

f(x) =
1

100
√
x

models an accelerator that is 100 times as efficient as a BGP

when assigned BGP-equivalent transistors, but it will only

double its performance if assigned four times more transistors,

according to Pollack’s law [16]. Theses functions hide details

of how the resource is used (e.g. is the area divided into many

narrow units or a few wide ones).

Figure 1(e) illustrates the total aggregated execution time.

The optimization goal is to minimize this total time.

Texec =
∑

Ti =
∑

tifi(xi) (2)

Different use-cases for the model are presented in Section VI.

B. Optimization

Lagrange multipliers are a mathematical tool for finding

maxima and minima for a multi-dimensional function within

a set of constraints on the input variables. In Multi-Amdahl, we

minimize total execution output (e.g. time) under the constraint

imposed by the resource (e.g. area, power). We assume that

additional resources added to the system will create an output

gain (e.g. performance), thus the optimal point is inside the

limited space where the resource budget is exactly met (i.e.,

we assume that the Karush-Kuhn-Tucker conditions [17] are

met.) Using Equations (1) and (2), the optimization problem

can be formalized as:

minimize
∑

fi(xi)ti

subject to:
∑

xi = A

Using the Lagrange optimization method, it follows that the

optimal solution satisfies:

f
′

i (xi)ti = f
′

j(xj)tj (3)

The intuition behind Equation (3) is that each infinitesimal

additional resource would create the same overall run-time

improvement on any accelerator it would be assigned to.

This is the basic equation, describing static resources. More

complex cases can be analyzed in the same way to provide

their optimal point.

IV. COMPARING WITH AMDAHL’S LAW

As an example, we will use our optimization technique to

implement a well-known problem of asymmetric processors.

This problem is composed out of two execution segments:

parallel and serial.

t0 = tserial t1 = tparallel

The parallel section is run most efficiently on many small

cores, and the serial on a large core. Therefore, the proposed

chip should contain a mixture of both. Hill and Marty [7]

analyzed the implications of the chip’s limited area. We will

use area as a resource (i.e. constraint), and normalize total

execution time on the BGP to be 1.

Figure 2. The serial/parallel problem (a) speedup per serial CPU size
(according to [7]), (b) optimal serial CPU size per workload

aparallel + aserial = A

tserial + tparallel = 1

The speedup of the parallel section is assumed to be

proportional to the number of small cores, and therefore also

to the total area of the small cores, which execute the parallel

tasks.

fparallel(a) =
1

a

The “serial accelerator” is the large CPU, whose perfor-

mance scales with area according to Pollack’s Law [16].

Formalizing this in our model’s terms:

fserial(a) =
1√
a

Applying Equation (3) reveals the optimal relation between

the total area of the efficient parallel processors and the area

of the serial processor.

aparallel = a
3/4
serial

√

2tparallel
1− tparallel

(4)

An immediate result of our model is the optimal resource

allocation point. The speedup obtained at this point could be

calculated by Equation (2). The focus of this model allows

for a different set of insights. For example, it is apparent

from Equation (4) that the serial section grows faster than

the parallel one when the chip receives additional resource.

Note that for simplicity we presented a model in which

the large core will not be used for execution of the parallel

segment. We will use the assumption that different hardware

units do not execute the same code in following sections, when

expanding the model for many accelerators. On the contrary,

Hill and Marty [7] used a different assumption, in which the

parallel segment is executed by all the cores on the chip,

including the large core. This slightly changes the results,

4

but the Multi-Amdahl optimization technique does not change

significantly.

Figure 2 illustrates the optimization results. Figure 2(a),

essentially taken from Hill and Marty’s paper [7], reveals

the existence of optimal resource allocations (aserial) which

changes according to the workload (tparallel). Figure 2(b)

presents the exact value of these optimal resource allocations

using Multi-Amdahl technique, and in particular the relation

between tparallel and the optimal value of aserial. Results are

presented for both cases, where the parallel section is executed

either only on the efficient cores or on the entire chip.

V. DIFFERENT RESOURCES

The Multi-Amdahl technique can be applied to different

resource types with various constraints.

A. Static resources

A static resource is used by an accelerator for the entire

life-time of the problem. For example it could be the die area

or the number of transistors. If all hardware units are working

concurrently, power and IO might also be modeled as static

resources.

When allocating a static resource, the designer’s goal is to

stay within a total budget X:

n−1
∑

i=0

xi ≤ X

B. The Power Resource

Today, the resource-allocation efforts of the chip designer

have been shifted to power constraints. When modeling power,

we must take into account both dynamic power, which is only

consumed when the unit itself works, and static power, which

is also consumed when it is idle.

The actual resource assigned by the designer, however, is

still the number of transistors. Both the static and the dynamic

power can be modeled as proportional to the number of

transistors in the accelerator, so we can model them as linearly

dependent. A linear relation between static and dynamic power

is a common model, used e.g. by [15]. In our model, each unit

is assigned pi power when in use, and consumes additional

kipi static power all the time. ki is assumed to be another

accelerator-technology dependent parameter, known to the

chip manufacturer.

Several constraints can be considered for the power re-

source:

Instantaneous power — There is a total power budget

that the multiprocessor may use at any given instant. The

budget usually derives from power dissipation consideration.

The constraint is imposed on each unit (or execution segment)

separately. This constraint is most applicable in case the

different segments last long enough to overheat the chip.

∀0 ≤ i < n : pi +
n−1
∑

j=0

kjpj ≤ P

Energy — The energy represents the total power consumed

by the chip over time. It is a design goal for servers, where

electricity costs are considerable, and for mobile devices,

where minimizing energy consumption is necessary to maxi-

mize battery life.

∑

kjpj
∑

fi(pi)ti +
∑

fi(pi)tipi ≤ E

Total Dynamic Power — The total (or average) dynamic

power is calculated by dividing the overall energy by the

overall execution time. If execution segments are short enough,

power dissipation poses a constraint on the average power

consumption, rather than on the instantaneous one.

∑

kipi +

∑

fi(pi)tipi
∑

fi(pi)ti
≤ TDP

C. Multiple resources

More than one constraint and resource can be tested at the

same time. For example, we are going to discuss the combined

effect of assigning supply voltage (marked vi) and area (ai).
The maximum operation frequency is proportional to volt-

age.

freqi = vi

Performance is modeled as linearly proportional to fre-

quency, and sub-linearly proportional to area:

fi(ai, vi) =
1

freqi
√
ai

=
1

vi
√
ai

Energy is modeled as proportional to area, voltage, and

operation time:

Ei = fi(ai, vi)tiaiv
3

i

We have two constraints: one for total area, and one for

total energy.

∑

ai ≤ A

∑

fi(ai, vi)tiaiv
3

i ≤ E

Note that no constraints are directly applied to the voltage.

VI. DIFFERENT USE-CASES

Multi-Amdahl could be used to describe different use cases.

A use case determines the workload and efficiency functions.

A. Serial Execution

One case of introducing accelerators into a system is when

little or no parallelism can be extracted from the code. In this

simplified model, we assume the entire chip only executes one

segment at a time, and only on the appropriate accelerator. The

total execution time is given by:

Texec =
∑

Ti Ti = tifi(xi)

This was the use-case of all the previous sections.

5

B. Parallel Execution

In this model, the various accelerators handle a different

type of parallel input each. We try to minimize the average

latency, given by:

Tlatency =
∑

λifi(xi)

λi is the rate (inputs per second) for this type of input.

fi is the latency of calculation of type i when assigned xi

resource.

This model can be applied, e.g. for network processors,

where different accelerators handle different types of packages

(such as encrypted, compacted..).

C. Optimizing for different units in a CPU

Even inside a basic CPU there are various separate hardware

units, some of which can be described as handling their own

instruction set. For example, we might consider allocating

resource optimally between 3 units: the cache, the branch

predictor, and the ALU.

CPI = λccc(xc) + λpcp(xp) + λaca(xa)

λc is the number of memory accesses per instructions. In

our model, memory accesses are executed by the cache. As

the cache is assigned more resource, it becomes larger and the

cache hit ratio increases.

cc(x) = hit%(x) ∗ Thit + (1− hit%(x)) ∗ Tmiss

λp is the number of branches per instruction. Branches are

modeled as executed by the branch predictor. As the cache

predictor is assigned more resource, it should improve branch

prediction rates.

cp(x) = (1− predict%(x)) ∗ Tmispredict

λa is the number of ALU instructions. As ALU is assigned

more resource, more ALUs are added to the system which

increases throughput of ALU instructions.

ca(x) =
TALU

x

VII. ANALITIC DISCUSSION

Initial results were calculated for a static resource, such as

area, and for the serial execution model. Our results indicate

that good accelerator efficiency can be put to use even for

the price of flexibility. With dynamic resource, the cost of

inflexibility is much smaller, and in that sense our results are

conservative.

A. The general case

When allocating resources for different accelerators, we

must take two elements into consideration: how efficient the

accelerator is and how useful it is (meaning, what is its part

in the workload). We consider a general efficiency function:

fi(a) =
1

αiaβi

A general-purpose CPU can be modeled by α0 = 1. Higher

values of α are assigned to more efficient accelerators. We

use Multi-Amdahl to extract the appropriate area allocation

for each of the accelerators:

ai = a
β0+1

βi+1

0

(

α0/β0

αi/βi

ti
t0

)
1

βi+1

(5)

The most interesting thing this solution reveals is that

the workload-dependent parameters (ti) have equal or lower

importance to the parameters that are dependent on the ac-

celerator’s technology (αi, βi) when determining the optimal

solution. This has an implication on the chip manufacturer’s

ability to allocate resources properly with even a partial

knowledge of the workload, which will be analyzed later.

B. Effective heterogeneous speedup

A heterogeneous system might consist of various units,

when each can accelerate its designated code segment with

noticeable speedup over a general-purpose machine. The pro-

gram is composed of various segments. The effective speedup

is measured over the entire execution, including the general-

purpose section, and is generally lower than the speedup

for a single section. Multi-Amdahl reveals another effect of

heterogeneity. As more heterogeneity is added to the system,

the resource is shared between more accelerators, and therefore

each accelerator is assigned less resource, thus reducing its

speedup.

To display this effect, we consider a system composed of

one general-purpose section and n accelerators (notice this

system has n + 1 segments). All code, accelerated or not, is

assumed to be entirely parallelisable (βi = 1). All accelerators

are equally efficient (αi>0 = α).

f0(a) =
1

a
fi>0(a) =

1

αa

We mark δ to be the fraction of the original code using the

accelerators. We assume this part is equally distributed among

the different accelerated segments.

t0 = 1− δ ti>0 =
δ

n

Putting this into Equation (5):

ai = a0

√

δ

αn(1− δ)

from which we can also derive the total execution time for a

chip with area budget A, using Equation (2):

Thet =
1

A

(

2

√

n

α
δ(1− δ) + 1− δ

(

1− n

α

)

)

A homogeneous multicore system uses the entire available

area for general-purpose CPU, and executes the entire code

without any speedup:

Thom =
1

A

Therefore, the speedup from introducing heterogeneity into the

system is:

6

Figure 3. Combined effect of n

α
and δ on speedup

Speeduphet =
Thom

Thet
=

(

2

√

n

α
δ(1− δ) + 1− δ

(

1− n

α

)

)−1

Speedup vs. Flexibility — The value of n has a tremendous

influence on the speedup gained. This is the effect of accel-

erator’s inflexibility. Accelerators use system resources all the

time, but they are seldom used for actual computation. The

more accelerators are in the multiprocessor, the more “dead

area” it contains, per execution segment.

One reason for adding accelerators into a system would

be to create more specific, and therefore more efficient,

accelerators. The equations present a linear relation between

n and α, which fits intuition. An accelerator capable of two

operations should be split into two accelerators capable of one

operation each, only if those two accelerators are at least twice

as efficient as the previous one.

Speedup vs. Code coverage — Another reason for adding

accelerators to an existing system would be moving part of

the code that previously ran on the general processor to an

accelerator, namely to increase δ.

Figure 3 reveals that for low values of δ there is little

effect either way. As δ approaches 1, the rule of thumb is

that multiplying the number of accelerators is worthwhile if

it does better than halve the amount of code not running on

accelerators (1− δ).

C. Resource allocation sensitivity

As we have previously mentioned, the chip manufacturer

is unaware of the exact nature of the workload running on

the machine, and can only estimate the expected workloads.

For that reason we also model the case where the manufacturer

creates a chip for a given workload, while the actual workload

is different.

In our case, the chip manufacturer assumes equal use of

all accelerators, and assumes use of accelerated code δ = d.

According to these assumptions, the manufacturer divides the

area between the accelerators.

ai = a0

√

d

αn(1− d)

Figure 4. Sensitivity (n
α

= 1

50
)

However, the actual value of δ is different. The speedup of

the chip for the actual workload will be:

Speedup =

(

(

1 +
δ

d
− 2δ

)

√

n

α

d

(1− d)
+ 1− δ

(

1− n

α

)

)−1

Figure 4 presents a few properties of the equation: There

is no reason for the chip manufacturer to assume small

values for d (significantly smaller then 0.5). For those values,

high accelerator use will incur a serious slowdown, as most

execution time is spent on an accelerator with insufficient

resource, while low accelerator use results in minimal speedup,

because most of the execution is on the CPU. Large values of d
(close to 1) might prove very beneficial for enough accelerator

usage, but will be destructive if the accelerators are not used,

as the CPU is very weak. Using 0.5, or somewhat larger values

for d is the “safe” choice. An observable speedup can be

seen when the accelerator is used, while the slowdown for

workloads not using the accelerator is negligible.

VIII. USING MEASURED NUMBERS

In this section we use measured data gathered by Cung

et al., first presented in [11]. Chung et al. measured

performance/mm2 and performance/Watt for various bench-

marks and implementations. They also modeled the change in

performance and in power consumption as area increases. We

use this data to

IX. CONCLUSION AND FUTURE WORK

This paper presents Multi-Amdahl, an analytical technique

for optimal resource allocation in a heterogeneous chip. Our

technique relies on the modeling of the resource, the work-

load, and the accelerators’ performance as a function of the

chip’s resource. We have shown the technique’s applicability

to a large field of problems. For example, the accelerators

considered may either be part of the general-purpose cores or

separate accelerators.

We have used our model to test the importance of accel-

erator efficiency vs. code coverage, and have found the two

7

parameters to be equal when looking for the optimal resource

allocation. We have also discussed the case of workload vari-

ance, and found a “sweet-spot” for chip design, characterized

by minimal slowdown when the accelerator is not used, versus

a measurable speedup when the accelerator is used. Those

results are based on an environment in which moving context

between accelerators has no overhead, and resource allocation

is static.

Generally speaking, our results suggest that inflexibility is

a reasonable price to pay for efficiency, and that accelerator-

based heterogeneous multicores are a promising direction for

future chip architectures.

Our future research will concentrate on the expansion of the

applications area, while putting more overhead and resource

allocations constrains.

ACKNOWLEDGMENT

This research work was partly supported by an Intel research

grant on heterogeneous computing, by the European Research

Council Starting Grant n◦ 210389, by the Hasso Plattner

Center for Scalable Computing, and by the Israeli MOST CMP

Research Center.

REFERENCES

[1] H. Jiang and T. A. Piazza, “Intel next generation microarchitecture code
named sandybridge,” in Intel Developer Forum, 2010.

[2] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D. Shippy, “Introduction to the cell multiprocessor,” IBM Journal

of Research and Development, vol. 49, no. 4.5, pp. 589–604, july 2005.

[3] N. Brookwood, “Amd fusion family of apus,” Insight 64, 2010.

[4] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund et al.,
“Debunking the 100x gpu vs. cpu myth: an evaluation of throughput
computing on cpu and gpu,” in ISCA ’10: Proceedings of the 37th annual

International Iymposium on Computer Architecture. ACM, 2010, pp.
451–460.

[5] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,

1967, spring joint computer conference. ACM, 1967, pp. 483–485.

[6] T. Y. Morad, U. C. Weiser, and A. Kolodny, "ACCMP-Asymmetric

Cluster Chip Multi-Processing". Citeseer, 2004.

[7] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33–38, 2008.

[8] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: reducing
the energy of mature computations,” ACM SIGPLAN Notices, vol. 45,
no. 3, pp. 205–218, 2010.

[9] S. L. Shee, A. Erdos, and S. Parameswaran, “Architectural exploration of
heterogeneous multiprocessor systems for jpeg,” International Journal

of Parallel Programming, vol. 36, no. 1, p. 140, 2008.

[10] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding sources
of inefficiency in general-purpose chips,” in ISCA ’10: Proceedings of

the 37th annual International Symposium on Computer Architecture.
ACM, 2010, pp. 37–47.

[11] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-chip
heterogeneous computing: Does the future include custom logic, fpgas,
and gpgpus?” in MICRO-43: Proceedings of the 43th Annual IEEE/ACM

International Symposium on Microarchitecture, 2010.

[12] A. Munshi, “Opencl,” Parallel Computing on the GPU and CPU,

SIGGRAPH, 2008.

[13] C. Augonnet, S. Thibault, R. Namyst, and P. A. Wacrenier, “Starpu:
A unified platform for task scheduling on heterogeneous multicore
architectures,” Euro-Par 2009 Parallel Processing, pp. 863–874, 2009.

[14] M. Lyons, M. Hempstead, G. Y. Wei, and D. Brooks, “The accelerator
store framework for high-performance, low-power accelerator-based
systems,” Computer Architecture Letters, vol. 9, no. 2, pp. 53–56, 2010.

[15] D. H. Woo and H. H. S. Lee, “Extending amdahl’s law for energy-
efficient computing in the many-core era,” Computer, vol. 41, no. 12,
pp. 24–31, 2008.

[16] F. J. Pollack, “New microarchitecture challenges in the coming gener-
ations of cmos process technologies (keynote address),” in Proceedings

of the 32nd annual ACM/IEEE international symposium on Microarchi-

tecture. IEEE Computer Society, 1999, p. 2.
[17] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proceed-

ings of the Second Berkeley Symposium on Mathematical Statistics and

Probability. July 31-August 12, 1950., vol. 1, 1951, pp. 481–492.

