

IRWIN AND JOAN JACOBS

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

Merge Path – Cache-Efficient
Parallel Merge and Sort

Saher Odeh, Oded Green,

Zahi Mwassi, Oz Shmueli,

Yitzhak Birk

CCIT Report #802
January 2012

DEPARTMENT OF ELECTRICAL ENGINEERING

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

Electronics

Computers

Communications

Merge Path – Cache-Efficient Parallel Merge and Sort

Saher Odeh, Oded Green , Zahi Mwassi, Oz Shmueli, Yitzhak Birk
Electrical Engineering Department

Technion
Haifa, Israel

{sahero, ogreen, zahim}@tx.technion.ac.il, {shmueli, birk}@ee.technion.ac.il

Abstract—Merging two sorted arrays is a prominent

building block for sorting and other functions. Its efficient

parallelization requires balancing the load among compute

cores, minimizing the extra work brought about by

parallelization, and minimizing inter-thread synchronization

requirements. Due to the extremely low compute to memory-

access ratio, it is also critically important to efficiently utilize

the memory system: minimize memory traffic, maximize the

cache hit rate and minimize cache-coherence related activity.

We present a novel approach to partitioning the two sorted

arrays into pairs of contiguous sequences of elements, one from

each array, such that 1) each pair comprises any desired total

number of elements, and 2) the elements of each pair form a

contiguous sequence in the final merged sorted array. While

the resulting partition and the computational complexity are

similar to those of certain previous algorithms, our approach is

different, extremely intuitive, and offers interesting insights.

Based on this, we present a synchronization-free, cache-

efficient merging (and sorting) algorithm. While we use CREW

PRAM as the basis, our algorithm is easily adaptable to

additional architectures. In fact, our approach is even relevant

to sequential cache-efficient sorting. The new algorithm has

been implemented both on the HyperCore many-core shared-

cache architecture and on a sizable x86 system, with emphasis

on cache efficiency. The algorithms and performance results

are presented, along with important cache-related insights.

Keywords-component; Cache Memories; Parallelism and

concurrency; Parallel processors; Sorting and searching

I. INTRODUCTION

Merging two sorted arrays, and to form a sorted
array is an important utility, and is the core the of merge-
sort algorithm [1]. The merging (e.g., in ascending order) is
carried out by repeatedly comparing the smallest (lowest-
index) as-yet unused elements of the two arrays, and
appending the smaller of those to the result array.

Given an (unsorted) N-element array, merge-sort
comprises a sequence of log2N rounds: in the first round,
N/2 disjoint pairs of adjacent elements are sorted, forming
N/2 sorted arrays of size two. In the next round, each of the
N/4 disjoint pairs of two-element arrays is merged to form a
sorted 4-element array. In each subsequent round, array
pairs are similarly merged, eventually yielding a single
sorted array.

Consider the parallelization of merge-sort using
compute cores (or processors or threads, terms that will be
used synonymously). Whenever , the early
rounds are trivially parallelizable, with each core assigned a
subset of the array pairs. This, however, is no longer the
case in later rounds, as only few arrays remain. Because the
total amount of computation is the same for all rounds,
effective parallelization thus requires the ability to
parallelize the merging of two sorted arrays.

An efficient Parallel Merge algorithm must have several
salient features, some of which are required due to the very
low compute to memory-access ratio: 1) equal amounts of
work for all cores; 2) minimal inter-core communication
(platform-dependent ramifications); 3) minimum excess
work (for parallelizing, as well as replication of effort); and
4) efficient access to memory (high cache hit rate and
minimal cache-coherence overhead). Coherence issues may
arise due to concurrent access to the same address, but also
due to concurrent access to different addresses in the same
cache line (false sharing). Memory issues have platform-
dependent manifestations.

The naïve approach to parallel merge entails partitioning
each of the two arrays into equal-length contiguous sub-
arrays and assigning a pair of same-numbered sub arrays to
each core. Each core then merges its pair to form a single
sorted array, and those are concatenated to yield the final
result. Unfortunately, this is incorrect. (To see this, consider
the case wherein all the elements of A are greater than all
those of B.) So, correct partitioning is the key to success.

In this paper, we present a parallel merge algorithm for
Parallel Random Access Machines (PRAM), namely shared-
memory architectures that permit concurrent (parallel) access
to memory. PRAM systems are further categorized as
CRCW, CREW, ERCW or EREW, where C, E, R and W
denote concurrent, exclusive, read and write, respectively.
Our algorithm assumes CREW, but can be adapted. Also,
complexity calculations assume equal access time of any
core to any address, but this is not a requirement.

Our algorithm is load-balanced, lock-free, requires
negligible excess work, and is extended to a memory-
efficient version. Being lock-free, the algorithm does not rely
on a set of atomic instructions of any particular platform.
The efficiency of memory access is also not confined to one
kind of architecture; in fact, the memory access is efficient
for both private- and shared-cache architectures.

———————————————— Oded Green is currently with the School of Computational Science and
Engineering at Georgia Tech, GA 30332. This work was done while Oded was
at the Technion.

lesley
Text Box
CCIT Report #802 January 2012

We show a correspondence between the merge operation
and the traversal of a path on a grid, from the upper left
corner to the bottom right corner and going only rightward or
downward. This greatly facilitates the comprehension of
parallel merge algorithms. By using this path, dubbed Merge
Path, one can divide the work equally among the cores.

Our actual basic algorithm is similar to that of [2].
However, using insights from the aforementioned geometric
correspondence, we develop a new cache-efficient algorithm,
and use it for a memory-efficient parallel sort algorithm.

The remainder of the paper is organized as follows. In
Section II, we present the Merge Path, the Merge Matrix and
the relationship between them. These are used in Section III
to develop parallel merge and sort algorithms. Section IV
introduces cache-related issues and presents a cache-efficient
merge algorithm. Section V discusses related work, Section
VI presents implementations and performance results, and
Section VII offers concluding remarks.

II. MERGE PATH

A. Construction and basic properties

Consider two sorted arrays, A and B, with |A| and |B|

elements, respectively. Without loss of generality, assume
that they are sorted in ascending order. As depicted in Fig. 1
(ignore the contents of the matrix), create a column
comprising A’s elements and a Row comprising B’s
elements, and an |A|x|B| matrix M, each of whose rows
(columns) corresponds to an element of A (B). We refer to
this matrix as the Merge Matrix. A formal definition and
additional details pertaining to M will be provided later.

Next, let us merge the two arrays: in each step, pick the
smallest (regardless of array) yet-unused array element.
Alongside this process, we construct the Merge Path.
Referring again to Fig. 1, start in the upper left corner of the
grid, i.e., at the upper left corner of M[1,1]. If A[1]>B[1],
move one position to the right; else move one position
downward. Continue similarly as follows: consider matrix
position (i,j) whose upper left corner is the current end of the
merge path: if A[i]>B[j], move one position to the right;
else move one position downward; having reached the right
or bottom edge of the grid, proceed in the only possible
direction. Repeat until reaching the bottom right corner.

The following four lemmas follow directly from the
construction of the Merge Path:

Lemma 1: Traversing a Merge Path from beginning to
end, picking in each rightward step the smallest yet-unused
element of B, and in each downward step the smallest yet-
unused element of A, yields the desired merger. □

Lemma 2: Any contiguous segment of a Merge Path is
composed of a contiguous sequence of elements of A and of
a contiguous sequence of elements of B. □

Lemma 3: Non-overlapping segments of a merge path
are composed of disjoint sets of elements, and vice versa. □

Lemma 4: Given two non-overlapping segments of a
merge path, all array elements composing the later segment
are greater than or equal to all those in the earlier segment.

Theorem 5: Consider a set of element-wise disjoint sub-
array pairs (one, possibly empty sub-array of A and one,
possibly empty sub-array of B), such that each such pair
comprises all elements that, once sorted, jointly form a
contiguous segment of a merge path. It is claimed that these
array pairs may be merged in parallel and the resulting
merged sub-arrays may be concatenated according to their
order in the merge path to form a single sorted array.

Proof: By Lemma 1, the merger of each sub-array pair
forms a sorted sub-array comprising all the elements in the
pair. From Lemma 2 it follows that each such sub-array is
composed of elements that form a contiguous sub-array of
their respective original arrays, and by Lemma 3 the given
array pairs correspond to non-overlapping segments of a
merge path. Finally, by Lemma 4 and the construction order,
all elements of a higher-indexed array pair are greater than or
equal to any element of a lower-indexed one, so
concatenating the merger results yields a sorted array.

Corollary 6: Any partitioning of a given Merge Path of
input arrays A and B into non-overlapping segments that
jointly comprise the entire path, followed by the independent
merger of each corresponding sub-array pair and the
concatenation of the results in the order of the corresponding
Merge-Path segment produces a single sorted array
comprising all the elements of A and B. □

Corollary 7: Partitioning a Merge Path into equisized
segments and merging the corresponding array pairs in
parallel balances the load among the merging processors.

Proof: each step of a Merge Path requires the same
operations (read, compare and write), regardless of the
outcome. □

Equipped with the above insights, we next set out to find
an efficient method for partitioning the Merge Path into
equal segments. The challenge, of course, is to do so without
actually constructing the Merge Path, as its construction is

82696445221253

0017

0 29

0 35

1 73

1186

1 90

1 95

1 99

Figure 1 - The cross diogonals in a Merge Matrix are used to find

the points of change between the ones and the zeros, i.e., the

intersections with the Merge Path.

equivalent to carrying out the entire merger. Once again
using the geometric insights provided by Fig. 1, we begin by
exposing an interesting relationship between positions on
any Merge Path and cross diagonals (ones slanted upward
and to the right) of the Merge Matrix M. Next, we define the
contents of a Merge Matrix and expose an interesting
property involving those. With these two building blocks at
hand, we construct a simple method for parallel partitioning
of any given Merge Path into equisized segments. This, in
turn, enables parallel merger.

B. The Merge Path and cross diagonals

Lemma 8: Regardless of the route followed by a Merge
Path, and thus regardless of the contents of A and B, the i'th
point along a Merge Path lies on the i'th cross diagonal of the
grid and thus of the Merge Matrix M.

Proof: each step along the Merge Path is either to the
right or downward. In either case, this results in moving to
the next cross diagonal. □

Theorem 9: Partitioning a given merge path into p
equisized contiguous segments is equivalent to finding its
intersection points with p-1 equispaced cross diagonals of M,

Proof: follows directly from Lemma 8. □

C. The Merge Matrix – content & properties

Definition 1: A binary merge matrix of is a
Boolean two dimensional matrix of size such that

 .

Proposition 10: Let be a binary merge matrix. Then 
Proof: If then according to definition 1, . (is sorted). (is sorted). and

according to definition 1, . □

Proposition 11: Let be a binary merge matrix. If , then ,
is false.

Proof: Similar to the proof of proposition 10. □
Corollary 12. The entries along any cross diagonal of M

form a monotonically non-increasing sequence. □

D. The Merge Path and the Merge Matrix

Having established interesting properties of both the
Merge Path and the Merge Matrix, we now relate the two,
and use P(M) to denote the Merge Path corresponding to
Merge Matrix M.

Proposition 13: Let be the highest point on a given

cross diagonal such that if exists,
otherwise let be the lowest point on that cross
diagonal. Then, passes through . This is depicted
in Figure 2.

Proof: by induction on the points on the path.
Base: The path starts at . The cross diagonal that
passes through consists only of this point; therefore, it
is also the lowest point on the cross diagonal.
Induction step: assume the correctness of the claim for all
the points on the path up to the point . Consider the
next point on . Since the only permissible moves are , the next point can be either or
respectively.

Case 1: move. The next point is . According
to Definition 1, . According to the induction
assumption, either or . If then
the new point is the highest point on the new cross diagonal
such that . Otherwise, .
According to Proposition 11, .
Therefore, is the highest point on its cross
diagonal at which .

Case 2: the move was , then the next point is .
According to Definition 1, . According to the
induction assumption, either or 1. If then the new point is the lowest point in the new cross
diagonal. Since and according to Proposition 11,
the entire cross diagonal is . Otherwise, .
According to Proposition 10, .
Therefore, is the highest point on its cross

diagonal at which . □
Theorem 14: Given sorted input arrays A and B, they

can be partitioned into p pairs of sub-arrays corresponding
to p equisized segments of the corresponding merge path.
The p-1 required partition points can be computed
independently of one another (optionally in parallel), in at
most log2(min(|A|,|B|)) steps per partition point, with neither
the matrix nor the path having actually been constructed.

Proof: According to Theorem 9, the required partition
points are the intersection points of the Merge Path with p-1
equispaced (and thus content-independent) cross diagonals

82696445221253

0000011117

00001 29

00001 35

01111 73

11111 86

11111 90

11111 95

11111 99

Figure 2 - Merge Matrix and Merge Path.

of M. According to Corollary 12 and Proposition 13, each
such intersection point is the (only) transition point between
‘ ’s and ‘0’s along the corresponding cross diagonal. (If the
cross diagonal has only ‘0’s or only ‘ ’s, this is the
uppermost and the lower most point on it, respectively.)
Finding this partition point can be done by way of a binary
search, whereby in each step a single element of A is
compared with a single element of B. Since the length of a
cross diagonal is at most min(|A|,|B|), at most
log2(min(|A|,|B|)) steps are required. Finally it is obvious
from the above description that neither the Merge Path nor
the Merge Matrix needs to be constructed and that the p-1
intersection point can be computed independently and thus

in parallel. □

III. PARALLEL MERGE AND SORT

Given two input arrays A and B parallel merger is
carried out by p processors as follows:

Algorithm 1 – Parallel Merge (A,B,p)

/* i = processor number in the range 1..p */

In parallel do:

1. DiagonalNum=(i-1)(|A|+|B|)/p+1

2. Compute intersection of the merge path with the

relevant diagonal //Binary search

3. Execute (|A|+|B|)/p steps of sequential merge,

writing the results to output array positions

starting at (i-1) (|A|+|B|)/p+1

Barrier.

Remark. Note that no communication is required
among the cores: they write to disjoint sets of addresses and,
with the exception of reading in the process of finding the
intersections between the Merge Path and the diagonals,
read from disjoint addresses. Whenever |A|+|B|>>p, which
is the common case, this means that concurrent reads from
the same address are rare.

Summarizing the above, the time complexity of the
algorithm for |A|+|B|=N and p processors is given by and the work complexity is given by). For this algorithm is
considered to be optimal. In the next section, we will further
address the issue of efficient memory (cache) utilization.

Finally, merge-sort can be used, employing Parallel
Merge to carry out each of log2N rounds. The rounds are
carried out one after the other.

The time complexity of this Parallel Merge-Sort is:
In the first expression, the first component corresponds

to the sequential sort carried out concurrently by each core

on 1/p of the input., and the two remaining ones correspond
to the subsequent rounds of parallel merges.

IV. CACHE EFFICIENT MERGE PATH

A. Overview

The rate at which merging and sorting can be performed
even in memory (as opposed to disk), is often dictated by the
performance of the memory system rather than by processing
power. This is due to the fact that these operations require a
very small amount of computing per unit of data, and the fact
that only a small amount of memory, the cache, is reasonably
fast. (The next level in the memory hierarchy typically
features a ten-fold higher access latency as well as coarser
memory-management granularity.) Parallel implementation
on a shared memory system further aggravates the situation
for two reasons: 1) the increased compute power is seldom
matched by a commensurate increase in memory bandwidth,
at least beyond the 1st-level or 2nd-level cache, and 2) cache
coherence mechanisms can present an extremely high
overhead. In this section, we address the memory issues.

 Assuming large arrays (relative to cache size) and
merge-sort, it is clear that data will have to be brought in
again for each of the log2N rounds of the sorting algorithm,
so we again focus on merging a pair of sorted arrays.

In the remainder of this section, we examine the cache
efficiency issue in conjunction with our algorithm, offering
important insights, exploring trade-offs and presenting our
approaches. Before continuing along this path, however, let
us digress briefly to discuss relevant salient properties of
hierarchical memory in general, and particularly in shared-
memory environments.

B. Memory-hierarchy highlights

Cache Organization and management

Unlike software-managed buffers, caches do not offer the
programmer direct control over their content and,
specifically, over the choice of item for eviction.
Furthermore, in order to simplify their operation and
management, caches often restrict the locations in which an
item may reside based on certain bits of its original address
(the index bits). The number of cache location at which an
item with a given address may reside is referred to as the
level of associativity: in a fully associative cache there are no
restrictions; at the other extreme, a direct-mapped cache
permits any given address to be mapped only to a single
specific location in the cache. The collection of cache
locations to which a given address may be mapped is called a
set, and the size of the set equals the degree of associativity.

Whenever an item must be evicted from the cache in
order to make room for a new one, the cache management
system must select an item from among the members of the
relevant set. One prominent replacement policy is least
recently used (LRU), whereby the evicted item is the set
member that was last accessed in the most distant pass.
Another is first in – first out (FIFO), whereby the evicted

item is the one that was last brought into the cache in the
most distant past. Additional considerations may include
eviction of pages that have not been modified while in the
cache, as they often don’t have to be copied to the lower
level in the hierarchy, as it maintains a copy (an inclusive
cache hierarchy).

Cache content is managed in units of cache line. We will
initially assume that the size of an array item is exactly one
cache line, but will later relax this assumption.

Cache performance

The main cache-performance measure is the hit rate,
namely the fraction of accesses that find the desired data in
the cache. (Similarly, miss rate = 1- hit rate.)

There are three types of cache misses: Compulsory,
Capacity, and Contention [3].

1) Compulsory – a miss that occurs upon the first request
for a given data item. (Whenever multiple items fit in a cache
line, as well as when automatic prefetching is used, the
compulsory miss rate may be lower than expected. (Access
to contiguous data would result in one miss per cache line or
none at all, respectively.)

2) Capacity – this refers to cache misses that would have
been prevented with a larger cache.

3) Conflicts – these misses occur despite sufficient cache
capacity, due to limited flexibility in data placement (limited
associativity and non-uniform use of different sets).

Cache coherence

In multi-core shared-memory systems with private
caches, yet another complication arises from the fact that the
same data may reside in multiple private caches (for reading
purposes), yet coherence must be ensured when writing.
There are hardware cache-coherence mechanisms that
obviate the programmer’s need to be concerned with
correctness; however, the frequent invocation of these
mechanisms can easily become the performance bottleneck.
The most expensive coherence-related operations occur
when multiple processors attempt to write to the same place.
The fact that management and coherence mechanisms
operate at cache-line granularity complicates matters, as
coherence-related operations may take place even when
cores access different addresses, simply because they are in
the same cache line. This is known as false sharing.

We next present two approaches for cache-efficient
parallel merge, and discuss them in the context of the various
aforementioned realities of cache systems.

C. Cache-Efficient Parallel Merge

Collisions in the cache are avoided when different items
are guaranteed to be able to reside in different cache
locations, as well as when they are in the cache (and are
actually still needed) at different times. In a Merge operation,
a cache-resident item is usually required for a very short
time, and is used only once. However, many items are
brought into the cache. Also, the relative addresses of
“active” items are data dependent. This is true among

elements of different arrays (A, B, S) and, surprisingly, also
among same-array elements accessed by different cores. This
is because the segment-partition points in any given array are
data dependent, as is the rate at which its elements are
consumed.

Given our efficient parallelization, we are able to
efficiently carry out parallel merger of even cache-size
arrays. In view of this, we explore approaches that ensure
that all elements that may be active at any given time can co-
reside in cache.

Let C denote cache size (in elements). Our general
approach is to break the overall merge path into cache-size
(actually a fraction of that) segments, merging those
segments one after the other, with the merging within each
segment being parallelized. We refer to this as Segmented
Parallel Merge, SPM. See Fig. 3.

The starting point of the segment handled in each

iteration, i.e., the indices of the first elements of A and B to
be considered, is known. Unlike in a full parallel merger,
however, the last elements to be considered are not
necessarily known. (Each core does know how many
elements of S it should produce, so the question is only how
many elements to fetch from each array.) We next present
two schemes, common to which is the fact that at all times
the amount of memory needed for the parallel merge does
not exceed the cache size, and if the level of associativity is
at least 3, collision freedom can be guaranteed.

Scheme I: Fetch and Delimit (FaD)

Lemma 15. A merge-path segment of length L comprises
at most L consecutive elements of A and at most L
consecutive elements of B. □

Theorem 16. Given L consecutive elements of A and L
consecutive elements of B, starting with the first element of
each of them in the segment being constructed, one can
compute in parallel the p segment starting points so as to
enable p consecutive segments of length L/p to be
constructed in parallel.

Figure 3 - Merge Matrix for the cache efficient algorithm. The

yellow circles depict the initial and final points of the path for a

specific block in the cache algorithm.

Proof: Consider the p-1 cross diagonals of the merge
matrix comprising the aforementioned elements of the two
arrays, such that the first one is L/p away from the upper left
corner and the others are spaced with the same stride. The
farthest cross diagonal will require the L’th provided element
from each of the two arrays, and no other point along any of
the diagonals will require “later” elements. Also, since the
farthest diagonal is at distance L from the upper left corner
(Manhattan distance), the constructed segment will be of
length L. □
Remark. Unlike the case of a full merge of two sorted arrays
of size L, not all elements will be used. While L elements
will be consumed in the construction of the segment, the mix
of elements from A and from B is data dependent.
In order to avoid the extra complexity of using the same
space for input elements and for merged data, let L=C/3,
where C is the cache size.

Algorithm 2 – Fetch and Measure (FaD)

Repeat the following (|A|+|B|)/L times /* L=|C|/3 */

1. If first iteration, fetch the first L items of A and B;

Else fetch the next elements of A and B in numbers

equal to the number respective consumed

elements in the previous iteration, overwriting the

used elements of the respective arrays (cyclic

buffer).

2. Parallel do:

a. Find the core’s segment starting point
/* binary search on cross diagonal */

b. Merge (sequential) L/p steps,

commencing at the start point.

3. Write the results out to memory.

Implementation issues

By construction, the cache size suffices for the parallel
construction of each segment. Also, data is brought in only
once, and sequentially, so compulsory misses are held to the
(platform dependent) bare minimum.

Limited associativity

Proposition 17. with 3-way associativity or higher,
conflict misses can be avoided.

Proof: With k-level associativity, any consecutive C/k
addresses are mapped to C/k different sets. The C/3 items of
each of A,B and the merged array will take up exactly one
position in each of the three sets, regardless of the start
address of each of these element sequences. Similarly, each
will take up two positions in a 6-way set associative cache,
three in a 9-way, etc. For associativity levels that are greater
than 3 but not integer multiples thereof, one can reduce the
segment length such that each array’s elements occupy at
most a safe number of positions in each set. (A safe number
is one such that even if all three arrays occupy the maximum
number of positions in a given set, this will not exceed the
set size, i.e., the degree of associativity.) □

Cache line containing multiple elements
This may result in more data than planned being brought

in. The simple remedy is to slightly reduce the segment size,
thereby guaranteeing that the total amount will not exceed
the allocated space.

There may also be cache coherence issues; these will be
addressed together for the two schemes.

Cache replacement policy

A problem may arise at replenishment time. Consider, for
example, LRU and a situation wherein a given merge
segment only comprises elements of A. As replenishment
elements are brought in to replace the used elements of A, the
least recently used elements are actually those of B, as both
the A element positions and the result element positions were
accessed in the previous iteration whereas only one element
of B was accessed (it repeatedly “lost” in the comparison). A
similar problem occurs with a FIFO policy.

A possible solution for LRU is, prior to fetching
replenishment elements, touching all cache lines containing
unused input elements. If each cache line only contains a
single item, this would represent approximately a 50%
overhead in cache access (the usual comparison is between
the loser of the previous comparison, which is in a register,
and the next element of the winning array, which must be
read from cache; also, the result must be written. So the
number of cache accesses per step grows from 2 to 3.) If
there are multiple elements per cache line, the overhead
quickly becomes negligible.

Scheme II: Delimit and Fetch (DaF)

Here, given the starting point of the current iteration of
the (sequentially executed) outer loop, we (sequentially)
compute the intersection point of the overall merge path with
the diagonal that will terminate the segment being
constructed; i.e., with the cross diagonal that is at Manhattan
distance L from that in which the starting point resides. Next,
we fetch exactly the required elements for the (parallel)
construction of the next segment and carry out the merger as
as in FaD. In fact, outer-loop segment boundaries may be
computed in parallel as in the cache-agnostic parallel merge
algorithm, and their values stored until needed.

Algorithm 3 – Delimit and Fetch (DaF)

Repeat the following (|A|+|B|)/L times /* L=C/3 */

1. If first iteration, compute the end point of the first

segment of length L;

Else, determine the end point of the next length-L

segment, using only as-yet unused array elements

in finding the intersection point /*binary search on

the appropriate cross diagonal of M */

2. Fetch the next elements of A and B as required for

the construction of the next merge segment.

3. Parallel do:

a. Find the core’s segment starting point

/* binary search on a cross diagonal */

b. Merge (sequential) L/p elements,

commencing at the start point.

4. Write the results out to memory.

Implementation issues are mostly similar to those of DaF

and are omitted for brevity. Exceptions will be discussed
next as we compare the schemes.

Scheme comparison

One apparent advantage of DaF over FaD is that, since
we only fetch the elements that will be needed, the segment
length in each iteration can be C/2 rather than C/3; sub-
segment length is 1.5x larger, thereby commensurately
reducing the overall required number of segment-boundary
computations. (Each boundary computation may require one
additional iteration but this is negligible.)

With limited associativity, however, this is no longer the
case, as demonstrated next with a 3-way set associative
cache.

Consider a segment of size C/2 comprising (C/2-1)
consecutive elements of A and a single element of B. The
output segment also comprises C/2 consecutive elements.
Here, the elements of A occupy two slots in some of the sets,
the element of B may be mapped to one of those, and so may
up to two elements of the output array, causing conflict
misses. With 2-way set associativity, elements of A will
occupy at most one slot in any set, as will elements of the
output segment. However, the element(s) of B may still be
mapped to sets that already have to elements, again causing a
collision. Consequently, here too the segment size may be at
most C/3. Further elaborations for different levels of
associativity are omitted for brevity.

Implications of the Cache replacement policy expose
the main, perhaps only, advantage of DaF over FaD. In each
iteration, all fetched elements are consumed and are no
longer needed, so there is no need to touch cache lines in
order to prevent their premature eviction. FaD thus works
well with both LRU and FIFO.
Remark. In both FaD and DaF, one can either write to the
output array in each step or first construct a bitmap denoting
from which array to take the next element, and copy onto the
output array once done. The former approach appears more
efficient. The exception is whenever an item contains a
sorting key as well as additional data, and these need to be
stored contiguously in the output array.

We conclude this section by deriving the computational
complexity (total amount of work) and the time complexity
of the cache-efficient merge. We will do it for DaF, but the
complexity of FaD is similar.

Computational complexity (DaF)

Assuming a total segment size of L=C/3 per sequential
iteration of the algorithm, there are 3N/C such iterations, In
each of those, only 2L=2C/3 need to be considered in order
to determine the end of the segment and, accordingly, the
elements that should be copied into the cache. Because the
sub-segments of this segment are to be created in parallel,

each of the p cores must compute its starting points (in A
and in B) independently. If this is done following the
determination of the aforementioned ending point, it need
only consider L elements; otherwise it must consider 2L. For
simplicity, we assume the latter. Finally, the complexity of
the merge itself is N.

The computational complexity of the cache-efficient
merge of N elements given a cache of size C and p cores is:

Normally, p<<C<<N, in which case this becomes O(N).
In other words, the parallelization overhead is negligible.

The time complexity is
Neglecting logC relative to C/p, this becomes O(N/p),

which is optimal. Finally, looking at typical numbers and at
the actual algorithms, it is evident that the various constant
coefficients are very small, so this is truly an extremely
efficient parallel algorithm and the overhead of partitioning
into smaller segments is insignificant.

D. Cache-Efficient Parallel Sort

Initially, partition the unsorted input array into equisized
sub-arrays whose size is some fraction of the cache size C.

Next, iterate over these sub-arrays, sorting them one by
one using the parallel sort algorithm on all p processors as
explained in an earlier section.

Finally, proceed with merge rounds; in each of those, the
cache-efficient parallel merge algorithm is applied to every
pair of sorted sub-arrays. This is repeated until a single array
is produced.

We now derive the time complexity of the cache efficient
parallel sort algorithm. We divide the complexity into two
stages: 1) the complexity of the parallel sorting of the sub-
arrays of at most elements, and 2) the complexity of the
cache-efficient merge stages.

In the first stage, depicted in Fig. 4, the parallel sort
algorithm is invoked on the cache sized sub-arrays. The
number of those sub-arrays is . Hence, the time

complexity of this stage is .
The second stage may be viewed as a binary tree of

merge operations. The tree leaves are the sorted cache sized
sub-arrays. Each two merged sub-arrays are connected to the
merged sub-array, and so on. The complexity of each level in
the tree is . The height of the tree is . Hence, this stage’s complexity is .

The total complexity of the cache-efficient parallel sort
algorithm is the summation of the complexities of the two

Figure 4 - Cache-efficient parallel sort first stage. Each cache

sized block is sorted followed by parallel merging

stages, which yield: .
One may observe again that the new algorithm has a

slightly higher complexity, , due to the numerous partitioning stages, however for
system that a cache miss is expensive, this increase in
complexity may be justified.

V. RELATED WORK

In this section, we review previous works on the
subjects of parallel sorting and parallel merging, and relate
our work to them.

Prior works fall into two categories: 1) algorithms that
use a problem-size dependent number of processors, and 2)
algorithms that use a fixed number of processors.

Several algorithms have been suggested for parallel
sorting. While parallel merge can be a building block for
parallel sorting, some of the parallel sorting algorithms do
not require merging. An example is Bitonic Sort [4] in
which comparators are used (
comparators are used in each stage) to sort elements in cycles. Bitonic sort falls into the
aforementioned first category. Our work is in the latter.

We consider two complexity measures: 1) time
complexity (the time required to complete the task), and 2)
overall work complexity, i.e, the total number of basic
operations carried out. In a load balanced algorithm like
ours, the work complexity is the product of time complexity
and the number of cores. Even with perfect load balancing,
however, one must be careful not to increase the total
amount of work (overhead, redundancy, etc.), as this would
increase the latency. Similarly, one must be careful not to
introduce stalls (e.g., for inter-processor synchronization),
as these would also increase the elapsed time even if the
“net” work complexity is not increased.

Merging two sorted arrays requires operations.
Some of the parallel merging algorithms, including ours,
have a work complexity of . For , the latter component is negligible and the
complexity is , as observed in [5]. Also, there are no
synchronization stalls in our algorithm.

In [6], as in our work, a memory model is
used. There, a mechanism for partitioning the workload is
presented. This mechanism is less efficient than ours and
does not feature perfect load balancing; although each
processor is responsible for merging elements on
average, a processor may be assigned as many as
elements. This can introduce a stall to some of the cores
since all the cores have to wait for the heaviest job. For
truly efficient algorithms, namely ones in which the
constants are also tight, as is the case with our algorithm,
such a load imbalance can cause a 2X increase in latency!
The time complexity of this algorithm is . For , which is the case of interest, it
is .

In [5], Akl and Santoro present a merging algorithm that
is memory-conflict free using the model. It begins
by finding one element in each of the given sorted arrays
such that one of those two elements is the median (mid-
point) in the output array. The elements found
are such that if is the aforementioned median then is the largest element of B that is smaller than or
the smallest element of B that is greater than . Once this
median point has been found, it is possible to repeat this on
both sets of the sub-arrays. Their way of finding the median
is similar to the process that we use. The complexity of
finding the median is . As these arrays are non-
overlapping, there will not be any more conflict on accessed
data. This stage is repeated until there are partitions. This
requires iterations. Once all the partitions have
been found, it is possible to merge each pair of sub-arrays
sequentially, concurrently for all pairs, and to simply
concatenate the results to form the merged array. The
overall complexity of this algorithm is . The somewhat higher complexity is the price
for the total elimination of memory conflicts.

In [2], an algorithm that is conceptually similar to that
of [5] is presented. They initially present an algorithm that
finds one element in each of two given sorted arrays such
that one of these elements is smallest element in the
output (merged) array. In [5] they start off by finding . In [2], the elements sought after are those that
are equispaced (positions apart) in the output array.
Finding each of these elements has the complexity of . This algorithm is aimed for systems.
The complexity of this algorithm is .

Our algorithm is very similar to the one presented in
[2]. However, our approach is different in that we show a
correspondence between finding the desired elements and
finding special points on a grid. Finally, using this
correspondence along with additional insights and ideas,
we also provide cache efficient algorithms for parallel
merging and sorting that did not appear in any of the
related works.

The work done in [7] is an extension of [2], in which
the algorithm is adapted to an machine with a
slightly increased complexity of .

Merging and sorting using GPUs is a topic of great
interest as well, and raises additional challenges that need
to be addressed. In [8] a radix sort for the GPU is
presented. In addition to the radix sort, the authors suggest
a merge-sort algorithm for the GPU, in which the a pair-
wise merge tree is required in the final stages. In [9], a
hybrid sorting algorithm is presented for the GPU. Initially
the data is sorted using bucket sort and this is followed by
a merge sort. The bucket approach suffers from workload
imbalance and requires atomic instructions (i.e.,
synchronization).

Another focus of sorting algorithms is finding a way to
implement them in a cache oblivious [10] way. As the
algorithm in this paper focused on a) the merging stage and

not the entire sort, b) presented a cache aware merging
algorithm, we will not elaborate on cache oblivious
algorithms. The interested reader is referred to [11-13].

VI. IMPLEMENTATION AND MEASUREMENT RESULTS

According to Amdahl's Law [14][9], a fraction of an
algorithm that is not parallelized limits the possible
speedup, It is quite evident from the previous sections that
we have succeeded in truly parallelizing the entire merging
and sorting process, with negligible overhead for any
numbers of interest. Nonetheless, we wanted to obtain
actual performance results on real systems, mostly in order
to find out whether there are additional issues that limit
performance. Also, so doing increases the confidence in the
theoretical claims.

We implemented our basic Parallel Merge algorithm an
“on demand” variant of the DaF cache-efficient version. In
the latter, the two arrays are segmented as described such
that each segment-pair fits into a 3-way associative cache
with no collisions, and the merging of one such segment
pair begins only the merging of the previous pair has been
completed. However, the actual fetching of array elements
into the cache is done only once demanded by the processor,
though any prefetch mechanisms of the system may kick in.

The algorithms were implemented on two very different
platforms: HyperCore, a novel shared-cache many-core
architecture by Plurality, and an dual 6-core processor Intel
x86 system. We begin with a brief overview of the two
systems systems, including system specifications, and then
present some of the practical challenges of implementing
the algorithms on each of the platforms. Following this, we
present the speedup of both the new algorithms, regular
Merge Path and the cache efficient version, on each of the
systems. The runtime of Merge-Path with a single thread is
used as the baseline.

A. HyperCore Architecture

Plurality's HyperCore architecture [15] features tens to
hundreds of compute cores, interconnected to an even larger
number of memory banks that jointly comprise the shared
cache. The connection is via a high speed, low latency
combinational interconnect. As there are no private caches
for the cores, memory coherence is not an issue for CREW
like algorithms. Same-address writes are serialized by the
communication interconnect; however, for our algorithm
this was not needed. The memory banks are equidistant
from all the cores, so this is a UMA system. The shared
cache has a number of memory banks that is larger than the
number of cores in the system, reducing the number of
conflicts on a single bank. Moreover, addresses are
interleaved, so there are no persistent hot spots due to
regular access patterns. The benefit of such an architecture
is that there is no processor-cache communication
bottleneck. Finally, the absence of private caches (and a
large amount of state in them) and the UMA architecture
permit any core to execute any compute task with equal

efficiency. The memory hierarchy also includes off-chip
(shared) memory. Finally, the programming model is a set
of sequential "tasks" along with a set of precedence relations
among them, and these are enforced by a very high
throughput, low latency synchronizer/scheduler that
dispatches work to the cores.

At the time of submission, Plurality has not
manufactured the actual chip. We had access to an advanced
experimental version of the HyperCore on an FPGA card.
The FPGA version we used has a 1MB direct mapped cache
and 32 cores. Furthermore, there was a latency issue on
memory write back. Therefore, results are shown for an
algorithm that does not write to memory. Instead, we saved
the value in a private register.

We ran both the non-segmented and segmented versions

of Parallel Merge Path with varying numbers of threads
(cores). The input arrays (of type integer) tested on Plurality
are substantially smaller than those that we tested on the
x86-system due to the FPGA limitations. One might expect
that merging smaller arrays would not offer significant
speedups due to the overhead required in dispatching
threads and to the fact that the search for partition points
(binary search on a cross diagonal) become a more
significant part of the computation. However, due to

Figure 6 - Speedup of the cache-efficient merge path algorithm

on Plurality; Segment size: L=0.5MB=128K elements.

0

5

10

15

20

25

30

35

1 2 4 8 16 32

S
p

e
e

d
u

p

Number of Threads (Cores)

32k 64k 128k 256k 0.5M 1M 2M 4K 8M

Figure 5 – Speedup of the regular merge path algorithm on

Plurality.

0

5

10

15

20

25

30

1 2 4 8 16 32

S
p

e
e

d
u

p

Number of Threads (Cores)

32k 64k 128k 256k 0.5M 1M 2M 4M 8M

HyperCore's ability to dispatch a thread within a handful of
cycles, the overhead is not a problem and makes the
HyperCore an idle target platform. The sizes of the input
arrays are denoted by the number of elements in each of the
arrays and . This means that the total number of
elements is and the size is . (A and
B are equisized, and |S|=|A|+|B|.)

Fig. 5 presents the speedup of our basic Parallel Merge
algorithm with several numbers of cores. For each number
of cores, results are shown for various input-array sizes. It is
evident that they speedup is quite close to linear, and the
array sizes do not matter much.

Fig. 6 similarly depicts the speedup for the segmented
algorithm. Note, however that the cache is direct mapped, so
collision freedom cannot be guaranteed. Nonetheless, the
partition into sequential iteration, each carrying out parallel
merge on a segment, does improve performance. The
percentage speedup of the segmented version relative to
same-parameter execution without segmentation is depicted
in Fig. 7. The average improvement is by 80%.

Remark. Note that this is not directly related so speedup
over a single core, as even single-core performance is
affected. (In other words, Fig. 7 is independent of Fig. 5, 6.)

B. x86 System

We used a 2-processor, 2X6 core Intel X86 system with

hyperthreading, It has L1 and L2 private caches for each
core. The cores share an L3 cache. Because the cores have
private caches, a cache coherency mechanism is required to
ensure correctness. Furthermore, as we had multiple
processors, each with its own L3 cache, the cache coherence
mechanism had to communicate across processors; this is
even more expensive from a latency point of view.

Specifically, we used a Dell-T610 server. The server
consists of two X5670 INTEL processors, each of which
having six cores with a private 32KB L1 data cache and a
private 256KB L2 cache. Each processor has a 12MB L3
cache. The processors are connected via 6.4GT/s QPI. The

server has 12GB DDR3 memory. For testing the algorithm,
the following capabilities have been disabled: 1) INTEL
hyper threading technology. 2) INTEL turbo technology.
The reasons are fairly obvious.

Our implementation of Merge Path uses OpenMP. We
tested the two algorithms using multiple sizes of integer
arrays and different numbers of threads. In Fig. 8, the data
set sizes refer to the size of each of the input arrays and .
The output array is twice this size, meaning that the total
memory required for the 3 arrays is 4 , where denotes the number of bytes need to stored the data
type (for 32 bit integers this will be 4).

We show results of the regular (non segmented) merge
path algorithm in Figure . Using the cache-efficient blocking
algorithm on this platform yielded no improvement,
apparently because the associativity of the caches is greater
than what is required by all the threads in the system. On the
contrary, the small overhead that is added by the cache-
efficient algorithm yields a longer runtime.

In Figure we present the speedup of executing Merge
Path using various size input arrays. One mega element
refers to elements. As can be seen, the speedups are
near linear, with a slight reduction in performance for the
bigger input arrays: approximately for 12 threads.

Remark. We note that the single-thread execution time
of our algorithm was some longer than a truly
sequential merge algorithm. This is due in part to a few
extra instructions, and possibly also to overhead of
OpenMP.

VII. CONCLUSIONS

In this paper, we explored the issue of parallel sorting
through the cornerstone of many sorting algorithms – the
merging of two sorted arrays.

One important contribution of this paper is a very
intuitive, simple and efficient approach to correctly
partitioning each of two input sorted arrays into segments
that, once pairs of segments, one from each, are merged, the

0

50

100

150

200

250

1 2 4 8 16 32

%
 E

n
h

a
n

ce
m

e
n

t

Number of Threads (Cores)

256k 0.5M 1M 2M 4M 8M

Figure 7 - The performance enhancement of the cache efficient

algorithm over the regular algorithm on Plurality (%);

Segment size: L=0.5MB=128K elements.

0

2

4

6

8

10

12

14

1 2 4 6 8 10 12

S
p

e
e

d
u

p

Number of Threads (Cores)

1M 4M 16M 64M 256M

Figure 8 - Speedup of the regular Merge Path algorithm. Each of

the colored bars represents a different sized input array. The

sizes of the arrays are in Mega elements.

concatenation of the merged pairs yields a single sorted
array. This partitioning is also done in parallel.

Another important contribution is an insightful
consideration of cache related issues. This are extremely
important because, especially when parallelized, sorting and
merging are carried out at a speed that is very often
determined by the memory subsystem rather than by the
compute power. This culminated in cache-efficient parallel
merging and sorting algorithms that also remain extremely
efficient computationally.

Finally, we have actually implemented the algorithms on
two very different platform: a multi-processor, multi-core
X86 platform that represents mainstream computers, and
Plurality’s HyperCore many-core shared cache architecture,
which perhaps comes as close as possible to a true CREW
PRAM architecture. It is a brand new exciting architecture.

The performance measurements confirm the efficient
parallelization, yet suggest that some issues are worthy of
further study. Specifically, as traditional bottlenecks are
broadened, new system components restrict performance.
We believe that some may be related to memory
management, others may involve the communication
subsystem, and it may be that complex optimizations, often
unpublished, may influence performance of a carefully
designed program in unexpected ways.

Acknowlegements. We would like to thank Rob McColl

of the HPC lab at Georgia Institute of Technology for his
suggestions and lengthy discussions on MergePath; Peleg
Aviely for his support pertaining to the Plurality HyperCore
platform, and Shachar Raindel for his useful comments

REFERENCES

[1] T. H. Cormen, et al., Introduction to algorithms.

Cambridge, Mass.New York: MIT Press ;McGraw-
Hill, 1990.

[2] N. Deo and D. Sarkar, "Parallel algorithms for
merging and sorting," Information Sciences, vol.
56, pp. 151-161, 1991.

[3] J. L. Hennessy, et al., Computer architecture : a
quantitative approach, 4th ed. Amsterdam ;
Boston: Morgan Kaufmann, 2007.

[4] K. E. Batcher, "Sorting Networks and Their
Applications," presented at the AFIPS Conference
Proceedings 1968.

[5] S. G. Akl and N. Santoro, "Optimal Parallel
Merging and Sorting Without Memory Conflicts,"
Computers, IEEE Transactions on, vol. C-36, pp.
1367-1369, 1987.

[6] Y. Shiloach and U. Vishkin, "Finding the
maximum, merging, and sorting in a parallel
computation model," Journal of Algorithms, vol. 2,
pp. 88-102, 1981.

[7] N. Deo, et al., "An optimal parallel algorithm for
merging using multiselection," Information
Processing Letters, vol. 50, pp. 81-87, 1994.

[8] N. Satish, et al., "Designing efficient sorting
algorithms for manycore GPUs," in Parallel &
Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on, 2009, pp. 1-10.

[9] E. Sintorn and U. Assarsson, "Fast parallel GPU-
sorting using a hybrid algorithm," Journal of
Parallel and Distributed Computing, vol. 68, pp.
1381-1388, 2008.

[10] A. Aggarwal and S. V. Jeffrey, "The input/output
complexity of sorting and related problems,"
Commun. ACM, vol. 31, pp. 1116-1127, 1988.

[11] R. A. Chowdhury, et al., "Oblivious algorithms for
multicores and network of processors," in Parallel
& Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, 2010, pp. 1-12.

[12] R. Cole and V. Ramachandran, "Resource
Oblivious Sorting on Multicores Automata,
Languages and Programming." vol. 6198, S.
Abramsky, et al., Eds., ed: Springer Berlin /
Heidelberg, 2010, pp. 226-237.

[13] M. Frigo, et al., "Cache-oblivious algorithms," in
Foundations of Computer Science, 1999. 40th
Annual Symposium on, 1999, pp. 285-297.

[14] G. M. Amdahl, "Validity of the single processor
approach to achieving large scale computing
capabilities," presented at the Proceedings of the
April 18-20, 1967, spring joint computer
conference, Atlantic City, New Jersey, 1967.

[15] "HyperCore Software Developer’s Handbook," ed:
Plurality, 2009.

