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Abstract—Merging two sorted arrays is a prominent 

building block for sorting and other functions. Its efficient 

parallelization requires balancing the load among compute 

cores, minimizing the extra work brought about by 

parallelization, and minimizing inter-thread synchronization 

requirements. Due to the extremely low compute to memory-

access ratio, it is also critically important to efficiently utilize 

the memory system: minimize memory traffic, maximize the 

cache hit rate and minimize cache-coherence related activity.  

We present a novel approach to partitioning the two sorted 

arrays into pairs of contiguous sequences of elements, one from 

each array, such that 1) each pair comprises any desired total 

number of elements, and 2) the elements of each pair form a 

contiguous sequence in the final merged sorted array. While 

the resulting partition and the computational complexity are 

similar to those of certain previous algorithms, our approach is 

different, extremely intuitive, and offers interesting insights. 

Based on this, we present a synchronization-free, cache-

efficient merging (and sorting) algorithm. While we use CREW 

PRAM as the basis, our algorithm is easily adaptable to 

additional architectures. In fact, our approach is even relevant 

to sequential cache-efficient sorting. The new algorithm has 

been implemented both on the HyperCore many-core shared-

cache architecture and on a sizable x86 system, with emphasis 

on cache efficiency. The algorithms and performance results 

are presented, along with important cache-related insights. 

Keywords-component; Cache Memories; Parallelism and 

concurrency; Parallel processors; Sorting and searching  

 

I.  INTRODUCTION  

Merging two sorted arrays,   and    to form a sorted 
array   is an important utility, and is the core the of merge-
sort algorithm [1]. The merging (e.g., in ascending order) is 
carried out by repeatedly comparing the smallest (lowest-
index) as-yet unused elements of the two arrays, and 
appending the smaller of those to the result array.  

Given an (unsorted) N-element array, merge-sort 
comprises a sequence of log2N rounds: in the first round, 
N/2 disjoint pairs of adjacent elements are sorted, forming 
N/2 sorted arrays of size two. In the next round, each of the 
N/4 disjoint pairs of two-element arrays is merged to form a 
sorted 4-element array. In each subsequent round, array 
pairs are similarly merged, eventually yielding a single 
sorted array.  

Consider the parallelization of merge-sort using   
compute cores (or processors or threads, terms that will be 
used synonymously). Whenever        , the early 
rounds are trivially parallelizable, with each core assigned a 
subset of the array pairs. This, however, is no longer the 
case in later rounds, as only few arrays remain. Because the 
total amount of computation is the same for all rounds, 
effective parallelization thus requires the ability to 
parallelize the merging of two sorted arrays. 

An efficient Parallel Merge algorithm must have several 
salient features, some of which are required due to the very 
low compute to memory-access ratio: 1) equal amounts of 
work for all cores; 2) minimal inter-core communication 
(platform-dependent ramifications); 3) minimum excess 
work (for parallelizing, as well as replication of effort); and 
4) efficient access to memory (high cache hit rate and 
minimal cache-coherence overhead). Coherence issues may 
arise due to concurrent access to the same address, but also 
due to concurrent access to different addresses in the same 
cache line (false sharing). Memory issues have platform-
dependent manifestations. 

The naïve approach to parallel merge entails partitioning 
each of the two arrays into equal-length contiguous sub-
arrays and assigning a pair of same-numbered sub arrays to 
each core. Each core then merges its pair to form a single 
sorted array, and those are concatenated to yield the final 
result. Unfortunately, this is incorrect. (To see this, consider 
the case wherein all the elements of A are greater than all 
those of B.) So, correct partitioning is the key to success. 

In this paper, we present a parallel merge algorithm for 
Parallel Random Access Machines (PRAM), namely shared-
memory architectures that permit concurrent (parallel) access 
to memory. PRAM systems are further categorized as 
CRCW, CREW, ERCW or EREW, where C, E, R and W 
denote concurrent, exclusive, read and write, respectively. 
Our algorithm assumes CREW, but can be adapted. Also, 
complexity calculations assume equal access time of any 
core to any address, but this is not a requirement. 

Our algorithm is load-balanced, lock-free, requires 
negligible excess work, and is extended to a memory-
efficient version. Being lock-free, the algorithm does not rely 
on a set of atomic instructions of any particular platform. 
The efficiency of memory access is also not confined to one 
kind of architecture; in fact, the memory access is efficient 
for both private- and shared-cache architectures.  
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We show a correspondence between the merge operation 
and the traversal of a path on a grid, from the upper left 
corner to the bottom right corner and going only rightward or 
downward. This greatly facilitates the comprehension of 
parallel merge algorithms. By using this path, dubbed Merge 
Path, one can divide the work equally among the cores.  

Our actual basic algorithm is similar to that of [2]. 
However, using insights from the aforementioned geometric 
correspondence, we develop a new cache-efficient algorithm, 
and use it for a memory-efficient parallel sort algorithm. 

The remainder of the paper is organized as follows. In 
Section II, we present the Merge Path, the Merge Matrix and 
the relationship between them. These are used in Section III 
to develop parallel merge and sort algorithms. Section IV 
introduces cache-related issues and presents a cache-efficient 
merge algorithm. Section V discusses related work, Section 
VI presents implementations and performance results, and 
Section VII offers concluding remarks. 
 

II. MERGE PATH 

A. Construction and basic properties 

 
Consider two sorted arrays, A and B, with |A| and |B| 

elements, respectively. Without loss of generality, assume 
that they are sorted in ascending order. As depicted in Fig. 1 
(ignore the contents of the matrix), create a column 
comprising A’s elements and a Row comprising B’s 
elements, and an |A|x|B| matrix M, each of whose rows 
(columns) corresponds to an element of A (B). We refer to 
this matrix as the Merge Matrix. A formal definition and 
additional details pertaining to M will be provided later. 

Next, let us merge the two arrays: in each step, pick the 
smallest (regardless of array) yet-unused array element. 
Alongside this process, we construct the Merge Path. 
Referring again to Fig. 1, start in the upper left corner of the 
grid, i.e., at the upper left corner of M[1,1]. If A[1]>B[1], 
move one position to the right; else move one position 
downward. Continue similarly as follows: consider matrix 
position (i,j) whose upper left corner is the current end of the 
merge path: if  A[i]>B[j], move one position to the right; 
else move one position downward; having reached the right 
or bottom edge of the grid, proceed in the only possible 
direction. Repeat until reaching the bottom right corner.  

The following four lemmas follow directly from the 
construction of the Merge Path: 

Lemma 1: Traversing a Merge Path from beginning to 
end, picking in each rightward step the smallest yet-unused 
element of B, and in each downward step the smallest yet-
unused element of A, yields the desired merger.        □ 

Lemma 2: Any contiguous segment of a Merge Path is 
composed of a contiguous sequence of elements of A and of 
a contiguous sequence of elements of B.         □ 

Lemma 3: Non-overlapping segments of a merge path 
are composed of disjoint sets of elements, and vice versa.    □ 

Lemma 4: Given two non-overlapping segments of a 
merge path, all array elements composing the later segment 
are greater than or equal to all those in the earlier segment. 

Theorem 5: Consider a set of element-wise disjoint sub-
array pairs (one, possibly empty sub-array of A and one, 
possibly empty sub-array of B), such that each such pair 
comprises all elements that, once sorted,  jointly form a 
contiguous segment of a merge path. It is claimed that these 
array pairs may be merged in parallel and the resulting 
merged sub-arrays may be concatenated according to their 
order in the merge path to form a single sorted array. 

Proof: By Lemma 1, the merger of each sub-array pair 
forms a sorted sub-array comprising all the elements in the 
pair. From Lemma 2 it follows that each such sub-array is 
composed of elements that form a contiguous sub-array of 
their respective original arrays, and by Lemma 3 the given 
array pairs correspond to non-overlapping segments of a 
merge path. Finally, by Lemma 4 and the construction order, 
all elements of a higher-indexed array pair are greater than or 
equal to any element of a lower-indexed one, so 
concatenating the merger results yields a sorted array. 

Corollary 6: Any partitioning of a given Merge Path of 
input arrays A and B into non-overlapping segments that 
jointly comprise the entire path, followed by the independent  
merger of each corresponding sub-array pair and the 
concatenation of the results in the order of the corresponding 
Merge-Path segment produces a single sorted array 
comprising all the elements of A and B.          □ 

Corollary 7: Partitioning a Merge Path into equisized 
segments and merging the corresponding array pairs in 
parallel balances the load among the merging processors.  

Proof: each step of a Merge Path requires the same 
operations (read, compare and write), regardless of the 
outcome.             □ 

Equipped with the above insights, we next set out to find 
an efficient method for partitioning the Merge Path into 
equal segments. The challenge, of course, is to do so without 
actually constructing the Merge Path, as its construction is 
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Figure 1 - The cross diogonals  in a Merge Matrix are used to find 

the points of change between the ones and the zeros, i.e., the 

intersections with the Merge Path. 



equivalent to carrying out the entire merger. Once again 
using the geometric insights provided by Fig. 1, we begin by 
exposing an interesting relationship between positions on 
any Merge Path and cross diagonals (ones slanted upward 
and to the right) of the Merge Matrix M. Next, we define the 
contents of a Merge Matrix and expose an interesting 
property involving those. With these two building blocks at 
hand, we construct a simple method for parallel partitioning 
of any given Merge Path into equisized segments. This, in 
turn, enables parallel merger. 

B. The Merge Path and cross diagonals 

Lemma 8: Regardless of the route followed by a Merge 
Path, and thus regardless of the contents of A and B, the i'th 
point along a Merge Path lies on the i'th cross diagonal of the 
grid and thus of the Merge Matrix M. 

Proof: each step along the Merge Path is either to the 
right or downward. In either case, this results in moving to 
the next cross diagonal.            □ 

Theorem 9: Partitioning a given merge path into p 
equisized contiguous segments is equivalent to finding its 
intersection points with p-1 equispaced cross diagonals of M,  

Proof: follows directly from Lemma 8.          □ 

C. The Merge Matrix – content & properties 

Definition 1: A binary merge matrix   of     is a 
Boolean two dimensional matrix of size         such that   

                              . 
 
Proposition 10: Let   be a binary merge matrix. Then                                    
Proof: If          then according to definition 1,          .               (  is sorted).               (  is sorted).                     and 

according to definition 1,          .         □ 

Proposition 11: Let   be a binary merge matrix. If         , then                   ,        
is false. 

Proof: Similar to the proof of proposition 10.        □ 
Corollary 12. The entries along any cross diagonal of M 

form a monotonically non-increasing sequence.        □ 
 

D. The Merge Path and the Merge Matrix 

Having established interesting properties of both the 
Merge Path and the Merge Matrix, we now relate the two, 
and use P(M) to denote the Merge Path corresponding to 
Merge Matrix M. 

 
Proposition 13: Let       be the highest point on a given 

cross diagonal   such that            if exists, 
otherwise let       be the lowest point on that cross 
diagonal. Then,      passes through      . This is depicted 
in Figure 2. 

Proof: by induction on the points on the path. 
Base: The path starts at      . The cross diagonal that 
passes through       consists only of this point; therefore, it 
is also the lowest point on the cross diagonal. 
Induction step: assume the correctness of the claim for all 
the points on the path up to the point      . Consider the 
next point on     . Since the only permissible moves are    , the next point can be either         or          
respectively.  

Case 1:   move. The next point is        . According 
to Definition 1,         . According to the induction 
assumption, either     or           . If     then 
the new point is the highest point on the new cross diagonal 
such that         . Otherwise,           . 
According to Proposition 11,             . 
Therefore,         is the highest point on its cross 
diagonal at which         . 

Case 2: the move was  , then the next point is        . 
According to Definition 1,         . According to the 
induction assumption, either     or          1. If     then the new point is the lowest point in the new cross 
diagonal. Since          and according to Proposition 11, 
the entire cross diagonal is  . Otherwise,           . 
According to Proposition 10,             . 
Therefore,         is the highest point on its cross 

diagonal at which             .                       □ 
Theorem 14: Given sorted input arrays A and B, they 

can be partitioned into p pairs of sub-arrays corresponding 
to p equisized segments of the corresponding merge path. 
The p-1 required partition points can be computed 
independently of one another (optionally in parallel), in at 
most log2(min(|A|,|B|)) steps per partition point, with neither 
the matrix nor the path having actually been constructed. 

Proof: According to Theorem 9, the required partition 
points are the intersection points of the Merge Path with p-1 
equispaced (and thus content-independent) cross diagonals 
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of M. According to Corollary 12 and Proposition 13, each 
such intersection point is the (only) transition point between 
‘ ’s and ‘0’s along the corresponding cross diagonal. (If the 
cross diagonal has only ‘0’s or only ‘ ’s, this is the 
uppermost and the lower most point on it, respectively.) 
Finding this partition point can be done by way of a binary 
search, whereby in each step a single element of A is 
compared with a single element of B. Since the length of a 
cross diagonal is at most min(|A|,|B|), at most 
log2(min(|A|,|B|)) steps are required. Finally it is obvious 
from the above description that neither the Merge Path nor 
the Merge Matrix needs to be constructed and that the p-1 
intersection point can be computed independently and thus 

in parallel.                 □ 

III. PARALLEL MERGE AND SORT 

Given two input arrays A and B parallel merger is 
carried out by p processors as follows: 

 
 

Algorithm 1 – Parallel Merge (A,B,p) 

/* i  = processor number in the range 1..p  */ 

In parallel do: 

1.  DiagonalNum=(i-1)(|A|+|B|)/p+1 

2. Compute intersection of the merge path with the 

relevant diagonal //Binary search 

3. Execute (|A|+|B|)/p steps of sequential merge, 

writing the results to output array positions 

starting at (i-1) (|A|+|B|)/p+1 

Barrier. 
 

Remark. Note that no communication is required 
among the cores: they write to disjoint sets of addresses and, 
with the exception of reading in the process of finding the 
intersections between the Merge Path and the diagonals, 
read from disjoint addresses. Whenever |A|+|B|>>p, which 
is the common case, this means that concurrent reads from 
the same address are rare.  

Summarizing the above, the time complexity of the 
algorithm for |A|+|B|=N and p processors is given by                and the work complexity is given by           ). For              this algorithm is 
considered to be optimal. In the next section, we will further 
address the issue of efficient memory (cache) utilization.  

Finally, merge-sort can be used, employing Parallel 
Merge to carry out each of log2N rounds. The rounds are 
carried out one after the other. 

The time complexity of this Parallel Merge-Sort is:                                                                        
In the first expression, the first component corresponds 

to the sequential sort carried out concurrently by each core 

on 1/p of the input., and the two remaining ones correspond 
to the subsequent rounds of parallel merges. 

 

IV. CACHE EFFICIENT MERGE PATH 

A. Overview 

The rate at which merging and sorting can be performed 
even in memory (as opposed to disk), is often dictated by the 
performance of the memory system rather than by processing 
power. This is due to the fact that these operations require a 
very small amount of computing per unit of data, and the fact 
that only a small amount of memory, the cache, is reasonably 
fast. (The next level in the memory hierarchy typically 
features a ten-fold higher access latency as well as coarser 
memory-management granularity.) Parallel implementation 
on a shared memory system further aggravates the situation 
for two reasons: 1) the increased compute power is seldom 
matched by a commensurate increase in memory bandwidth, 
at least beyond the 1st-level or 2nd-level cache, and 2) cache 
coherence mechanisms can present an extremely high 
overhead. In this section, we address the memory issues. 

 Assuming large arrays (relative to cache size) and 
merge-sort, it is clear that data will have to be brought in 
again for each of the log2N rounds of the sorting algorithm, 
so we again focus on merging a pair of sorted arrays. 

In the remainder of this section, we examine the cache 
efficiency issue in conjunction with our algorithm, offering 
important insights, exploring trade-offs and presenting our 
approaches. Before continuing along this path, however, let 
us digress briefly to discuss relevant salient properties of 
hierarchical memory in general, and particularly in shared-
memory environments. 

 

B. Memory-hierarchy highlights 

 
Cache Organization and management 

Unlike software-managed buffers, caches do not offer the 
programmer direct control over their content and, 
specifically, over the choice of item for eviction. 
Furthermore, in order to simplify their operation and 
management, caches often restrict the locations in which an 
item may reside based on certain bits of its original address 
(the index bits). The number of cache location at which an 
item with a given address may reside is referred to as the 
level of associativity: in a fully associative cache there are no 
restrictions; at the other extreme, a direct-mapped cache 
permits any given address to be mapped only to a single 
specific location in the cache. The collection of cache 
locations to which a given address may be mapped is called a 
set, and the size of the set equals the degree of associativity.  

Whenever an item must be evicted from the cache in 
order to make room for a new one, the cache management 
system must select an item from among the members of the 
relevant set. One prominent replacement policy is least 
recently used (LRU), whereby the evicted item is the set 
member that was last accessed in the most distant pass. 
Another is first in – first out (FIFO), whereby the evicted 



item is the one that was last brought into the cache in the 
most distant past. Additional considerations may include 
eviction of pages that have not been modified while in the 
cache, as they often don’t have to be copied to the lower 
level in the hierarchy, as it maintains a copy (an inclusive 
cache hierarchy). 

Cache content is managed in units of cache line. We will 
initially assume that the size of an array item is exactly one 
cache line, but will later relax this assumption. 

 
Cache performance 

The main cache-performance measure is the hit rate, 
namely the fraction of accesses that find the desired data in 
the cache. (Similarly, miss rate = 1- hit rate.) 

There are three types of cache misses: Compulsory, 
Capacity, and Contention  [3]. 

1) Compulsory – a miss that occurs upon the first request 
for a given data item. (Whenever multiple items fit in a cache 
line, as well as when automatic prefetching is used, the 
compulsory miss rate may be lower than expected. (Access 
to contiguous data would result in one miss per cache line or 
none at all, respectively.)  

2) Capacity – this refers to cache misses that would have 
been prevented with a larger cache.  

3) Conflicts – these misses occur despite sufficient cache 
capacity, due to limited flexibility in data placement (limited 
associativity and non-uniform use of different sets). 

 
Cache coherence 

In multi-core shared-memory systems with private 
caches, yet another complication arises from the fact that the 
same data may reside in multiple private caches (for reading 
purposes), yet coherence must be ensured when writing. 
There are hardware cache-coherence mechanisms that 
obviate the programmer’s need to be concerned with 
correctness; however, the frequent invocation of these 
mechanisms can easily become the performance bottleneck. 
The most expensive coherence-related operations occur 
when multiple processors attempt to write to the same place. 
The fact that management and coherence mechanisms 
operate at cache-line granularity complicates matters, as 
coherence-related operations may take place even when 
cores access different addresses, simply because they are in 
the same cache line. This is known as false sharing.  

We next present two approaches for cache-efficient 
parallel merge, and discuss them in the context of the various 
aforementioned realities of cache systems. 

 
 

C. Cache-Efficient Parallel Merge 

Collisions in the cache are avoided when different items 
are guaranteed to be able to reside in different cache 
locations, as well as when they are in the cache (and are 
actually still needed) at different times. In a Merge operation, 
a cache-resident item is usually required for a very short 
time, and is used only once. However, many items are 
brought into the cache. Also, the relative addresses of 
“active” items are data dependent. This is true among 

elements of different arrays (A, B, S) and, surprisingly, also 
among same-array elements accessed by different cores. This 
is because the segment-partition points in any given array are 
data dependent, as is the rate at which its elements are 
consumed. 

Given our efficient parallelization, we are able to 
efficiently carry out parallel merger of even cache-size 
arrays. In view of this, we explore approaches that ensure 
that all elements that may be active at any given time can co-
reside in cache.  

Let C denote cache size (in elements). Our general 
approach is to break the overall merge path into cache-size 
(actually a fraction of that) segments, merging those 
segments one after the other, with the merging within each 
segment being parallelized. We refer to this as Segmented 
Parallel Merge, SPM. See Fig. 3. 

 
The starting point of the segment handled in each 

iteration, i.e., the indices of the first elements of A and B to 
be considered, is known. Unlike in a full parallel merger, 
however, the last elements to be considered are not 
necessarily known. (Each core does know how many 
elements of S it should produce, so the question is only how 
many elements to fetch from each array.) We next present 
two schemes, common to which is the fact that at all times 
the amount of memory needed for the parallel merge does 
not exceed the cache size, and if the level of associativity is 
at least 3, collision freedom can be guaranteed. 
 
Scheme I: Fetch and Delimit (FaD) 

Lemma 15. A merge-path segment of length L comprises 
at most L consecutive elements of A and at most L 
consecutive elements of B.            □ 

Theorem 16. Given L consecutive elements of A and L 
consecutive elements of B, starting with the first element of 
each of them in the segment being constructed, one can 
compute in parallel the p segment starting points so as to 
enable p consecutive segments of length L/p to be 
constructed in parallel. 

Figure 3 - Merge Matrix for the cache efficient algorithm. The 

yellow circles depict the initial and final points of the path for a 

specific block in the cache algorithm. 



Proof:  Consider the p-1 cross diagonals of the merge 
matrix comprising the aforementioned elements of the two 
arrays, such that the first one is L/p away from the upper left 
corner and the others are spaced with the same stride. The 
farthest cross diagonal will require the L’th provided element 
from each of the two arrays, and no other point along any of 
the diagonals will require “later” elements. Also, since the 
farthest diagonal is at distance L from the upper left corner 
(Manhattan distance), the constructed segment will be of 
length L.              □ 
Remark. Unlike the case of a full merge of two sorted arrays 
of size L, not all elements will be used. While L elements 
will be consumed in the construction of the segment, the mix 
of elements from A and from B is data dependent.  
In order to avoid the extra complexity of using the same 
space for input elements and for merged data, let L=C/3, 
where C is the cache size. 
 
Algorithm 2 – Fetch and Measure (FaD) 

Repeat the following (|A|+|B|)/L times /* L=|C|/3 */ 

1. If first iteration, fetch the first L items of A and B; 

Else fetch the next elements of A and B in numbers 

equal to the number respective consumed 

elements in the previous iteration, overwriting the 

used elements of the respective arrays (cyclic 

buffer). 

2. Parallel do: 

a. Find the core’s segment starting point 
/* binary search on cross diagonal */ 

b. Merge (sequential) L/p steps, 

commencing at the start point. 

3. Write the results out to memory. 

 
 
Implementation issues 

By construction, the cache size suffices for the parallel 
construction of each segment. Also, data is brought in only 
once, and sequentially, so compulsory misses are held to the 
(platform dependent) bare minimum. 
 
Limited associativity 

Proposition 17. with 3-way associativity or higher, 
conflict misses can be avoided. 

Proof: With k-level associativity, any consecutive C/k 
addresses are mapped to C/k different sets. The C/3 items of 
each of A,B and the merged array will take up exactly one 
position in each of the three sets, regardless of the start 
address of each of these element sequences. Similarly, each 
will take up two positions in a 6-way set associative cache, 
three in a 9-way, etc.  For associativity levels that are greater 
than 3 but not integer multiples thereof, one can reduce the 
segment length such that each array’s elements occupy at 
most a safe number of positions in each set. (A safe number 
is one such that even if all three arrays occupy the maximum 
number of positions in a given set, this will not exceed the 
set size, i.e., the degree of associativity.)          □ 

 
 

Cache line containing multiple elements 
This may result in more data than planned being brought 

in. The simple remedy is to slightly reduce the segment size, 
thereby guaranteeing that the total amount will not exceed 
the allocated space. 

There may also be cache coherence issues; these will be 
addressed together for the two schemes. 
 
Cache replacement policy 

A problem may arise at replenishment time. Consider, for 
example, LRU and a situation wherein a given merge 
segment only comprises elements of A. As replenishment 
elements are brought in to replace the used elements of A, the 
least recently used elements are actually those of B, as both 
the A element positions and the result element positions were 
accessed in the previous iteration whereas only one element 
of B was accessed (it repeatedly “lost” in the comparison). A 
similar problem occurs with a FIFO policy. 

A possible solution for LRU is, prior to fetching 
replenishment elements, touching all cache lines containing 
unused input elements. If each cache line only contains a 
single item, this would represent approximately a 50% 
overhead in cache access (the usual comparison is between 
the loser of the previous comparison, which is in a register, 
and the next element of the winning array, which must be 
read from cache; also, the result must be written. So the 
number of cache accesses per step grows from 2 to 3.) If 
there are multiple elements per cache line, the overhead 
quickly becomes negligible. 
 
 
Scheme II: Delimit and Fetch (DaF) 
 

Here, given the starting point of the current iteration of 
the (sequentially executed) outer loop, we (sequentially) 
compute the intersection point of the overall merge path with 
the diagonal that will terminate the segment being 
constructed; i.e., with the cross diagonal that is at Manhattan 
distance L from that in which the starting point resides. Next, 
we fetch exactly the required elements for the (parallel) 
construction of the next segment and carry out the merger as 
as in FaD. In fact, outer-loop segment boundaries may be 
computed in parallel as in the cache-agnostic parallel merge 
algorithm, and their values stored until needed. 
 
Algorithm 3 – Delimit and Fetch (DaF) 

Repeat the following (|A|+|B|)/L times /* L=C/3 */ 

1. If first iteration, compute the end point of the first 

segment of length L;  

Else, determine the end point of the next length-L 

segment, using only as-yet unused array elements 

in finding the intersection point /*binary search on 

the appropriate cross diagonal of M  */ 

2. Fetch the next elements of A and B as required for 

the construction of the next merge segment. 

3. Parallel do: 

a. Find the core’s segment starting point 

/* binary search on a cross diagonal */ 



b. Merge (sequential) L/p elements, 

commencing at the start point. 

4. Write the results out to memory. 

 
Implementation issues are mostly similar to those of DaF 

and are omitted for brevity. Exceptions will be discussed 
next as we compare the schemes. 
 
Scheme comparison 

One apparent advantage of DaF over FaD is that, since 
we only fetch the elements that will be needed, the segment 
length in each iteration can be C/2 rather than C/3; sub-
segment length is 1.5x larger, thereby commensurately 
reducing the overall required number of segment-boundary 
computations. (Each boundary computation may require one 
additional iteration but this is negligible.)  

With limited associativity, however, this is no longer the 
case, as demonstrated next with a 3-way set associative 
cache.  

Consider a segment of size C/2 comprising (C/2-1) 
consecutive elements of A and a single element of B. The 
output segment also comprises C/2 consecutive elements. 
Here, the elements of A occupy two slots in some of the sets, 
the element of B may be mapped to one of those, and so may 
up to two elements of the output array, causing conflict 
misses. With 2-way set associativity, elements of A will 
occupy at most one slot in any set, as will elements of  the 
output segment. However, the element(s) of B may still be 
mapped to sets that already have to elements, again causing a 
collision. Consequently, here too the segment size may be at 
most C/3. Further elaborations for different levels of 
associativity are omitted for brevity. 

Implications of the Cache replacement policy expose 
the main, perhaps only, advantage of DaF over FaD. In each 
iteration, all fetched elements are consumed and are no 
longer needed, so there is no need to touch cache lines in 
order to prevent their premature eviction. FaD thus works 
well with both LRU and FIFO. 
Remark. In both FaD and DaF, one can either write to the 
output array in each step or first construct a bitmap denoting 
from which array to take the next element, and copy onto the 
output array once done. The former approach appears more 
efficient. The exception is whenever an item contains a 
sorting key as well as additional data, and these need to be 
stored contiguously in the output array. 

We conclude this section by deriving the computational 
complexity (total amount of work) and the time complexity 
of the cache-efficient merge. We will do it for DaF, but the 
complexity of FaD is similar. 
 
Computational complexity (DaF) 
 

Assuming a total segment size of L=C/3 per sequential 
iteration of the algorithm, there are 3N/C such iterations, In 
each of those, only 2L=2C/3 need to be considered in order 
to determine the end of the segment and, accordingly, the 
elements that should be copied into the cache. Because the 
sub-segments of this segment are to be created in parallel, 

each of the p cores must compute its starting points (in A 
and in B) independently. If this is done following the 
determination of the aforementioned ending point, it need 
only consider L elements; otherwise it must consider 2L. For 
simplicity, we assume the latter. Finally, the complexity of 
the merge itself is N. 

The computational complexity of  the cache-efficient 
merge of N elements given a cache of size C and p cores is:                  

Normally, p<<C<<N, in which case this becomes O(N). 
In other words, the parallelization overhead is negligible. 

The time complexity is                     
Neglecting logC relative to C/p, this becomes O(N/p), 

which is optimal. Finally, looking at typical numbers and at 
the actual algorithms, it is evident that the various constant 
coefficients are very small, so this is truly an extremely 
efficient parallel algorithm and the overhead of partitioning 
into smaller segments is insignificant. 

D. Cache-Efficient Parallel Sort 

Initially, partition the unsorted input array into equisized 
sub-arrays whose size is some fraction of the cache size C. 

Next, iterate over these sub-arrays, sorting them one by 
one using the parallel sort algorithm on all p processors as 
explained in an earlier section. 

Finally, proceed with merge rounds; in each of those, the 
cache-efficient parallel merge algorithm is applied to every 
pair of sorted sub-arrays. This is repeated until a single array 
is produced.   

We now derive the time complexity of the cache efficient 
parallel sort algorithm. We divide the complexity into two 
stages: 1) the complexity of the parallel sorting of the sub-
arrays of at most   elements, and 2) the complexity of the 
cache-efficient merge stages. 

In the first stage, depicted in Fig. 4, the parallel sort 
algorithm is invoked on the cache sized sub-arrays. The 
number of those sub-arrays is       . Hence, the time 

complexity of this stage is                                   . 
The second stage may be viewed as a binary tree of 

merge operations. The tree leaves are the sorted cache sized 
sub-arrays. Each two merged sub-arrays are connected to the 
merged sub-array, and so on. The complexity of each level in 
the tree is                  . The height of the tree is          . Hence, this stage’s complexity is                            . 

The total complexity of the cache-efficient parallel sort 
algorithm is the summation of the complexities of the two 

Figure 4 - Cache-efficient parallel sort first stage. Each cache 

sized block is sorted followed by parallel merging 



stages, which yield:                                 . 
One may observe again that the new algorithm has a 

slightly higher complexity,                               , due to the numerous partitioning stages, however for 
system that a cache miss is expensive, this increase in 
complexity may be justified. 
 

V. RELATED WORK  

In this section, we review previous works on the 
subjects of parallel sorting and parallel merging, and relate 
our work to them.  

Prior works fall into two categories: 1) algorithms that 
use a problem-size dependent number of processors, and 2) 
algorithms that use a fixed number of processors.  

Several algorithms have been suggested for parallel 
sorting. While parallel merge can be a building block for 
parallel sorting, some of the parallel sorting algorithms do 
not require merging. An example is Bitonic Sort [4] in 
which              comparators are used (     
comparators are used in each stage) to sort   elements in            cycles. Bitonic sort falls into the 
aforementioned first category. Our work is in the latter. 

We consider two complexity measures: 1) time 
complexity (the time required to complete the task), and 2) 
overall work complexity, i.e, the total number of basic 
operations carried out. In a load balanced algorithm like 
ours, the work complexity is the product of time complexity 
and the number of cores. Even with perfect load balancing, 
however, one must be careful not to increase the total 
amount of work (overhead, redundancy, etc.), as this would 
increase the latency. Similarly, one must be careful not to 
introduce stalls (e.g., for inter-processor synchronization), 
as these would also increase the elapsed time even if the 
“net” work complexity is  not increased. 

Merging two sorted arrays requires      operations. 
Some of the parallel merging algorithms, including ours, 
have a work complexity of            . For         , the latter component is negligible and the 
complexity is     , as observed in [5]. Also, there are no 
synchronization stalls in our algorithm. 

In [6], as in our work, a          memory model is 
used. There, a mechanism for partitioning the workload is 
presented. This mechanism is less efficient than ours and 
does not feature perfect load balancing; although each 
processor is responsible for merging        elements on 
average, a processor may be assigned as many as      
elements. This can introduce a stall to some of the cores 
since all the cores have to wait for the heaviest job. For 
truly efficient algorithms, namely ones in which the 
constants are also tight, as is the case with our algorithm, 
such a load imbalance can cause a 2X increase in latency! 
The time complexity of this algorithm is                   . For    , which is the case of interest, it 
is             .  

In [5], Akl and Santoro present a merging algorithm that 
is memory-conflict free using the      model. It begins 
by finding one element in each of the given sorted arrays 
such that one of those two elements is the median (mid-
point) in the output array. The elements found             
are such that if      is the aforementioned median then      is the largest element of B that is smaller than      or 
the smallest element of B that is greater than     . Once this 
median point has been found, it is possible to repeat this on 
both sets of the sub-arrays. Their way of finding the median 
is similar to the process that we use. The complexity of 
finding the median is          . As these arrays are non-
overlapping, there will not be any more conflict on accessed 
data. This stage is repeated until there are   partitions. This 
requires           iterations. Once all the partitions have 
been found, it is possible to merge each pair of sub-arrays 
sequentially, concurrently for all pairs, and to simply 
concatenate the results to form the merged array. The 
overall complexity of this algorithm is                . The somewhat higher complexity is the price 
for the total elimination of memory conflicts. 

In [2], an algorithm that is conceptually similar to that 
of [5] is presented. They initially present an algorithm that 
finds one element in each of two given sorted arrays such 
that one of these elements is      smallest element in the 
output (merged) array. In [5] they start off by finding      . In [2], the elements sought after are those that 
are equispaced (    positions apart) in the output array. 
Finding each of these elements has the complexity of          . This algorithm is aimed for      systems. 
The complexity of this algorithm is             .  

Our algorithm is very similar to the one presented in 
[2]. However, our approach is different in that we show a 
correspondence between finding the desired elements and 
finding special points on a grid. Finally, using this 
correspondence along with additional insights and ideas, 
we also provide cache efficient algorithms for parallel 
merging and sorting that did not appear in any of the 
related works.  

The work done in [7] is an extension of [2], in which 
the algorithm is adapted to an      machine with a 
slightly increased complexity of                 .  

Merging and sorting using GPUs is a topic of great 
interest as well, and raises additional challenges that need 
to be addressed. In [8] a radix sort for the GPU is 
presented. In addition to the radix sort, the authors suggest 
a merge-sort algorithm for the GPU, in which the a pair-
wise merge tree is required in the final stages. In [9], a 
hybrid sorting algorithm is presented for the GPU. Initially 
the data is sorted using bucket sort and this is followed by 
a merge sort. The bucket approach suffers from workload 
imbalance and requires atomic instructions (i.e., 
synchronization).  

Another focus of sorting algorithms is finding a way to 
implement them in a cache oblivious [10] way. As the 
algorithm in this paper focused on a) the merging stage and 



not the entire sort, b) presented a cache aware merging 
algorithm, we will not elaborate on cache oblivious 
algorithms. The interested reader is referred to [11-13]. 

VI. IMPLEMENTATION AND MEASUREMENT RESULTS 

According to Amdahl's Law [14][9], a fraction of an 
algorithm that is not parallelized limits the possible 
speedup, It is quite evident from the previous sections that 
we have succeeded in truly parallelizing the entire merging 
and sorting process, with negligible overhead for any 
numbers of  interest. Nonetheless, we wanted to obtain 
actual performance results on real systems, mostly in order 
to find out whether there are additional issues that limit 
performance. Also, so doing increases the confidence in the 
theoretical claims. 

We implemented our basic Parallel Merge algorithm an 
“on demand” variant of the DaF cache-efficient version. In 
the latter, the two arrays are segmented as described such 
that each segment-pair fits into a 3-way associative cache 
with no collisions, and the merging of one such segment 
pair begins only the merging of the previous pair has been 
completed. However, the actual fetching of array elements 
into the cache is done only once demanded by the processor, 
though any prefetch mechanisms of the system may kick in. 

The algorithms were implemented on two very different 
platforms: HyperCore, a novel shared-cache many-core 
architecture by Plurality, and an dual 6-core processor Intel 
x86 system. We begin with a brief overview of the two 
systems systems, including system specifications, and then 
present some of the practical challenges of implementing 
the algorithms on each of the platforms. Following this, we 
present the speedup of both the new algorithms, regular 
Merge Path and the cache efficient version, on each of the 
systems. The runtime of Merge-Path with a single thread is 
used as the baseline.  

A. HyperCore Architecture  

Plurality's HyperCore architecture [15] features tens to 
hundreds of compute cores, interconnected to an even larger 
number of memory banks that jointly comprise the shared 
cache. The connection is via a high speed, low latency 
combinational interconnect. As there are no private caches 
for the cores, memory coherence is not an issue for CREW 
like algorithms. Same-address writes are serialized by the 
communication interconnect; however, for our algorithm 
this was not needed. The memory banks are equidistant 
from all the cores, so this is a UMA system. The shared 
cache has a number of memory banks that is larger than the 
number of cores in the system, reducing the number of 
conflicts on a single bank. Moreover, addresses are 
interleaved, so there are no persistent hot spots due to 
regular access patterns. The benefit of such an architecture 
is that there is no processor-cache communication 
bottleneck. Finally, the absence of private caches (and a 
large amount of state in them) and the UMA architecture 
permit any core to execute any compute task with equal 

efficiency. The memory hierarchy also includes off-chip 
(shared) memory. Finally, the programming model is a set 
of sequential "tasks" along with a set of precedence relations 
among them, and these are enforced by a very high 
throughput, low latency synchronizer/scheduler that 
dispatches work to the cores.  

At the time of submission, Plurality has not 
manufactured the actual chip. We had access to an advanced 
experimental version of the HyperCore on an FPGA card.  
The FPGA version we used has a 1MB direct mapped cache 
and 32 cores. Furthermore, there was a latency issue on 
memory write back. Therefore, results are shown for an 
algorithm that does not  write to memory. Instead, we saved 
the value in a private register.  

 
We ran both the non-segmented and segmented versions 

of Parallel Merge Path with varying numbers of threads 
(cores). The input arrays (of type integer) tested on Plurality 
are substantially smaller than those that we tested on the 
x86-system due to the FPGA limitations. One might expect 
that merging smaller arrays would not offer significant 
speedups due to the overhead required in dispatching 
threads and to the fact that the search for partition points 
(binary search on a cross diagonal) become a more 
significant part of the computation. However, due to 

Figure 6 - Speedup of the cache-efficient merge path algorithm 

on Plurality; Segment size: L=0.5MB=128K elements. 
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Figure 5 – Speedup of the regular merge path algorithm on 
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HyperCore's ability to dispatch a thread within a handful of 
cycles, the overhead is not a problem and makes the 
HyperCore an idle target platform. The sizes of the input 
arrays are denoted by the number of elements in each of the 
arrays   and  . This means that the total number of 
elements is       and the size is                . (A and 
B are equisized, and |S|=|A|+|B|.) 

Fig. 5 presents the speedup of our basic Parallel Merge 
algorithm with several numbers of cores. For each number 
of cores, results are shown for various input-array sizes. It is 
evident that they speedup is quite close to linear, and the 
array sizes do not matter much. 

Fig. 6 similarly depicts the speedup for the segmented 
algorithm. Note, however that the cache is direct mapped, so 
collision freedom cannot be guaranteed. Nonetheless, the 
partition into sequential iteration, each carrying out parallel 
merge on a segment, does improve performance. The 
percentage speedup of the segmented version relative to 
same-parameter execution without segmentation is depicted 
in Fig. 7. The average improvement is by 80%. 

Remark. Note that this is not directly related so speedup 
over a single core, as even single-core performance is 
affected. (In other words, Fig. 7 is independent of Fig. 5, 6.) 

 

B. x86 System 

 
We used a 2-processor, 2X6 core Intel X86 system with 

hyperthreading, It has L1 and L2 private caches for each 
core. The cores share an L3 cache. Because the cores have 
private caches, a cache coherency mechanism is required to 
ensure correctness.  Furthermore, as we had multiple 
processors, each with its own L3 cache, the cache coherence 
mechanism had to communicate across processors; this is 
even more expensive from a latency point of view. 

Specifically, we used a Dell-T610 server. The server 
consists of two X5670 INTEL processors, each of which 
having six cores with a private 32KB L1 data cache and a 
private 256KB L2 cache. Each processor has a 12MB L3 
cache. The processors are connected via 6.4GT/s QPI. The 

server has 12GB DDR3 memory. For testing the algorithm, 
the following capabilities have been disabled: 1) INTEL 
hyper threading technology. 2) INTEL turbo technology. 
The reasons are fairly obvious. 

Our implementation of Merge Path uses OpenMP. We 
tested the two algorithms using multiple sizes of integer 
arrays and different numbers of threads. In Fig. 8, the data 
set sizes refer to the size of each of the input arrays   and  . 
The output array   is twice this size, meaning that the total 
memory required for the 3 arrays is 4           , where        denotes the number of bytes need to stored the data 
type (for 32 bit integers this will be 4). 

We show results of the regular (non segmented) merge 
path algorithm in Figure . Using the cache-efficient blocking 
algorithm on this platform yielded no improvement, 
apparently because the associativity of the caches is greater 
than what is required by all the threads in the system. On the 
contrary, the small overhead that is added by the cache-
efficient algorithm yields a longer runtime. 

In Figure  we present the speedup of executing Merge 
Path using various size input arrays. One mega element 
refers to     elements.  As can be seen, the speedups are 
near linear, with a slight reduction in performance for the 
bigger input arrays: approximately       for 12 threads. 

Remark. We note that the single-thread execution time 
of our algorithm was some    longer than a truly 
sequential merge algorithm. This is due in part to a few 
extra instructions, and possibly also to overhead of 
OpenMP. 
  

VII. CONCLUSIONS 

In this paper, we explored the issue of parallel sorting 
through the cornerstone of many sorting algorithms – the 
merging of two sorted arrays. 

One important contribution of this paper is a very 
intuitive, simple and efficient approach to correctly  
partitioning each of two input sorted arrays into segments 
that, once pairs of segments, one from each, are merged, the 
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concatenation of the merged pairs yields a single sorted 
array. This partitioning is also done in parallel. 

Another important contribution is an insightful 
consideration of cache related issues. This are extremely 
important because, especially when parallelized, sorting and 
merging are carried out at a speed that is very often 
determined by the memory subsystem rather than by the 
compute power.  This culminated in cache-efficient parallel 
merging and sorting algorithms that also remain extremely 
efficient computationally. 

Finally, we have actually implemented the algorithms on 
two very different platform: a multi-processor, multi-core 
X86 platform that represents mainstream computers,  and 
Plurality’s HyperCore many-core shared cache architecture, 
which perhaps comes as close as possible to a true CREW 
PRAM architecture. It is a brand new exciting architecture.  

The performance measurements confirm the efficient 
parallelization, yet suggest that some issues are worthy of 
further study. Specifically, as traditional bottlenecks are 
broadened, new system components restrict performance. 
We believe that some may be related to memory 
management, others may involve the communication 
subsystem, and it may be that complex optimizations, often 
unpublished, may influence performance of a carefully 
designed program in unexpected ways. 
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