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Abstract

Structured classification tasks such as sequence labeling and depen-

dency parsing have seen much interest by the Natural Language Pro-

cessing and the machine learning communities. Several online learning

algorithms were adapted for structured tasks such as Perceptron, Passive-

Aggressive and the recently introduced Confidence-Weighted learning .

These online algorithms are easy to implement, fast to train and yield

state-of-the-art performance. However, unlike probabilistic models like

Hidden Markov Model and Conditional random fields, these methods gen-

erate models that output merely a prediction with no additional informa-

tion regarding confidence in the correctness of the output. In this work

we fill the gap proposing few alternatives to compute the confidence in

the output of non-probabilistic algorithms. We show how to compute con-

fidence estimates in the prediction such that the confidence reflects the

probability that the word is labeled correctly. We then show how to use

our methods to detect mislabeled words, trade recall for precision and

active learning. We evaluate our methods on four noun-phrase chunking

and named entity recognition sequence labeling tasks, and on dependency

parsing for 14 languages.

1 Introduction

Large scale natural language processing systems are often composed of few
components each designed for solving a specific task. Example tasks are part-
of-speech (POS) tagging (annotate words with their grammatical role), noun-
phrase (NP) chunking (identify noun-phrases), information-extraction (IE) or
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named-entity-recognition (NER) (identify entities such as persons, organiza-
tions, locations, amounts and dates) and dependency parsing (grammatical or
semantical relations are identified between words of a sentence). In many cases
the input of such systems is typed text, but in some cases it is the output of an a
automatic speech recognition component, or of an optical character recognition
(OCR) layer that converts an image of printed text or hand writing to symbolic
text.

Although the major tasks of algorithms designed to solve these problems
is to make the right decision or prediction, often it is not enough as the out-
put of one component is fed as input to a second one. The second component
may act differently on inputs of various quality. Therefor it is desired in many
situations to have not only an output, but to accompany it with a confidence
estimation score, either for the entire prediction, or even per element (or word).
For example, an interactive machine translation system can highlight low con-
fidence translated segments for the user to inspect. Another example is an
information-extraction algorithm that can use the confidence scores to detect
low-confidence field candidates and apply a more restrictive or more aggressive
extraction policy in order to allow the user for higher precision or higher recall.

The NLP applications mentioned above, among others, are also known as
structured prediction tasks. The input is a general object, often with high-
regularity, such sentences which are a sequences of words. The required output
is also complex and structured, for example, the role of words in sentences are
dependent and correlated. In the past decade structured prediction has gained
increased interest by the machine learning community. After the introduction
of conditional random fields (CRFs) (Lafferty, McCallum, and Pereira, 2001a),
and maximum margin Markov networks (Taskar, Guestrin, and Koller, 2003),
which are batch algorithms, new online method were introduced. For example,
the passive-aggressive algorithm (Crammer et al., 2006) originally designed for
binary-classification, was adapted to NP chunking (Shimizu and Haas, 2006),
dependency parsing (McDonald, Crammer, and Pereira, 2005b), learning pref-
erences (Wick et al., 2009) and text segmentation (McDonald, Crammer, and
Pereira, 2005a) and so on. These new online algorithms are fast to train and
simple to implement, yet they generate models that output merely a prediction
with no additional confidence information, as opposed to probabilistic models
like CRFs or HMMs that naturally provide confidence estimation in the form
of probability distribution over the outputs.

In this work we fill this gap proposing few methods to estimate confidence
in the output of discriminative non-probabilistic algorithms. Some of our algo-
rithms are very general and can be used in many structured prediction problems,
and in combination of a wide-range of learning algorithms and models. We focus
and exemplify our methods in two tasks: sequence labeling, and in particular
named-entity recognition and noun-phrase chunking, and dependency parsing.
In both tasks we show how to compute per word confidence estimates in the
predicted label, such that the confidence reflects the probability that the label
is correct.

Inspired by the recently introduced confidence-weighted learning (Dredze,
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Crammer, and Pereira, 2008; Crammer, Kulesza, and Dredze, 2009) we develop
methods that are based on its representation, and in particular we induce a
distribution over labelings from the distribution maintained over weight-vectors.
Additionally, we provide among the first results of applying CW algorithms to
the tasks mentioned above.

After describing our proposed methods for confidence estimation, we pro-
vide comprehensive empirical results for evaluating various aspects of these
algorithms. First, we evaluate the ability to estimate the confidence well in
a relative setting where confidence is meaningful only when compared to an-
other confidence quantity. Here, the goal of an algorithm is to rank all labeled
words (in all sentences), that can be thought of as a retrieval of the erroneous
predictions, which can then be passed to human annotator for an examination.

Second, some of the confidence measures are in the range [0, 1] and thus
can be thought of as probabilities. Our second set of experiments evaluates the
accuracy of these confidence measures. The goal of the algorithm is that the
frequency of correct inputs with some confidence value would be close to this
confidence value. That is the predicted values between 0 and 1 would correspond
their statistical properties over the data.

Next we describe two applications of using confidence. The first one is using
the confidence to trade recall and precision, we show that our methods can
be used to increase precision at cost of decreasing recall, where the overall f-
measure is not dropping. The second application is active learning, where we
use confidence to chose the sentences to be annotated.

A short version of this paper was presented in the conference on empiri-
cal methods in natural language processing (Mejer and Crammer, 2010). This
long version contains the following additional material (1) Evaluation on a sec-
ond task of dependency parsing of 14 languages. (2) Additional application
of trading recall and precision. (3) Evaluation of additional algorithm, related
to CRF (Lafferty, McCallum, and Pereira, 2001b). (4) Study of sensitivity to
parameters in the main algorithm.

2 Structured Prediction

Structured prediction problems involve complex input and complex output,
where both are composed of smaller atoms. Consider for example part-of-speech
(POS) tagging. Given a sentence the goal is to annotate each word with a tag
reflecting its grammatical role in the sentence. Here the input is a sentence com-
posed of words and the output is a label of each word. Humans often perform
this task by inspecting both the word identity and its context in the sentence.

Two additional related problems are Noun-Phrase (NP) chunking and Named
Entity Recognition (NER). In both problems the input is a sentence as well, yet
the goal is to annotate segments of words which are either noun-phrases or spe-
cific named entities. We model these problems in a similar way to POS, where
the goal is to annotate each word whether it belongs to a noun-phrase (or a
named-entity) or not.
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(a) Parsing

(b) Name Entity Recognition

Figure 1: Structured Prediction Examples (a) Dependency parsing: Connect
words to a directed connected tree. (b) Name entity recognition: annotate
words that are part of persons, locations and so on.

There are only two possible categories in NP chunking, one indicating that
the word belongs to a noun-phrase and one indicating that it is not the case.
NER is slightly more involved as typically there are several categories. For ex-
ample a system developed about a decade ago (Tjong, Sang, and Meulder, 2003)
uses four categories: Person, Location, Organization and Misc, yet additional
categories are also used such as Date, Address, Amount and so on. As men-
tioned above the total number of categories is often larger by one to indicate
that none of the possible named-entities is described by that word. A NER
example is shown in Fig. 1 where the sentence and POS are given in the two top
rows and the task is to find the proper labeling as shown in the bottom row.

Both of these problems are special case of the general problem of sequence
labeling. Here given inputs x ∈ X - e.g. sentences - with finite number n of
atoms - e.g. words. The goal is to annotate each atom with a label y ∈ Y ,
where we assume that the number L of possible labels Y is finite and known.
We denote by y the concatenation of the labels of all atoms which belongs to
the product of the label set, that is

y ∈ Y(x) where Y(x) =

n
︷ ︸︸ ︷

Y × Y . . . Y .
Dependency parsing of a sentence is one form of grammatical-reasoning of

text. Given a sentence the goal is to output a directed-tree over the words, where
an edge from one word to another indicate a dependency relation between the
words. The output of dependency parsing is more complex than of shallow-
parsing, in which the output is a sequence of grammatical roles per sentence,
and is similar to the output defined by a context-free grammar. Concretely,
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given a sentence w1 . . . wn of length n the goal is to connect each word to some
other word or a special word called root, that is the labels are the words of that
input sentence or the root. In other words, all words depended exactly in some
other words (called head), yet an head may have many dependents. Exactly
one word must depend in the root, and all other words depend on it directly of
indirectly. As our goal is to construct a parse tree over sentences there is one
global constraint: the graph induced must by acyclic with no loops. That is, a
word can not be dependent of another word, which in turn is a dependent of the
first word, or a word the is a dependent of it (directly or indirectly). Formally
a parse tree y for a sentence with n words is a relation y ⊂ {1 . . . n}×{0 . . . n},
where the special index 0 indicates the root of the tree. For each word i the set
{(i, t) ∈ y} is of size 1 (a function). The set {(i, 0) ∈ y} is of size 1, as only a
single word is connected to the root. Finally, the induced graphs has no loops.

An illustration of a dependency parse is shown in Fig. 1 .
We use a unified notation for both sequential labeling and dependency pars-

ing (as well as other problems) and define a scoring function s(x, z), which
assign a real scalar value scoring how well the complex label y should be the
label of the input x. Given such a function a prediction is defined to be the
labeling with maximal score, that is,

ŷ = arg max
z∈Y(x)

s(x, z), (1)

where Y(x) are all possible labelings of the input x, e.g. all possible parse trees
for a given sentence x.

In this work, we restrict ourself to linear functions s(·, ·) of some parame-
ters (Collins, 2002; Crammer, Dredze, and Kulesza, 2009), that is,

s(x, z) = µ ·Φ(x, z) , (2)

where Φ(x,y) ∈ R
d is a joint feature mapping of an instance x and a labeling y

into a common vector space. Features are derived from combinations of words
(unigrams or n-grams), part-of-speech, orthographic features such as capital
letters, hyphens and so on. The vector µ ∈ R

d parameterize the function s(·, ·),
where µ is chosen by a learning algorithm such that for all sentences in the
training set, the label ŷ output by the system is close or similar to the correct
label (or gold label) of these sentences, that is

ŷ = arg max
z∈Y(x)

µ ·Φ(x, z) (3)

should be close to the best label.
A brute-force approach for computing the best label ŷ = argmaxz∈Y(x) µ ·

Φ(x, z) is not feasible as, typically, the size of the set Y(x) grows very fast
with the size n of the input x. For example, in sequence labeling there are Ln

possible labeling of a sentence of length n, and there are nn−2 directed acyclic
trees over n words (or nodes).
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Figure 2: Illustration of the margin based method to estimate confidence. Score
difference between the highest and second highest scoring label per word is
defined as the confidence. In this example the word ”of” is labeled with higher
confidence than the word ”founder”.

We thus employ common approach and factor the scoring function s(x,y)
by factoring the appropriate feature function Φ(x,y). For sequence labeling we
allow only functions over a single label or pairs of consecutive labels,

Φ(x,y) =

n∑

p=1

Φ(x, yp) +

n∑

q=2

Φ(x, yq, yq−1) . (4)

Such factorization allows to perform the search for the best labeling ŷ time linear
in n and quadratic in L using the Viterbi dynamic-programming algorithm.

For dependency parsing we build on MSTParser of McDonald et al. (2005)
and focus on non-projective parsing (tree edges may cross) with non-typed (un-
labeled) edges. MSTParser factors the score for each parse to be a sum of the
score over its edges, that is,

Φ(x,y) =
∑

(i,j)∈y

Φ(x, i, j) ,

where as mentioned above every pair (i, j) ∈ y represents a single edge between
word wi and word wj . Example features are the distance between the two words,
words identity and words part-of-speech. Using this factorization, the search
for the best tree can be computed efficiently by first constructing a full directed
graph over the words of the sentence with weighted edges and then outputting
the maximal spanning tree (MST) of the graph, which can be computed for
dense graphs in quadratic time in the length of the sentence using Chu-Liu-
Edmonds (CLE) algorithm (Chu and Liu, 1965; Edmonds, J., 1967; Tarjan, R.
E., 1977).

3 Confidence Estimation

Many large-margin-based training algorithms maintain and output linear mod-
els in the form of Eq. (3). Linear models are easy to train, yet in the end-of-
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Margin Marginal K -Best K -Alternatives
Based Probability Alternatives by Stochastic

Models

Absolute No Yes Yes Yes
confidence score (only relative)
Hyper-parameters
tuning No Yes Yes Yes
Complexity
Sequences O(n · |Y|2) O(n · |Y|2) O(K · n · |Y|2) O(K · n · |Y|2)
Complexity
Parsing O(n3) - O(K · n2) O(K · n2)

Table 1: Properties of confidence estimation methods.

the-day such models are designed merely to make a prediction which is a single
labeling ŷ given an input x, with no additional information about the quality
or correctness of that prediction. This behavior assumes that the predicted la-
beling ŷ will be used ignoring the quality of each specific output (as opposed to
global quality of the system, such as average accuracy, precision or recall).

There are situations for which additional information per labeling ŷ is useful,
for example when the user of the prediction system has the option to ignore ŷ, or
when using erroneous ŷ is worse than not using it at all. One possible scenario
is when the output ŷ is used as an input of another system that integrates
various input sources or is sensitive to the correctness of the specific prediction.
In such cases, additional confidence information about the correctness of these
feeds for specific input can be used to improve the total output quality. For
example, data mining systems use NER predictors as sub-components. Such
systems may use few NER predictors which all provide confidence information
about their output, and allow the data-mining system to integrate better the
output from all NER predictors, and overcome possible mistakes.

Another case where confidence information is useful, is when there is an ad-
ditional agent that validates the output ŷ (as was done in building RCV1 (Lewis
et al., 2004)). Confidence information associated with output ŷ can be used to
direct the agent to small subset of “suspect” outputs rather than use a random
sample or evaluate all outputs.

We now describe three methods to compute confidence in prediction of the
form of a single number per prediction. One method only provide relative confi-
dence information. This numeric information can be only used to compare two
outputs and decide which is of better quality. One use of such relative confidence
information is to rank all predictions or outputs according to their confidence
numeric-score, and validate the output of the outputs which are assigned with
the most low-confident score values. One property of this relative score is that
any monotonic transformation of the confidence values yields equivalent confi-
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dence information (and ranking).
Other two methods described below provide absolute numeric confidence in-

formation in the prediction. Conceptually, the numeric confidence information
is given as the probability of a prediction to be correct. We interpret these
probabilistic outputs in a frequentists approach. A large set of events (predic-
tions) all assigned with similar probability confidence value ν of being correct,
indeed should contain about ν fraction of the predictions of that group correct.
Clearly, any absolute information is relative as well, as two absolute confidence
values may also be compared to each other to determine which output is of
better quality.

In Sec. 3.1 we describe our relative confidence method which is based on
extending the notion ofmargin originally used to design support-vector machines
in the context of binary-classification (Boser, Guyon, and Vapnik, 1992; Bartlett
et al., 2000). Intuitively, we define the confidence in a prediction to be the
difference between the score of the (best) labeling s(x, ŷ), and an additional
prediction.

Next, in Sec. 3.2 we define a probability distribution by using the score values
s(x, z) as arguments of a suitable-function yielding non-negative values which
sum to unit, and then compute the marginals induced from this distribution.
Such method is used for example in conditional-random fields (CRF) (Lafferty,
McCallum, and Pereira, 2001b).

Finally, our third approach, which output absolute confidence information
as well, is described in Sec. 3.3. This method generates few alternative outputs
additional to ŷ, and evaluates the confidence by computing the agreement be-
tween the output ŷ and the alternatives. We use two methods to generate the
alternatives: one deterministic based on extension of the prediction algorithms
to produce K-best predictions, and one stochastic based on sampling models.
A comparison of the confidence estimation methods properties is summarized
in Table 1 , each row is described in details in the appropriate place below.

3.1 A Margin-Based Method

Our first method extends the notion of margin known mainly in the context
of support vector machines (Bartlett et al., 2000). Originally, margin is a geo-
metrical concept and is defined to be the distance of an input point embedded
in some vector space to the separating hyperplane. Later (e.g. (Bredensteiner
and Bennet, 1999; Crammer and Singer, 2001; Har-Peled, Roth, and Zimak,
2002; Weston and Watkins, 1999; Taskar, Guestrin, and Koller, 2003)) it was
extended in the context of multiclass problems. For example, in sequential la-
beling it is defined to be the difference between the best scoring labeling ŷ and
the second best,

µ ·Φ(x, ŷ)−max
z 6=ŷ

µ ·Φ(x, z) .

This definition is too crude for our purpose as we need a measure of confidence
per unit, or word in our tasks. Thus, we refine the above definition and define
the margin of the pth word to be the difference in the score of the best labeling
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Figure 3: Illustration of the marginal-probability based method to estimate
confidence. The confidence in the chosen label is defined to be the marginal-
probability of the label. In this example the word ”of” is labeled as None with
higher confidence than the word ”founder”.

score and the score of the best labeling where we set the label of that word to
anything but the label with the highest score. Formally, as before we define
the best labeling ŷ = argmaxz µ ·Φ(x, z), then the margin of the pth word is
defined to be,

δp = µ ·Φ(x, ŷ)− max
z|p 6=ŷ|p

µ ·Φ(x, z) , (5)

where z|p is the labeling of the pth word according to the labeling z of the entire
input. Since labeling of consecutive words are dependent according to the model
the labeling of additional words may change from ŷ by the restriction that the
labeling of the pth word is not its labeling according to the best labeling ŷp. In
parsing, for example, changing the parent of a single word in a parse tree may
cause a loop in the graph that require changing the parents of additional words
to resolve the loop.

We refer to this method as Delta where the confidence information is the
margin which is a difference or delta between two score values. Clearly, the
absolute margin value δp provides confidence score that is only relative and not
absolute, namely it can be used to compare the confidence in two labeling, yet
there is no semantics defined over the scores as it is not calibrated to be in [0, 1].

An illustration of the margin method is given in Fig. 2 for the sentence
fragment Mr Smith founder of Smith Inc.. The top row of both panels shows
the highest scoring labeling ŷ which attains a score of 17.8 in our case. The
second row of each panel shows the best labeling where the label of some word
is restricted. The top panel shows the best labeling where the label of the word
founder is restricted not to be N - its labeling according to ŷ. Clearly its score
of 16.4 is not higher than the score of the best labeling, as the max operator is
performed over a strict subset of possible labelings z. The bottom panel shows
similar process for the word of where its labeling is restricted from being N, and
the one that has the highest score is Misc, the difference in score is 5.6 which is
defined to be the confidence value. Thus, in our example, the confidence in the
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labeling of the word of is higher than the confidence in the labeling of the word
founder.

A straightforward implementation of the Delta method requires repeating
the inference process n times, once per word of the input, each time with a single
constraint over the labeling, that is, the label ŷp is not allowed for the pth word
- the word for which the confidence is being evaluated. Such implementation
costs O(n · (inference cost)). We used this approach for dependency parsing
task, and thus the computation complexity is O(n · n2) which is cubic in n.

For the sequence labeling task the computation of Delta confidence can be
improved by using the forward-backward-Viterbi algorithm (similar to standard
forward-backward algorithm (Rabiner, 1989)). This dynamic programming al-
gorithm allows to efficiently compute the score of the best sequence labeling that
includes a specific label constraint, therefore the computation of the Delta con-
fidence scores can performed in O(n · |Y|2), the same complexity as the standard
Viterbi algorithm used for sequence labeling prediction.

3.2 Marginal-Probability Method

The second method we describe is based on specific function converting score
values into probabilities.We follow the same modeling of conditional random
fields (CRF) (Lafferty, McCallum, and Pereira, 2001b) and define the condi-
tional probability,

P (y|x) =
exp {c (µ ·Φ(x,y))}

Zx

(6)

where Zx is a normalization factor over all possible labeling to the input x,

Zx =
∑

z∈Y(x)

exp {c (µ ·Φ(x, z))}, (7)

and c > 0 is a scaling parameter. While in some learning algorithms, such
as CRFs, the model parameters are trained to maximize the log-likelihood of
data using the above conditional probability, this is not the case for other
algorithms such as ones that are based on large-margin such as the passive-
aggressive (Crammer et al., 2006) algorithm or the confidence-weighted algo-
rithm (Dredze, Crammer, and Pereira, 2008; Crammer, Dredze, and Pereira,
2008), both described below. For this reason the coefficient c is used to allow
tuning of the model score to confidence score.

We define the confidence in a prediction of the pth word to be the marginal
probability of that prediction, that is,

P (ŷ|p|x) =
∑

z : z|p=ŷ|p

P (z|x) .

Using the dynamic-programming forward-backward algorithm (Rabiner, 1989)
for sequence labeling the marginal probability can be efficiently computed in
O(n · |Y|2) for all assigned labels P (ŷ|p|x) and p = 1 . . . n. It is common to
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Figure 4: Illustration of the alternatives method to estimate confidence. Con-
fidence is defined as the fraction of alternative labeling that agree with the
prediction.

refer to the quantities computed by the forward-backward algorithm by γ, so
we also refer to this method as Gamma. We report the results of this method
only in the context of sequence labeling and not dependency parsing, as we
found empirically that it is was shown not to perform well compared to Delta

described above and some of the methods we describe next.
An illustration of this process appear in Fig. 3 where the best labeling ap-

pears in the top row, and the marginals for two words appear in the following
rows. In this example the confidence in the prediction of the word founder is
defined to be 0.82 and the confidence in the prediction for the word of is defined
to be 0.93, the marginal value in both cases. One notable property is that the
confidence values are close to 1, this is because of the exponent-function used to
convert scores to probabilities, a phenomena that was shown to appear in other
contexts (Malkin and Bilmes, 2009).

3.3 Confidence by Alternatives

This method works in two stages. First, a set of K alternative labeling for
a given input sentence are generated, where the predicted labeling ŷ is not
necessarily one of the k labeling. Then, the confidence in the predicted labeling
is computed by evaluating the agreement (or disagreement) between ŷ and the
K alternatives. In other words, the confidence in the prediction for a specific
word is defined to be the proportion of labeling which are consistent with the
predicted label. Formally, let z

(i) for i = 1 . . .K be the K labeling for some
input x, and let ŷ be the actual prediction for the input. (We do not assume
that ŷ = z

(i) for some i). The confidence in the label ŷp of word p = 1 . . . |x| is
defined to be

νp =

∣
∣
∣

{

i : ŷp = z
(i)
p

}∣
∣
∣

K
. (8)

The process is illustrated in Fig. 4. The input is given in the top row and
the prediction is given in the next row. The example output ŷ includes a person
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name Mr Smith and a company name Smith Inc. In the next five rows there are
five alternative labelings to the input sentence. Numeric confidence scores are
given in the bottom line, and are the fraction of alternatives which agree with
the labeling of the output. For example, in the alternative just after the output
only the word Mr is part of the person name while the following word Smith is
labeled as a none entity. The confidence for the word founder is 0.6 = 3/5 as in
three alternatives out of five the labeling of it (None) agrees with the labeling
of the output. The confidence for the word of is 1.0 = 5/5 as all alternatives
agree with the labeling of the output (None).

We tried two major approaches to generate K possible alternatives: deter-
ministic and stochastic.

3.3.1 K -Best Predictions

The inference procedures are returning the labeling ŷ that achieves the highest
score in Eq. (1), ŷ = argmaxz∈Y(x) s(x, z). We modify the inference algorithm
to return not a single labeling but the best K distinct labelings with highest
score. Formally, we pick the top-K distinct labelings that satisfy,

s
(

x, z(1)
)

≥ s
(

x, z(2)
)

, . . . ,≥ s
(

x, z(K)
)

≥ s (x, z) ,

for all z /∈ Z =
{

z
(1), . . . , z(K)

}

.

By definition we have that the first labeling is the predicted output z(1) = ŷ and
that all K labelings differ from each other z(i) 6= z

(j) for i 6= j. Specifically, we
use the k-best Viterbi algorithm (Chow and Schwartz, 1989) to find the k-best
sequence labeling in O(K · n · |Y|2), and for dependency parsing we used the
k-best Maximum Spanning Trees algorithm (Hall, 2007; Camerini, Fratta, and
Maffioli, 1980) to produce the K parse trees with the highest score in O(K ·n2).

We use two variants of this approach. The first variant assigns uniform
importance to each of the K labelings ignoring the actual score values. We call
this method KB, for K-best. The second variant assigns a specific importance
weight ωi to each labeling z

(i), and evaluate confidence using the weights, where
we set the weights to be their score value clipped at zero from below ωi =
max{0,µ · Φ(x, z(i))}. (In practice, top scores were always positive.) We call
this method WKB for weightedK-best. Eq. (8) is naturally extended to a weighted
set,

νp =

∑

i : ŷp=z
(i)
p

ωi

∑

i

ωi

. (9)

3.3.2 Stochastic Models

Previous method used a single model to generate few alternatives. This ap-
proach is complimentary, we use a single model to generate (stochastically) few
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additional models, each is used to generate a single alternative (best accord-
ing to itself) labeling. Concretely, given a model µ learned by some algorithm
we induce a probability distribution over weight-vectors given µ, denoted by
Pr [w|µ]. We then draw a set of K weight-vectors wi ∼ Pr [w|µ], and use each
to output a best labeling according to it to get a set of alternatives,

Z = {z(i) : z
(i) = argmax

z

wi ·Φ(x, z) where wi ∼ Pr [w|µ]} . (10)

Again we use two variants of this approach. The first variant is more generic
we define the probability distribution over weights to be Gaussian with an
isotropic covariance matrix, Σ = sI for some positive scale information s, that
is we have that, w ∼ N (µ,Σ) , where µ are the parameters returned by the
learning algorithm. The value of s was tuned on the training set. We denote
this method KD-Fix for K-draws with fixed standard deviation. This method
is especially appealing, since it can be used in combination with training algo-
rithms that do not maintain confidence information, such as the Perceptron or
PA.

The second variant is used with classifiers that not only maintain a single
weight vector µ but also a distribution weight vectors. For example, the confi-
dence weighted classifier (CW) described below in Sec. 4 maintains by definition
a Gaussian distribution over weights, w ∼ N (µ,Σ). We proceed as the previ-
ous variant, given an input the algorithm draws K alternative weight vectors
according the distribution maintained by CW scaled by scalar s, that is sΣ, and
output the best labeling with respect to each weight vector. Again the value of
s was tuned on the training set. We denote this method KD-PC for K-draws by
parameter confidence.

We stress that the two variants generating the set of K alternatives are in-
herently different from each other. The first deterministic approach generates
few labelings from the same model, all of the labelings are different from each
other, and one of them is always the prediction ŷ. Additionally, although differ-
ent from each other the labelings are close (or similar) to each other (in term of
Hamming difference), as all attain very close (to the best) score values, because
the score over sequences decompose to scores over words and pairs of adjacent
words. The second stochastic approach generates one alternative per sampled
model. With high probability these models differ from the model µ used to
make the prediction, and thus the output labeling ŷ may be different from each
of the alternatives. However, if the covariance matrix is close to zero, the sam-
pled weight-vectors are likely to be close (in terms of Euclidean distance) to µ

and thus produce similar labeling to ŷ, that is, there may be overlap between
alternative labeling.

Using the stochastic models approach the K alternative predictions are gen-
erated by executing the inference algorithm K times, each time with different
sampled model, therefore the computing complexity isO(K·(inference cost)),
that is O(K · n2) for parsing and O(K · n · |Y|2) for sequence labeling.
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4 Learning

The algorithms described above to compute confidence are designed for linear
models decomposed over units, and work with any algorithm in such setting.
We evaluate the confidence estimation methods described in Sec. 3 using online
learning algorithms (Cesa-Bianchi and Lugosi, 2006). These algorithms are fast,
efficient, simple to implement and work well in practice. The passive-aggressive
(PA) algorithms (Crammer et al., 2006) were shown to achieve state-of-the-art
performance in many tasks such as NP chunking (Shimizu and Haas, 2006),
dependency parsing (McDonald, Crammer, and Pereira, 2005b), learning pref-
erences (Wick et al., 2009) and text segmentation (McDonald, Crammer, and
Pereira, 2005a). Recently, confidence weighted (CW) algorithms were intro-
duced for binary classification (Dredze, Crammer, and Pereira, 2008; Crammer,
Dredze, and Pereira, 2008) and multi-class problems (Crammer, Dredze, and
Kulesza, 2009) and were shown to outperform many competitors. We next de-
scribe both PA and CW algorithms for structured prediction. Both versions are
reductions from structured problems to binary classification in a manner similar
to the reduction performed for parsing using the Perceptron algorithm (Collins,
2002).

Online algorithms work in rounds. On the ith round the online algorithm
receives an input xi ∈ X and applies its current rule to make a prediction ŷi ∈
Y(xi), it then receives the correct label yi ∈ Y(xi) and suffers a loss ℓ(yi, ŷi).
At this point, the algorithm updates its prediction rule with the pair (xi,yi) and
proceeds to the next round. A summary of online algorithms can be found in the
book written by Cesa-Bianchi and Lugosi (2006). As noted above, in structured
prediction we assume a joint feature representation, s(x, z) = µ · Φ(x, z) for
Φ(x,y) ∈ R

d (see Eq. (2) and the text after it).

Passive-Aggressive Learning We first review a version of the passive-aggressive
(PA) algorithms for structured prediction (Crammer et al., 2006, Sec. 10). The
algorithm maintains a weight vector µi ∈ R

d and updates it on each round
using the current input xi and label yi, by optimizing:

µi+1 = argmin
µ

1

2
‖µ− µi‖

2 + Cξ

s.t. µ ·Φ(xi,yi)− µ ·Φ(xi, ŷi) ≥ ℓ(yi, ŷi)− ξ , ξ ≥ 0 , (11)

where the loss ℓ(yi, ŷi) is taken as the Hamming distance between the two la-
beling which is number of incorrect edges in the parse tree or incorrect labels
in the sequence labeling tasks, and C > 0 controls the tradeoff between op-
timizing the current loss and being close to the old weight vector. To solve
Eq. (11) we define the difference between the feature vector associated with the
true labeling yi and the feature vector associated with some labeling z to be,
∆i,y,z = Φ(xi,yi) − Φ(xi, z) , and in particular, when we use the current
model’s prediction ŷi we get,

∆i,y,ŷ = Φ(xi,yi)−Φ(xi, ŷi) .
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Algorithm 1 Sequence Labeling PA

Input:
• Joint feature mapping Φ(x,y) ∈ R

d

• Tradeoff parameter C
Initialize:

• µ0 = 0
For i = 1, 2, . . . , T

• Get input xi ∈ X
• Predict best labeling ŷi = argmax

z

µi−1 ·Φ(xi, z)

• Get correct labeling yi ∈ Y(xi)
• Define ∆i,y,ŷ = Φ(x,yi)−Φ(x, ŷi)
• Compute (from Eq. (12))

αi = min

{

C,
max {0, ℓ(yi, ŷi)− µi ·∆i,y,ŷ}

‖∆i,y,ŷ‖2

}

.

• Set

µi+1 = µi + αi∆i,y,ŷ

Output: Weight vector µT+1

The update of Eq. (11) can be computed analytically to get a structured version
of PA-I :

µi+1 = µi + αi∆i,y,ŷ ,

αi = min

{

C,
max {0, ℓ(yi, ŷi)− µi ·∆i,y,ŷ}

‖∆i,y,ŷ‖2

}

. (12)

The algorithm is summarized in Alg. 1. The theoretical properties of this algo-
rithm were analyzed by Crammer et al. (2006), and it was demonstrated on a
variety of tasks (e.g. (Chechik et al., 2009)).

Confidence-Weighted Learning Online confidence-weighted (CW) learn-
ing (Dredze, Crammer, and Pereira, 2008; Crammer, Dredze, and Pereira, 2008)
generalizes the passive-aggressive (PA) update principle to multivariate Gaus-
sian distributions over the weight vectors - w ∼ N (µ,Σ). Originally, it was
designed for binary classification and later was extended to multi-class prob-
lems (Crammer, Dredze, and Kulesza, 2009), speech recognition (Crammer,
2010) and sequence prediction (Mejer and Crammer, 2010). We now sketch a
generalization for structured problems which contains all previous versions as
special cases.

The mean µ ∈ R
d contains the current estimate for the best weight vector,

whereas the diagonal Gaussian covariance matrix Σ ∈ R
d×d captures the confi-

dence in this estimate. More precisely, the diagonal elements Σp,p, capture the
confidence in the value of the corresponding weight µp ; the smaller the value
of Σp,p, is, the more confident is the model in the value of µp. Full matrices are
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Algorithm 2 Sequence Labeling CW

Input:
• Joint feature mapping Φ(x,y) ∈ R

d

• Initial variance a > 0
• Confidence parameter φ

Initialize:
• µ0 = 0 , Σ0 = aI

For i = 1, 2, . . . , T
• Get input xi ∈ X
• Predict best labeling ŷi = argmax

z

µi−1 ·Φ(xi, z)

• Get correct labeling yi ∈ Y(xi)
• Define ∆i,y,ŷ = Φ(x,yi)−Φ(x, ŷi)
• Compute αi and βi using Eq. (15) and Eq. (16)
• Set

µi = µi−1 + αiΣi−1∆i,y,ŷ

Σ−1
i = Σ−1

i−1 + βi diag
(

∆i,y,ŷ∆
⊤
i,y,ŷ

)

Output: Weight vector µT+1 and confidence ΣT+1

not feasible as the dimension is in the order of millions.
CW classifiers are trained according to a PA rule that is modified to track

differences in Gaussian distributions. At each round, the new mean and co-
variance of the weight vector distribution is chosen to be the solution of the
following optimization problem,

(µi+1,Σi+1) = argmin
µ,Σ

DKL (N (µ,Σ) ‖N (µi,Σi))

s.t. Pr[∆i,y,ŷ ·w ≥ 0] ≥ Ψ(φℓ(yi, ŷi)) (13)

where Ψ is the cumulative function of the normal distribution and φ > 0 controls
the tradeoff between adjusting the model according to last example and being
close to the old weight vector distribution. The larger the loss is, the larger
probability we require for the event ∆i,y,ŷ ·w ≥ 0.

The solution for the CW updates is of the form,

µi = µi−1 + αiΣi−1∆i,y,ŷ

Σ−1
i = Σ−1

i−1 + βidiag
(

∆i,y,ŷ∆
⊤
i,y,ŷ

)

(14)

where diag(A) return a diagonal matrix which equals to the diagonal elements
of the matrix A. The two scalars αi and βi are computed using the mean and
variance of the margin,

vi = ∆⊤
i,y,ŷΣi∆i,y,ŷ , mi = µi ·∆i,y,ŷ , (15)
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Dataset Sentences Words Features

NP chunking 11.0K 259.0K 1.35M
NER English 17.5K 250.0K 1.76M
NER Spanish 10.2K 317.6K 1.85M
NER Dutch 21.0K 271.5K 1.76M

Table 2: Properties of sequences labeling datasets.

and are,

φℓ = φℓ(yi, ŷi) , φ′ = 1 + φ2
ℓ/2 , φ′′ = 1 + φ2

ℓ

αi = max

{

0,
1

viφ′′

(

−miφ
′ +

√

m2
i

φ4
ℓ

4
+ viφ2

ℓφ
′′

)}

βi =
αiφℓ
√

v+i

, v+i =
1

4

(

−αiviφℓ +
√

α2
i v

2
i φ

2
ℓ + 4vi

)2

. (16)

The method presented here is called 1-best binary reduction since the binary
example for the update step at each round was generated as the difference
between a single prediction, the model’s best prediction, and the true labeling.
There are variants of this method that at each round utilize multiple predictions,
usually the n-best predictions, to generate multiple binary examples for updating
the model. Please see (Crammer, Mcdonald, and Pereira, 2005; McDonald,
Crammer, and Pereira, 2005b) for more details.

Finally, we used parameter averaging with both algorithms. That is, during
test time we are not using the final parameter vector µT+1, but instead using
its average (

∑

t µt)/(T + 1). It was shown to improve performance in other
settings, and for us it either improved performance a bit, or did not make it
worse.

5 Data

We evaluated our algorithms on two types of structured predictions problems:
sequence labeling and dependency parsing. For the sequence labeling experi-
ments we used four large sequential classification datasets taken from the CoNLL-
2000, 2002 and 2003 shared tasks: noun-phrase (NP) chunking (Kim, Buchholz,
and Sang, 2000), and named-entity recognition (NER) in Spanish, Dutch (Tjong
and Sang, 2002) and English (Tjong, Sang, and Meulder, 2003). The properties
of the four datasets are summarized in Table 2 For the task of NP chunking
we used the BIO system of labeling marking the first word (beginning) of a
phrase (B), additional words of a phrase (in a phrase; I) and other words (O).
For NER problems we used the same system for the four categories ending up
with nine possible labels. Eight labels are the beginning of a name-entity (B)
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Dataset Sentences Words Features

Arabic 1.5K 54.3K 1.03M
Bulgarian 12.8K 190.2K 2.64M
Chinese 56.0K 337.1K 4.92M
Czech 72.7K 1,249.0K 12.69M
Danish 5.2K 94.3K 1.22M
Dutch 13.3K 195.0K 2.36M
English 39.8K 950.0K 7.00M
German 39.2K 699.6K 6.99M
Japanese 17.4K 151.4K 0.85M
Portuguese 9.0K 206.6K 2.50M
Slovene 1.5K 28.7K 0.55M
Spanish 3.3K 89.3K 1.40M
Swedish 11.0K 191.4K 2.50M
Turkish 5.0K 57.5K 1.10M

Table 3: Properties of dependency parsing datasets.

or being in it (I) for every the four categories: Location, Organization, Person
and Miscellaneous. The ninth label is marking O(ther) words.

We followed previous feature generation process (Sha and Pereira, 2003).
For NP chunking we used word and part-of-speech over a window of size (5)
centered at the word to be labeled. For NER we used word and standard sub-
word features including word, part-of-speech, suffix and prefix identity as well
as standard orthographic features (e.g. word is capitalized), with all features
over a window of size five (5) centered around the word at investigation.

To evaluate the task of dependency parsing we used 14 datasets: 13 lan-
guages used in CoNLL 2006 shared task (Arabic, Bulgarian, Chinese, Czech,
Danish, Dutch, German, Japanese, Portuguese, Slovene, Spanish, Swedish and
Turkish 1, and the English Penn Treebank. The properties of the datasets are
summarized in Table 3 The feature representation of edges between words is
generated as a combination of the connected words, the part-of-speech of the
words and their local context, that is words before, after and between the con-
nected words, the direction of the dependency (left or right) and the distance
between the words (for more details see (McDonald, Crammer, and Pereira,
2005b)). For dependency parsing evaluation we used a single split of training,
development and testing sets for each language. The number of sentences in the
training datasets is ranging between 1.5 − 72K, with an average of 20K sen-
tences, 30K−1.2M words and 0.5−12.7M features. The test sets contain ∼400
sentences and ∼6K words for all datasets, except English with 2.3K sentences
and 55K words.

1See http://nextens.uvt.nl/~conll/ for details
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CW 5-best PA Perceptron

NP chunking 0.947 0.946 **0.944
NER English 0.877 * 0.870 * 0.862
NER Dutch 0.787 0.784 * 0.761
NER Spanish 0.774 0.773 * 0.756

Table 4: Averaged F-measure of methods. Statistical significance (t-test) are
with respect to CW, where * indicates 0.001 and ** indicates 0.01

6 Prediction Performance Evaluation

Our primary goal is developing new methods to estimate confidence in pre-
diction, not prediction perse. Yet prediction itself is the end goal of learning.
Furthermore, we could not find published performance evaluation of CW on
structured prediction tasks, and the results below are among such first results.
We thus briefly report for completeness the performance of CW comparing it
with previous state-of-the-art online algorithms. Below we report in details the
results of our evaluation of various confidence estimation algorithms. Our goal
was to evaluate whether CW improves performance for these structured predic-
tion tasks as it does for binary classification (Dredze, Crammer, and Pereira,
2008; Crammer, Dredze, and Pereira, 2008) and multiclass prediction (Cram-
mer, Dredze, and Kulesza, 2009). As our goal is confidence and not achieving
the best accuracy we note that the performance results we report now are not
necessarily the best published in the literature as they are obtained by using
existing tools, and specifically MSTParser ”out of the box” not incorporating
recent parsing advancements.

We compared the performance of CW Alg. 2 with the passive-aggressive
algorithm, which was shown to be a state-of-the art in both tasks. Specifi-
cally, we used 5-best PA (the value of five was shown to be optimal for various
tasks (Crammer, Mcdonald, and Pereira, 2005)) for sequence labeling and 1-
best PA which is the training algorithm MSTParser uses for non-projective
parsing (McDonald et al., 2005). Additionally, we include the performance of
the Averaged-Perceptron algorithm on the sequence prediction tasks to show
various properties of all algorithms. It is omitted for parsing as it was shown to
be inferior to PA (McDonald et al., 2005). We ran CW with a diagonal covari-
ance matrix, as full matrix is not feasible. Specifically, we used the update rule
for full matrices and then removed the off-diagonal elements2. We used param-
eter averaging with all methods, including CW, as it improved performance for
all algorithms, especially on parsing.

We used 10-fold cross validation for sequence labeling and existing split of
data into training, development and test set for parsing. Hyper-parameters (φ

2This was shown to perform the best compared with two other alternatives: update a full
inverse Σ and remove its off-diagonal elements, and compute an exact update for a diagonal
covariance matrix.
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Figure 5: Precision and Recall on four datasets (four panels). Each connected
set of ten points corresponds to the performance of a specific algorithm after
each of the 10 iterations, increasing from bottom-left to top-right.

for CW, C for PA) were tuned for each sequence prediction task using a single
run over a random split of the data into a three-fourths training set and a one-
fourth test set and using a development set with 200 sentences per language for
parsing. All algorithms were executed for ten (10) iterations over the training
set.

6.1 Sequence Labeling Performance Evaluation

The F-measure of all algorithms after 10 iterations is summarized in Table 4. In
all four datasets CW algorithm outperforms PA that outperforms the Percep-
tron algorithm. The difference between CW and the Perceptron is statistically
significant using paired t-test over the 10 folds, and between CW and PA it is
significant in one dataset.

We further investigate the convergence properties of the algorithms in Fig. 5
in which we plot the recall and precision evaluated after each training round
averaged across the 10 folds. Each panel summarizes the results for a single
dataset, and in each panel a single set of connected points corresponds to one
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Edge Accuracy Complete Trees
Dataset CW 1-best PA CW 1-best PA

Arabic 0.777 0.772 0.110 0.123
Bulgarian 0.899 0.898 0.410 0.397
Chinese 0.901 0.900 0.739 0.737
Czech 0.845 0.844 0.340 0.323
Danish 0.878 0.871 0.326 0.304
Dutch 0.830 0.831 0.282 0.282
English 0.888 0.889 0.292 0.287
German 0.886 0.888 0.412 0.409
Japanese 0.936 0.940 0.769 0.779
Portuguese 0.863 0.863 0.302 0.302
Slovene 0.782 0.777 0.266 0.256
Spanish 0.820 0.813 0.189 0.180
Swedish 0.865 0.866 0.404 0.391
Turkish 0.781 0.776 0.281 0.276

Average 0.854 0.852 0.366 0.360

Table 5: Accuracy of predicted edges (two left columns) and percentage of
complete trees (two right columns) of parser trained with CW and PA.

algorithm. Points in the left-bottom of the plot correspond to early iterations
and points in the right-top correspond to later iterations. Long segments indi-
cate a big improvement in performance between two consecutive iterations.

High (in the y-axis) values indicate better precision and right (in the x-axis)
values indicate better recall. The performance of all algorithms is converging
in about 10 iterations as indicated by the fact the points in the top-right of
the plot are close to each other. The long segments in the bottom-left for the
Perceptron algorithm indicate that this algorithm benefits more from more than
one pass compared with the other algorithms. Interestingly, in NER Dutch and
NER Spanish (two bottom panels), PA achieves slightly better recall than CW
but is paying in terms of precision and overall F-measure performance.

6.2 Dependency Parsing Performance Evaluation

Predicted edges accuracy of PA and CW are summarized in Table 5. The
accuracy ranges from 77% on Arabic to 94% on Japanese, with an average of
85%. Training the parser with CW algorithm compared to PA yield a small
accuracy improvement in 8 of 14 languages, with maximal improvement of 0.7%
for Danish and Spanish and maximal degradation of 0.4% for Japanese. The
accuracy averaged over all the languages using CW is 85.4% compared to 85.2%
achieved by PA. The percentage of complete − trees, that is sentences where
the parse tree was completely correct, was also improved by CW compared to
PA in 10 of 14 languages, and averaged over all the languages the parser trained
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Figure 6: Parsing accuracy of PA and CW vs. iteration averaged over all 14
languages.

with CW got 36.6% complete trees compared to 36.0%.
We investigate the convergence results of the two algorithm in Fig. 6 where

we plot the accuracy results (averaged over all the language) evaluated using the
test set after each training iteration. After a single pass over the training data
CW algorithm performs better than PA, achieving higher accuracy on 11 of 14
datasets and average accuracy of 82.1% compared to 81.2%. With additional
passes over training data the performance gap is reduced, until finally after ten
iteration PA closes most of the gap and achieves average accuracy lower than
CW by only 0.2%.

To conclude, in all tasks of sequence labeling and most tasks of dependency
parsing, CW slightly improves over PA; which is also reflected in its averaged
performance which is slightly better than the averaged performance of PA. Ad-
ditionally, CW obtain high-performance after a single round, and benefit less
from multiple iterations over data, as opposed to both PA and the Perceptron
algorithm. This relation are consistent with previous evaluation of CW on both
binary classification (Dredze, Crammer, and Pereira, 2008; Crammer, Dredze,
and Pereira, 2008), multi-class prediction (Crammer, Dredze, and Kulesza,
2009) and phoneme-recognition (Crammer, 2010). Yet, in all these previous
work the improvement of CW over both PA and Perceptron was higher than
the improvement we found here for sequence labeling and parsing. Currently,
it is not clear why CW improves more over PA in the context of multi-class
and binary prediction, and less in the context of structured prediction. One
possible explanation is that implicitly CW exploits feature statistics. In the for-
mer simple problems the features are orthogonal per class, while in structured
prediction, the features are sum over parts (as in Eq. (4)) and thus may have
different statistical properties, such as dependencies.
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7 Confidence Estimation Methods Evaluation

We now report an evaluation of the confidence estimation methods mentioned
above. We trained a classifier using the CW algorithm running for ten (10)
iterations on the training set and applied it to the testing set to obtain an
initial labeling, the hype-parameter φ was set to its optimal value obtained in
the experiments reported in Sec. 6. We then applied each of the confidence
estimation methods on all the testing set labels. For sequences, a single split
of four-fifths of the data was used as training set and the remaining one-fifth
as testing set. For parsing we used the given split of the data into a training
set and a test set as described above. For sequences, the fraction of words for
which the trained model made a mistake ranges between 2% (for NER Dutch)
to 4.1% (for NER Spanish). While for parsing the fraction of incorrect edges is
between 23% (for Arabic) to 6% (for Japanese), with an average of 15%.

Six algorithms and one baseline were evaluated. The baseline is random
confidence scores for all the labels. The margin based method called Delta

described in Sec. 3.1. The marginal based method called Gamma described in
Sec. 3.2, and four methods based on alternatives described in Sec. 3.3. Two
of these methods are based on top-K best prediction defined in Sec. 3.3.1, one
using the output of the prediction algorithm as is called KB (K-best) defined
in Eq. (8), and the other is based on weighting its output called WKB (weighted
K-best) defined in Eq. (9). The other two alternatives-based methods are using
stochastic models both described in Sec. 3.3.2. The first by inducing a Gaussian
distribution over weights with covariance sI called KD-Fix for K draws with
fixed covariance, and the second by using the scaled covariance matrix learned
by CW called KD-PC for K-draws by parameter confidence.

For the KD-PC algorithm we note that the predictions of the CW algorithm
are based solely on the mean weight vector ŷ = argmaxz µ · Φ(x, z) and are
invariant to initial scale a of the covariance aI (as was noted elsewhere (Cram-
mer, Dredze, and Pereira, 2008)). Nevertheless, for the purpose of confidence
estimation the scale of the covariance Σ has a huge impact. Small eigenvalue of
Σ yield that all the samples of Z in Eq. (10) will be the same, while large values
yield almost complete random vectors, ignoring the mean.

One possible simple option is to run CW few times with few possible ini-
tializations of the covariance Σ and choose one copy based on the confidence
evaluated on the training set. However, since the actual predictions of all these
versions is the same and all the resulting covariance matrices will be propor-
tional to each other (Crammer, Dredze, and Pereira, 2008, Lemma 3) in practice
we run the algorithm only once initializing the covariance with I. Then, after
training is completed, we pick the best covariance matrix of the form sΣ for
a positive scalar s where Σ is the covariance output with initialization I , and
choose the best value s using the training set.

The parameters of the confidence estimation methods: size of K of the
number of labelings used in the four first methods (KD-PC, KD-Fix, KB, WKB),
the weighting scalar s used in KD-PC and KD-Fix, and the coefficient c of the
Gamma method were tuned for each dataset on a development set according to
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Figure 7: Average precision of rankings of the words of the test-set according
to confidence in the prediction of all methods (left to right bars in each group):
KD-Fix, KD-PC, Delta, Gamma, WKB, KB and random ordering, when training with
the CW algorithm (left) and the PA algorithm (right).

the best measured average precision achieved in the task of incorrect prediction
detection, described in Sec. 7.1.

We tried 20 values in the range 0.01 to 1.0 for the parameter s. For the
number of labeling K the values in 10, 20 . . . 80 were used. For the K-Draws
methods, largerK generally improved performance up to aboutK = 50 with flat
performance beyond that, so K = 50 was set for all datasets (see also Sec. 7.3).
The K-Best and WK-Best methods are more sensitive to value of K and values
between 10 to 30 were used across the different datasets. Performance degraded
significantly for larger values of K. For the c parameter of Gamma method 30
values between 0.01 to 3.0 were tried.

We evaluate the algorithms in two aspects of confidence: relative confidence
(Sec. 7.1) and absolute confidence (Sec. 7.2) and two application: precision-
recall tradeoff (Sec. 8.1) and active learning (Sec. 8.2).

7.1 Relative Confidence

In this experiment confidence estimation methods are evaluated in accordance
to their ability to rank all the words in the test set (per dataset) having words
for which there is a prediction mistake in the top and the correct predictions
in the bottom. Conceptually, this task can be thought of as a retrieval task
of the erroneous words. All words were ranked from low to high according to
the confidence score in the prediction associated with each word by the various
confidence methods. Then their performance in the task was evaluated in a few
ways. We split the results according to the task type.
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Figure 8: Precision in detection of incorrect labels as recall increases on three
NER tasks and NP chunking in English.

7.1.1 Sequence Labeling

The average precision for ranking the words of the test-set according the confi-
dence in the prediction for the seven methods in sequence labeling is summarized
in the left panel of Fig. 7 when training with CW. The algorithms are ordered
from left-to-right: KD-Fix, KD-PC, Delta, Gamma, WKB, KB and random ordering.
The average precision is computed by averaging the individual precision values
computed at all ranks of erroneous words.

From the plot we observe that when having a random ordering the aver-
age precision is about the frequency of erroneous word, and clearly random
ordering achieves the lowest (worst) average precision. The next two best meth-
ods are these based on K-Best predictions , where the weighted approach WKB

outperforms the non-weighted version KB. Thus, using the actual score value
into consideration improves the ability to detect erroneous words. Next in per-
formance are Gamma and Delta, the margin-based and marginal-probabilities
methods that outperform the K-best methods in all four datasets. Delta is
better than Gamma in two of the dataset and equal in the other two. The two
best performing methods are KD-Fix and KD-PC, where the former is better in
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three out of four datasets. The relative success of KD-Fix compared to KD-PC is
surprising, as KD-Fix does not take into consideration the actual uncertainty in
the parameters learned by CW, and in fact replaces it with a fixed value across
all features.

Except for KD-PC that takes the parameter confidence information into con-
sideration, all the other confidence estimation methods do not assume a confidence-
based learning approach. We thus repeated the experiment using the passive-
aggressive algorithm (PA) rather than CW for training the model. The results
appear in the right panel of Fig. 7 and basically tell the same story: KD-Fix

outperforms the margin-based and marginal-probabilities methods Delta and
Gamma, and the K-Best Viterbi based methods, KB and WKB achieve lowest per-
formance with the weighted version better than the non-weighted. Note that in
general CW is slightly better than PA in the prediction task (Sec. 6) and thus
retrieval of erroneous words on the set labeled by the PA model is slightly an
easier task, this may explain some of the bars in the right panel are higher than
their corresponding bars in the left panel.

Average precision does not tell the whole story - it encapsulates the detection
of all the incorrect edges into a single number. More refined analysis is described
via precision-recall (PR) plots showing the precision as more incorrect labels are
detected. PR plots for model trained with CW algorithm are shown in Fig. 8.
The plots for KD-PC and KB are omitted for clarity, KD-PC curve is very similar to
KD-Fix and KB is worse than all the rest. The plots present the incorrect-labels
detection precision in different recall values from 10% to 100%. We observe
that the advantage of the K-Draws methods over other methods is consistent
throughout the entire retrieval process. Interestingly, for low recall values of
around 10%, in NER in Dutch and Spanish, WKB performed better than Delta

and Gamma, yet its performance quickly degraded for higher recall values.
To illustrate the effectiveness of the incorrect labels detection process Table 6

presents the number of incorrect labels detected vs. number of labels inspected
for English NER dataset. The test set for this task includes 50K words and
the classifier made mistake on only 1, 650 words, that is, accuracy of 96.7%.
We show the number of incorrect labels detected after inspecting 500, 2, 500
and 5, 000 labels which are 1, 5 and 10% of all labels. When using random
inspection, the number of incorrect labels detected is, as expected, 1%, 5% and
10% of all mislabeled words. Yet when inspecting the labels according to the
ranking induced by KD-Fix method, 20%, 70% and 86% of all mislabeled words
were detected for the same effort.

7.1.2 Dependency Parsing

We applied the same methodology for evaluating the confidence estimation
methods in the task of dependency parsing. Here, all predicted edges were
ranked according to their confidence score ordered from low to high, and ide-
ally, erroneous edges by the parser are ranked at the top. A summary of the
average precision, computed at all ranks of erroneous edges, evaluated for all
confidence estimation methods and all the 14 datasets is summarized in Table 7.
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Words inspected KD-Fix Delta Random
(% of total)

500 (1%) 336 (20%) 278 (17%) 15 (0.9%)
2,500 (5%) 1,148 (70%) 1,003 (61%) 83 (5%)
5,000 (10%) 1,415 (86%) 1,310 (79%) 164 (9.9%)

Table 6: Number of incorrect labels detected, and the corresponding percentage
of all mistakes, after inspecting 500−5, 000 labels which are 1−10% of all labels,
using random ranking and ranking induced by KD-Fix and Delta methods.
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Figure 9: Precision in detection of incorrect edges as recall increases on four
dependency parsing datasets. KD-PC curves are very similar to KD-Fix and
omitted for clarity.

The average precision achieved by random ordering is lower than all the
methods and is about equal to the error rate for each dataset. Next are the
K-Best methods, where the weighted version performs better than the non-
weighted version. The margin-based Delta method improves significantly over
the the K-Best methods. Finally, KD-fix and KD-PC methods achieve the best
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performance with KD-Fix a little better than KD-PC, and both K-Draws methods
outperform Delta method on average and in 12 of 14 datasets. These results
are consistent with the results observed for sequence labeling.

The Precision-Recall (PR) plots for several datasets are shown in Fig. 9 and
provide deeper insight of the mistakes detection precision as more incorrect-
edges are detected. (KD-PC plots are very similar to KD-Fix and omitted for
clarity.) We observe that in most datasets KD-Fix performs significantly better
than Delta in the early detection stage (first 10− 20% of the incorrect edges),
while Delta performs better in late detection stages - the last 10− 20% of the
incorrect edges. The second and third rows of Table 8 summarizes the precision
obtained by all methods after detecting only 10% incorrect edges and after
detecting 90% of the incorrect edges, averaged over all the datasets. (The first
row of Table 8 summarized the average-precision averaged over all 14 languages,
and is copied from the last row of Table 7 for easier reference.) For example,
in three datasets (Czech, Slovene and Portuguese) of Fig. 9, we observe an
advantage of KD-Fix for low recall and an advantage of Delta in high recall.
This observation is consistent with most other dataset not shown in these plots.
Yet, in few languages, Arabic for example, KD-Fix outperforms or equal to
Delta along the entire range of recall values. This phenomena was not observed
for sequence labeling tasks where we found the K-Draws method to outperform
the other methods throughout the entire retrieval process.

This phenomena emerges from the different properties of the two algorithms.
KD-Fix assigns at most K distinct confidence values to each edge - the number
of models that agreed on that particular edge. As is, there is no mechanism to
break ties (in each of the K+1 levels) and thus edges that are assigned with the
same confidence level are ordered randomly relative to each other. Furthermore,
in most datasets large fraction of the edges, ∼ 70− 80%, are assigned to one of
the top-three possible confidence scores (i.e. (K − 2)/K, (K − 1)/K, 1). As a
results, the precision performance of KD-Fix drops sharply for recall values of
80% and above. This can be seen by the fast decrease of the line with circle
markers in three of plots in Fig. 9, except Arabic. On the other hand, we
hypothesize that the low precision values obtained by Delta at low recall values
(diamond in Fig. 9) is because Delta takes into account only two parses, the
margin between the highest scoring edge (the predicted edge) and the second
best edge, ignoring information about additional edges with score close to the
highest score. In contrast, KD-Fix integrates scores of K parse tress. In other
words, Delta is more sensitive to small perturbations of score values compared
with KD-Fix.

Based on this observation we propose combining both KD-Fix and Delta.
The new method sets the confidence score of an edge to be a weighted mean
of the score values of KD-Fix and Delta, with weights a and 1-a, respectively,
for a value of a ≈ 1. If the confidence value of two edges according to KD-Fix

is different, the contribution of the score outputted by Delta is negligible, and
the final score is very close to the score of only KD-Fix. On the other hand, if
the score of KD-Fix is the same, as happen for large recall values, then Delta

breaks arbitrary ties. In other words, when ordering all edges according to the
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KD-Fix KD-PC Delta WKB KB KD-Fix Random
+ Delta

Arabic 0.621 0.623 0.565 0.373 0.366 0.622 0.223
Bulgarian 0.491 0.466 0.463 0.257 0.238 0.494 0.102
Chinese 0.465 0.466 0.452 0.190 0.150 0.473 0.102
Czech 0.539 0.548 0.506 0.301 0.290 0.555 0.152
Danish 0.502 0.497 0.460 0.303 0.280 0.499 0.124
Dutch 0.534 0.536 0.527 0.370 0.358 0.544 0.167
English 0.489 0.459 0.477 0.291 0.278 0.496 0.112
German 0.426 0.418 0.469 0.254 0.232 0.472 0.114
Japanese 0.512 0.525 0.535 0.235 0.151 0.541 0.064
Portuguese 0.586 0.570 0.559 0.323 0.311 0.606 0.143
Slovene 0.561 0.573 0.555 0.345 0.332 0.581 0.218
Spanish 0.637 0.634 0.592 0.351 0.342 0.644 0.184
Swedish 0.528 0.533 0.496 0.289 0.273 0.527 0.137
Turkish 0.603 0.590 0.589 0.372 0.342 0.609 0.221

Average 0.535 0.531 0.518 0.304 0.282 0.547 0.147

Table 7: Average precision in ranking all edges according to confidence values.

new method, we first order edges according to confidence score of KD-Fix, then a
secondary order is employed according to the confidence values of Delta among
edges assigned same confidence score by KD-Fix. Not surprisingly, we name this
method KD-Fix+Delta.

This new method enjoys the good of the two methods. As the results show in
Table 8 it achieves the highest average-precision averaged over the 14 datasets.
It improves average-precision over KD-Fix in 12 of 14 datasets and over Delta
in all 14 datasets. From the second and third row of Table 8, we see that it
has Precision very close to KD-Fix for recall of 10% (0.729 vs. 0.724), and very
close to Delta for recall of 90% (0.351 vs. 0.348). Moving to Fig. 9, we observe
that the curve associated with the new method (red ticks) is in general as high
as the curves associated with KD-Fix for low values of recall, and as high as the
curves associated with Delta for large values of recall.

Finally, similar to sequence labeling task, in dependency parsing all confi-
dence estimation methods, except for KD-PC, can be used with a model that
does not maintain parameters confidence information. We repeated the exper-
iment but now training a model with the passive-aggressive algorithm, rather
than CW. The results appear in the fourth row of Table 8. The results based
on PA are consistent with the results based on CW, KD-Fix outperforms the
margin-based and the K-Best trees methods, and combining KD-Fix and Delta

improves the performance.
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KD-Fix KD-PC Delta WKB KB KD-Fix Random
+ Delta

Avg-Prec 0.535 0.531 0.518 0.304 0.282 0.547 0.147
Prec @10% 0.729 0.723 0.644 0.470 0.441 0.724 0.145
Prec @90% 0.270 0.279 0.351 0.157 0.151 0.348 0.147

Avg-Prec (PA) 0.539 - 0.513 0.305 0.278 0.548 0.149

Table 8: Row 1: Average precision in ranking all edges according to confidence
values, average over all 14 languages. Rows 2-3: Precision in detection of in-
correct edges when detected 10% and 90% of all the incorrect edges. Row 4:
Average precision in ranking all edges according to confidence values, average
over all 14 languages, using PA training.

KD-Fix KD-PC Gamma WKB Random

NER English 0.036 0.021 0.053 0.108 0.548
NER Dutch 0.049 0.024 0.046 0.104 0.559
NER Spanish 0.034 0.030 0.049 0.046 0.543
NP Chunking 0.022 0.020 0.019 0.056 0.557

Average 0.035 0.024 0.042 0.078 0.552

Table 9: Root mean square error (RMSE) of the absolute confidence value by
the confidence estimation methods for model trained with CW for sequence
labeling tasks.

7.2 Absolute Confidence

A second aspect of confidence prediction is the individual confidence values
outputted by the various methods, rather than only comparing pairs of values.
As before, suitable confidence estimation methods were applied on the entire
set of predicted labels 3. For every dataset and every algorithm we grouped the
words according to the value of their confidence. Specifically, we used twenty
(20) bins dividing uniformly the confidence range into intervals of size 0.05. For
each bin, we computed the fraction of words predicted correctly from the words
assigned to that bin. Ultimately, the value of the computed frequency should be
about the center value of the interval of the bin. Formally, bin indexed j contains
words with confidence value in the range [(j − 1)/20, j/20) for j = 1 . . . 20. Let
bj be the center value of bin j, that is bj = j/20 − 1/40. The frequency of
correct words in bin j, denoted by cj is the fraction of words with confidence
ν ∈ [(j − 1)/20, j/20) that their assigned label is correct. Ultimately, these two

3The output of the Delta method can not be interpreted on their own, only relatively. In
the context of binary classification there are few methods to generate absolute confidence from
relative one (Platt, 1998) using a sigmoid function. Yet, it could not be tuned properly in our
setting since we tuned all methods according to their performance in relative confidence sce-
nario (average-precision for ranking), where all parameters of Platt’s method perform equally
good.
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Figure 10: Predicted accuracy vs. actual accuracy in each bin. Best perfor-
mance is obtained by methods close to the line y = x (black line) for four tasks
sequential labeling tasks. Four methods are compared: weighted K-Viterbi
(WKB), K-draws PC (KD-PC) and K-draws fixed covariance (KD-Fix) and Gamma.

values should be the same, bj = cj , meaning that the confidence information is a
good estimator of the frequency of correct predictions. Methods for which cj >
bj are too pessimistic, predicting too high frequency of erroneous predictions,
while methods for which cj < bj are too optimistic, predicting too low frequency
of erroneous words.

The results for sequence labeling are summarized in Fig. 10 and for depen-
dency parsing in Fig. 12. Each panel in each figure summarizes the results
for a single task (or language in parsing), where the value of the center-of-bin
bj is plotted vs. the frequency of correct prediction cj , connecting the points
associated with a single algorithm. Best performance is obtained when the re-
sulting line is close to the line y = x. Four algorithms are shown: KD-Fix,
KD-PC, Gamma and WK-Best. The results of the K-Best method were inferior to
all other methods and omitted for clarity.
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Figure 11: The cumulative distribution of the labels in the bins according to
confidence scores assigned by KD-Fix method on the four sequence labeling
datasets. Blue bars represent the distribution of all the label in the bins as per-
centage of total number of labels, green and red bars represent the distribution
of correct/incorrect labels as percentage of the correct/incorrect labels.

For sequence labeling we observe from the plots that WKB is too pessimistic
as its corresponding line is above the line y = x. Gamma method tracks the line
x = y pretty closely in NP-Chunking and NER-Spanish datasets but it is too
optimistic in the other two with its corresponding line is below the line y = x.
The KD-Fix method is too pessimistic on NER-Dutch and too optimistic on
NER-English. The best method is KD-PC which tracks the line x = y pretty
closely in all four datasets.

For dependency parsing, in most languages KD-Fix and KD-PC methods per-
form very similarly. The distribution of this qualitative behavior of the KD
methods among the 14 datasets is: too optimistic in 2 datasets, too pessimistic
in 7 and close to the line y = x in 5 datasets. The confidence scores produced
by the WKB method are in general worse than KD-Fix and are too pessimistic
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Figure 12: Evaluation of KD-Fix, KD-PC and WK-Best by comparing predicted
accuracy vs. actual accuracy in each bin on several of the dependency parsing
datasets. Best performance is obtained for curves close to the line y=x (black
line).

with the line above y = x. In quite a few datasets we observe that WKB is too
optimistic in some confidence range and too pessimistic in another range. In
most plots both in Fig. 10 and in Fig. 12 the curves on the left (low bin-values)
are far from the line y = x and with more fluctuation compared with the right
area curves. This is because the left (low confidence) bins are less populated
and thus the estimates are noisier.

Fig. 11 shows the distribution of the words in the bins according to confi-
dence scores assigned by KD-Fix method on the four sequence labeling datasets.
Blue bars represent the distribution of all the labels in the bins as percentage
of total number of labels, green and red bars represent the distribution of cor-
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KD-Fix KD-PC WKB Random

Arabic 0.076 0.057 0.175 0.402
Bulgarian 0.037 0.223 0.093 0.492
Chinese 0.044 0.024 0.223 0.497
Czech 0.087 0.024 0.109 0.451
Danish 0.119 0.095 0.068 0.476
Dutch 0.098 0.105 0.094 0.441
English 0.041 0.144 0.059 0.483
German 0.090 0.094 0.102 0.481
Japanese 0.064 0.039 0.122 0.524
Portuguese 0.099 0.107 0.085 0.465
Slovene 0.156 0.137 0.151 0.404
Spanish 0.083 0.028 0.123 0.429
Swedish 0.023 0.031 0.114 0.465
Turkish 0.105 0.142 0.127 0.404

Average 0.080 0.089 0.117 0.458

Table 10: Root mean square error (RMSE) of the absolute confidence value by
the confidence estimation methods for model trained with CW for dependency
parsing.

KD-Fix KD-PC Gamma WKB Random

Sequences CW 0.035 0.024 0.042 0.078 0.552
Sequences PA 0.031 - 0.039 0.080 0.543

Parsing CW 0.080 0.089 - 0.117 0.458
Parsing PA 0.068 - - 0.122 0.456

Table 11: Average root mean square error (RMSE) of the absolute confidence
value by the confidence estimation methods for models trained with CW and
with PA. For sequences the results are averaged over all four datasets and for
parsing over all 14 languages.

rect/incorrect labels as percentage of the correct/incorrect labels. We see that
∼ 80 − 90% of the labels populate the highest confidence bin, another ∼ 5%
populate the second highest bin and the rest of the bins are lightly populated.
Among the correct labels even higher percentage is concentrated at the highest
confidence bin, while the incorrect labels are distributed more evenly over many
of the lower confidence bins.

The predicted vs. actual accuracy plots do not reflect the fact that different
bins are not populated uniformly . We thus compute for each method the root
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mean-square error (RMSE) in predicting the bin center value given by

RMSE =

√∑

j nj(bj − cj)2
∑

j nj

,

where nj is the number of words in the jth bin. The computed RMSE values
are presented in Table 11 both sequence labeling and parsing averaged over
datasets. We observed a similar trend to the one appeared in the bins plots.
For sequences, when using CW for training (top row in Table 11) , WKB is the
least-performing method (after Random), then Gamma and KD-Fix, where each
was better than the other in two datasets, and on average KD-Fix achieved
lower RMSE. KD-PC performed best where it achieved lowest RMSE in three of
four datasets and on average. Similar results, obtained when training with PA,
appear in the second row of the table. KD-Fix achieved lowest RMSE in three
of four datasets and on average, and WKB performs worst.

For parsing Table 11 presents the RMSE results averaged over all 14 lan-
guages, for parser trained with CW (third row) and with PA (fourth row). For
CW, both K-Draws methods perform better than WK-Best. KD-Fix yield lower
RMSE than KD-PC in seven of the languages and higher in the other seven, and
on average KD-Fix performed better than KD-PC (Table 10 presents results for
all languages). This is in oppose to the results observed for sequences where
KD-PC performed better than KD-Fix in all four datasets. When using PA for
training, we also see that KD-Fix performed better than WK-Best method.

To conclude, both KD-Fix and KD-PC outperform all other methods in both
settings and most datasets. The former is slightly better than the later, except
in absolute evaluation for sequence labeling.

7.3 Effect of K value on K-Draws methods performance

One of the two parameters that need to be tuned for the K-Draws methods is K,
the number of alternative labeling. As discussed above, for each word in each
sentence these methods eventually output a single value between zero and one,
interpreted as the probability of the prediction being correct. Conceptually, for
every word p we associate a coin with probability γp. Our goal is to estimate
these probabilities up to a satisfying level, denoted by ǫ. These methods are
used to estimate the coin’s bias by sampling from it, as defined in Eq. (8),

νp =
∣
∣
∣

{

i : ŷp = z
(i)
p

}∣
∣
∣/K . Applying the inequality of Chernoff (1952) and of

Hoeffding (1963) we have,

Pr [|γp − νp| ≥ ǫ] ≤ 2 exp
(
−2Kǫ2

)
. (17)

Denote by N the total number of words in the test set, using the union bound
we have,

Pr [∃ a word p s.t. |γp − νp| ≥ ǫ] ≤
∑

p

Pr [|γp − νp| ≥ ǫ] ≤ 2N exp
(
−2Kǫ2

)
.
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Figure 13: Left: The absolute error bounds for γp estimation using KD-Draws

method with different number of samples K for γp ∈ [0, 1] at confidence level
95%. Right: The interval of possible values for νp using K = 50 and K = 500
at confidence level 95%.
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(b) Dependency Parsing

Figure 14: Average precision in ranking all predictions according to confidence
scores assigned by KD-Fix method with K value in the range of 2 to 80 for
sequence labeling (left) and dependency parsing (right). The black vertical line
indicates the value of K = 50 used in our experiments.

Let 0 < δ < 1 be some confidence level. Then upper bounding the right-
hand-side of the last inequality with δ and solving for K we get,

K ≥
log (2N/δ)

2ǫ2
.

Note that if we set ǫ to be the length of a confidence bin, then by setting the
value of K to be above the lower bound, we bound the probability that a word
will not fall in the correct bin, or one of its two closet neighbors.

Concretely, we used 20 bins, thus we set ǫ = 1/20 = 0.05. Additionally, we
set δ = 0.05, and N = 500, 000 (see Table 2 and Table 3) we get, K ≈ 3, 363.
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This estimate is pessimistic in many aspects. First, it is based on the as-
sumption that the estimates νp of γp are independent, yet this is clearly not
the case since features that tie the prediction for few words are used. In the
extreme case, where the prediction of all words in a sentence are completely tied
(that is, knowing the labeling of one word, induces a deterministic labeling of
all other words), then the number of all words N should be replaced with the
number of all sentences a typical value of about 25, 000, which yields a value of
K ≈ 2, 764.

The discussion above is pessimistic in another sense. It assumes we need that
all estimates νp will be close to their correct values γp. However, we are often not
interested in estimating the bias values γp per-se, but estimating confidence for
a practical purpose. For example, in the task of incorrect prediction detection,
a good separation between the labels with high and low γp values is sufficient
and error on the absolute value is acceptable. Therefore we can take the actual
value of γp into consideration. Using the inequality of Bernshtein (1946) (see
also (J.V.Uspensky, 1937)) we have,

Pr [|γp − νp| ≥ ǫ] ≤ 2 exp

(

−
Kǫ2

2 (γp(1− γp) + ǫ/3)

)

. (18)

For γp values close to 1 the error is small which allows effective detection of high
confidence labels. Comparing the right-hand-side of the last equation to δ/N
we solve for the error interval and get a γ−dependent error interval

ǫ(γp) =

2
3L+

√

( 23L)
2 + 8KLγp(1− γp)

2K
.

where L = log 2N
δ
. In other words, for each value γp we get a different error

interval ǫ = ǫ(γp) such that with probability greater than 1− δ all estimates νp
falls within the interval [γp − ǫ(γp), γp + ǫ(γp)].

The left plot of Fig. 13 presents error intervals for all γp estimated using
KD-Draws method with different number of samples K with probability greater
than 95%. For values of γp far from 0.5 the intervals ǫ(γp) are low, compared
with values of γp close to 0.5. The right plot presents for each value of γp
the interval where its estimate νp may fall with high-probability using K = 50
(Blue) and K = 500 (Red) for confidence level 95%. The two horizontal lines
mark (with high-probability) the lowest possible estimate νp for γp = 0.95, the
lower and upper lines for K = 50 and 500 respectively. We see that for K = 50
words with γp > 0.65 may have their corresponding estimate νp greater than
words with γp = 0.95, while when using K = 500 only words with γp > 0.9
may have the corresponding estimate νp greater than labels with γp = 0.95.
This means, for example, that if we are interested in words that their prediction
is with high-confident, then when using K = 500 and picking all words with
νp > 0.95 with high probability we will pick only words with γp > 0.9. As
expected, greater values of K yield better error estimates so the choice of K
should be guided by the application of the confidence scores and the sensitivity
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to the estimate accuracy. Additionally, we observed in Fig. 11 that most (more
than %90) words have estimates νp > 0.95. So for most words the estimates
is pretty close to the correct values, which will not affect much the average
precision or f-measure.

Although theoretically about K = 500 is expected to yield good results,
still this value is large for reasonable purposes. We evaluated the affect of K
for various values of K and empirically found that for our practical purposes
relatively small values of K are sufficient and increasing K beyond these values
does not improve performance. Indeed, as mentioned above, for the K-Draws

methods we set the value of K by picking a best value of K on a development
set evaluating average precision in the task of incorrect prediction detection.
Eventually we set a single value of K = 50 for all datasets. Indeed, this value is
one order of magnitude smaller than the most optimistic estimate above. One
explanation is that the bounds are worst-case in the sense that we assumed that
the estimate νp will be smaller than γp for all words with high-confidence and
larger than γp for all words with low-confidence. Yet, there is no reason that
this will happen in practice for all such words, only for a small fraction of them,
and thus smaller values of K yield in practice accurate estimates.

Fig. 14 presents average precision results achieved on the test sets using the
KD-Fix method with different values of K from 2 to 80 for all sequence labeling
tasks and several dependency parsing tasks (the rest of the languages follow the
same trend and omitted from the plot for clarity). We observe that even with
K = 2, only two samples per sentence, the average precision results are better
than random ranking in all tasks. As K is increased to 10 the performance is
greatly improved. For K = 10, despite the very large theoretical estimation
error, the results are better than the K-best methods for all tasks and for the
NER tasks even better than Gamma and Delta. As K is further increased the
results continue to improve, yet at a more moderate rate, until reaching maximal
results at K ≈ 30 for most tasks and results remain steady for larger values of K
up to 80. These curves can be used to tradeoff performance (average precision)
with time, as the time complexity of this method is linear in K.

8 Applications

Additionally of confidence estimation being useful by itself in some contexts,
it is also useful for solving other problems. The next two sections present two
example applications built on top of the algorithms presented so far. The first
application is using the confidence information to trade-off precision and recall.
In Sec. 8.1 we describe a modification of an NER system, allowing it to label less
words as named-entities, but ask that the labeling will be with high precision.
The second application, presented in Sec. 8.2, is performing active leaning in
the context of sequence labeling, using the confidence information as a tool to
choose which sentences should be labeled by the annotator.
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Figure 15: Example of NER system that discards tags with low confidence scores
in order to improve precision possibly by sacrificing recall.

8.1 Precision-Recall Tradeoff

Labeling all words with a specific tag yields maximal recall for that tag, as
all words occurrence of that tag are labeled correctly, yet with the price of
low precision, as many words are tagged wrongly. On the other hand, not
labeling even one word (or labeling all word with the special tag of no tag)
yields maximal precision for all tags, as there is not even a single word that is
labeled mistakenly by some tag, yet the precision is zero as none of the words
that should be tagged are indeed tagged. Clearly, one can move from the second
extreme to the first by labeling or tagging more and more words with some tag.
In various information extraction systems it is desirable to have the ability to
control the tradeoff between high precision or high recall. In some scenarios a
user may prefer that the system may label fewer words with a tag (low recall) yet
to have the labeled words be tagged correctly (high precision), and in another
scenarios the opposite is preferred, that is, labeling more words with some tag,
yet at the price of low precision.

We propose the ability to perform such a system based on the confidence
information outputted by various algorithms. We demonstrate the system using
the task of named entity recognition. First, a NER algorithm produces a labeling
for a given sentence, and then a confidence algorithm is used to output additional
confidence score for each label. The system uses a tradeoff parameter t ∈ [0, 1]
to shift between the two extremes of high-recall and high-precision. The label
of all words labeled with some tag, such as Per or Loc that their confidence
is below the threshold t is replaced by the N label indicating that no tag is
associated with that word. The larger the value of t is, the tag of more words
that were labeled as named entities will be modified to a no-tag and the recall
would be reduced. The lower the value of t is, the lower number of words for
which their tag is modified, and the recall is higher. In the optimal case, with
a perfect confidence estimation algorithm, only the tag of words labeled with
incorrect tag would been changed, yielding higher precision with no decrease of
recall. Fig. 15 illustrates such NER system. The words Morgan Stanley are first
labeled as Person with low confidence score of 0.7, the word Google is labeled
as Organization with high confidence score of 0.98 and the rest of the words are
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Figure 16: Trading recall for higher precision in NER. Left column present the
precision, recall and f-measure as the confidence threshold is increased from 0
to 1 reflecting stronger bias for precision. The three lines of the same color
are always (top to bottom) Precision, F-measure and Recall. Right column
present precision-recall scores comparison for performing the tradeoff based on
confidence scores provided by the different methods.

labeled with confidence score 1.0 as N indicating they are not part of named
entity. In this example the tradeoff threshold t is set to 0.75, so the labels of
Morgan Stanley that have confidence score below the threshold are replaced
by N while the label of Google is not replaced as it has confidence score above
the threshold. In this example, indeed Morgan Stanley was incorrectly labeled
as Person instead of Organization so the replacement operation improves the
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system’s precision.
The left column of Fig. 16 shows the NER precision, recall and f-measure as

the confidence threshold value t increases from 0 to 1 which causes increasingly
more tags such as Per to be replaced to a non-tag N. Each plot presents two sets
of curves when using the confidence scores output by the KD-Fix algorithm and
Gamma algorithm. The performance of KD-PC plot is similar to that of KD-Fix
and of WKB is worse. Thus, both methods omitted for clarity. Delta is omitted
since its output is not in the desired range of absolute confidence prediction.
The top, middle and bottom curves for each of the two algorithms are precision,
f-measure and recall respectively.

For English we observe a similar trend for both algorithms. For confidence
threshold lower than ≈ 0.3 no labels are replaced and the precision and recall
scores remains constant. For larger confidence threshold values the precision
score increases as we expected, yet the recall score drops. This indicates that
both correct and incorrect NE tags are being replaced with a non-tag N. For
confidence threshold values between ≈ 0.3 − 0.7 the f-measure score remains
about constant while precision score increases from 0.83 to 0.90 and recall score
drops from 0.82 to 0.77. This is a successful trade-off between recall and pre-
cision for the optimal f-measure value. For larger confidence threshold values
≈ 0.7 − 1 the precision score continues to increase up to 0.95, yet at the price
of significant drop in the recall score to 0.56 and the f-measure score drops as
well.

For NER in Spanish, we observe that for confidence thresholds up to 0.6,
both methods allow similar balanced precision recall tradeoff such that the f-
measure score is steady. Yet, for threshold values greater than 0.6 the tradeoff
based on KD-Fix confidence scores improves precision at cost of decreased recall
more aggressively compared to tradeoff based on Gamma. The maximal precision
score achieved using KD-Fix is 0.92 compared to only 0.87 with Gamma. In Span-
ish NER we also observe that when using Gamma for confidence, the precision
score starts to drop along with recall scores for threshold values greater than
0.9. This indicates that more correct NE tags are replaced with a no-tag N
compared with incorrect NE tags, which clearly is undesirable. A similar be-
havior of more aggressive tradeoff between precision and recall for KD-Fix than
for Gamma is observed for Dutch. Here, the maximal precision score achieved
using KD-Fix is 0.99 compared to only 0.95 with Gamma. Determining which
behavior is preferable, aggressive or passive tradeoff, is application specific, yet
for any given precision score having higher recall score is clearly preferable. For
NP-chunking we observed similar trend (plots omitted) yet as precision starts
from very high score of 0.95 the increase was less significant compared to the
NER cases.

An alternative view of the same tradeoff is shown using the standard precision-
recall curves in the plots in the right column of Fig. 16. Each of the plots shows
the precision vs. recall for four confidence estimation methods algorithms:
KD-Fix, KD-PC, Gamma and WKB, one plot for each dataset. The bottom-right
point of each curve reflects the precision and recall before using our algorithms
to filter or reduce tags. (In fact, all curves coincide at this point as the same
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model is used to make label or tag the test data.)
As the confidence threshold value increases precision score improves and

recall score decreases, yet each method goes via different route of trading-off
precision and recall. An optimal confidence estimation method distinguishes
between correct and incorrect NE tags labels, and thus improves precision while
maintaining a constant recall values. Such optimal behavior is reflected by a
vertical curve at the right area of the plots.

For all datasets WKB confidence score yields poor performance where the
precision gain is small compared to the loss in recall. Furthermore, at some
point precision drops as well. Additionally, KD-Fix and to some extent KD-PC
allow the system to achieve higher-values of precision (curve ends with high
value). Gamma achieves similar or slightly better precision values for high-recall,
yet is not able to improve precision compared with KD-Fix (NER English and
NER Dutch), or even the precision drops together with recall (NER Spanish).

We experimented also in performing tradeoff in the opposite direction: trad-
ing precision for higher recall. We used similar approach as described above.
For words labeled with a no-tag N and with confidence score lower than some
threshold t, we replaced the N with some tag, which had the second highest
score value according to the prediction model. By construction, a tag of some
NE (such as Per) will by chosen. This tradeoff task is harder than trading-off
recall and precision as described above, as even if a word that is incorrectly
labeled with a no-tag N is identified, still the algorithm is required to choose
what tag should it be labeled with. We observed that our confidence estimation
methods detect effectively incorrect no-tag labels N. Using KD-Fix method the
average confidence score of all the words labeled incorrectly with a no-tag N is
0.6, 0.4 and 0.3 respectively in NER English, Spanish and Dutch. These values
are low compared to the high average confidence scores of 0.99, 0.98 and 0.92
respectively, of all words assigned correctly with a no-tag N (Fig. 11 illustrates
the low overlapping in the distribution of confidence scores between the correct
and incorrect labels). Yet choosing the correct tag for a word is a hard task.
Eventually recall values for all three languages improved at most by 0.02 while
precision score dropped by ≈ 0.2.

We therefore made the task easier by merging the four NE categories (Per-
son, Location, Organization, Misc) to a single NE category. A word that is
labeled with low confidence as no-tag N can now be tagged as NE without com-
mitting to a specific category. The results are presented in Fig. 17. We see that
using a single NE category improves the base precision and recall scores in all
three datasets, the f-measure scores for English, Spanish and Dutch improve
from 0.83, 0.72, 0.77 to 0.94, 0.93, 0.94 respectively (these f-measure scores are
close to the score achieved for NP chunking task which also has just a single tag
category).

For English when using KD-Fix confidence scores to tradeoff we observe that
for confidence threshold lower than ≈ 0.3 no labels are replaced. Then for
confidence threshold values between ≈ 0.3 − 0.9 the f-measure score remains
about constant (even slightly improves) while recall score increases from 0.94 to
0.97 and precision score drops from 0.95 to 0.92. This is a balanced trade-off
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Figure 17: Trading precision for higher recall in NER. Left column present the
precision, recall and f-measure as the confidence threshold is increased from 0 to
1 reflecting stronger bias for recall. Right column present precision-recall scores
comparison for performing the tradeoff based on confidence scores provided by
the different methods.

between recall and precision for the optimal f-measure value. For confidence
threshold values greater than 0.9 the recall score increases a little more almost
to 0.98 but the precision score drops to 0.87 and the f-measure score drops as
well. Using Gamma confidence score for this dataset allows similar improvement
in recall, but the precision scores drops significantly even for low confidence
threshold values and falls to 0.72. Similar quantitative behavior was observed
both for NER in Spanish and Dutch.
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Dataset Random KD-Fix Effort reduction

NER English 38K 25K 34%
NER Spanish 80K 60K 25%
NER Dutch 35K 23K 34%
NP chunking 62K 43K 30%

Table 12: Effort reduction in number of required word annotations when using
active learning based on KD-Fix confidence scores compared to random sentence
annotation.

The right column of Fig. 17 present the precision-recall curves using all the
confidence estimation methods algorithms: KD-Fix, KD-PC, Gamma and WKB, one
plot for each dataset. The top-left point of each curve reflects the precision and
recall before labeling any low confidence no-tags words as NE. As the confidence
threshold value increases recall score improves and precision score decreases.

For all datasets KD-Fix and KD-PC perform better than the other methods
by maintaining higher precision score for the same recall scores, and in Spanish
and Dutch datasets they also allow the system to achieve higher recall values.
In English WKB allowed achieving the highest recall value yet at cost of very low
precision.

Finally, we note that such an experiment is not relevant in the context of
parsing, as each word is assigned to another word (with an edge), and the
asymmetry in NER labels of having tags and no-tags does not exist.

8.2 Active Learning

In active learning, algorithms choose which example would be labeled and be
included in the training set. The rational is that the algorithm would choose
to label examples which their label contribute the most to the learning process.
Other examples, often the easy ones, will not be chosen for labeling as they are
not adding to the learning process.

In a typical active learning setting there exists a large set of unlabeled data
and a small set of labeled data. Learning is performed in iterations. On each
iteration the current set of labeled data used to build a model, which is then used
to choose a subset of examples to be labeled from remaining unlabeled examples.
Many active learning algorithms differ in the way this subset is chosen. We use
the confidence estimation methods for this purpose.

The experimental protocol we used is as follows. The initial set of labeled
examples contains 50 annotated sentences, and the initial set of unlabeled exam-
ples contains 9K sentences. Evaluation is performed using an additional test set
of 3K sentences. Learning is performed using CW and then the resulting model
and the confidence methods are applied to the set of remaining unlabeled sen-
tences, yielding a rank over these sentences. Indeed, in standard binary or even
multiclass prediction, many active learning algorithms are making a prediction
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for each and every example that is not labeled yet. For sequence prediction
problems, labeling sentences is time consuming. Thus, on each iteration the
algorithm first selects random 1K sentences and a prediction (and confidence
estimation) is performed only to this set. The algorithm then picks the 10 sen-
tences with the least confident value, which are then annotated and accumulated
to the set of labeled data examples. Every such 10 iterations (that is adding
100 sentences) the performance of the resulting model is evaluated using the
evaluation set. The process is repeated until 5K sentences are labeled.

The experiments reported above were focused in estimating confidence for
individual words. If for example, the output is given to a human, it is realistic to
ask the human to verify the tagging of individual words as indeed most words are
labeled correctly by the model. When moving to active learning, the situation
changes. Now, all the words in a sentence are not labeled, thus if a human is
required to label a single word, she may need to label adjacent words as well,
having additional effort. We thus focused in active learning in the sentence
level rather than the word level. We defined the confidence in a prediction of a
sentence to be the minimal confidence score over words in that sentence. Then
the algorithm is ranking sentences according to their confidence, breaking ties
by favoring short sentences (assuming short sentences contains a larger fraction
of informative words to be labeled than long sentences).

We evaluated scoring sentences using the confidence score of few methods,
KD-Fix, KD-PC, Delta and Gamma

4. As a baseline we used random sentences
selection.

The averaged cumulative f-measure vs. number of words labeled is presented
in Fig. 18 (as above KD-PC curves are close to KD-Fix curves and omitted for
clarity). Left panels summarizes the results for a short horizon (small number
of total-words). In two datasets random selection has the lowest performance,
while Gamma is worse in Spanish. There is not clear winner among the other
methods: KD-Fix is the best for NP-Chunking while Gamma is best for Dutch.
The right panels show the results for more than 10k training words, in log scale.
In this scale, random selection performs the worst in all cases, and then again all
the other methods performs about the same, except NER English where Gamma
achieves lower performance.

As the goal of active learning is reducing the annotation effort, we compare
the number of words required to be annotated when applying the proposed
selection method using KD-Fix in order to achieve the same performance level
as by random picking of 5K sentences. The results are summarized in Table 12
For NER English dataset only 25K words are required to achieve the same
level of performance obtained by training on 38K random words - a 34% effort
reduction. Similarly for Spanish, Dutch and Chunking about 12 − 20K words
have to be annotated to achieve the same performance of random labeling, a
25− 34% effort reduction.

4We (Mejer and Crammer, 2010) used two additional methods before, yet their performance
was lower or about the same, and thus we omit them here for clarity.
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9 Related Work

Confidence estimation methods for structured predication in NLP were inves-
tigated in previously and applied to tasks such as POS tagging, information
extraction, machine translation, and automatic speech recognition (ASR).

Culotta and McCallum (2004) propose several methods for confidence esti-
mation for single and multi-word fields, and for entire records in a CRF based
information extraction system. They describe a constrained forward-backwards
algorithm that defines confidence as the ratio of total probability of any labeling
for a given sentence with the total probability given a labeling constraint which
is taken as the extracted field. The constrained forward-backwards yields same
confidence scores as Gamma a for single token yet when extended to multi-word
field it performed better. Additionally, they used an external maximum entropy
classifier to classify fields as correct or incorrect based of set of features describ-
ing the extracted fields. The resulting posterior probability of the ”correct”
label is used as the confidence measure. This method performed equally to the
constrained forward-backwards method. Kristjansson et al. (2004) shows how
to improve interactive information extraction system accuracy by high-lighting
low confidence fields, computed using these confidence scores, for the user to
inspect and correct.

Scheffer, Decomain, and Wrobel (2001) estimate confidence of single token
label in HMM based information extraction system by a method similar to
the Delta method we use. The label confidence score is the difference in the
marginal probabilities of the best and second best label to the token. They use
the single token confidence score to rank the labels and use this ranking for
active learning.

Ma, Randolph, and Drish (2001) describe HMM based ASR system where
word marginal score and difference in scores between the two best alternatives
are used to compute per-word confidence measures, similar to Gamma and Delta

methods we use. They train SVM based on these features for deciding which
word candidates to reject.

Ueffing and Ney (2007) propose several methods for word level confidence
estimation for the task of machine translation based on K-best translations.
These methods are similar to the weighted and non-weighted K-best methods
(KB and WKB) we use. They show the utility of the confidence scores for detecting
incorrect translated words and for re-scoring candidate translations among the
K-best alternatives and show improvement in translation quality.

Gandrabur, Foster, and Guy (2006) describe using a neural network as a
dedicated confidence estimation layer and evaluate it for ASR and for machine
translation tasks. Both the ASR and translation systems provide a probabilistic
score to their outputs, yet the dedicated confidence estimation layer can com-
bine features and account for addition information that is not available to the
prediction system and thus provide more useful confidence scores. They show
the advantage of using a dedicated layer in ASR for the single word level and
in the concept-level (semantic phrases) by rejecting incorrect recognitions. In
context of interactive machine translation system with sequences of 1-4 words
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they gain advantage by avoiding incorrect translation suggestions.
About a decade ago, Argamon-Engelson and Dagan (1999) used committee

voting to evaluate the uncertainty in an example in a HMM based POS tag-
ger. The committee of HMM taggers are sampled from the trained model in
a manner similar to KD-PC method we use. Each HMM parameter is indepen-
dently sampled from normal distribution with mean value equal to the trained
parameter value and with per-parameter standard deviation according to the
number of examples the parameter value was estimated by and multiplied by
a ”temperature” coefficient. The committee of taggers were then used to pro-
duce a set of POS predictions and the uncertainty in each label is computed
according to the disagreement among the committee predictions regarding that
label. They used the uncertainty measure for guiding sample selection (active
learning) and show that indeed this method reduces the required labeling effort
compared to random or entire corpus labeling. However they did not evaluate
directly the relative or absolute per-label confidence score for purpose such as
detecting incorrect labels.

Confidence estimation was used in various additional setting of NLP appli-
cations such as binary and multi-class classification. For example, Delany et al.
(2005) describe confidence estimation method in an email spam filtering system
based on combination of k-Nearest Neighbors features such as agreement among
the neighbors and distance to closest same and opposite prediction. Platt (1998)
describes how to fit a sigmoid function to compute class posterior probabilities,
that can serve as confidence scores, from the non-calibrated output score pro-
vided by the SVM in text classification tasks. Xu et al. (2002) use confidence
estimation in a question answering system by mixture of few heuristic correct-
ness indicators and show that these confidence scores are useful for selecting
between alternative answer sources. Bennett, Dumais, and Horvitz (2002) use
confidence scores, referred to as reliability-indicators, for combining predictions
of different types of document classifiers. They show that confidence scores al-
lows better aggregation of the prediction votes compared to other alternatives.

Finally, there has been much work on active learning for NLP applications in-
cluding structured prediction tasks. For example Thompson, Califf, and Mooney
(1999) use minimal confidence in the extraction rules of a rules-based informa-
tion extraction system to select instances for annotation. Shen et al. (2004)
use minimal margin of SVM along with considerations of instances representa-
tiveness and diversity in a NER system, and Baldridge and Osborne (2004) (see
also (Osborne and Baldridge, 2004)) apply active learning for parsers.

10 Summary and Conclusions

We have studied few methods to estimate the per-word confidence in structured
predictions. These algorithms were evaluated both in a relative settings and in
a absolute setting. We also used the confidence score of these methods in two
applications: increasing precisions while decreasing recall, and active learning.
All-in-all we found that the two methods using sampling alternative models
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KD-PC and KD-Fix yield the best results. The former is induced from the CW
algorithms, while the later can be used with any linear model. Generally KD-Fix

performed a little better except for sequential labeling in absolute setting where
KD-PC was better.

These methods were also found useful in increasing precision vs recall in
sequence labeling tasks. Additionally, we showed that when combining these
methods with active learning, one can reduce annotating effort by at least 25%
compared to random sampling. Understanding the theoretical properties of the
problem and our algorithms remains an open problem to be addressed in the
future.
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Figure 18: Averaged cumulative F-score vs. total number of words labeled. The
left panels show the results for the first 10, 000 labeled words, the right panels
show the results for more than 10k labeled words.
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