

IRWIN AND JOAN JACOBS

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

To Cloud or not to Cloud:
Optimizing Cloudbursting Costs

Mark Shifrin, Rami Atar and
Israel Cidon

CCIT Report #797
November 2011

DEPARTMENT OF ELECTRICAL ENGINEERING

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

Electronics

Computers

Communications

To Cloud or not to Cloud: Optimizing Cloudbursting Costs
————–

Technical Report

ABSTRACT
The emerging hybrid cloud architectures allow organizations
(users) to augment the private infrastructure with practi-
cally unlimited public cloud resources in order to cost effec-
tively meet their intermittent peak demands. In such sce-
narios, users first utilize their already paid private compu-
tation infrastructure and offload selected tasks to the public
cloud when the private resources become overloaded. Conse-
quently, there is a need to devise efficient on-line task offload
algorithms that optimize the overall user cost while main-
taining adequate quality of service. Such algorithms should
take into account the difference in communication and com-
putation requirements between the different task types. For
example, it is clear that between two tasks with the same
computational requirements, the task with the lower migra-
tion cost is a better candidate to be offloaded to the cloud. In
this work, we devise optimal on-line decision algorithms by
modeling and solving several associated multi-dimensional
Markov Decision Process problems. We address the case
in which arriving tasks have multiple communication costs
and prove the structural properties of the optimal thresh-
old policy. In addition, we also apply the MDP framework
for the complement problem facing cloud providers. If cer-
tain cloud resources are not pre-allocated to users, it makes
sense for the cloud provider to offer them for opportunistic
on-demand usage. We model and provide optimal policies
for the buildup of a task backlog by accepting or rejecting
tasks that carry user offered price or by dynamically chang-
ing advertised prices for tasks. The analytical results are
supported by numerical evaluations. We demonstrate the
practical advantage of threshold type policies and provide
an insight of their dependence on system parameters.

Keywords
Cloud Computing, Markov Decision Processes, Offloading
algorithms.

1. INTRODUCTION
The emergence of cloud computing is changing the ways
in which organizations address their information technology
(IT) needs. The concept of cloud computing brings out a
new way of increasing computational and storage capacity
or adding capabilities on the fly without investing in a new
infrastructure, training new personnel, or licensing new soft-
ware. In theory, the cloud agility and elasticity make the
cloud the best IT solution model. However, many practi-
cal issues such as limited network speeds, lack of strict SLA
guarantees, lack of cloud standards, information regulatory
compliance and the wish to preserve the full control over
their core IT resources and know-how limit the full adop-
tion of the cloud model. Consequently, there is a topical
trend to leverage the best of both worlds by keeping the
minimal essential legacy IT infrastructure while adopting
the public cloud where it is more cost effective. One of the
terms which is frequently used to describe this paradigm
is a ”hybrid cloud”. Essentially, the hybrid cloud refers to a
business that keeps some of its server operations on-premise,
while also utilizing the services of a cloud provider to aug-
ment or supplement the internal infrastructure.
Another topical term associated with the hybrid cloud is
”cloudbursting”. According to this concept, in case the in-
ternal data center runs out of computing resources, the orga-
nization ”bursts” or ”offloads” the additional workload to an
external cloud on an on-demand basis. The internal comput-
ing resource is the ”Private Cloud”, while the external cloud
is typically a ”Public Cloud”, for which the organization gets
charged on a pay-per-use basis. Effective cloudbursting of-
fers the organization a solution to a critical and very ba-
sic performance-related and economical dilemma. The pre-
cloud old-fashioned solution utilizes over-provisioning, e.g.,
stacking a computational gear inventory that meets the peak
demands. However, if the influx of tasks is characterized by
high variability with rare peaks, such a solution is extremely
resource wasteful. At the same time, the organization rev-
enues and its business conduct may be considerably harmed
if the peak demands are not met. ([1]). Therefore, the hy-
brid cloud architecture combined with effective ”cloudburst-
ing”offers an effective solution to offload the task load peaks
from the resource-limited and cost reduced private cloud to
a seemingly infinite cloud.
The hybrid cloud environment poses new research challenges
associated with effective task offloading from the private
data center to the cloud. If all the computational tasks were
identical, a simple cloudbursting mechanism would track the
backlog of tasks waiting for local execution; if the backlog

lesley
Text Box
CCIT Report #797 November 2011

crossed a certain value associated with the maximal allowed
latency, arriving tasks would be directed to the cloud. As
the IT tasks are heterogeneous in terms of computation,
communication and storage requirements, the cost-effective
design of such task offloading mechanisms becomes more
challenging. Therefore, the goal of this paper is to explore
the modeling and algorithmic solution to these new prob-
lems. To that end, we first propose a model for comparing
different task offloading algorithms at the cloud user level.
We assume that the goal of the cloud user is to minimize
the cost of serving the arriving tasks by using the combi-
nation of a resource limited Local Data Center (LDC) and
cloudbursting while meeting a predefined QoS level. The
model definition involves finding an offloading algorithms
to handle the flow of several task types with different re-
source consumption requirements. Such algorithms should
take into account the difference in communication and com-
putation requirements between different task types.
Next, we devise optimal on-line decision algorithms by mod-
eling and solving several associated Markov Decision Pro-
cess problems. We address the case where arriving tasks
have multiple network communication costs, associated with
their offload to the cloud, and prove the structural proper-
ties of the optimal threshold policy. Although this problem
is inherently a multi-dimensional, we show that the optimal
solution structure is threshold policy. The dependency be-
tween multiple task types is expressed only by the values of
the optimal threshold above which particular tasks are of-
floaded. We quantify and study the behavior of the optimal
policy through numerical examples.
To the best of our knowledge, this is the first work that
proposes optimal offloading policies for the hybrid cloud en-
vironment in which the tasks can be served in the existing
LDC or dispatched to the cloud for a given fee. The need
for optimal algorithms aiming at facilitating the interaction
between the cloud and the users is not limited to the task
offloading problem. To illustrate this, we also apply the
MDP framework for the complementary problem by facing
the cloud provider in optimizing its revenue. If a certain
amount of cloud resources is not pre-leased by users, it makes
sense for the cloud provider to offer these resources for op-
portunistic on-demand usage. We model and derive optimal
policies for the management of the cloud tasks backlog in
two cases. The first one is by accepting or rejecting tasks
that carry different offered prices (in a bid process). The
second one is by dynamically changing the advertised prices
for tasks.

The optimization of cloudbursting, independent of the un-
derlying cloud/LDC infrastructure, naturally lends itself to
an optimization of queuing system which can be tackled as a
Markov Decision Problem (MDP). The mere understanding
that the optimal policy is of the threshold type, allows us to
avoid the complete solution to the MDP problem. Instead,
approximation techniques can be applied such as Q-learning
and approximate policy estimation. Consequently, estab-
lishing the optimality of a threshold-type policy, facilitates
the solution to MDP problems with large state space.

To summarize, the contribution of this paper is four-fold:

• A user-level MDP based model for allocating heteroge-
neous tasks to the Local Data Center or to the public

cloud.

• Deriving optimal offloading policy for the model pre-
sented above. We further present and prove several
structural properties of the optimal policy which helps
in developing efficient numerical solution for systems
of large dimension state.

• Presenting a cloud revenue optimization problem and
the corresponding MDP model for the cloud provider
task pricing, task admission policy, and the structural
properties of the optimal policies.

• We bring a demonstration of efficient utilization of the
threshold-type policy. By exploring the dependence
of the optimal policy on the system parameters we
both suggest a practical usage and learn about the
properties of the policy

Many works have addressed the optimization of the cloud
infrastructure. For example, [16] suggests that the cloud
should be organized in a federated structure and presented
as a pool of all cloud resources. Task load balancing tech-
niques inside the cloud were also extensively discussed, for
example in [5], [18]. Cloud pricing methods are addressed
and proposed in [10] and [19]. [11] [14], [17] suggest software
solution for the interaction between users and cloud, but
do not present efficient algorithmic solution to the offload-
ing model.[15] develops a rate-limiting architecture for the
cloud. [8] presents a solution to the permanent migration
of tasks to the cloud, while our paper addresses dynamic
”cloudbursting”.

Other works are related to the analytical methods used in
our paper. Especially, tools from fluid and diffusion ap-
proximations have been applied to address models that are
closely related to those we introduce here. In particular, a
significant amount of work has been done in recent years on
models with a large number of servers (see [2],[3],[4],[9] and
references therein). An example of deriving threshold-type
policy for networking system can be found in [7].

The rest of the paper is organized as follows. In section 2,
we describe the model of the user level hybrid cloud system,
demonstrate the solution to the related MDP, and prove
its structural property. Section 3 is dedicated to the cloud
revenue optimization. We distinguish between two options.
First, the cloud which differentiates the prices is discussed.
We start with a simple case of single task type with two op-
tional price levels and further extend it to several task types
with several price levels. The cloud model is concluded with
setting with constant prices. The final section is devoted to
numerical results and practical models.

2. USER PERSPECTIVE HYBRID CLOUD
We present a setting, in which the LDC can be modeled as a
server (e.g. a server cluster) that processes an inflow of tasks
of several types. The arriving tasks are either backlogged for
a local processing or sent to the public cloud. We assume
that there is a maximal waiting delay constraint associated
with the local waiting, so tasks must be cloudburst if their
expected local waiting time is too long. In the following, we
present the details of the above model. Arriving tasks that

Figure 1: User model system chart

are backlogged for local execution are queued. Such tasks
cannot be outburst any longer. Service is FIFO and non-
interruptible. In order to embody the delay constraint of the
LDC, we assume that the number of tasks awaiting service
never exceeds a certain limit denoted as B. Therefore, new
arrival occurring while there are already B tasks in the queue
is sent to the cloud. As mentioned above, the tasks influx is
heterogenous, meaning that different communicating costs
are associated with each task type if handed to the cloud.
The chart, corresponding to the described model is depicted
in Figure 1. Denote by k the number of task types. A
cost Ci (includes processing and communication) is incurred
whenever a type-i task is sent to the cloud. The types are
labeled in such a way that

C1 ≥ C2 ≥ · · · ≥ Ck > 0. (1)

For the sake of simplicity, we assume that the task processing
time distribution at the LDC is independent of the task type.
Upon each arrival, a decision is to be made (assuming the
buffer is not full) whether to accept the task to the LDC or
to offload it to the cloud and pay the corresponding cost.

Denote by Ai and Ri, i = 1, . . . , k, the counting processes
for arrival and, respectively, remote offloading, for type i.
Namely,

Ai(t) represents the number of tasks of type i that have
arrived up to time t,

Ri(t) represents the number of tasks of type i sent to the
cloud up to time t.

All counting processes mentioned in this paper are assumed
to have right-continuous sample paths. Further, Ai are mod-
eled as independent Poisson processes of intensities λi, re-

spectively, and the service time distribution is assumed to
be exponential of rate µ > 0, independent of the task type.
Next, for each i, let Ui(t) be a process taking values in {0, 1},
describing the control decisions determining Ri from Ai.
Namely, Ui(t) = 1 if and only if a type-i task arriving at
time t is sent to the cloud. As a result, we can write

Ri(t) =

∫ t

0

Ui(s)dAi(s) (2)

The total number of tasks being enqueued in the LDC is
denoted by X(t). The initial condition of X is denoted by
x ∈ {0, 1, ..., B}. The process X is given by

X(t) = x+

k
∑

i=1

Ai(t)−
k

∑

i=1

Ri(t)−D(t), (3)

where D denotes the departure process, counting the num-
ber of completed tasks (of all types). The total discounted
cost associated with a control process U(t) = (U1(t), . . . , Uk(t))
is given by

J(x, U) = E
[

∫

∞

0

e−γs

k
∑

i=1

CidRi(s)
]

, (4)

where γ > 0 is a discount factor.

A control process U is said to be admissible if (i) it is adapted
to the filtration generated by ({Ai}, X); and (ii) under U ,
the process X(t) satisfies the constraint

X(t) ≤ B for all t. (5)

The first condition expresses the requirement that control
decisions are made based on events from the past and present,
so that the decision maker has no access to information from
the future. The second condition addresses the buffer limit:
If for some t one has X(t) = B and a task of type i arrives

then Ui(t) must be set to 1. The class of all admissible con-
trol processes is denoted by U . The value function for the
optimal control problem is defined as

V (x) = inf
U∈U

J(x, U), x ∈ {0, 1, ..., B}. (6)

This is a problem of continuous time Markov decision pro-
cesses. For such a problem a principal tool is the character-
ization of the function V as the solution to a Bellman equa-
tion. Using this tool we can show that a policy of threshold
type is optimal.

Remark 2.1. It is natural to work with an average cost

rather than a discounted one. However, it is well known that,

provided γ > 0 is sufficiently small, the optimal policies with

and without discount, are the same. We later detail about

what is known as Blackwell optimality.

Denoting δ = (µ+γ+
∑

i λi)
−1, the value function uniquely

solves the Bellman equation (see e.g., [20] Chapter 8)

V (x) = δµV (x− 1) +

k
∑

i=1

δλi min[V (x) + Ci, V (x+ 1)],

x ∈ {1, 2, . . . , B − 1}, (7)

with boundary conditions

V (0) = δµV (0) +

k
∑

i=1

δλi min[V (0) + Ci, V (1)],

V (B) = δµV (B − 1) +
k

∑

i=1

δλi[V (B) + Ci]. (8)

Denoting δ′ = (γ +
∑

i λi)
−1, the boundary condition at

zero could be written in a more standard form as V (0) =
∑k

i=1
δ′λi min[V (0) + Ci, V (1)]. However, the form (8) will

be useful in the analysis.

The threshold structure is provided by the following.

Theorem 2.1. There exist constants B − 1 = b1 ≥ b2 ≥
b3 ≥ · · · ≥ bk such that the following policy is optimal:

• U1(t) = 0 if and only if X(t) ≤ b1; that is, always

accept type-1 tasks unless the buffer is full;

• For i = 2, . . . , k, Ui(t) = 0 if and only if X(t) ≤ bi;
that is, accept type-i tasks if and only if the buffer con-

tains bi or fewer tasks awaiting service.

The rest of this section is devoted to the proof of this result.
The first step will be to prove that V is nondecreasing and
convex. To this end, consider the operator T , acting in the

space of functions from {0, 1, . . . , B} to R, defined as

TU(x) = δµU(x− 1) +
k

∑

i=1

δλi min[U(x) + Ci, U(x+ 1)],

x ∈ {1, 2, . . . , B − 1}

TU(0) = δµU(0) +

k
∑

i=1

δλi min[U(0) + Ci, U(1)],

TU(B) = δµU(B − 1) +

k
∑

i=1

δλi(U(B) + Ci), (9)

for U : {0, 1, . . . , B} → R. Then the Bellman equation reads
TV = V . Denote

‖U‖ = max
x

|U(x)| (10)

and let S be the set of functions from {0, 1, . . . , B} to R that
are nondecreasing, convex, and having slope bounded by C1,
that is

U(x+ 1)− U(x) ≤ C1, x ∈ {0, 1, . . . , B − 1}.

The following lemma asserts that T preserves S, and more-
over, acts on it as a strict contraction.

Lemma 2.1. One has TS ⊂ S. Moreover, there exists a

constant a ∈ (0, 1) such that

‖TU − TW‖ ≤ a‖U −W‖ for every U,W ∈ S.

Proof. To prove the first assertion, let U ∈ S be given.
Then for 2 ≤ x ≤ B − 1,

TU(x)− TU(x− 1) = δµ(U(x− 1)− U(x− 2))

+

k
∑

i=1

δλi{min[U(x) + Ci, U(x+ 1)]

−min[U(x− 1) + Ci, U(x)]}. (11)

Hence, using the nondecreasing property of U , TU(x) −
TU(x − 1) ≥ 0. A similar calculation for x = 1 and x = B
gives TU(x)−TU(x−1) ≥ 0 as well, and the nondecreasing
property of TU follows.

To show that the slope of TU is bounded by C1, we use
again (11). Since U satisfies such a condition, it follows that
U(x−1)−U(x−2) ≤ C1 and that each of the expressions in
curly brackets is bounded by C1. Since δµ+

∑

i δλi ≤ 1, it
follows that TU(x)−TU(x− 1) ≤ C1. A similar calculation
for x = 1 and x = B gives an analogous result, and it follows
that the slope of TU is bounded by C1.

To prove that TU is convex, we will use the fact that if W
is any convex function mapping {0, 1, . . . , B} to R and C a
constant, then the function Z : {0, 1, . . . , B} → R defined
by

Z(x) =

{

min[W (x) + C,W (x+ 1)] if x ≤ B − 1,

W (B) + C if x = B,

is also convex. The elementary proof of this fact is omitted.
Denote the transformation mapping W to Z by TC . That

is, Z = TCW . Then TU can be written as

δµŨ +
k

∑

i=1

δλiZi,

where Zi = TCi
U , and

Ũ(x) =

{

U(x− 1) if x > 0,

U(0) if x = 0.

Owing to the fact that U is convex and nondecreasing, Ũ is
seen to be convex. It follows that TU is convex, as the sum
of k + 1 convex functions.

We have thus shown TU ∈ S. Since U ∈ S is arbitrary, this
proves TS ⊂ S.

To prove the second assertion, let U,W ∈ S. Consider first
x ∈ {1, 2, . . . , B − 1}. By (9), denoting a ∨ b = max(a, b),
a ∧ b = min(a, b) and using the inequality

|(a ∧ b)− (c ∧ d)| ≤ |a− c| ∨ |c− d|,

we have

|TU(x)− TW (x)|

≤ δµ|U(x− 1)−W (x− 1)|

+

k
∑

i=1

δλi[|U(x)−W (x)| ∨ |U(x+ 1)−W (x+ 1)|]

≤ a ‖U −W‖, (12)

where a = δµ+
∑k

i=1
δλi. By the definition of δ, a < 1. For

x = 0 and x = B, the calculation is similar, and gives the
same result, namely |TU(x) − TW (x)| ≤ a‖U − W‖. We
conclude that ‖TU − TW‖ ≤ a‖U −W‖.

Proof of Theorem 2.1.

We use the contraction mapping principle (see e.g. [12, The-
orem V.18]). The set S, equipped with the metric ρ(U,W) =
‖U − W‖ is a complete metric space. The map T : S → S
is a strict contraction, as shown in the above lemma. As a
result, T has a unique fixed point. That is, there exists a
unique U ∈ S for which TU = U . Recall that V is the unique
solution to the same equation in the space of all functions
from {0, 1, . . . , B} to R. As a result, V = U . This shows
V ∈ S, namely, that V is nondecreasing and convex.

In order to show the threshold property of the policy, we em-
ploy the method from [20], which builds on convexity. One
can read off an optimal feedback control from the Bellman
equation (7), as follows. Given 0 ≤ x ≤ B − 1, if a class-i
arrival occurs when X(t) = x, send it to the cloud (and pay
Ci) if and only if

V (x) + Ci < V (x+ 1). (13)

Since V is convex, V (x+1)−V (x) is nondecreasing in x, and
so, if (13) holds for some (i, x), it also holds for (i, x′) for
all x < x′ ≤ B − 1. In other words, class-i task acceptance
occurs if and only if X(t) ≤ bi for suitable constants bi.
The ordering of bi, as alluded to in the statement of the
theorem, is also clear by this argument. It remains to show
that b1 = B−1. By the above discussion, it suffices to show

that V (x) + C1 ≥ V (x + 1) for all 0 ≤ x ≤ B − 1. This,
however, follows from the fact that the slope of V is bounded
by C1, as V ∈ S.

Note, that the threshold-type structure of the optimal policy
is independent of the capabilities of user infrastructure. This
offers a planning option which considers a trade-off between
the one-time hardware spending, and the resulting optimal
cost.

3. CLOUD MODEL
The MDP approach is also very useful in studying the cloud
operation optimization in the hybrid cloud setup. The ob-
jective of the decision process associated with operating the
cloud is to maximize the public cloud provider profit over
time. Although from the user’s perspective the cloud is of-
ten regarded as an infinite resource, in operating the cloud
infrastructure, one must take into account the finite resource
availability as well as their effective utilization. Consequently,
the cloud provider may take advantage of periods with very
high cloudbursting demands to select the most profitable
tasks and may offer itself underutilized resources at reduced
prices for opportunistic on-demand usage.

We propose two models of the cloud. In the first one, the
cloud manager attempts to maximize revenue by manipu-
lating prices so as to influence the demand flows. In other
words, as the demand for outbursting increases or as the
cloud resources are better utilized the cloud provider can
consider a price increase despite a possible reduction in the
offered task load.

In this model we assume that there are no additional deci-
sion variables besides price control. In particular, the cloud
must accept all arrivals at the advertised price as long as
the number of backlogged tasks does not exceed a prede-
fined queue capacity (which stands for the maximal waiting
time, which is part of the cloud SLA). Note, that when a
task is rejected, the associated revenue is lost. In the second
model, the cloud manager makes an acceptance/rejection
decision upon each arrival, according to fixed prices associ-
ated with each task. In both cases, the main result is that
the optimal policy is of the threshold type structure.

3.1 Optimizing cloud revenue with dynamic

advertised prices
We first present several notations. The types of tasks are
indexed by the set {1, ..., I}.

For each task type i there are K levels of prices denoted by
Cij , i ∈ {1, . . . , I}, k ∈ {1, . . . ,K}. Prices are ordered so
that, for each i,

Ci1 ≤ Ci2 ≤ · · · ≤ CiK .

The cloud influences the arrival rates by dynamically varying
the prices for handling a task. At any given time, for each
i ∈ {1, ..., I}, one and only one of the prices Ci1, · · · , CiK is
advertised. It is assumed that, in response to an advertised
price Cik, the type-i arrival rate is a given constant λik.
Naturally, it is assumed that the rates are ordered, so that

for each i,

λi1 ≥ λi2 ≥ . . . ≥ λiK .

It is further assumed that when, for each i, there are xi tasks
of type i in the cloud, one has

I
∑

i=1

wixi ≤ B (14)

where {wi} denote task sizes, and B is the buffer limit. In
this paper, for simplicity, we assume wi = 1 for all i.

Let Eik, i ∈ {1, . . . , I}, k ∈ {1, . . . ,K} be independent Pois-
son processes of intensities λik, respectively. Denote by Ai

the counting processes for arrival of type-i tasks. Denote
by Aik(t) the number of type-i tasks priced at level k, that
have arrived up to time t. Then

Ai(t) =

K
∑

k=1

Ak(t),

and it is assumed that, for each i and k,

Aik =

∫ t

0

Uik(s)dEk(s).

Here, for each i, {Uik, 1 ≤ k ≤ K} is an S-valued process,
where

S =
{

u ∈ {0, 1}K :
∑

uk ≤ 1
}

.

Given i, an advertisement of price Cik at time t corresponds
to selecting Uij(t) = 1 for j = k and Uij(t) = 0 for all
other j. The option Uik(t) = 0 for all k is also possible,
and corresponds to rejection, which in the present model is
used only when the buffer is full. We thus regard Uik as the
control processes.

The total number of tasks present in the buffer is given by

X(t) = x+

I
∑

i=1

Ai(t)−D(t), (15)

where x ∈ {0, . . . , B} denotes an initial condition, and D
is the departure process, counting the number of completed
tasks of all types. The service time distribution is assumed
to be exponential of rate µ > 0, independent of the task
type. Similarly to the previous section, a control process
U is regarded admissible if it is adapted to the filtration
generated by ({Eik}, X), and is such that the buffer limit
X(t) ≤ B is kept at all times. The class of admissible control
processes is denoted by U .

The total discounted reward associated with a control pro-
cess U is given by

J(x, U) = E
[

∫

∞

0

e−γs

I
∑

i=1

K
∑

k=1

CikdAik(s)
]

= E
[

∫

∞

0

e−γs

I
∑

i=1

K
∑

k=1

CikUik(s)dEik(s)
]

, (16)

where γ > 0 is a discount factor. The value function is
defined as

V (x) = sup
U∈U

J(x, U), x ∈ {0, 1, ..., B}. (17)

3.1.1 Single task type
We analyze first the case with tasks of a single type. Since
there is only one task type we omit the index i from Cik,
λik, etc.

Theorem 3.2. There exist constants

0 = b0 ≤ b1 ≤ · · · ≤ bK = B + 1,

such that the following policy is optimal: Announce price Ci

at time t if and only if bi−1 ≤ X(t) < bi.

Proof. We provide the proof for the case with two price
levels. This proof can be extended to several price levels
in a straightforward way. Denote δ1 = (µ + γ + λ1)

−1,
δ2 = (µ+ γ + λ2)

−1 and δ̄ = (γ + µ)−1. The value function
uniquely solves the Bellman equation ([20] Chapter 8)

V (x) = max{[δ1µV (x− 1) + δ1λ1(V (x+ 1) + C1)], (18)

[δ2µV (x− 1) + δ2λ2(V (x+ 1) + C2)]},

x ∈ {1, 2, . . . , B − 1},

with the boundary conditions

V (0) = max{[δ1µV (0) + δ1λ1(V (1) + C1)], (19)

[δ2µV (0) + δ2λ2(V (1) + C2)]},

V (B) = δ̄µV (B − 1). (20)

For a function U : {0, 1, . . . , B} → R, consider the property

Ũ(x) := βU(x+1)−αU(x− 1) is nonincreasing in x, (21)

for 1 ≤ x ≤ B − 1, where β = λ1δ1 − λ2δ2, α = µδ2 −
µδ1. We will argue that V has this property. To this end,
consider the operator T , acting in the space of functions
from {0, 1, . . . , B} to R, defined as

TU(x) = max{[δ1µU(x− 1) + δ1λ1(U(x+ 1) + C1)],

[δ2µU(x− 1) + δ2λ2(U(x+ 1) + C2)]}

x ∈ {1, . . . , B − 1},

TU(B) = δ̄µU(B − 1), x = B,

TU(0) = max{[δ1µU(0) + δ1λ1(U(1) + C1)],

[δ2µU(0) + δ2λ2(U(1) + C2)]}, x = 0, (22)

for U : {0, 1, . . . , B} → R. Then the Bellman equation reads
TV = V . Let S be the set of functions U : {0, 1, . . . , B} → R

that are non-increasing and possess the property (21).

Lemma 3.2. One has TS ⊂ S. Moreover, there exists a

constant a ∈ (0, 1) such that

‖TU − TW‖ ≤ a‖U −W‖ for every U,W ∈ S.

Proof. To prove the first assertion, let U ∈ S be given.
For x ∈ {2, . . . , B − 1}, TU(x) − TU(x − 1) ≤ 0 by (22),
using the fact that the maximum of two nonincreasing func-
tions is nonincreasing. A verification for x = 1 and x = B
gives TU(x)−TU(x− 1) ≤ 0 as well, and the nonincreasing
property of TU follows.

Proving the property (21) of TU amounts to showing that

βTUx+1 − αTUx−1 is nonincreasing. (23)

Denoting W i
x = δiµUx−1 + δiλi(Ux+1 + Ci), i ∈ {1, 2}, the

expression in (23) can be written as

βmax
i

W i
x+1 − αmax

i
W i

x−1. (24)

We will use the following fact, omitting its elementary proof.
Let numbers ai

k and bik, be given, where k ranges over a finite
set and i ∈ {1, 2}. Then

a1
k − b1l ≥ a2

k − b2l for all k and l

implies

max
k

a1
k −max

k
b1k ≥ max

k
a2
k −max

k
b2k.

To show that (24) is nonincreasing in x it suffices to show
that for any i ∈ {1, 2} and j ∈ {1, 2}, βW i

x+1 − αW j
x−1 is

nonincreasing in x.

To prove that βW 1
x+1 − αW 1

x−1 is nonincreasing, expand as
follows:

βδ1λ1(Ux+2 + C1) + βδ1µUx

− αδ1λ1(Ux + C1)− αδ1µUx−2

= δ1λ1(βUx+2 − αUx)

+ δ1µ(βUx − αUx−2) + C

= δ1λ1Ũ(x+ 1) + δ1µŨ(x− 1) + C. (25)

Since both δ1λ1 and δ1µ are positive, (25) is nonincreasing as
the sum of two nonincreasing functions. The case βW 2

x+1 −
αW 2

x−1 is treated similarly.

Next we treat the case of βW 2
x+1 − αW 1

x−1. Expanding, we
have

βδ2λ2Ux+2 + βδ2µUx

− αδ1λ1Ux − αδ1µUx−2 + C

where C is a constant. Rewrite this as

βδ1λ1Ux+2 + βδ1µUx

+ β(δ2λ2 − δ1λ1)Ux+2 + β(δ2µ− δ1µ)Ux

− αδ1λ1Ux − αδ1µUx−2 + C

= λ1δ1Ũx+1 + δ1µŨx−1 − β2Vx+2 + αβUx

= λ2δ2Ũx+1 + δ1µŨx−1

This is the sum of two nonincreasing functions and there-
fore nonincreasing. In the case βW 1

x+1 − αW 2
x−1, a similar

calculation gives λ1δ1Ũx+1 + δ2µŨx−1, leading to the same
conclusion. This concludes the proof of (23) for x between 2
and B − 2. The boundary cases are dealt with analogously,
and we omit the details.

To prove the contraction property, let U,W ∈ S. Consider
first x ∈ {1, 2, . . . , B − 1}. We have

TU(x)− TW (x) =

= max{[δ1µU(x− 1) + δ1λ1(U(x+ 1) + C1)],

[δ2µU(x− 1) + δ2λ2(U(x+ 1) + C2)]}

−max{[δ1µW (x− 1) + δ1λ1(W (x+ 1) + C1)],

[δ2µW (x− 1) + δ2λ2(W (x+ 1) + C2)]} (26)

Using |max(a, b) − max(c, d)| ≤ max(|a − c|, |b − d|), and
denoting ∆ = U −W ,

|TU(x)− TW (x)|

≤ max{|δ1µ∆(x− 1) + δ1λ1∆(x+ 1)|,

|δ2µ∆(x− 1) + δ2λ2∆(x+ 1)|}

Since δkµ+ δkλk < 1, this gives

|TU(x)− TW (x)| ≤ a‖∆‖ = a‖U −W‖,

where a < 1. A similar calculation for x = 0 and x = B gives
an analogous inequality, and we conclude that ‖TU−TW‖ ≤
a‖U −W‖.

Proof of Theorem 3.2. Based on the above lemma, the tech-
nique from the proof of Theorem 2.1 gives V ∈ S. Finally,
the optimal action at state x can be read from the Bellman
equation (18). The action depends on whether the inequal-
ity

δ1µV (x− 1) + δ1λ1(V (x+ 1) + C1)

> δ2µV (x− 1) + δ2λ2(V (x+ 1) + C2)

holds. This can be written as

βV (x+ 1)− αV (x− 1) > C := −C1δ1λ1 + C2δ2λ2,

namely Ṽ (x) > C. The monotonicity property of Ṽ thus
gives the threshold property.

3.1.2 Multiple task types
We describe the optimal decision of I types of tasks, each one
with K different prices and K corresponding arrival rates.
Denote the arrival rate k of task of type i as λik and the cor-
responding price(reward) as cik. We assume no dependence
between costs and rates of different types. Hence, there
are L = IK different possibilities of choosing the price sets
within all types of tasks. Clearly, the optimal policy dictates
a set of the arrival rates and the corresponding prices in each
state x. Consider the enumeration m = 1...L of all such sets.
Denote each set as {λik}m, and assign the corresponding δm
to each set. For example δm = (µ+γ+λ1i+λ2j ...+λiK)−1

for some given set {λij}m. Denote the arrival rate of task
type i of price level j pertaining to the set m as λm

ij .

We state the structure of the optimal policy in the following
theorem:

Theorem 3.3. There exists a sequence of sets {λik}mx
,

such that for every cloud state x = 0, . . . , B − 1, there is

an optimal set of arrival intensities {λik}mx
, mx ∈ {1...L},

such that if it holds mi = mj , then i and j belong to the

monotonous interval of states

[x− s, x− s+ 1, . . . , x− 1 + t, x+ t],

x− s ≤ i ≤ j ≤ x+ t for which the optimal set is

mx−s = . . . ,mi, . . . = mj , . . . = mx+t

Omitting the boundary cases, the optimal solution is defined

by the following operator:

TV (x) = max
{

[

δ1µV (x− 1) + δ1
(

λ11(V (x+ 1) + c11)+

λ21(V (x+ 1) + c21) + ...

λI1(V (x+ 1) + cI1)
)]

,
[

δ2µV (x− 1) + δ2
(

λ12(V (x+ 1) + c12)+

λ21(V (x+ 1) + c21) + ...

λI1(V (x+ 1) + cI1)
)]

, ...
[

δLµV (x− 1) + δL
(

λ1K(V (x+ 1) + c1K)+

λ2K(V (x+ 1) + c2K) + ...

λIK(V (x+ 1) + cIK)
)]}

(27)

That is, in each state x the optimal {λik}mx
with corre-

sponding {cik}mx
are chosen. Next, consider the sum of the

rate intensities and the corresponding sum of the prices as
follows:

Λm =

I
∑

i=1

K
∑

k=1

λm
ik , Cm =

I
∑

i=1

K
∑

k=1

cmik

Then, equation (27) takes the following form:

V (x) = max
{

(28)

[δ1µV (x− 1) + δ1Λ1(V (x+ 1) + C1)],

[δ2µV (x− 1) + δ2Λ2(V (x+ 1) + C2)]...

[δLµV (x− 1) + δLΛL(V (x+ 1) + CL)]
}

,

x ∈ {1, 2, . . . , B − 1} (29)

Note, that equation (29) corresponds to the model of a sin-
gle task type with L possible price levels. Since the arrival
rates Λ can be ordered, the solution, and the the structural
property of the policy are identical to that of the single task
type case. The only difference is that each price and cor-
responding arrival rate represent a unique set of I different
tasks prices of I corresponding task types. We conclude that
the policy structure has a threshold-type, as defined in the
theorem and omit the straightforward proof.

It is noteworthy, that task arrival or departure event of any
task type can alter the optimal prices of all the tasks types
in the following state. Generally, we expect to have sets
with higher prices for the busy states of the cloud, and lower
prices once the cloud is comparatively idle. The actual order
of the thresholds would be defined by the differences between
the constants cik and λik.

3.2 Optimizing cloud revenue with fixed prices
In this subsection we discuss a cloud model with fixed prices
and limited cloud resource. Unlike the previous case with
variable prices, the cloud can reject the tasks, according to
their fixed offered prices, even when the cloud backlog is not
full. This scenario corresponds to an opportunistic cloud
setting. The user may select to work with a certain task
type and the cloud doesn’t guarantee accepting the tasks.
Alternatively, the cloud decision can correspond to the in-
ternal cost associated with different task tasks.

We shortly list the parameters of this model. The service of
the cloud resource is FIFO and non-interruptible. The tasks
influx is heterogeneous, where different costs are associated

with each task type. Denote by K the number of task types.
A reward Ci is earned whenever a type-i task is accepted at
the cloud. Again, we use the labeling:

C1 ≥ C2 ≥ · · · ≥ CK > 0. (30)

Upon each arrival, a decision is to be made (assuming the
cloud resource is not full) weather to accept the task by the
cloud or to reject it. In this setting the process X is given
by

X(t) = x+
K
∑

i=1

Ai(t)−
K
∑

i=1

Ri(t)−D(t). (31)

Since the arrival rates are constant, Ai in (31) are repre-
sented by Poisson processes. Denote Ui(t), the decision pro-
cess i ∈ {1, . . . I}, Ui ∈ {0, 1}, where Ui = 1 means accept-
ing the task. The rejection process counting the number of
rejected tasks is given by

Ri(t) =

∫ t

0

(1− Ui(s))dAi(s).

Denoting the counting process for accepted tasks by Li =
Ai −Ri, the discounted reward is given by

J(x, U) = E
[

∫

∞

0

e−γs

I
∑

i=1

CidLi(s)
]

. (32)

The value V (x) is defined as the supremum of J(x, U) over
admissible controls U .

Denoting δ = (µ+γ+
∑

i λi)
−1, the value function uniquely

solves the Bellman equation as follows

V (x) = δµV (x− 1) +
K
∑

i=1

δλi max[V (x), V (x+ 1) + Ci],

x ∈ {1, 2, . . . , B − 1}, (33)

with boundary conditions

V (0) = δµV (0) +

K
∑

i=1

δλi max[V (0), V (1) + Ci],

V (B) = δµV (B − 1) +
K
∑

i=1

δλiV (B). (34)

The proof of the following result is similar to that of the
previous results, hence omitted.

Theorem 3.4. There exist constants

B = b1 ≥ b2 ≥ · · · ≥ bK ≥ 0

such that the following policy is optimal.

• For i ∈ {1, 2, . . . ,K}, Ui(t) = 0 if and only if X(t) <
bi; that is, accept type-i tasks if and only if the buffer

contains fewer than bi tasks awaiting service.

The cloud scenario which considers an opportunistic frame-
work with differentiated price levels, offers a potential to a

Table 1: User Hybrid Cloud - Threshold Examples

LDC Buffer size Prices Thresholds
35 3, 4, 5 1, 20, 35
35 3.1, 3.11, 3.12 4, 22, 35
18 0, 2, 3 -1, 10, 18
18 1, 2, 3, 4, 5 -1, 0, 1, 10, 18

wide variety of optimization issues both at the user level
which aims to maximize the performance at the minimum
cost, and the cloud level which seeks the optimal solutions
to the long-time revenue maximization.

Connection to average cost objectives
We have demonstrated properties of solutions to both user
and cloud optimization problems using MDPs as a with dis-

counted cost/reward criteria. For the long-run goals it makes
sense to optimize average cost criteria. The relation between
the two types of cost is well-understood (see e.g. [6, Chapter
4.1]). In particular, when the discount factor γ is sufficiently
close to zero, the optimal policy for discounted cost is also
optimal for the long-run average cost (ibid.). Consequently,
our result are valid for analogous MDP formulations with
long-run average cotsts/rewards.

4. PRACTICAL IMPLEMENTATION AND

NUMERICAL RESULTS
In this section we give the results of the exploration of depen-
dence of the optimal solution on different system parameters.
In sequel, we demonstrate the insight, how the conclusions
facilitate the practical usage of the threshold-type policy.
Generally, the practical importance of the proofs of the struc-
ture of the optimal policy is two-fold. First, since the state
space of the problem was shown to be one-dimensional the
numerical solution is commutatively effective. Second, the
fact that the optimal policy has a threshold-type structure
makes the policy predictable. That is, once solution of some
system, denote it as system A is known, the solution of an-
other system which differs from A in some single parameter,
denote it as A′, can be intuitively guessed, and then im-
proved during the run-time.
We start with demonstrating examples of threshold policies
for sample systems. Next, we explore the dependance of the
thresholds on system size and formulate a computationally-
effective algorithm based on the observations.

4.1 Numerical Results for the User Model
The implementation of the numerical MDP solution allows
to sense the actual values of the thresholds thus validating
the theorems proved in section 2 and 3. Numerical exam-
ples for the user hybrid cloud model are presented in table 1.
Each threshold in the column of the thresholds corresponds
to the price on the same position in the column of prices.
Note, that −1 means that the corresponding task is always
offloaded to the cloud. As expected, the task with the high-
est price is always scheduled to the LDC. The first two cases
demonstrate the dependence on the price differences. As we
decrease the difference between the prices, the thresholds of
the cheaper task types move towards the LDC buffer limit.

4.1.1 Impact of the load.

Figure 2: Value function and the threshold values
as a function of the load

Next, we capture the impact of the load ρ = µ
∑

K

i=1
λi

on

the threshold and the value function. The setting of 3 task
types symbolically priced by prices 5, 10, 20 and LDC buffer
of size B = 100 was tested under variable load, starting
at 0.3 and ascending to 6.0. The results are demonstrated
in Figure 2. Note, that the thresholds of the tasks with the
lowest price drop rapidly as the load grows. This stems from
the fact that the system ”prefers” to reserve the space for
the most expensive task type. Correspondingly, the value
function grows. Note, that the ordering of the thresholds
stays constant. This observation suggests, that the optimal
policy for the higher/lower load can be intuitively estimated
once the policy for the lower/higher load is known.

4.1.2 Impact of the LDC buffer size.
Next, we focus on the system with a constant load of ρ = 1,
while the LDC buffer was gradually increased. Since the
size of the LDC buffer dictates the ability to accommodate
the arriving tasks, we expect that the increase of the buffer
would decrease the value function. Indeed, simulation re-
sults shown in Figure 3 support this. In addition, it can
be observed that the threshold results grow monotonously
in the buffer size. We conclude, that in this case both the
threshold and the value function can be intuitively predicted
based on the previously experienced solutions.

4.1.3 Variations in task prices.
The influence of the task price was studied in the following
sense. The setting of 3 prices (5, C2, 20), where C2 was rang-
ing from 5 to 100 was simulated while the load ρ = 1 was
set. The results are shown in Figure 4. The threshold of the
second task type gradually increases until it surpasses the
threshold of the third task type. The fact that the second
price is growing while the other two prices staying constant
explains the increase in the value function. Likewise, it ex-
plains the fact that the threshold of the cheapest task is
changing.
It turns out, that the ”intensity”of the changes in the thresh-
old highly depends on the load. Figure 5 demonstrates the
same simulation setting, but with the load ρ = 5, while
λi > µ, ∀i. One can observe that the thresholds drastically
switch right after they become equal. It is intuitively ex-

Figure 3: Value function and the threshold values
as a function of the LDC buffer size

Figure 4: Value function and the threshold values
as a function of the LDC buffer size for load ρ = 1

plained by that for the high load ρ ≫ 1 most of the tasks
are offloaded to the cloud. Next, we studied the case where
the total load is high, but the arrival rate of the type-2 (with
arrival rate equal to λ2) task is significantly lower than µ.
This simulation is shown on Figure 6. In this case the thresh-
old for the C3, which is priced higher than C1, doesn’t drop
drastically after the point where type-2 task threshold sur-
passes it. This can be deduced from that the arrival rate of
type-2 tasks is very low anyway. It is noteworthy, that the
value function changes relatively fast as long as C2 < C3 and
stays nearly constant after C2 > C3. This is also due to the
low arrival rate of the type-2 tasks. Their probability to be
offloaded to the cloud is relatively low, so starting the point
where they are always scheduled to the LDC the change in
the value function is expected to be insignificant.
The conclusion is that in the case where the prices are being
dynamically modified by the cloud once an intuitively ap-
proximated policy is about to be applied on the basis of the
previous solution one should consider the load factors.

4.2 Practical Utilization of Threshold Policy
Based on the observations above, a derivation of a computation-
effective method of finding the optimal policy makes sense.
We propose a version of such an algorithm based on the ex-
ample as follows. Consider system A with task prices {Ci},
rates {λi} and µ and the LDC buffer size B. Next, con-

Figure 5: Value function and the threshold values
as a function of the LDC buffer size for load ρ = 5

Figure 6: Value function and the threshold values
as a function of the LDC buffer size for load ρ ≫ 1,
λ2/µ ≪ 1

sider system A′ which equals to A in all parameters but the
LDC buffer size, B′ > B. This scenario may take place then
the Hybrid cloud structure is able to dynamically increase
the LDC capacity, for example then the LDC is shared by
another enterprize. The algorithm for finding the optimal
policy for the system A′ is based on the solution of A and
can be summarized as follows:

• Observe the optimal solution for the system A and in-
tuitively estimate the influence of the altered parame-
ter on the system A′, e.g. B.

• Guess the optimal solution (the value function and the
thresholds) based on the estimation.

• Numerically improve the guessed policy by continu-
ing the numerical calculation starting from the guessed
point.

As long as the guessed solution is closed to the optimal solu-
tion for the system A′, the convergence will be significantly
faster than it is performed from the scratch. Therfore, sys-
tems which experience changes in the parameters from time
to time will react faster once one of the parameters is altered.

4.3 Numerical Results for the Cloud Model
Similarly to the user model, we explore the cloud model.
Our main point of interest is the setting where the cloud
dynamically advertises the prices. (The formulation of the
case of cloud with constant pricing is similar to the user
case and we expect similar observations and conclusions to
apply.) Selected numerical results of the cloud with dy-
namically advertised prices are presented in table 2. Next,
we study the dependence on the different parameters of the
cloud setting.

4.3.1 Impact of the cloud capacity.
Consider a cloud structure with a cloud capacity which can
vary from time to time. This scenario can be in effect, for
example, then the cloud manager allocates part of the re-
sources for the usage with a constant pricing, while the other
part is used for the dynamically advertised pricing. The key
observation is that the cloud capacity has a critical influ-
ence on the threshold values. Figure 7 shows, that once the
capacity is increased, the highest arrival rate becomes to be
active (i.e. optimal) for the lower cloud states, while for
the low capacity it wasn’t active at all. The same tendency
is observed in the second threshold; however, the growth is
seen to start ”earlier”. The threshold of the highest price (i.e
the lowest arrival rate) increase approximately linearly with
the capacity.
This leads us to the notable conclusion that the high num-
ber of price levels might be unnecessary for the small cloud
resources. In other simulations, we saw that for the small
capacities it was relatively rare to spot several price levels
with active thresholds, rather then only two levels were cho-
sen for the entire states scale or a single price was preferred.
This can lead not only to the pricing rule but also to the pro-
jected number of the needed price levels to be advertised.

4.3.2 Impact of the cloud service rate.

Figure 7: Value function and the threshold values
as a function of the cloud capacity

Figure 8: Value function and the threshold values
as a function of cloud service rate

The same setting was tested for the constant cloud capacity
of B = 300, while the service rate of the cloud was gradually
increased. It is seen that for the high values of µ the high-
est arrival rate becomes optimal for all the states. Clearly,
any further increasing in µ has only negligible influence on
the value function. This can be explained by that the prob-
ability of the task rejection is low. One can check from
equation (18) that as µ ≫ λi, ∀i it holds δi ≈ δj , ∀{i, j}.
Thus, considering that V (x) is slowly changing with x (see
Figure 9) it holds

δiµV (x− 1) ≫ δiλiV (x+ 1)

Therefore the level with highest product λiCi will be cho-
sen as the only active level. This conclusion coincides with
intuition, that in the system with (almost) all packets being
served the best choice will be the average arrival rate mul-
tiplied by the price charged for each task. One checks, that
since approximately all packets are accepted, equation (16)
is reduced to the following:

E
[

∫

∞

0

e−γsCdE
]

=

∫

∞

0

e−γsCλds =
Cλ

γ

We substituted the parameters used in the simulation and
reproduced the equal result.

We summarize this section by concluding that the optimal

Table 2: Cloud with Dynamically Advertised Prices - Threshold Examples

B µ λi Ci bi
30 0.5 0.3 0.5 14 10 27 30
30 0.45 0.3 0.5 0.7 14 10 8 25 27 30
60 0.5 0.3 0.5 0.6 0.7 14 11 10 9 48 55 57 60
160 0.75 0.3 0.4 0.5 0.6 13 12 10 8.5 114 131 156 160
260 0.45 0.3 0.4 0.5 0.6 0.7 0.75 14 12.5 10.9 9.5 8.3 247 253 256 259 260

Figure 9: Example of the Value function V(x). Note
that a difference between V(B) and V(0) is very
small

policy for the cloud model can be intuitively predicted in
a same manner as in the user model. In spite of the fact
that in some cases the thresholds structure is somewhat less
intuitive, still a careful experience by simulation can be ef-
fectively exploited for the faster convergence once the system
undergoes changes in some of the parameters.

5. CONCLUSIONS
In this paper, the problem of cloudbursting in a hybrid-cloud
environment was analyzed. We considered the most salient
scenario, referring to a user with limited local resources, such
as local data center or a private cloud, presenting the analyt-
ical framework based on Markov Decision Processes for the
optimal control. The prominent result is the derivation of
the threshold policy for the problem of cloudbursting. The
precise optimal scheduling rule, once at user’s disposal, al-
lows to minimize the cost associated with process of serving
the heterogeneous task flow. Unlike previous work that pro-
posed heuristic solutions our work presents optimal policies,
which are also very simple to implement.
Furthermore, we demonstrated that the suggested frame-
work is also useful for solving the optimal control problems
as far as the cloud optimization is concerned. We exploited
this for optimizing the cloud control in two scenarios, which
are cloud with task acceptance/rejection and cloud with con-
trolled prices.
The mere existence of the optimal threshold policy can serve
as a powerful tool for faster calculations of the optimal poli-
cies. It is clear that the user-cloud scheduling problem can
be solved by calculating the related MDP. The difficulty
arises once the user/cloud capacity grows, thus the state
dimension increases and makes the precise calculation im-
practical. Awareness of the threshold type optimal policy is
the key to the solution to this obstacle.
We believe that following our basic examples, a large variety
of problems in cloud computing can be successfully tackled
using the methods presented in this paper.

6. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R.

Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin,
I. Stoica, M. Zaharia, Above the Clouds: A Berkeley
View of Cloud Computing,UC Berkeley Reliable
Adaptive Distributed Systems Laboratory, Rep.
UCB/EECS-2009-28, EECS Department, U.C.
Berkeley, Feb 2009.

[2] M. Armony, Dynamic routing in large-scale service
systems with heterogeneous servers, Queueing
Systems, 51(3-4), pp. 287-329, 2005

[3] R. Atar, A. Mandelbaum, M. I. Reiman. Scheduling a
multi-class queue with many exponential servers:
Asymptotic optimality in heavy-traffic, The Annals of
Applied Probability, Vol. 14, No. 3, pp. 1084-1134,
Aug 2004

[4] R. Atar, A. Mandelbaum, G. Shaikhet, Simplified
control problems for multi-class manyserver queueing
systems, Mathematics of Operations Research, Vol.
34, no. 4, pp. 795-812, Nov 2009

[5] A.Berl, E. Gelenbe, M. di Girolamo, G. Giuliani, H.
de Meer, M. Q. Dang, K. Pentikousis, Energy-Efficient
Cloud Computing, The Computer Journal, Vol. 53
Issue 7, Sep 2010

[6] D. P. Bertsekas,Dynamic Programming and Optimal
Control, Vol.2, Athena Scientific, 2006

[7] B. Hajek, Optimal Control of Two interacting Service
Stations, IEEE Transactions on automatic control,
vol. AC-29. no. 6, June 1984

[8] M. Hajjat, X. Sun, Y.-W. E. Sung, D. Maltz, S. Rao,
K. Sripanidkulchai, M. Tawarmalani, Cloudward
Bound: Planning for Beneficial Migration of
Enterprise Applications to the Cloud, SIGCOMM
2010

[9] J. M Harrison, A Zeevi, Dynamic scheduling of a
multiclass queue in the Halfin-Whitt heavy traffic
regime. Operations Research 52, no. 2, pp. 243-257,
2004

[10] D. Kondo, B. Javadi, P. Malecot, F. Cappello, D. P.
Anderson, Cost-Benefit Analysis of Cloud Computing
versus Desktop Grids, IEEE International Symposium
on Parallel and Distributed Processing, 2009

[11] H. Liu, D. Orban, GridBatch: Cloud Computing for
Large-Scale Data-Intensive Batch Applications, 8th
IEEE International Symposium on Cluster Computing
and the Grid, CCGRID 2008

[12] R. Michael, S. Barry. Methods of modern
mathematical physics. I. Functional analysis.
Academic Press, New York-London, 1972

[13] C. Moretti, J. Bulosan, D. Thain, P. J. Flynn,
All-Pairs: An Abstraction for Data-Intensive Cloud
Computing, IEEE International Symposium on
Parallel and Distributed Processing, 2008

[14] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.
Soman, L. Youseff, D. Zagorodnov, The Eucalyptus
Open-source Cloud-computing System, 9th
IEEE/ACM International Symposium on Cluster
Computing and the Grid

[15] B. Raghavan, K. Vishwanath, S. Ramabhadran, K.
Yocum, A. C. Snoeren, Cloud Control with
Distributed Rate Limiting, SIGCOMM 2007

[16] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K.
Nagin, I. Llorente, R. Montero, Y. Wolfsthal, E.
Elmroth, J. Caceres,M. Ben-Yehuda, W. Emmerich F.
Galán, The RESERVOIR Model and Architecture for
Open Federated Cloud Computing, IBM Journal of
Research and Development

[17] M. A. Salehi, R. Buyya, Adapting Market-Oriented
Scheduling Policies for Cloud Computing,Algorithms
and Architectures for Parallel Processing, Lecture
Notes in Computer Science, Volume 6081/2010, pp.
351-362,2010

[18] B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster,
Capacity Leasing in Cloud Systems using the
OpenNebula Engine, In Workshop on Cloud
Computing and its Applications (CCA08)

[19] H. Wang ,Q. Jing, R. Chen, B. He, Z. Qian, L. Zhou,
Distributed Systems Meet Economics: Pricing in the
Cloud, 2nd USENIX Workshop on Hot Topics in
Cloud Computing

[20] J. Warland, An Introduction to Queueing Networks,
Prentice-Hall, 1988

