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Abstract—Memristive devices are novel devices, which can be 

used in applications such as memory, logic, and neuromorphic 

systems. A memristive device offers several advantages to existing 

applications: nonvolatility, good scalability, effectively no leakage 

current, and compatibility with CMOS technology, both 

electrically and in terms of manufacturing. Several models for 

memristive devices have been developed and are discussed in this 

paper. Digital applications such as memory and logic require a 

model that is highly nonlinear, simple for calculations, and 

sufficiently accurate. In this paper, a new memristive device 

model is presented – TEAM, ThrEshold Adaptive Memristor 

model. This model is flexible and can be fit to any practical 

memristive device. Previously published models are compared in 

this paper to the proposed TEAM model. It is shown that the 

proposed model is reasonably accurate and computationally 

efficient, and is more appropriate for circuit simulation than 

previously published models. 

 
Index Terms—Memristive systems, memristor, SPICE, window 

function.  

I. INTRODUCTION 

emristors are passive two-port elements with variable 

resistance (also known as a memristance) [1]. Changes 

in the memristance depend upon the history of the device (e.g., 

the memristance may depend on the total charge passed 

through the device, or alternatively, on the integral over time 

of the applied voltage between the ports of the device). 

Formally, a current-controlled time-invariant memristive 

system [2] is represented by 

 ( , ),
dw

f w i
dt

=  (1) 

 ( ) ( , ) ( ),v t R w i i t= ⋅  (2) 

where w is an internal state variable, i(t) is the memristive 

device current, v(t) is the memristive device voltage, R(w, i) is 

the memristance, and t is time. The terms memristor and 

memristive systems are often used interchangeably to describe 

memristive systems [2]. While there are discussions in the 

literature about specific definitions [29, 30], in this paper we 

use the term “memristive device” to describe all devices within 

these categories. 
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Since Hewlett-Packard announced the fabrication of a 

working memristive device in 2008 [3], there has been an 

increasing interest in memristors and memristive systems. New 

devices exhibiting memristive behavior have been announced 

[4], [5], and existing devices such as spin-transfer torque 

magnetoresistive random access memory (STT-MRAM) have 

been redescribed in terms of memristive systems [6]. 

Memristive devices can be used for a variety of applications 

such as memory [7], neuromorphic systems [8], analog circuits 

(e.g. see [9]), and logic design [10], [27]. Different 

characteristics are important for the effective use of 

memristive devices in each of these applications, and an 

appropriate designer friendly physical model of a memristive 

device is therefore required.  

In this paper, the characteristics of memristive devices are 

described in Section II. Previously published memristive 

device models are reviewed in Section III.  TEAM - a new 

model that is preferable in terms of the aforementioned 

characteristics is proposed in Section IV. In section V, a 

comparison between these models is presented. The paper is 

summarized in Section VI. 

II. REQUIREMENTS FOR MEMRISTIVE DEVICE 

CHARACTERISTICS 

Different applications require different characteristics from 

the building blocks. Logic and memory applications, for 

example, require elements for computation and control, as well 

as the ability to store data after computation. These elements 

require sufficiently fast read and write times. The read 

mechanism needs to be nondestructive, i.e., the reading 

mechanism should not change the stored data while reading. 

To store a known digital state and maintain low sensitivity to 

variations in parameters and operating conditions, it is crucial 

that the stored data be distinct, i.e., the difference between 

different data must be sufficiently large. The transient power 

consumption while reading and writing, as well as static power 

consumption, are also critical issues. 

Although the definition of a memristive system is quite 

broad, all memristive systems exhibit a variable resistance, 

which is related to an internal state variable. Memristive 

devices employed in practice exhibit a nonvolatile behavior. 

To provide a nondestructive read mechanism, the internal state 

variable needs to exhibit a nonlinear dependence on charge, 

i.e., changes in the state variable due to high currents should 

be significant, while changes due to low currents should be 

negligible. Other mechanisms where the state variables return 

to the original position after completing the read process may 

also require the nondestructive read mechanism. For certain 
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applications such as analog counters, however, a linear 

dependence on charge is preferable, since the current is 

integrated during the counting process. 

To store distinct Boolean data in a memristive device, a 

high ratio between the resistances (typically named RON and 

ROFF) is necessary. Several additional characteristics are 

important for all applications, such as low power consumption, 

good scalability, and compatibility with conventional CMOS. 

These characteristics exist in memristive devices. STT-

MRAM exhibits these characteristics except for the high off/on 

resistance ratio [11]. To design and analyze memristive 

device-based circuits and applications, a model exhibiting 

these traits is required. 

III. PREVIOUSLY PROPOSED MEMRISTIVE DEVICE MODELS 

A. Requirements from an Effective Memristive Device 

Model 

An effective memristive device model needs to satisfy 

several requirements: it must be sufficiently accurate and 

computationally efficient . It is desirable for the model to be 

simple, intuitive, and closed-form. It is also preferable for the 

model to be general so that it can be tuned to suit different 

types of memristive devices. 

B. Linear Ion Drift Model 

A linear ion drift model for a memristive device is suggested 

in [3]. In this model, one assumption is that a device of 

physical width D contains two regions, as shown in Figure 1. 

One region of width w (which acts as the state variable of the 

system) has a high concentration of dopants (originally oxygen 

vacancies of TiO2, namely TiO2-x). The second region of width 

D - w is an oxide region (originally TiO2). The region with the 

dopants has a higher conductance than the oxide region, and 

the device is modeled as two resistors connected in series. 

Several assumptions are made: ohmic conductance, linear ion 

drift in a uniform field, and the ions have equal average ion 

mobility µV. Equations (1) and (2) are, respectively, 

 ( ),ON
v

Rdw
i t

dt D
µ=  (3) 

 ( ) ( )
( ) 1 ( ),ON OFF

w t w t
v t R R i t

D D

  = + − ⋅  
  

 (4) 

where RON is the resistance when w(t) = D, and ROFF is the 

resistance when w(t) = 0. The state variable w(t) is limited to 

the physical dimensions of the device, i.e., the value is within 

the interval [0, D]. To prevent w from growing beyond the 

physical device size, the derivative of w is multiplied by a 

window function, as discussed in the next subsection. The I-V 

curve of a linear ion drift memristive device for sinusoidal and 

rectangular waveform inputs is shown in Figure 2. 

 

Figure 1. Linear ion drift memristive device model. The device is 

composed of two regions: doped and undoped. The total resistance of the 

device is the sum of the resistances of both regions. 

C. Window Function 

In the linear ion drift model, the permissible value of the 

state variable is limited to the interval [0, D]. To satisfy these 

bounds, (3) is multiplied by a function that nullifies the 

derivative, and forces (3) to be identical to zero when w is at a 

bound. One possible approach is an ideal rectangular window 

function (the function where the value is 1 for any value of the 

state variable, except at the boundaries where the value is 0). It 

is also possible to add a nonlinear ion drift phenomenon, such 

as a decrease in the ion drift speed close to the bounds, with a 

different window [12], 

 
2

2
( ) 1 1 ,

p
w

f w
D

 = − − 
 

 (5) 

where p is a positive integer. For large values of p, the window 

function becomes similar to a rectangular window function, 

and the nonlinear ion drift phenomenon decreases, as shown in 

Figure 3. 

The window function in (5) exhibits a significant problem 

for modeling practical devices, since the derivative of w is 

forced to zero and the internal state of the device cannot 

change if w reaches one of the bounds. To prevent this 

modeling inaccuracy, a different window function has been 

proposed [13], 

 
2

( ) 1 ( ) ,

p
w

f w stp i
D

 = − − − 
 

 (6) 

(7a) 

(7b) 

where i is the memristive device current. This function is 

shown in Figure 4. In the original definition, these window 

functions do not have a scale factor and therefore cannot be 

adjusted, i.e., the maximum value of the window function 

cannot be changed to a value lower or greater than one. To 

overcome this limitation, a minor enhancement – adding a 

multiplicative scale factor to the window function, has recently 

been proposed [14]. The proposed window function in [14] is 

 
2

( ) 1 0.5 0.75 ,

p

w
f w j

D

    = − − +       

 (8) 

where j is a control parameter which determines the maximum 

value of f(w) (in this function, the maximum value can be 

smaller or larger than one). This function is shown in Figure 5. 

While these window functions alleviate the bounds issue and 

suggest a nonlinear phenomenon, these functions do not 

exhibit full nonlinear ion drift behavior since the model 

1, 0
( )

0, 0,

i
stp i

i

≥
= 

<
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ignores the nonlinear dependence of the state derivative on the 

current. A linear ion drift model with a window function does 

not therefore fully model nonlinear ion drift behavior. 

D. Nonlinear Ion Drift Model 

While the linear ion drift model is intuitive and satisfies the 

basic memristive system equations, experiments have shown 

that the behavior of fabricated memristive devices deviates 

significantly from this model and is highly nonlinear [15], 

[16]. The nonlinear I-V characteristic is desirable for logic 

circuits, and hence more appropriate memristive device 

models have been proposed. In [17], a model is proposed 

based on the experimental results described in [15]. The 

relationship between the current and voltage is 

 ( ) ( )( ) ( ) sinh ( ) exp ( ) 1 ,ni t w t v t v tβ α χ γ= + −    (9) 

where α, β, γ, and χ are experimental fitting parameters, and n 

is a parameter that determines the influence of the state 

variable on the current. In this model, the state variable w is a 

normalized parameter within the interval [0, 1]. This model 

assumes asymmetric switching behavior. When the device is in 

the ON state, the state variable w is close to one and the 

current is dominated by the first expression in (9), βsinh(αv(t)), 

which describes a tunneling phenomenon. When the device is 

in the OFF state, the state variable w is close to zero and the 

current is dominated by the second expression in (9), 

χ[exp(λv(t))-1], which resembles an ideal diode equation.  

This model assumes a nonlinear dependence on voltage in 

the state variable differential equation, 

 ( ) ( ) ,mdw
a f w v t

dt
= ⋅ ⋅  (10) 

where a and m are constants, m is an odd integer, and f(w) is a 

window function. The I-V relationship of a nonlinear ion drift 

memristive device for sinusoidal and rectangular waveform 

inputs is illustrated in Figure 6. A similar model is proposed 

by the same authors in [28]. In this model, the same I-V 

relationship is described with a more complex state drift 

derivative. 

A. Simmons Tunnel Barrier Model 

Linear and nonlinear ion drift models are based on 

representing the two regions of oxide and doped oxide as two 

resistors in series. A more accurate physical model was 

proposed in [18]. This model assumes nonlinear and 

asymmetric switching behavior due to an exponential 

dependence of the movement of the ionized dopants, namely, 

changes in the state variable. In this model, rather than two 

resistors in series as in the linear drift model, there is a resistor 

in series with an electron tunnel barrier, as shown in Figure 7. 

The state variable x is the Simmons tunnel barrier width [19] 

(note that a different notation for the state variable is used to 

prevent confusion with the role of the state variable in the 

linear ion drift model). In this case, the derivative of x can be 

interpreted as the oxygen vacancy drift velocity, and is 

sinh exp exp , 0
( )

sinh exp exp , 0,

off

off

off c c

on

on

on c c

x a ii x
c i

i w b wdx t

dt ix ai x
c i

i w b w

    − 
− − − >            = 

    −
− − − − <   

     

 

where coff, con, ioff, ion, aoff, aon, wc, and b are fitting parameters. 

Equation (11) is illustrated in Figure 8 for the measured fitting 

parameters reported in [18]. The physical phenomena behind 

the behavior shown in (11) are not yet fully understood, but 

considered to be a mixture of nonlinear drift at high electric 

fields and local Joule heating enhancing the oxygen vacancies. 

In practical memristive devices, the ON switching is 

significantly faster than the OFF switching because of the 

diffusion of the oxygen vacancies from TiO2-x to TiO2, and the 

drift of the oxygen vacancies due to the internal electric field is 

different for positive and negative voltages. For a negative 

voltage (lower x), the drift of the oxygen vacancies and the 

diffusion are in the same direction, while for a positive 

voltage, the direction of diffusion and drift are opposite [20]. 

The parameters coff and con influence the magnitude of the 

change of x. The parameter con is an order of magnitude larger 

than the parameter coff. The parameters ioff and ion effectively 

constrain the current threshold. Below these currents, the 

change in the derivative of x is neglected. A current threshold 

phenomenon is desirable for digital applications. The 

parameters aoff and aon force, respectively, the upper and lower 

bounds for x. Because of the exponential dependence on x - aoff 

or x - aon, the derivative of the state variable is significantly 

smaller for the state variable within the permitted range. There 

is therefore no need for a window function in this model. 

In this model, the relationship between the current and 

voltage is shown as an implicit equation based on the Simmons 

tunneling model [19], 

 
( )

( ) ( )( )
1/2

1 1

1/2

1 1

( ) ( , ) ( , )exp ( , ) ( , )

( , ) ( , ) | | exp ( , ) ( , ) ,

g g g g

g g g g g g

i t A x v v x B v x v x

A x v v x e v B v x v x ev

φ φ

φ φ

= − ⋅

− + − ⋅ +

%

%

 

 ( ) ,
g s

v v i t R= −  (13) 

where v is the internal voltage on the device, which is not 

necessarily equal to the applied voltage on the device V (i.e., 

the external voltage V and the internal voltage v are not 

necessarily the same [18]). 

 

 

 

(11a) 

(11b) 

(12) 
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Figure 2. Linear ion drift model I-V curve. D = 10 nm, RON = 100 Ω, 

ROFF = 16 kΩ, µV = 10-14 m2s-1V-1, and w0 = 1 Rad/s. (a) Sinusoidal voltage 

input for several frequencies ω0, 3ω0, and 6ω0, and (b) rectangular 

waveform current input. 

 

 
Figure 3. Window function described by (5) according to [12] for several 

values of p. 

 

 
Figure 4. Window function described by (6) according to [13]. 

 

 

 
Figure 5. Window function described by (8) according to [14]. (a) 

Varying p, and (b) varying j. 

 
Figure 6. Nonlinear ion drift model I-V curve. m = 5, n = 2, a = 1 V-ms-1, β 

= 0.9    µAAAA,  γ = 4 V-1, χ = 10-4 µAAAA, and α = 2 V-1. (a) Sinusoidal voltage input 

for several frequencies ω0, 2ω0, and 3ω0, and (b) rectangular waveform 

of input voltage. 
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Figure 7. Physical model of Simmons tunnel barrier memristive device. 

The state variable x is the width of the oxide region, V is the applied 

voltage on the device, vg is the voltage in the undoped region, and v is the 

internal voltage in the device. 

 

 
Figure 8. Derivative of the state variable x as described in (11). The 

fitting parameters are coff = 3.5µm/s, ioff = 115µA, aoff = 1.2nm, con = 

40µm/s, ion = 8.9µA, aon = 1.8nm, b = 500µA, and wc = 107pm. 

IV. THRESHOLD ADAPTIVE MEMRISTOR (TEAM) MODEL 

In this section, TEAM, a novel memristive device model, is 

presented. The integral portion of the TEAM model is based 

on an expression for the derivative of the internal state variable 

that can be fitted to any memristive device type. Unlike other 

memristive device models, the current-voltage relationship is 

undefined and can be freely chosen from any current-voltage 

relationship; several examples of possible current-voltage 

relationships are described in Section IVB. This relationship is 

not limited to these examples. In subsection A, the 

disadvantages of the aforementioned models and the need for 

such a model are explained. The derivative of the internal state 

variable of the memristive device (the relevant expression for 

(1)) and examples of the current–voltage relationship (the 

relevant expression for (2)) are described, respectively, in 

subsections B and C. Proper fitting of the Simmons tunnel 

barrier model to the TEAM model is presented in subsection 

D, as well as the proper window function for this fitting.  

A. Need for a Simplified Model 

The Simmons tunnel barrier model is, to the authors' best 

knowledge, the most accurate physical model of a TiO2 

memristive device. This model is however quite complicated, 

without an explicit relationship between current and voltage, 

and not general in nature (i.e., the model fits only a specific 

type of memristive device). A complex SPICE model of the 

Simmons tunnel barrier model is presented in [21]. This model 

is also computational inefficient. A model with simpler 

expressions rather than the complex equations in the Simmons 

tunnel barrier model is therefore desired. Yet the accuracy of 

the simple model must be adequate. This simplified model 

represents the same physical behavior, but with simpler 

mathematical functions. In the next section, simplifying 

assumptions are introduced. Namely, no change in the state 

variable is assumed below a certain threshold, and a 

polynomial dependence rather than an exponential dependence 

is used. These assumptions are applied to support simple 

analysis and computational efficiency. 

B. State Variable Derivative in TEAM Model 

Note in Figure 9 and (11) that because of the high nonlinear 

dependence of the memristive device current, the memristive 

device can be modeled as a device with threshold currents. 

This approximation is similar to the threshold voltage 

approximation in MOS transistors. This approximation is 

justified, since for small changes in the electric tunnel width, 

separation of variables can be performed. The dependence of 

the internal state derivative on current and the state variable 

itself can be modeled as independently multiplying two 

independent functions; one function depends on the state 

variable x and the other function depends on the current. 

Under these assumptions, the derivative of the state variable 

for the simplified proposed model is 

 

( )
1 ( ), 0

( )
0,

( )
1 ( ), 0,

off

on

off off off

off

on off

on on on

on

i t
k f x i i

i
dx t

i i i
dt

i t
k f x i i

i

α

α

  
 ⋅ − ⋅ < <    


= < <


  ⋅ − ⋅ < <   

  

where koff, kon, αoff, and αon are constants, ioff and ion are current 

thresholds, and x is the internal state variable, which represents 

the effective electric tunnel width. The constant parameter koff 

is a positive number, while the constant parameter kon is a 

negative number. The functions foff(x) and fon(x) represent the 

dependence on the state variable x. These functions behave as 

the window functions described in section II, which constrain 

the state variable to bounds of [ , ]
on off

x x x∈ . Alternatively, 

these functions can be different functions of x.  The functions 

fon(x) and foff(x) are not necessarily equal, since the dependence 

on x may be asymmetric (as in the Simmons tunnel barrier 

model). Note that the role of x in this model is opposite to w in 

the linear ion drift model. 

C. Current – Voltage Relationship in TEAM Model 

Assume the relationship between the voltage and current of 

a memristive device is similar to (4). The memristance changes 

linearly in x, and (2) becomes 

 ( )( ) ( ).OFF ON

ON on

off on

R R
v t R x x i t

x x

 −
= + − ⋅ 

−  

 (15) 

The reported change in the resistance however is an 

exponential dependence on the state variable [18], since the 

memristance, in practical memristive devices, is dependent on 

(14a) 

(14b) 

(14c) 
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a tunneling effect, which is highly nonlinear. If (12) describes 

the current-voltage relationship in the model, the model 

becomes inefficient in terms of computational time and is also 

not general. Therefore, any change in the tunnel barrier width 

changes the memristance, and is assumed to change in an 

exponential manner. Under this assumption, (2) becomes 

 
( )

( ) ( ),
on

off on

x x
x x

ONv t R e i t

λ
−

−= ⋅  (16) 

where λ is a fitting parameter, and RON and ROFF are the 

equivalent effective resistance at the bounds, similar to the 

notation in the linear ion drift model, and satisfy 

 .OFF

ON

R
e

R

λ=  (17) 

D. Fitting the Simmons Tunnel Barrier Model to the TEAM 

Model 

The TEAM model is inspired by the Simmons tunnel barrier 

model. However, to use this model for practical memristive 

devices, similar to the Simmons tunnel barrier model, a fit to 

the TEAM model needs to be accomplished. Since (14) is 

derived from a Taylor series, for any desired range of 

memristive device current λ, koff, kon, αoff, and αon can be 

evaluated to achieve a sufficient accurate match between the 

models. As the desired operating current range for the 

memristive device is wider, to maintain sufficiently accuracy, 

the required αoff and αon are higher, thereby increasing the 

computational time. The proper fitting procedure to the current 

threshold is to plot the derivative of the exact state variable in 

the actual operating range of the current, and decide what 

value of the state variable derivative is effectively zero (i.e., 

the derivative of the state variable is significantly smaller and 

can therefore be neglected). The current at this effective point 

is a reasonable value of the current threshold. In this paper, the 

parameters ion and ioff are chosen as these current thresholds, 

since these terms represent the exponential dependence of the 

derivative on the state variable of the current in the Simmons 

tunnel barrier model. A fit of the Simmons tunnel barrier 

model to the TEAM model is shown in Figure 10 (a). The 

proper current threshold fitting procedure is shown in Figure 

10 (b). Note that a reasonable current threshold can be higher 

than ioff.   

As mentioned in section IV-B, the functions foff(x) and fon(x) 

are window functions, or alternatively, functions that fit the 

Simmons tunnel barrier model based upon the separation of 

variables of (11). These functions represent the dependence of 

the derivative in the state variable x. Based on the fitting 

parameters reported in [18], possible functions fon(x) and foff(x) 

are 

 ( ) exp exp ,
off

off

c

x a
f x

w

 − 
= −  

  

 (18) 

 ( ) exp exp .on
on

c

x a
f x

w

  −
= − −  

  

 (19) 

The determination process for (18) and (19) is presented in 

Appendix A. Note that (18) and (19) maintain the limitation of 

certain bounds for the state variable x since the derivative of x 

around aon when using (18) and (19) is effectively zero for 

positive current (foff is practically zero) and negative for 

negative current. x can only be reduced. The value of x can be 

increased for values of x around aoff. Therefore, a reasonable 

value for the state variable bounds xon and xoff is, respectively, 

aoff and aon. Although the proposed function limits the bounds 

of the state variable, there is no problem when the bounds are 

exceeded, unlike other window functions. This characteristic is 

useful for simulations, where the bounds can be exceeded due 

to the discrete nature of simulation engines. The proposed 

terms, foff and fon, are illustrated in Figure 11. 

The I-V relationship and state variable behavior of the 

proposed model are shown in Figures 12 and 13 for an ideal 

rectangular window function and the proposed window 

function. Note in Figures 12 and 13 that there is a performance 

difference between the different window functions. Due to the 

significant nonlinearity, the proposed window function 

constrains the state variable to a low range, and the memristive 

devices are activated within a significantly smaller time scale 

as compared to an ideal rectangular window function. The 

required conditions for a sufficient fit of the TEAM model to 

the Simmons tunnel barrier model, as described in Appendix 

A, cannot be maintained for a symmetric input voltage due to 

the asymmetry of the Simmons tunnel model. The required 

conditions for a sufficient fit are therefore not maintained in 

Figure 13. These conditions are however maintained in Figure 

14, where the behavior of the TEAM model and the Simmons 

tunnel barrier model is compared and exhibit excellent 

agreement. While the proposed model fits the Simmons 

Tunnel Barrier model, the TEAM model is general and 

flexible. The model can fit different physical memristive 

device models, including other types of memristive devices, 

such as STT-MRAM and Spintronic memristors [6], [24]. 

 

 
Figure 9. Derivative of the state variable x as described in (11) under the 

assumption of a small change in x (x ~ 1.5 nm). Note that the  device 

exhibits a threshold current. The same fitting parameters as used in 

Figure 8 are used. 
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Figure 10. Fitting between the derivative of the state variable x in the 

Simmons tunnel barrier memristive device model and the TEAM model. 

The same fitting parameters as used in Figure 8 are used for the 

Simmons tunnel barrier model. (a) The fitting parameters for the 

proposed model are koff = 1.46e-9 nm/sec, αoff = 10, ioff = 115µA, kon = -

4.68e-13 nm/sec, αon = 10, and ion = 8.9µA. (b) Fitting procedure in a 

logarithmic scale. The operating current range is assumed to be 0.1 µA 

to 1 mA and the neglected value for the derivative of the state variable is 

assumed to be 10-4 nm/sec. For any desired current range, the proper 

fitting parameters can be evaluated to maintain an accurate match 

between the models. For the aforementioned parameters, a reasonable 

current threshold is 0.5 mA (marked as the effective threshold in the 

figure). 
 

 
Figure 11. Proposed fon(x) and foff(x) based on (18) and (19). These 

functions represent the dependence on x in (14) and also force bounds 

for x since foff (x) is used when dx/dt is positive and is zero around aon, 

and vice versa for fon(x). 

 

 

 
Figure 12. The TEAM model driven with a sinusoidal input of 1 volt 

using the same fitting parameters as used in Figure 10, RON = 50 Ω, ROFF 

= 1 kΩ, and an ideal rectangular window function for fon(x) in (19) and 

foff(x) in (18). (a) I-V curve, and (b) state variable x. Note that the device 

is asymmetric, i.e., switching OFF is slower than switching ON. 

V. COMPARISON BETWEEN THE MODELS 

A comparison between the different memristive device 

models is listed in Table I and a comparison between different 

window functions is listed in Table II. A comparison of the 

accuracy and complexity between the Simmons tunnel barrier 

memristive device and TEAM models is shown in Figure 14. 

The TEAM model can improve the simulation runtime by 

47.5% and is sufficiently accurate, with a mean error of 0.2%. 

These results are dependent on the particular TEAM 

parameters. A lower value for αON and αOFF produce lower 

accuracy and enhanced computational runtime. The TEAM 

model satisfies the primary equations of a memristive system 

as described in (1) and (2), and the convergence conditions 

and computational efficiency required by simulation engines. 
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Figure 13. The TEAM model driven with a sinusoidal input of 1 volt 

using the same fitting parameters as used in Figure 10, RON = 50 Ω, ROFF 

= 1 kΩ,  and proposed fon(x) in (19) and foff(x) in (18) with the same 

parameters used in Figure 8. (a) I-V curve, and (b) state variable x. Note 

that the device is asymmetric, i.e., switching OFF is slower than 

switching ON. 

 

The TEAM model accurately characterizes not only the 

Simmons tunnel barrier model, but also a variety of different 

models. For example, the TEAM model can be fitted to the 

linear ion drift behavior, where 

,ON

on off v on

R
k k i

D
µ= =   (20) 

1,
on off

α α= =   (21) 

0,on offi i= →   (22) 

,
on

x D=   (23) 

0,
off

x =   (24) 

.x D w= −   (25) 

 

To include memristive devices into the circuit design 

process, these models need to be integrated into a CAD 

environment, such as SPICE. There are several proposed 

SPICE macromodels for the linear ion drift model [13], [22] 

and the nonlinear ion drift model [17]. A SPICE model for the 

Simmons tunneling barrier model has recently been proposed 

[21], but is complicated and inefficient in terms of 

computational time. Another simplified model has recently 

been proposed, assuming voltage threshold and an implicit 

memristance [25]. In this model, the current and voltage are 

related through a hyperbolic sine and the derivative of the state 

variable is an exponent. This model is less general than the 

TEAM model and more complex in terms of computational 

time (the model uses sinh and exponents rather than 

polynomials as in the TEAM model). The model is also less 

accurate than the TEAM model when fitting the model to the 

Simmons tunnel barrier model.  

The TEAM model can be described in a SPICE 

macromodel similar to the proposed macromodel in [23], as 

shown in Figure 15. In this macromodel, the internal state 

variable is represented by the voltage across the capacitor C 

and the bounds of the state variable are enforced by diodes D1 

and D2. A Verilog-A model is however chosen because it is 

more efficient in terms of computational time than a SPICE 

macromodel, while providing similar accuracy. A Verilog-A 

form of the model described in this paper has been 

implemented. The code for these models can be found in [26]. 

Although the state variable derivative in the TEAM model is 

not a smooth function, it is a continuous function, based only 

on polynomial functions. The Verilog-A model was tested in 

complex simulations (hundreds of memristive devices) and did 

not exhibit any convergence issues. 

VI. CONCLUSIONS 

Different memristive device models are described in this 

paper – linear ion drift, nonlinear ion drift, Simmons tunnel 

barrier, and TEAM (ThrEshold Adaptive Memristor), as well 

as different window functions. The TEAM model is a flexible 

and convenient model that can be used to characterize a 

variety of different practical memristive devices.  This model 

suggests a memristive device should exhibit a current 

threshold and nonlinear dependence on the charge, as well as a 

dependence on the state variable. 

A comparison between the TEAM model and other 

memristive device models is presented. The TEAM model is 

simple, flexible, and general. While the simplicity of this 

model improves the efficiency of the simulation process, the 

model is sufficiently accurate, exhibiting an average error of 

only 0.2% as compared to the Simmons tunnel barrier state 

variable. This model fits practical memristive devices better 

than previously proposed models. This model is suitable for 

memristive device-based circuit design and has been 

implemented in Verilog-A for SPICE simulations. 
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Figure 14. TEAM model fitted to Simmons tunnel barrier model. (a) I-V 

curve for both models, and (b) fitting accuracy in terms of internal state 

variable x and maximum improvement in runtime for MATLAB 

simulations. The state variable average and maximum differences are, 

respectively, 0.2% and 12.77%. The TEAM fitting parameters are RON = 

1 kΩ, ROFF = 100 kΩ, kon = 4.13e-33 nm/sec, αon = 25, koff = 4.13e-33 

nm/sec, αoff = 25, ioff = 115µA, and ion = 8.9µA. 

 

 
Figure 15. TEAM SPICE macromodel. The state variable x is the voltage 

across the capacitor C = 1 F. The initial voltage is the initial state 

variable. D1 and D2 constrain the bounds of the state variable to the 

value of the voltage sources xON and xOFF. GON(i) and GOFF(i) are the 

relevant functions from (14). CS(x, i) is determined from the current – 

voltage relationship, and is i·exp[λ(x-xon)/(xoff-xon)] for the current – 

voltage relationship in (16). VN and VP are, respectively, the negative and 

positive ports of the memristive device, and i is the memristive device 

current. 
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APPENDIX A – APPROPRIATE FITTING WINDOW FUNCTION TO 

THE SIMMONS TUNNEL BARRIER MODEL 

The purpose of this appendix is to determine a proper 

window function f(x) that provides a sufficient fit to the 

Simmons tunnel barrier model. To determine a reasonable 

approximation, parameter values from [18] are used. From 

(11a) and (11b), the derivative of the state variable x is 
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The derivative of the state variable is a multiplicand of two 

functions – a hyperbolic sine function which depends only on 

the current and an exponential function which depends on 

both the current and the state variable. To simplify (A.1) and 

to apply separation of variables, an approximation that 
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needs to be assumed. In this appendix, the range of the 

required state variable for this approximation is determined. 

From (A.1) an approximation for f(x) is provided.  

The Simmons tunnel barrier model is appropriate when the 

state variable x is limited by aoff and aon, i.e., 

 .
off on

a x a≤ ≤  (A.3) 

From the parameters in [18], 
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Assume the maximum current in the device is 100 µA, 
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Assume that the value of the state variable is one of the 

effective boundaries aon and aoff, 
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To maintain the same approximation as in (A.6), it is 

sufficient to assume that the value of the expression in (A.5) 

is relatively small. Assume that one order of magnitude is 

sufficient for this assumption. The proper range of x can be 

determined as 
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For positive current, the derivative of x is positive and 

therefore the value of x is increasing. It is reasonable to 

assume (A.8). Similarly, for negative current, it is reasonable 

to assume (A.7). Under these assumptions, separation of 

variables can be achieved. 
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Based on the parameters in [18] and the exponential 

dependence, the exponential term is significantly greater than 

the second term,  
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And similarly, 
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From (A.10) and (A.11), the proposed window function is 

therefore 
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