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Abstract

We consider the problem of jointly optimum modulation and estimation of a real–
valued random parameter, conveyed over an additive white Gaussian noise (AWGN)
channel, where the performance metric is the large deviations behavior of the estima-
tor, namely, the exponential decay rate (as a function of the observation time) of the
probability that the estimation error would exceed a certain threshold. Our basic result
is in providing an exact characterization of the fastest achievable exponential decay
rate, among all possible modulator–estimator (transmitter–receiver) pairs, where the
modulator is limited only in the signal power, but not in bandwidth. This exponential
rate turns out to be given by the reliability function of the AWGN channel. We also
discuss several ways to achieve this optimum performance, and one of them is based on
quantization of the parameter, followed by optimum channel coding and modulation,
which gives rise to a separation–based transmitter, if one views this setting from the
perspective of joint source–channel coding. This is in spite of the fact that, in general,
when error exponents are considered, the source–channel separation theorem does not
hold true. We also discuss several observations, modifications and extensions of this
result in several directions, including other channels, and the case of multidimensional
parameter vectors. One of our findings concerning the latter, is that there is an abrupt
threshold effect in the dimensionality of the parameter vector: below a certain critical
dimension, the probability of excess estimation error may still decay exponentially, but
beyond this value, it must converge to unity.

Index Terms: Parameter estimation, modulation, AWGN, threshold effect, large de-
viations, reliability function, error exponents.
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1 Introduction

The rich literature on parameter estimation includes a large variety of Bayesian and non–

Bayesian lower bounds on the mean square error (MSE) in estimating parameters from

signals corrupted by an additive white Gaussian noise (AWGN) channel, as well as other

channels (see, e.g., the introductions of [1], [2], [20] for overviews on these bounds). Most of

these bounds are amenable to calculation for a given form of dependence of the transmitted

signal upon the parameter, i.e., a given modulator, and therefore they may give insights

concerning optimum estimation for this specific modulator. They may not, however, lend

themselves easily to the derivation of universal lower bounds, namely, lower bounds that

depend neither on the modulator nor on the estimator, which are relevant when both

optimum modulators and optimum estimators are sought. Two exceptions to this rule

(although usually, not presented as such) are families of bounds that stem from generalized

data processing theorems (DPT’s) [14], [26], [28], and bounds based on hypothesis testing

considerations [3], [27].

Consider, for a example, a random parameter U , uniformly distributed across the unit

interval, which is to be conveyed across the AWGN channel with spectral density N0/2,

transmission power S, and no bandwidth limitation. Using the classical DPT, one views

the random parameter U as a “source” and the MSE of an arbitrary estimator, E(Û −U)2,

as the average distortion D, and then derives a lower bound on D from the inequality

R(D) ≤ CT , where R(D) is the rate–distortion function of U , T is the transmission time,

and C is the channel capacity, which for the AWGN with unlimited bandwidth, is given by

C = S/N0. Now, R(D) is not known to have a closed–form expression in this case, but it

can be further lower bounded by the Shannon lower bound (see, e.g., [9, Sect. 4.6, p. 101]):

R(D) ≥ h(U) − 1

2
ln(2πeD) = −1

2
ln(2πeD), (1)

where h(U) = 0 is the differential entropy of U . This readily leads to the universal lower

bound E(Û − U)2 ≥ 1
2πee

−2CT = 1
2πee

−2E/N0 , where E = ST is the signal energy. It turns

out that this lower bound is not tight. In [26], it was shown that DPT’s pertaining to

generalized information measures, yield a tighter universal lower bound that decays (as

T → ∞) like e−CT . In [14], this bound was further improved, by another generalized DPT,

to behave like e−2CT/3, and then yet further improved to e−CT/2, using a universal lower

bound based on signal detection considerations, in the spirit of the Ziv–Zakai bound [27]
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and the Chazan–Zakai–Ziv bound [3].

Concerning upper bounds, it turns out that it is possible to achieve an MSE with an

exponential decay rate of the order of e−CT/3, which is quite close to the latter lower

bound, but there is still some gap. As is shown in [21, Chap. 8], by using frequency position

modulation (FPM) with central frequency and bandwidth that both grow like eRT , where

R > 0 is a fixed design parameter, the MSE of the maximum likelihood (ML) estimator turns

out to be composed of two terms: a “small–error” term (or the “weak noise performance”

in the terminology of [21]), that behaves essentially like the Cramér–Rao bound, and which

is proportional to e−2RT , and an anomalous error term (gross error due to the threshold

effect) of the exponential order of e−E(R)T , where E(R) is the reliability function of the

AWGN, given by

E(R) =

{

C
2 − R 0 ≤ R ≤ C

4

(
√

C −
√

R)2 C
4 ≤ R ≤ C

(2)

The optimum trade-off between these two terms is achieved for R = C/6, where they

have the same exponential rate, e−CT/3 (see also [13]). Similar things can be said about

pulse position modulation (PPM) with exponentially growing bandwidth [13]. Yet another

modulation scheme is based on simply quantizing the parameter U into one of M = eRT /2

evenly spaced points in its interval (which are then far apart by 2e−RT ) and then assigning,

to each one of these points, one out of M orthogonal signals with energy E (see [15] for an

analogue for the Poisson channel). Here, the MSE has the same two exponential terms as

before, but now the first term, e−2RT , is the contribution of the quantizer to the MSE and

the second term, e−E(R)T , is the contribution of channel decoding errors.

The quest for closing (or at least, further reducing) the gap between the best known

lower bound, e−CT/2, and the upper bound, e−CT/3, remains unsatisfied at present. This

challenge has, unfortunately, defied our best efforts thus far. We conjecture that it is the

lower bound that is to be “blamed” for this gap, i.e., we believe that the above–mentioned

modulation schemes are essentially optimal but there is room for further improvement of

the lower bound that has not been exploited yet.

In this paper, instead of focusing on the MSE as our performance metric, we adopt a large

deviations performance metric: We seek optimum modulation and estimation schemes in

the sense of maximizing the exponential rate of decay of the probability that the estimation

error |Û − U | would exceed a given threshold. Motivated by the above discussion, we can

afford to set this threshold to be exponentially decaying with T , i.e., e−RT , where R > 0 is a
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parameter whose value can be chosen freely in some range. More precisely, our asymptotic

figure of merit for modulation–estimation is

E∗(R) = lim sup
T→∞

[

− 1

T
log inf Pr

{

|Û − U | > e−RT
}

]

, (3)

where the infimum is over all modulator–estimator pairs with power S, and where we

remind the reader that lim supT→∞ f(T ), for a continuous–valued variable T (as opposed

to a sequence {Tn}), is defined as limT→∞ supT ′≥T f(T ′).

Our basic result (asserted and proved in Section 2) is that the lim sup in eq. (3) is

equal to the corresponding lim inf (and hence can be replaced by lim) and their common

value has an exact characterization given by E∗(R) = E(R), where E(R) is as in (2).

All three modulation schemes mentioned above, together with ML estimation, achieve this

performance and hence are asymptotically optimum in the above sense.1

Beyond the fact that the large deviations performance metric has already been addressed

in estimation theory (see, e.g., [10], [11, p. 4], [16], [18, p. 54], [24, eq. (32)], [27, Sect. IV]),

a little thought suggests that it is actually natural in this particular setting of wide–band

waveform communication, which exhibits threshold effects and anomalies. The reason is

that it makes a clear distinction between ‘small’ errors, of the order of e−RT (“allowed”

under this metric), and gross errors, whose probabilistic weight is e−E(R)T at best.2 A

distinction in the same spirit (but not quite the same) was offered also in [21, Sect. 8.4],

where it was shown that a non–anomalous MSE of about e−2CT is the best that can be

achieved (and again, by the same schemes) under the constraint that the probability of

anomaly tends to zero. This has the flavor of our result for R ≈ C, but here, we expand

the spectrum of trade-offs to the entire range 0 ≤ R ≤ C. For R > C, the error exponent

vanishes in the strong sense, i.e., not only does the probability of the undesired error event

cease to decay exponentially, it actually tends to unity. In that sense, the threshold effect

is manifested in a clear way.

Having hopefully convinced the reader that the large deviations performance criterion

is reasonable in the waveform communication setting considered here, there is considerable

1The fact that exponentially small error thresholds are exceeded with exponentially small probabilities
is rather remarkable. It is thanks to the fact that the modulator is subjected to optimization. By contrast,
for amplitude modulation (AM), where the estimation error of the ML estimator has variance N0/(2E) =
1/(2CT ), we have Pr{|Û − U | > e−RT } = 2Q(e−RT

√
2CT ) → 1 for every R > 0, and only for R = 0 this

probability decays exponentially.
2Typically, in the case of anomaly, the estimate Û falls in a random point away from U , and so, it makes

sense to assign to all gross error events the same cost, as is done by the proposed metric.
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room for the speculation that this may not be the case with the MSE criterion, despite

its popularity. The difficulty in capturing the threshold effect and in closing gaps between

upper and lower bounds in this setting, as discussed above, may be attributed to the fact

that the MSE does not distinguish between the small errors and the anomalous errors,

which are so different in nature. Comments in the same spirit are made also in [21, p. 633,

central paragraph].

We discuss several observations and implications of the above described basic result

(Section 3) and several extensions (Section 4), including other channels, variable power,

and the case of a multidimensional parameter vector U = (U1, . . . , Ud). In the vector case,

our error exponent criterion becomes

E∗(R1, . . . , Rd) = lim sup
T→∞

[

− 1

T
log inf Pr

(

d
⋃

i=1

{

|Ûi − Ui| > e−RiT
}

)]

, (4)

where our earlier characterization, in terms of the reliability function, extends to

E∗(R1, . . . , Rd) = E(R1 + R2 + . . . + Rd). (5)

One of the conclusions of this result is that there is an abrupt threshold effect in the

dimensionality of the parameter vector: below a certain critical dimension, the probability

of excess estimation error may still decay exponentially, but beyond this value, it must

converge to unity. We also discuss several other implications of our results.

As a closing remark, we should point out that the criterion of excess estimation error

probability was briefly discussed also in [27, Section IV], where a lower bound was given in

terms of the error probability of an M–ary detection problem with optimum signaling. This

is similar to the line of thought here, however, there are several differences: (i) We consider

a Bayesian setting where U is a random variable, as opposed to the worst–case excess er-

ror probability, maxu Pr{excess estimation error|u}. (ii) We allow an arbitrary modulator,

rather than focusing on PPM specifically. (iii) We allow an exponentially vanishing error

threshold, e−RT (as opposed to a fixed threshold in [27], corresponding to R = 0) and ex-

plore the entire spectrum of trade-offs between R and the excess estimation error exponent,

which in turn is intimately related to the reliability function, E(R). (iv) As described in

the previous paragraph, we also expand the scope in several directions, like the multidimen-

sional case and other channels. We also provide some insights from the perspectives of the

threshold effect as well as joint source–channel coding and the separation theorem.
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2 Problem Formulation and the Basic Result

Consider the signal model

y(t) = x(t, u) + n(t), t ∈ [0, T ) (6)

where x(t, u) is a waveform with power S, which is parametrized by u ∈ U ⊆ IR, and

where n(t) is AWGN with two–sided power spectral density N0/2. Considering an arbitrary

representation of x(t, u) as a linear combination of orthonormal basis functions, then due to

the power limitation, the length of the curve (locus) drawn by the vector of coefficients of this

representation, {ak(u), k = 1, 2, . . .}, as u exhausts U , must be finite (and in fact, no larger

than eCT [21, Chap. 8]) in order to keep the anomalous error vanishingly small. It therefore

makes sense to assume that U is a finite interval, which without loss of essential generality,

will be taken to be the interval [−1/2,+1/2), as any other interval can be obtained under

re-parametrization using a simple affine transformation.

An estimator of u is any measurable mapping from {y(t), 0 ≤ t < T} into U . In order

to avoid limitations on the class of estimators (e.g., unbiased estimators, etc.), we adopt the

Bayesian setting, i.e., we assume that u is a realization of a random variable U , uniformly

distributed over [−1/2,+1/2). The uniform prior is assumed merely for convenience and it

expresses the fact that no value of u has any preference a-priori. Any other prior, which is

bounded away from zero and infinity, can be used as well.

A modulator with power S is a mapping from U into a family of waveforms {x(t, ·), 0 ≤
t < T}, whose power is exactly3 S, i.e.,

1

T

∫ T

0
dt · x2(t, u) = S (7)

for all u ∈ U . No bandwidth limitations are imposed on the waveforms in this family.

For a given R > 0, we are interested in characterizing the best achievable excess esti-

mation error exponent

E∗(R) = lim sup
T→∞

[

− 1

T
log inf Pr

{

|Û − U | > e−RT
}

]

, (8)

where the infimum is over all modulator–estimator pairs as defined as above.

We first provide a lower bound on the excess estimation error probability, that leads

directly to a converse theorem concerning E∗(R).

3In Subsection 4.4, we relax the restriction that the power would be exactly S for all u, and we allow
instead the power S(u) to vary with u, but we keep an average power constraint, E{S(U)} ≤ S.
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Theorem 1 Consider the AWGN channel with noise power spectral density N0/2. Let

R > 0 be given and let ǫ > 0 be arbitrarily small. For every modulator with power S and

every estimator Û :

Pr
{

|Û − U | > e−RT
}

≥ (1 − e−ǫT ) exp{−T [E(R − ǫ) + o(T )]}, (9)

where E(R) is the reliability function of the AWGN, defined as in eq. (2) and where o(T )

designates a quantity that tends to zero as T → ∞. Consequently,

E∗(R) ≤ E(R). (10)

While the lower bound in Theorem 1 applies, in principle, for every ǫ > 0, quite obvi-

ously, for T → ∞, the tightest lower bound is obtained as ǫ → 0, which yields an exponential

decay rate of E(R).

Proof. The proof is in the spirit of the derivation of the Ziv–Zakai bound [27] and the

Chazan–Zakai–Ziv bound [3], but with M hypotheses (rather than 2), where M is exponen-

tially large. Consider a given estimator Û of U and a given modulator {x(t, ·), 0 ≤ t < T}
with power S. For a given u ∈ [−1/2,+1/2) and ∆ > 0, let Pe(u, ∆) denote the probability

of error of the optimum (ML) detector for deciding among the M equiprobable hypotheses

Hi : y(t) = x(t, u + i∆) + n(t), i = 0, 1, . . . ,M − 1

where it is assumed that u and ∆ are such that u + i∆, i = 0, 1, . . . ,M − 1, are all in

[−1/2,+1/2). First, it is argued that

Pe(u, ∆) ≤ 1

M

[

Pr

{

Û − U >
∆

2

∣

∣

∣

∣

U = u

}

+

M−2
∑

i=1

Pr

{

|Û − U | >
∆

2

∣

∣

∣

∣

U = u + i∆

}

+

Pr

{

Û − U < −∆

2

∣

∣

∣

∣

U = u + (M − 1)∆

}]

. (11)

To see why this is true, observe that the r.h.s. can be interpreted as the probability of error of

a suboptimum M–ary detector that is based on first estimating U by Û and then deciding

on the hypothesis Hi whose corresponding grid point u + i∆ is nearest to Û . Next, we

further upper bound the first and the last terms of the r.h.s. by Pr{|Û −U | > ∆/2|U = u}
and Pr{|Û − U | > ∆/2|U = u + (M − 1)∆}, respectively, which yields

Pe(u, ∆) ≤ 1

M

M−1
∑

i=0

Pr

{

|Û − U | >
∆

2

∣

∣

∣

∣

U = u + i∆

}

. (12)
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Integrating both sides over u, we get

∫ +1/2−(M−1)∆

−1/2
du · Pe(u, ∆)

≤
∫ +1/2−(M−1)∆

−1/2
du · 1

M

M−1
∑

i=0

Pr

{

|Û − U | >
∆

2

∣

∣

∣

∣

U = u + i∆

}

=
1

M

M−1
∑

i=0

∫ +1/2−(M−1)∆

−1/2
du · Pr

{

|Û − U | >
∆

2

∣

∣

∣

∣

U = u + i∆

}

=
1

M

M−1
∑

i=0

∫ +1/2−(M−1)∆+i∆

−1/2+i∆
du · Pr

{

|Û − U | >
∆

2

∣

∣

∣

∣

U = u

}

≤ 1

M

M−1
∑

i=0

∫ +1/2

−1/2
du · Pr

{

|Û − U | >
∆

2

∣

∣

∣

∣

U = u

}

=

∫ +1/2

−1/2
du · Pr

{

|Û − U | ≥ ∆

2

∣

∣

∣

∣

U = u

}

= Pr

{

|Û − U | >
∆

2

}

. (13)

Now, let ∆ = 2e−RT and M = e(R−ǫ)T /2 + 1. Then, it is well known (see, e.g., [19, p. 168,

eq. (3.6.26) and Section 3.8], [7, p. 383, eqs. (8.2.49), (8.2.50)], [21, pp. 345, eq. (5.106c)])

that

Pe(u, ∆) ≥ e−T [E(R−ǫ)+o(T )], (14)

which, when substituted into the left–most side of (13), readily gives

Pr
{

|Û − U | > e−RT
}

≥
∫ +1/2−(M−1)∆

−1/2
du · e−T [E(R−ǫ)+o(T )]

= [1 − (M − 1)∆]e−T [E(R−ǫ)+o(T )]

= (1 − e−ǫT )e−T [E(R−ǫ)+o(T )], (15)

completing the proof of Theorem 1. ✷

Our next theorem, Theorem 2, provides a compatible achievability result.

Theorem 2 Consider the AWGN channel with noise power spectral density N0/2 and let

R > 0 be given. Then there exists a modulator with power S and an estimator Û for which

Pr
{

|Û − U | > e−RT
}

≤ e−E(R)T . (16)

Consequently, the lim sup in eq. (3) is equal to the lim inf (i.e., the limit exists) and

E∗(R) = E(R). (17)
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Proof. We first describe the modulator and estimator. Assume, without essential loss

of generality, that eRT /2 is integer (otherwise, alter the value of R slightly to make it

such). The modulator first quantizes the parameter u to the nearest point in the grid

{−1/2 + e−RT ,−1/2 + 3e−RT ,−1/2 + 5e−RT , . . . , 1/2− e−RT }. This grid, which consists of

M = eRT /2 points, is mapped into a set of M orthogonal signals, each with power S. Let

i(u) denote the index of the grid point nearest to u and let xi(t) be the signal corresponding

to the i–th grid point, i = 1, 2, . . . ,M . Then the modulator is defined by

x(t, u) = xi(u)(t). (18)

Let î denote the output of the ML decoder for the signal set {xi(t)}M
i=1, namely,

î = argmax1≤i≤M

∫ T

0
xi(t)y(t)dt. (19)

Then, the estimator û is defined as the corresponding grid point, i.e.,

û = −1

2
+ (2̂i − 1)e−RT . (20)

Clearly, for this particular modulator–estimator pair, the event {|Û − U | > e−RT } implies

î 6= i(U), namely, an error in decoding the index i of the transmitted signal xi(t). The

probability of excess estimation error is therefore upper bounded by the probability of error

for M = eRT /2 orthogonal signals, each with energy E = ST , which is well known (see, e.g.,

[19, p. 67, eq. (2.5.16)] or [7, p. 381, eqs. (8.2.43), (8.2.44)], [21, pp. 344–345, eqs. (5.104)–

(5.106b)]) to be upper bounded in turn by e−E[R−(ln 2)/T ]T ≤ e−E(R)T . This completes the

proof of Theorem 2. ✷

The Case R = 0

Theorems 1 and 2 refer to the case R > 0. The case R = 0 should be treated with

caution as there is an inherent discontinuity of the operational reliability function at R = 0.

As is well known, the operational reliability function for the infinite–bandwidth AWGN

channel, which is defined as the asymptotic error exponent of the optimum rate–R code

for this channel, agrees with E(R), given in (2), only for R > 0. Concerning the point

R = 0, there is a difference between the strong sense of this assignment, where the number

of codewords M is fixed (independent of T ), and the weak sense, where M grows (but in

a subexponential rate). This is because for fixed M , the error exponent of the best signal
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set (the simplex signal set) is determined by the minimum distance, which depends on M

according to dmin = 2ME/(M − 1), where again, E = ST is the energy of all M signals.

The error probability of the optimum code then decays according to exp[−T C
2 · M

M−1 ], which

agrees with E(0) = C/2 only when M grows without bound.

Correspondingly, there is a parallel difference between the case where the error threshold,

∆/2 (in the proof of Theorem 1) is fixed, as opposed to the weaker sense where ∆ is allowed

to vanish as T grows, but in a subexponential rate. Theorems 1 and 2 hold for R > 0,

and the limit R → 0 corresponds to the weaker meaning. What can be said about the

stronger meaning? Repeating the proof of Theorem 1, but with a zero–rate lower bound on

Pe(u, ∆) [19, p. 174, eqs. (3.7.2)–(3.7.5)], [21, pp. 345, eq. (5.106c)], we have (by choosing

M = ⌊1/∆⌋)

Pr

{

|Û − U | >
∆

2

}

≥ 1

2
(1 + ∆ − ∆⌊1/∆⌋) · Q

(
√

E
N0

· ⌊1/∆⌋
⌊1/∆⌋ − 2

)

. (21)

In the limit of T → ∞, this lower bound is of the exponential order of

exp

{

−CT

2
· ⌊1/∆⌋
⌊1/∆⌋ − 2

}

.

As an upper bound we have, by a compatible upper bound on the probability of error (see

proof of Theorem 2), the following:

Pr

{

|Û − U | >
∆

2

}

≤ (⌈1/∆⌉ − 1) · Q
(
√

E
N0

· ⌈1/∆⌉
⌈1/∆⌉ − 1

)

, (22)

which simply follows from the union bound on the probability of error in the detection of

one out of M = ⌈1/∆⌉ simplex signals with energy E = ST . Here, the exponential behavior

is according to

exp

{

−CT

2
· ⌈1/∆⌉
⌈1/∆⌉ − 1

}

.

While there is a gap in the error exponents for every finite ∆, this gap vanishes as ∆ → 0,

thus the best achievable asymptotic value of

lim
∆→0

lim
T→∞

[

− ln Pr{|Û − U | > ∆/2}
T

]

is still E(0) = C/2.

In this context of large deviations for fixed ∆, it is appropriate to mention also the

relation with the MSE criterion: The two criteria are easily related via the identity

E(Û − U)2 = 2

∫ 1

0
d∆ · ∆ · Pr{|Û − U | ≥ ∆}, (23)

10



and so, the MSE can be lower bounded via any lower bound on Pr{|Û − U | ≥ ∆} for all

∆ in the appropriate range, which is exactly the line of thought that guides the Chazan–

Zakai–Ziv bound [3] for two hypotheses. Here, as we consider M hypotheses rather than

two,4 and M is exponentially large, the integration range of ∆ in the corresponding lower

bound, where the integrand is Pe(u, ∆), must be limited to the interval (0, 1/(M − 1)], as

otherwise, some grid points {u + i∆} (in the proof of Theorem 1), would fall outside the

interval [−1/2,+1/2). This limitation on the range of ∆ causes the resulting lower bound on

the MSE to be relatively weak. One of the main points in this paper is that by considering

the large deviations performance as our figure of merit in the first place, we actually avoid

the need to integrate over ∆ altogether. An interesting open question, in this context, is

whether it is possible to devise a modulator–estimator pair, which would be independent of

∆, but yet achieve asymptotically optimum large deviations performance for all ∆ in the

interesting range. Such an estimator may also achieve asymptotically optimum MSE, in

view of eq. (23).

3 Discussion

In this section, we pause to discuss a few observations, implications, and modifications of

Theorems 1 and 2.

3.1 Strong Converse and the Threshold Effect

The case R = 0, discussed in Section 2, is one interesting extreme of the range of R. The

other extreme is the point R = C, where E(R) vanishes. Here, due to the strong converse

to the channel coding theorem, E(R) vanishes in the strong sense for R > C, namely, the

probability of error tends to unity. Owing to the proof of Theorem 1, the large deviations

estimation performance criterion, considered in this paper, ‘inherits’ this strong converse,

and then the probability of excess estimation error tends to unity as T → ∞, for R > C.

This means an abrupt threshold effect in the limiting probability of excess error, from 0 to

1, as R crosses C.

4Here, two hypotheses correspond to antipodal signals, rather than orthogonal signals, and hence lead to
non–tight exponential error bounds with a loss of 3dB.
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3.2 Achievability by Other Schemes

As mentioned in the Introduction, alternative achievability proofs are possible by analyzing

FPM and PPM systems. The FPM modulator (see, e.g., [21]) is defined as follows:

x(t, u) =
√

2S cos[2π(f0 + u · ∆f)t], (24)

where in our case, both the central frequency f0 and the frequency offset ∆f (∆f ≪ f0) are

taken to be proportional to eRT . For the ML estimator Û , in this case, Pr{|Û −U | > e−RT }
is the probability of anomaly, which is essentially e−E(R)T (see [21, eqs. (8.175a)–(8.175c)]).

Another good modulator for our purpose is PPM, where

x(t, u) = s[t − (u + 1/2)(T − τ)], (25)

s[·] being a pulse whose support is [0, τ ], where τ is proportional to e−RT (and hence the

bandwidth is proportional to eRT ), and again, the large deviations event in question is the

anomaly event (see, e.g., [13], [25] for more details).

3.3 Relation to Bounds on Moments of the Estimation Error

The combination of Theorem 1 with Chebyshev’s inequality,

Pr
{

|Û − U | > e−RT
}

≤ E(Û − U)2

e−2RT
(26)

yields the following lower bound on the MSE

E(Û − U)2 ≥ (1 − e−ǫT )e−T [E(R−ǫ)+2R+o(T )], (27)

which is tightest for R = ǫ → 0, as T → ∞. Thus, the MSE is lower bounded by an

expression whose exponential order is e−E(0)T = e−CT/2, as discussed in the Introduction

(see also [14]). The same comment applies, of course, to more general moments of the

estimation error, E|Û − U |α, in the range α ≥ 1 (see also [27, p. 388, Remark 1]). For

0 < α < 1, the best choice of R is near R = C/(1 + α)2 and the resulting lower bound is of

the exponential order of exp[−αCT/(1 + α)].

3.4 Relation to the Joint Source–Channel Excess Distortion Exponent

Note that if we think of the random parameter U as a source variable, and then the

modulation–estimation problem is considered as a joint source–channel coding problem,

12



then our conclusion from Theorem 2 is that separate source- and channel coding is asymp-

totically optimum in our setting: In the modulation scheme analyzed in the proof of Theorem

2, the transmitter first uses a source encoder that quantizes the parameter U , applying a

simple uniform scalar quantizer – see also [15], and then maps the quantized version of U

into a channel input waveform using a good channel code. The same comment applies to the

case where the parameter is a vector U = (U1, . . . , Ud), as will be discussed in Subsection

4.1, where the source encoder will quantize each component Ui individually.

It is interesting to contrast this with the results of Csiszár [5] (see also [4]), where

exponential rates of probabilities of excess end–to–end distortion between a source vector

and its reconstruction vector were studied under a joint source–channel coding setting.5

In that work, it was argued that, in general, separate source- and channel coding is sub-

optimum in the error exponent sense (see discussion at the second to the last paragraph in

the Introduction of [5] as well as in [4, Introduction] and [7, Problem 5.16, pp. 534–535]).

The natural question that arises is how do these two (seemingly contradicting) facts settle,

if there is any contradiction. First, observe that there are some differences between our

setting and the one in [5]:

1. In our setting, the source variable U is a scalar, namely, it remains of “block–length”

1, when T goes to infinity, whereas in [5] the analogous quantities grow together

with a fixed ratio (which is known as the bandwidth expansion factor). Even in

Subsection 4.1, where as mentioned earlier, we extend our setting to the case of a

vector parameter, U = (U1, . . . , Ud), the dimension d will be assumed fixed while

T → ∞.

2. As another difference in the asymptotic regime, in our case, the allowed distortion

threshold decays exponentially, whereas in [5] it is fixed.

3. For the AWGN with infinite bandwidth, the reliability function is fully known, as

opposed to that of a general DMC.

Nonetheless, in spite of these differences, our results can be understood in the framework of

[5]. It turns out that while in general, there is no separation theorem for error exponents,

5In other words, instead of analyzing the performance of the communication system under the criterion
of average distortion, it was analyzed in [5] under the probability that the block distortion would exceed a
certain threshold in the large deviations regime.
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the parameter modulation–estimation problem considered here is analogous to a special

case, where a separation theorem holds true for error exponents nevertheless.

To be more specific, Csiszár’s main result in [5] can be presented essentially as follows:

The best excess distortion exponent of joint source–channel coding is upper bound by

e(D) = min
R

[F (D,R) + E(R)], (28)

where

F (D,R) = min
{Q′: R(D,Q′)≥R}

D(Q′‖Q) (29)

is Marton’s source coding (excess distortion) exponent of the source Q [12], R(D,Q′) being

the rate–distortion function of a source Q′, and E(R) is the reliability function of the

channel. Now, consider the source Q∗ that maximizes R(D,Q) (which is the uniform source

in many cases, in analogy to our continuous–valued uniform source U). For this source,

F (D,R) =

{

0 R ≤ R(D,Q∗)
∞ R > R(D,Q∗)

(30)

This is the case where the entire source space can be fully covered by spheres of noramlized

radius D. In this case, the minimization range in the expression of e(D) obviously reduces

to the range R ≤ R(D,Q∗), where the contribution of the source coding exponent vanishes

and hence we are left with e(D) = E[R(D,Q∗)]. This can be seen as follows:

e(D) = min
R

[F (D,R) + E(R)]

= min
R≤R(D,Q∗)

[0 + E(R)]

= E[R(D,Q∗)]. (31)

We now argue that this is a case where separate source– and channel coding happens to

be optimal: If the source sequence space is fully covered by spheres of radius D, the source

encoder contributes nothing to the excess distortion event and so, excess distortion may hap-

pen only in the event of a channel error whose exponent is E(R), computed at R = R(D,Q∗),

which is exactly the above mentioned expression of e(D). Indeed, from the mathematical

point of view, the source–channel excess distortion exponent pertaining to separate source-

and channel coding, denoted by esep(D), and given by supR min{F (D,R), E(R)}, is also

equal to E[R(D,Q∗)] in this case. This is easily shown as follows:

esep(D) = sup
R

min{F (D,R), E(R)}
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= sup
R

{

0 R ≤ R(D,Q∗)
E(R) R > R(D,Q∗)

= E[R(D,Q∗)]. (32)

This is clearly analogous to our case: We fully cover the unit interval with small intervals of

size 2e−RT using a rate–R source code. Similarly, in the d–dimensional case to be described

in Subsection 4.1, we perfectly cover the unit cube by boxes of sizes 2e−R1T × . . .× 2e−RdT

using a code of rate R1 + . . . + Rd.

4 Extensions

In this section, we extend Theorems 1 and 2 in several directions (one at a time). These

include the multidimensional case, more general channels, and allowing a variable power

that depends on the parameter.

4.1 The Multidimensional Case

The extension to a multidimensional parameter vector is conceptually quite straightforward.

Suppose now that the parameter is a vector u = (u1, . . . , ud) ∈ [−1/2,+1/2)d, which

is a realization of a random vector U = (U1, . . . , Ud), uniformly distributed over the d–

dimensional unit hypercube [−1/2,+1/2)d. Consider now the probability

Pr

[

d
⋃

i=1

{

|Ûi − Ui| > e−RiT
}

]

.

Then, here both in the upper bound and the lower bound, the d–dimensional unit cube is

divided by a Cartesian grid with about eRiT points in each dimension, i = 1, 2, . . . , d, thus

a total of e(R1+R2+...+Rd)T points, which means an effective rate of R1 +R2 + . . .+Rd. More

precisely, the lower bound is now given by

Pr

[

d
⋃

i=1

{

|Ûi − Ui| > e−RiT
}

]

≥ (1−e−ǫT )d exp{−T [E(R1+R2+. . .+Rd−ǫd)+o(T )]} (33)

since the integration in eq. (13) now becomes d–dimensional. In the upper bound, we are

again quantizing and transmitting one of e(R1+R2+...+Rd)T orthogonal codewords, the one

which represents the corresponding quantization cell. Thus, the probability of the undesired

event in question is of the exponential order of e−E(R1+R2+...+Rd)T . Considering the case

Ri = R for all i ∈ {1, 2, . . . , d} (hence
∑

i Ri = R · d), there is then an interesting threshold

effect in the dimensionality of the problem: For R = 0 (in the weak sense), the exponential
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rate of decay of the probability of the large deviations event ∪d
i=1{|Ûi − Ui| ≥ e−0·T } is

essentially E(0) = C/2, independently of d. For R > 0, the behavior is as follows: As long

as

d < dc
△
= ⌊C/R⌋, (34)

the probability of the event ∪d
i=1{|Ûi − Ui| ≥ e−RT } tends to zero as T → ∞. But when d

exceeds dc and hence the effective rate R ·d exceeds C, the probability tends to unity. Thus,

dc is a critical dimension in this sense. This abrupt transition from 0 to 1 in the limiting

probability of excess error is another aspect of the threshold effect. In most estimation prob-

lems we normally encounter, the estimation performance degrades with the dimensionality

(an effect known as the “curse of dimensionality”), but usually the degradation is graceful

and not abrupt as here.

All this discussion can be extended, in principle, from Cartesian lattices in the parameter

space to general lattices, where the undesired excess error event is defined as the event where

the estimated parameter vector falls outside the respective Voronoi cell centered at the true

parameter vector. Here, the effective rate to be used as the argument of the reliability

function is determined by the normalized logarithm of the ratio between the volume of the

source vector space and the volume of a basic cell.

4.2 Other Channels

The assumption of an AWGN channel with unlimited bandwidth was not used very strongly

beyond the fact that for this particular channel, the reliability function is fully known for the

entire range of rates, 0 ≤ R ≤ C. But the reliability function is also known for the Poisson

channel with unlimited bandwidth [22], [23]. Here too, the idea would be to first quantize

the parameter and then to use a good code for the Poisson channel, that asymptotically

achieves the reliability function, e.g., the Wyner code (see also [15]). Similar comments

apply also to more general channels in the limit of the infinite bandwidth regime [8].

In the discrete–time case, the reliability function may not be known for the entire range

of rates, but it is known for all rates above the critical rate, where it is also achievable

by random coding. Moreover, even if the channel is not fully known, we can derive a

universal estimator that relies on a universal decoder for memoryless channels (see, e.g., [6]

and references therein), on the basis of the proof of the achievability in Theorem 2. But

even at rates below the critical rate, where the reliability function is not known, the basic
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principle of optimum modulation–estimation using a separation–based scheme continues to

hold: First quantize U uniformly and then apply an optimum channel code.

The modification of our results to discrete memoryless channels also enables to handle,

at least partially, the case of the AWGN channel with limited bandwidth. This is because

the case of limitation to finite bandwidth W is asymptotically equivalent to the discrete

memoryless Gaussian channel with N = 2WT channel uses (pertaining to N = 2WT

orthonormal basis functions that span the subspace of allowable signals). In this case, E(R)

for high rates agrees with the sphere–packing bound, which in the Gaussian band–limited

case is given by

Esp(R) = max
ρ≥0

{

ρW ln

[

1 +
S

N0W (1 + ρ)

]

− ρR

}

. (35)

The critical rate beyond which Esp(R) = E(R) is given by

Rc(W ) =
∂

∂ρ

{

ρW ln

[

1 +
S

N0W (1 + ρ)

]} ∣

∣

∣

∣

ρ=1

= W

[

ln

(

1 +
S

2N0W

)

− 1

2
· S

S + 2N0W

]

, (36)

where the maximum over ρ in achieved within the interval [0, 1].

4.3 The AWGN Channel With Rayleigh Fading

Another important channel model is the AWGN channel with Rayleigh fading. Here, the

signal model is

y(t) = a · x(t, u) + n(t), t ∈ [0, T ) (37)

where a is a realization of a Rayleigh random variable A, whose pdf is given by

fA(a) =
a

σ2
e−

a2

2σ2 , a ≥ 0. (38)

It is assumed that A is independent of U , as well as of the noise {n(t), 0 ≤ t < T}. It is

instructive to examine the best achievable behavior of the probability of excess estimation

error under this fading model.

For a given A = a, the received signal has power a2S, which implies that the channel

capacity is a2S/N0 = a2C. Correspondingly, the reliability function is given by

Ea(R) =











a2 C
2 − R, 0 ≤ R ≤ a2 C

4

(a
√

C −
√

R)2, a2 C
4 ≤ R ≤ a2C

0, R ≥ a2C

(39)
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Equivalently, if we think of Ea(R) as a function of a parametrized by R, then

Ea(R) =



















a2 C
2 − R, a ≥ 2

√

R
C

(a
√

C −
√

R)2,
√

R
C ≤ a ≤ 2

√

R
C

0, a ≤
√

R
C

(40)

In view of Theorems 1 and 2, averaging the upper and lower bounds on the probability of

decoding error given a, would yield respective bounds for the fading channel. For the lower

bound, this averaging is legitimate as it corresponds to a receiver that is informed of the

realization a of the random variable A. For the upper bound, this is legitimate too since

the ML decoder does not depend on (the possibly unknown value of) a in the regime of

equal–energy signals considered here.

As before, one should distinguish between the cases R > 0 and R = 0 (in the strong

sense). The following two results are shown in Appendix A. For the case R > 0, the

probability of excess estimation error is essentially equal (for large T ) to the probability of

channel outage, which is

Pr{A ≤
√

R/C} = 1 − e−R/2C̄ , (41)

where C̄ = σ2C designates the average capacity of the channel. In other words, there is

no decay as T → ∞. For R = 0, the best achievable probability of excess estimation error

decays at the rate of 1/T rather than exponentially with T .

4.4 Variable Transmission Power

In Section 2, we have restricted the class of modulators in a manner that the power of

the transmitted signal, {x(t, u), 0 ≤ t < T}, is always S, independently of u. Consider

the somewhat broader setting, where the power of {x(t, u), 0 ≤ t < T}, denoted S(u), is

allowed to depend on u, and we only limit the average power according to

E{S(U)} =

∫ +1/2

−1/2
du · S(u) ≤ S. (42)

We argue that our results apply to this wider class of modulators as well.

Concerning the achievability, we continue to use the same modulator and estimator as

in the proof of Theorem 2, where the power is S(u) = S for every u. The proof of Theorem

1, on the other hand, has to be extended to allow variable power. The point is that the

proof of Theorem 1 in Section 2 relies heavily on the lower bound on the probability of error

in M–ary signal detection, which in [19, Section 3.6.1], is derived under the assumption of
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equal–energy signals, and we are not aware of an existing extension of this result to allow

sets of signals with different energies, where the limitation is on the average energy only.

In Appendix B, we extend the proof of Theorem 1 to accommodate a given average energy

constraint, or equivalently, an average power constraint (42). In a nutshell, the intuition is

that when some of the signals have higher power and some have lower power, the probability

of error is basically dominated by the those with the lower power, which is, of course, smaller

than the average S. Thus, variable power signal sets offer no improvement relative to fixed

power signal sets in terms of achievable error exponents.
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Appendix A

In this appendix, we derive the results for the fading channel for the case R > 0 and the

case R = 0.

Consider the case R > 0 first. Here, there is a positive probability that a would be small

enough that the corresponding capacity a2C would fall below the given R, which is exactly

the event of channel outage. This happens with probability

Pr{A2C < R} =

∫

√
R/C

0
da · a

σ2
e−a2/2σ2

= 1 − e−R/2σ2C = 1 − e−R/2C̄ . (A.1)

Owing to the discussion in Subsection 3.1, in the event of outage, the probability of excess

estimation error is very close to unity, and so, the overall probability of excess estimation

error is essentially lower bounded by the outage probability, i.e.,

Pr{|Û − U | > e−RT } ≥ [1 − o(T )] · (1 − e−R/2C̄), (A.2)

that is, the probability of excess estimation error no longer decays as T grows without

bound. Concerning the upper bound, we have from eq. (40)

Pr{|Û − U | > e−RT } ≤
∫ ∞

0
da

a

σ2
e−a2/2σ2

e−TEa(R)

=

∫

√
R/C

0
da · a

σ2
e−a2/2σ2

+
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∫ 2
√

R/C

√
R/C

da · a

σ2
e−a2/2σ2

e−T (a
√

C−
√

R)2 +

∫ ∞

2
√

R/C
da · a

σ2
e−a2/2σ2

e−T (a2C/2−R)

= 1 − e−R/2C̄ + o(T ), (A.3)

where the last line follows from the fact that the above two last integrals, over the ranges

[
√

R/C, 2
√

R/C) and [2
√

R/C,∞), both vanish as T → ∞, as can easily be shown. Thus,

the lower bound and the upper bound asymptotically coincide.

As for the case R = 0 (i.e., ∆ fixed, but small), then in view of the derivations in Section

2 (see eqs. (21) and (22)), for a given a, both the upper bound and the lower bound on

the probability of excess estimation error probability admit the form α ·Q(a
√

CTβ), where

α and β are constants. The respective constants, α and β, pertaining to the upper bound

and the lower bound, are different. However, α is just a multiplicative constant, which is

of secondary importance here, because we are primarily interested in the rate of decay of

both bounds as T → ∞. On the other hand, β is very close to unity in both bounds when

∆ is small. Thus, the quantity of interest is basically the expectation of Q(A
√

CT ) w.r.t.

the randomness of A. We next show that for large T , this quantity is well–approximated

by

E{Q(A
√

CT )} =

∫ ∞

0
da

a

σ2
e−a2/2σ2

Q(a
√

CT ) ≈ 1

4C̄T
, (A.4)

that is, the minimum achievable excess estimation error probability decays algebraically

rather than exponentially. Using Craig’s formula (see, e.g., [17]),

Q(x) =
1

π

∫ π/2

0
dθ exp

(

− x2

2 sin2 θ

)

, (A.5)

we have the following:

E{Q(A ·
√

CT )} =

∫ ∞

0

da

σ2
· ae−a2/2σ2

Q(a ·
√

CT )

=

∫ ∞

0

da

σ2
· ae−a2/2σ2 · 1

π

∫ π/2

0
dθ exp

(

− a2CT

2 sin2 θ

)

=
1

π

∫ π/2

0
dθ

∫ ∞

0
d

(

a2

2σ2

)

exp

(

− a2

2σ2

[

1 +
C̄T

sin2 θ

])

=
1

π

∫ π/2

0

dθ

1 + C̄T/ sin2 θ

=
1

π

∫ π/2

0

dθ · sin2 θ

C̄T + sin2 θ
. (A.6)
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The last expression can be upper bounded and lower bounded by bounding the sin2 θ term of

the denominator by 0 and 1, respectively. Both bounds are well approximated by 1/(4C̄T )

for large T .

Appendix B

In this appendix, we provide an outline of the extension of Theorem 1 to the variable power

case.

For a given u and ∆, consider again the grid {u + i∆}M−1
i=0 , which is assumed to lie

entirely in [−1/2,+1/2), and let ∆ = 2e−RT and M = e(R−ǫ)T /2 + 1, as before. Let

Smin
△
= minu S(u) and Smax

△
= maxu S(u). We first argue that for modulators whose power

function S(u) is continuous (or at least, left- or right–continuous) in the vicinity of its

minimum, the assertion of Theorem 1 is rather straightforward in the range Cmin ≤ R < C,

where Cmin = Smin/N0. The reason is that the grid points, {u+i∆}M−1
i=0 , where u is near the

minimum of the power function (and so are all other grid points, with the above assignment

of M and ∆), constitute a signal set whose rate, R− ǫ, is very close to (or even exceeds) its

capacity, which is about Cmin, since all signals in this grid have power near Smin. Thus, this

grid dominates the probability of error (and hence also the probability of excess estimation

error) and it dictates a sub-exponential decay at best, which is trivially lower bounded by

the exponent exp[−TE(R)]. In view of this, we shall confine attention throughout to the

range of rates 0 < R < Cmin.

Now, consider the partition of the range of powers [Smin, Smax] into small bins of width

δ, where δ is assumed to divide Smax − Smin. For a given u, let Ci denote the subset of

integers {j} for which S(u + j∆) falls in the i–th bin, that is,

Smin + iδ ≤ S(u + j∆) < Smin + (i + 1)δ, i = 0, 1, . . . , r − 1 (B.1)

where r = (Smax − Smin)/δ. First, observe that

Pe(u, ∆) ≥
r−1
∑

i=0

|Ci|
M

Pe(Ci), (B.2)

where Pe(Ci) is the probability of error pertaining to the subset of signals {x(t, u+ j∆)}j∈Ci

alone. The reason for the inequality is that error events associated with confusion between

pairs of signals that belong to different bins are not counted in the r.h.s. Next, for a given
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ǫ > 0, let Iǫ denote the index set {i : |Ci| ≥ e−ǫT M}. Then, obviously, Pe(u, ∆) is further

lower bounded by

Pe(u, ∆) ≥
∑

i∈Iǫ

|Ci|
M

Pe(Ci). (B.3)

Now, let us slightly alter the powers of all signals in Ci to be Si
△
= Smin+(i+1/2)δ, neglecting

the effect that this may have on the exponent of Pe(Ci).
6 Let us denote here the reliability

function of a rate–R code with power S by E(R,S), to emphasize the dependence on the

power (via the dependence on the capacity). Then, for every i ∈ Iǫ, we have

Pe(Ci) ≥ e−T [E(R−2ǫ,Si)+o(T )], (B.4)

since the size of Ci is of the exponential order of at least e(R−2ǫ)T . Also, let us denote

πi =
|Ci|

∑

j∈Iǫ
|Cj |

. (B.5)

Then,

Pe(u, ∆) ≥
∑

i∈Iǫ

|Ci|
M

·
∑

i∈Iǫ

πie
−T [E(R−2ǫ,Si)+o(T )]. (B.6)

As for the first factor on the r.h.s. of (B.6), we have

1 =
∑

i∈Iǫ

|Ci|
M

+
∑

i∈Ic
ǫ

|Ci|
M

≤
∑

i∈Iǫ

|Ci|
M

+ re−ǫT , (B.7)

and so, this factor is lower bounded by (1 − re−ǫT ). Now, observe that the function

e−TE(R−2ǫ,S) is convex7 in S for all T >
√

R/[2
√

Cmin(
√

Cmin −
√

R)2]. It follows then

from (B.6) that

Pe(u, ∆) ≥ (1 − re−ǫT ) · exp



−TE



R − 2ǫ,
∑

i∈Iǫ

πiSi



+ o(T )



 . (B.8)

Next, we need an upper bound on
∑

i∈Iǫ
πiSi. This is accomplished as follows:

S̄(u)
△
=

1

M

M−1
∑

i=0

S(u + i∆)

≥
∑

i∈Iǫ

|Ci|
M

· Si +
∑

i∈Ic
ǫ

|Ci|
M

· Si −
δ

2

≥
∑

i∈Iǫ

|Ci|
M

· Si −
δ

2
(B.9)

6The lower bounds on the probability of error of M equal–energy signals are straightforwardly extended
to allow almost equal powers (within ±δ/2), with only a small degradation in the exponential rate, which
depends on δ.

7The function e−Tf(x) is convex in x ∈ X whenever f is twice differentiable and T ≥
supx∈X f ′′(x)/|f ′(x)|2, as can easily be seen from the second derivative of e−Tf(x). An alternative con-

sideration is that for large T , the average of e−Tf(x) is dominated by e−T inf
x∈X f(x), and that infx∈X f(x)

is smaller than the average of f(x) over X .
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and so,
∑

i∈Iǫ

πiSi ≤
S̄(u) + δ/2
∑

i∈Iǫ
|Ci|/M

≤ S̄(u) + δ/2

1 − re−ǫT
. (B.10)

Thus, from (B.8), we have

Pe(u, ∆) ≥ (1 − re−ǫT ) · exp

[

−TE

(

R − 2ǫ,
S̄(u) + δ/2

1 − re−ǫT

)

+ o(T )

]

. (B.11)

Finally, we integrate both sides of the last inequality w.r.t. u, in order to relate it to the

probability of excess estimation error, as in the proof of Theorem 1. To this end, we first

observe the following:

∫ 1/2−(M−1)∆

−1/2
du · S̄(u) =

∫ 1/2−(M−1)∆

−1/2
du · 1

M

M−1
∑

i=0

S(u + i∆)

=
1

M

M−1
∑

i=0

∫ 1/2−(M−1)∆

−1/2
du · S(u + i∆)

=
1

M

M−1
∑

i=0

∫ 1/2−(M−1)∆+i∆

−1/2+i∆
du · S(u)

≤ 1

M

M−1
∑

i=0

∫ 1/2

−1/2
du · S(u)

=

∫ 1/2

−1/2
du · S(u)

≤ S, (B.12)

and therefore, for the above defined assignments of ∆ and M , we have:

1

1 − e−ǫT

∫ 1/2−e−ǫT

−1/2
du · S̄(u) ≤ S

1 − e−ǫT
. (B.13)

Thus,

Pr{|Û − U | > e−RT }

≥
∫ 1/2−e−ǫT

−1/2
du · Pe(u, 2e−RT )

≥ (1 − re−ǫT )(1 − e−ǫT )

∫ 1/2−e−ǫT

−1/2

du

1 − e−ǫT
· exp

[

−TE

(

R − 2ǫ,
S̄(u) + δ/2

1 − re−ǫT

)

+ o(T )

]

≥ (1 − re−ǫT )2 exp

[

−TE

(

R − 2ǫ,
S + δ/2

(1 − re−ǫT )(1 − e−ǫT )

)

+ o(T )

]

= (1 − re−ǫT )2e−T [E(R,S)+o′(T )], (B.14)

where in the last line, o′(T ) means another function (other than o(T ) of the previous lines)

that tends to 0 as T → ∞, which is obtained by letting ǫ and δ tend to zero as T → ∞ at

the appropriate rates (e.g., ǫ = δ = 1/
√

T ).
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