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Abstract

We present a distributed optimization algorithm for estimating a continuous function such
as temperature or pollution over a geographic region, e.g., a road network. The estimate is
generated from samples taken by sensors placed alongside roads or in cars driving along them.
We employ piecewise estimation, that is, we divide the region into sectors and find an estimate
for each sector, e.g., a polynomial or a line, so that their union is a continuous function that
minimizes some global error function. The computation is distributed by designating a node
(either virtual or physical) that is responsible for estimating the function in each sector. The
estimate is then computed based on the samples taken in the sector and information from
adjacent nodes.

The algorithm works in networks with bounded, yet unknown, latencies. It accommodates
dynamic inputs (samples) and node arrivals and departures. Our algorithm converges to the
global optimum with only local communication, using a novel, distributed implementation of
coordinate ascent optimization.

1 Introduction

As we enter the era of ubiquitous sensing, we are able to monitor the environment with unprece-
dented resolution using large scale sensor networks. Each sensor measures some phenomenon, and
communicates wirelessly with its neighbors.

To cope with vast amounts of data collected in a wide geographical area, we need to summarize
it. However, it is infeasible to collect and analyze all the information at a central location [4].
Although sensors may be equipped with cellular and long distance communication modules, these
are both expensive and energy intensive.

Moreover, forwarding all samples to a central location is impractical due to the large number
of messages and the heavy load on nodes close to the center. These restrictions indicate a need for
a distributed solution where the summary of the sensed data is generated within the network.

We propose a novel distributed approach for generating a compact estimate of a continuous
physical phenomenon from samples measured throughout a region. Our solution is selective —
each participant only learns of the estimate in its vicinity. We seek to estimate the phenomenon
by a continuous function that is optimal in some sense with respect to the samples. Our approach
is to divide the region into sectors and to obtain an estimate for each sector such that the union
of these estimates is continuous over the region. Each sector is assigned a node, which may be
either a physical station or a virtual node [9, 5, 7]. The division of the region and assignment
of nodes can be done with known techniques [9, 5, 7, 14] and is outside the scope of this paper.
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The sensors in a sector take samples and report them to the sector’s node. The goal is for each
node to generate an estimate of its sector that minimizes some error function while maintaining the
continuity requirement among sectors. This requirement means that the estimate in each sector
depends not only on local samples but also on information from other sectors.

We consider a dynamic setting: As time passes, new samples are accumulated, and irrelevant
ones are removed. Additionally, nodes may join or leave the system due to infrastructure changes
or faults. Our goal is to converge to the optimal estimate once changes cease. Note that since the
nodes do not know when changes stop, they have to make a best effort to converge at all times.

As an example scenario, we take vehicular networks (VANET s). Modern cars have dozens of
sensors [8], which measure various conditions such as temperature, emissions, and traffic speed. In
addition, roadside units (RSUs) performing similar measurements are spread alongside roads [4].
This sensed data is extremely useful for Intelligent Transport Systems (ITS) [23, 13, 10]. For exam-
ple, systems such as OnStar1, which assist drivers in planning their route, can utilize information on
weather and traffic conditions to improve their services. Furthermore, infrastructure management
and research can benefit immensely from statistics on phenomena such as temperature, humidity,
and pollution.

The cars serve as sensors in our algorithm, measuring values within sectors, and the RSUs
function as the sectors’ nodes. Short range communication with neighboring nodes can be done
with VANet technologies which are gaining popularity [11].

The problem of generating the estimate as described above is an optimization problem where the
objective is the sum of the error functions of the sectors, subject to equality constraints that ensure
the continuity of the estimate at the boundaries of the sectors. While distributed optimization
algorithms have been proposed in previous works, all the algorithms of which we are aware either
assume some kind of global information or global synchronization. In our problem setting, these
assumptions translate to a requirement that every node knows the entire sector topology of the
region or stores and updates all of the estimation variables. Neither of these requirements is feasible
in a large network. We present an overview of related work in Section 2.

After formally detailing the model and problem definition in Section 3, we present, in Section 4,
our distributed algorithm for finding the optimal piecewise linear estimate over a geographic re-
gion. While the continuity requirements of our optimization problem suggest a need for atomic
communication within sizable groups of nodes, we show that, by transforming the problem to its
dual form, it can be solved using only pairwise communication between neighbors. We then present
a novel, distributed optimization algorithm based on the method of coordinate ascent. In general,
coordinate ascent is not amenable to distribution, and a naive implementation requires global syn-
chronization. We demonstrate how to decompose the problem so that the optimization process
will converge using local steps and provide a distributed implementation of coordinate ascent that
requires no global information or synchronization. In Section 5, we show how our algorithmic ap-
proach can also be applied to derive optimal estimates using higher-order polynomials, e.g. cubic
splines. We prove the correctness of our algorithms in Section 6, with some formal details deferred
to the appendices.

We believe that our approach to distributed, in-network optimization without global commu-
nication or synchronization can prove useful in many additional settings. Section 7 concludes the
paper and touches on some directions for future research.

1http://onstar.com
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(b) Piecewise linear estimation.

Figure 1: Piecewise linear estimation in a road system. We see a junction of three roads. (a) The
roads are divided into sectors (e.g., 1, 2 and 3), each with its node. The sectors meet at vertices
(triangles). Neighboring nodes are connected by arrows. (b) The samples are shown as dots, and
a curtain above the roads shows the continuous piecewise linear estimate g.

Figure 2: Piecewise linear estimation in a two dimensional region. The region is divided into
sectors (e.g., 1–4), each with its node. Nodes that share a vertex are neighbors, and neighboring
nodes are connected by arrows (we only show connections between nodes 1–4 for a single vertex to
avoid clutter). The estimate for sector 1 is shown as a triangle above the sector.

2 Related Work

There has been a flurry of recent work on distributed methods for convex optimization. These
works can be divided into two categories: averaging-based algorithms and sequential algorithms.
The averaging-based approach builds on the framework proposed by Tsitsiklis et al. [22]. In these
algorithms, every node stores a copy of all optimization variables, unlike in our case, where nodes
only store variables relevant to their sectors. In every time step, a group of nodes averages their local
variables and then performs an update step based on their local functions. This approach has been
shown to converge to the optimal solution for unconstrained convex optimization problems with
separable objectives under certain assumptions on the connectivity of the communication network
over time [16, 20]. Averaging-based algorithms have also been proposed for constrained convex
optimization problems where all constraints are known globally [19, 17] and where constraints are
purely local [17]. An averaging-based algorithm would require that the continuity constraints of
the entire network were known to every node. The per node storage requirement and the need for
global information prohibits the application of these algorithms to our setting.
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In the sequential distributed gradient method, there is a single set of optimization variables, and
every node has its own objective function and constraints. The set of variables is passed from node
to node, and it is updated by each node according to its local gradient information. If the sequence
of updates meets certain requirements, the method converges to the optimal solution [12, 18]. As
with averaging-based approaches, this method requires storage for all variables at every node, which
is infeasible for large networks of the type we consider (e.g., a road network of an entire country.)

In this work, we present a distributed coordinate descent algorithm for convex optimization.
Coordinate descent is an iterative method where, in each step, a single variable is updated. The
algorithm converges to the optimal solution only if the order in which the variables are updated
obeys special properties. A few recent works have proposed parallel implementations of coordinate
descent for solving large optimization problems [6, 3]. While the update operations are distributed,
these implementations still require that updates are executed in globally specified order, thus requir-
ing centralized coordination. In contrast, our distributed coordinate descent algorithm simulates a
centralized algorithm but requires no global information or coordination.

3 Model and Problem Formulation

3.1 Model Definition

We consider a finite region that is divided into a fixed set of non-overlapping sectors. In a road
network, a sector is a segment of a road (with two vertices), as shown in Figure 1a. In a two-
dimensional region, a sector is a triangle (with three vertices), as shown in Figure 2. Each sector
has a unique ID, and the IDs are totally ordered. Each vertex also has a unique ID. The set of
vertices for sector i is denoted Vi.

Each sector has a node that is responsible for processing and communication. The node may
be part of a physical infrastructure, for example, an RSU with storage and compute resources, or
it may be a virtual node comprised of a dynamic set (possibly a singleton) of mobile agents. At
any time t, a node may be either active or inactive. Nodes either operate correctly, or stop, and
their failures can be accurately detected. A node is referred to by the ID of its sector. If node i (in
sector i) fails, it may be replaced by another node, and this node will also have ID i. Each sector
has at most one active node at any time. The set of nodes that are active at time t is denoted N t.
If a sector is associated with an active node, we say that the sector is active. Otherwise, the sector
is inactive.

The set of nodes whose sectors share vertex v at time t are called the members of v, denoted
M t(v). We say that nodes i and j are neighbors if there exists a vertex v such that both i and j are
members of v. Neighboring nodes are connected with bidirectional, reliable FIFO links. Examples
of the communication links between nodes are shown as arrows between nodes in Figures 1a and 2.
Node i may send a message to its neighbor j by placing a message msg on the appropriate link
with sendi(j,msg), and j reacts to the receipt of the message with recvj(i,msg).

Node i maintains a dynamic set of samples that have been taken in its sector. The set of
all samples at time t is denoted St. Each sample is a tuple (x, y, z) where (x, y) are the global
coordinates at which the sample was taken, and z is the value of f sampled at location (x, y).
Node i obtains a new sample in its sector at position (x, y) with value z with addSamplei(x, y, z)
and removes a sample from its sector (e.g., since it became outdated) with delSamplei(x, y, z). Note
that a value change at position (x, y) from z0 to z1 is equivalent to delSamplei(x, y, z0) followed
by addSamplei(x, y, z1).

When a node is added, its sample set is empty. Following the addition, it is notified of all
its neighbors, and they all get notifications of it. Node i is notified of a neighbor j on vertex v
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with addNeighbori(v, j) and notified of its removal with delNeighbori(v, j). Notification of the
addition or removal of neighbors arrives at a node within a bounded, but unknown, time after the
event. When the system starts, each node is notified of its neighbors.

An execution is a sequence of events. Each event is the response of a node to some external
trigger, e.g., the arrival of a message or a notification of a new observation or neighbor. An event
has an input (the message or notification) and an optional output (e.g., outgoing messages). The
duration of an event is zero.

Definition 1 (Global Stabilization Time). The global stabilization time (GST) is the earliest
time after which the following properties hold: (1) no nodes are informed of neighbor changes, (2)
samples are neither added nor deleted, and (3) the message latency of all outstanding and future
messages is bounded between δ and ∆. Nodes do not know GST.

We note that eventual synchrony is necessary because each node must eventually know the
identities of its living neighbors in order to ensure that the estimate is continuous at the boundaries
of the sectors.

Since after GST, the sample sets and node sets are static, we omit the superscript t when
referencing these sets in that context.

3.2 Problem Formulation

Let f be a real-valued, continuous, unknown function defined over the region. The objective is to
learn a continuous, piecewise estimate g of the function f based on the samples. Each piece gi is a
real-valued function defined over a single active sector i. The function g is the union of these pieces.
We address the estimation problem for two classes of continuous piecewise functions, continuous
piecewise linear functions and cubic splines. The details of each class of estimation problem are
presented below.

3.2.1 Estimation with Continuous Piecewise Linear Function

For estimation where each piece gi is a linear function, we consider two settings for the optimization
problem, estimation over a road network and estimation over a two-dimensional region. In the case
of a road network, each gi is a one-dimensional linear function defined over a road segment. An
illustration of such a function is shown in Figure 1b; the estimate g is drawn as a curtain above
the roads. Let u and v be the IDs of the vertices of segment i. The function gi is parameterized
by its values at its vertices, denoted θu and θv, and is given by,

gi(x, y; θu, θv)
∆
=

(

1−
loci(x, y)

di

)

θu +

(

loci(x, y)

di

)

θv ,

where di is the length of segment i, and loci(x, y) is a function that, for a location (x, y) on segment
i, returns the distance along the road from the vertex with the minimum ID.

In the two-dimensional region, each gi is a two-dimensional linear function defined over a tri-
angle. Let u, v, and w be the IDs of the vertices of triangle i, and let the vertex locations be
(ux, uy), (vx, vy), and (wx, wy). Each gi is parameterized by its value at the vertices, denoted θu,
θv, and θw,

gi(x, y; θu; θv, θw) =
1

a
((x− vx)(wy − vy) + (y − vy)(vx − wx)) θu

+
1

a
((x− wx)(uy − wy) + (y − wy)(wx − ux)) θv

+
1

a
((x− ux)(vy − uy) + (y − uy)(ux − vx)) θw,
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where
a = ux(wy − vy) + vx(uy − wy) + wx(vy − uy). (1)

An example of such a gi is shown above sector 1 in Figure 2.
In the distributed setting, each node i has a variable θv,i for each of its vertices. Let Θ denote

the set of all θ variables and let Θi denote the variables for node i. The goal is for each node to
generate an estimate of its sector that is optimal with respect to some error function. For example,
the least squares error for an estimate gi is,

Ci(Θi;S
t
i )

∆
=

∑

(x,y,z)∈St
i

(gi(x, y; Θi)− z)2 .

The error function for the entire estimate g is the sum of error functions for each sector,

C(Θ;St)
∆
=

∑

i∈N t

Ci(Θi;S
t
i )

In addition to minimizing the global error, we also require that the estimate is continuous at the
sector boundaries. This requirement means that nodes much collaborate to generate the estimate; a
node’s estimate will be affected not only by its neighbors, but also by nodes that are far away. The
estimation problem of learning the function g after GST can be formulated as a convex optimization
problem with linear constraints that capture the continuity requirements,

minimize
Θ

∑

i∈N

Ci(Θi;Si) (2)

subject to θv,i = θv,j , for v ∈ V, i, j ∈M(v), i 6= j. (3)

The constraints (3) state that every pair of nodes in M(v) has the same value for θ for vertex v.
By transitivity, this implies that all nodes in M(v) have the same value for θ for v.

3.2.2 Estimation with a Cubic Spline

We also consider the problem of estimation over a road network where each piece gi is a cubic
polynomial, and the resulting global estimate is a cubic spline. The piecewise functions not only
have the same function value at shared vertices, but also have the same values for the first and
second derivatives at these vertices.

The function gi for each segment is parameterized by the values of gi at the endpoints, θu and
θv, and the values of the second derivative of gi at the endpoints, denoted φu and φv,

gi(x, y; θu, θv, φu, φv) =

(

1−
loci(x, y)

di

)

θu +

(

loci(x, y)

di

)

θv +

(

−
1

6di
(loci(x, y))

3 +
1

2
(loci(x, y))

2 −
1

3
diloci(x, y)

)

φu +

(

1

6di
(loci(x, y))

3 −
1

6
diloci(x, y)

)

φv.

and the corresponding optimization problem optimizes over both the values of each gi at its end-
points, denoted Θi and the values of the second derivative of each gi at its endpoints, denoted
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Φi,

minimize
Θ,Φ

∑

i∈N

Ci(Θi,Φi;Si) (4)

subject to θv,i = θv,j for v ∈ V, i, j ∈M(v), i 6= j (5)

g′i(vx, vy; Θi,Φi) = g′i(vx, vy; Θi; Φi) for v ∈ V, i, j ∈M(v), i 6= j (6)

φv,i = φv,j for v ∈ V, i, j ∈M(v), i 6= j. (7)

As before, Θ is the set of all θ variables, and Φ is the set of all φ variables.

3.3 Summary

In summary, our goal is to design a distributed algorithm for finding the values of the parameters
Θ (and Φ if relevant) that solve the optimization problem defined above. Each node i knows only
its own sample set Si and communicates only with its neighbors, as explained in Section 3.1. Each
node i is responsible for obtaining an estimate of its sector by learning values for Θi (and Φi if
relevant). After GST, these estimates must converge to globally optimal estimate.

4 Algorithm for Piecewise Linear Estimation

In this section, we present our distributed algorithm for generating the optimal continuous piecewise
linear estimate defined in Section 3.2.1. In the optimization problem (2 - 3), all members of a vertex
must agree on the value of θ for that vertex. Therefore, a distributed algorithm that addresses this
problem directly requires expensive coordination among all nodes that share a vertex (An example of
such an algorithm is presented in Appendex E). We eliminate the need for vertex-wise coordination
by instead solving the dual problem. Our algorithm is based on the coordinate ascent method
for nonlinear optimization [15, 1]. We briefly review this method in Section 4.1. We present the
transition to the dual form of the problem in Section 4.2, and we present our distributed algorithm
in Section 4.3. In Section 6, we formally prove the correctness of our algorithm.

4.1 Preliminaries — Coordinate Ascent Method

Let h(x1, . . . , xm) be a function that is strictly convex in each xi when the other variables, xj , j 6= i
are held constant, and let h have continuous first partial derivatives. We consider the unconstrained
optimization problem,

maximize
x∈Rm

h(x1, x2, . . . , zx). (8)

The optimization problem can be solved using the coordinate ascent method, which is executed
as follows. Let x(k) = [x1(k), . . . , xm(k)] be the vector of the values of the xi’s in iteration k. The
algorithm begins with an initial x(1). In each step k, a coordinate i is selected, and x(k) is updated
by finding its maximum when all other values of x(k) are fixed. The update step is,

xi = argmax
ξ

h(x1(k), . . . xi−1(k), ξ, xi+1(k), . . . , xm(k)) (9)

x(k + 1) = [x1(k), . . . , xi−1(k), xi, xi+1(k), . . . , xm(k)]. (10)

As shown, x(k + 1) is generated by replacing component i of x(k) with xi. We note that it is
possible that an update step may not result in any change to x, i.e. x(k + 1) = x(k), if the value
of selected coordinate is already optimal with respect to the rest of x(k).
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It has been shown that, in order to guarantee that the algorithm above converges to the x that
optimizes problem (8), it is necessary that the order in which the coordinates are updated satisfies
certain properties. One order policy that guarantees convergence is the essentially cyclic rule [1, 21],
which states that there exists a constant integer T , such that every coordinate j ∈ {1, . . . ,m} is
chosen at least once between the rth iteration and the (r + T − 1)th iteration, for all r.

4.2 Formulating the Dual Problem

Given a constrained optimization problem, the dual problem is formed by incorporating the con-
straints into the objective function. To form the dual for problem (2 - 3), we first define the
Lagrangian,

L(Θ,Λ;S ) =
∑

i∈N

Ci(Θi;Si) +
∑

v∈V

∑

i,j∈M(v)
i 6=j

λv
i,j (θv,i − θv,j) . (11)

Here, each equality θv,i = θv,j constraint in (3) is assigned a Lagrange multiplier λv
i,j ∈ R. Let Λ

denote the set of all Lagrange multipliers, and let Λi denote the set of Lagrange multipliers associ-
ated with a constraint involving θi. We note that a λv

i,j is an element of both Λi and Λj . The dual
function is defined as follows,

q(Λ;S )
∆
= inf

Θ
L(Θ,Λ;S ). (12)

In our case, equation (12) can be expressed as a sum over the nodes in N ,

q(Λ;S ) =
∑

i∈N

qi(Λi;Si),

The function qi depends only on information local to node i, i.e. Si and the location of of the vertices
of sector i. In the examples described in Section 3.2, qi is a quadratic minimization problem (over
Θi) and thus can be solved analytically. The full expression for qi is given in Appendix A.1.

The dual problem is an unconstrained convex optimization problem over Λ,

maximize
Λ

q(Λ;S ) =
∑

i∈N

qi(Λi;Si). (13)

Let Λ̂ be the argument that maximizes q. For a square error minimization of the form (2-3), strong
duality holds (see [2]). Therefore, the solution to (13) gives the solution to the primal problem,

Θ̂ = argmin
Θ
L(Θ, Λ̂;S ).

The dual problem (13) is an unconstrained convex optimization problem that is strictly convex
in each λv

i,j when the other values in Λ are held constant. Therefore, we can solve this problem using
the method of coordinate ascent. In the next section, we present a novel, distributed implementation
of the coordinate ascent algorithm that solves the dual problem.

4.3 Distributed Coordinate Ascent Algorithm

We present our distributed coordinate ascent algorithm to solve Problem (13), where the coordinates
are the variables in Λ. As stated above, a Lagrange multiplier, λv

i,j ∈ Λ, appears in two sets, Λi and
Λj . In our algorithm, nodes i and j both store a copy of λv

i,j ; we refer to λv
i,j as a shared variable.

Nodes i and j collaborate to perform the update step for coordinate λv
i,j and update their copies.
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In the remainder of this section, we describe how we distribute the coordinate ascent algorithm.
First, we detail what information is exchanged in order to perform a distributed coordinate ascent
update step. We then explain how we perform such steps atomically in the face of partial synchrony,
and we show how we ensure that the order of update steps follows the essentially cyclic rule. Finally
we show how the distributed algorithm accommodates dynamics, namely the addition and removal
of nodes and samples. The pseudocode appears in Appendix C.

Coordinate update step For an update step for coordinate λv
i,j , its new value γ depends only

on the dual functions for nodes i and j,

γ = argmax
λv
i,j

q(Λ;S ) = argmax
λv
i,j

(

qi(Λi;Si) + qj(Λj ;Sj)
)

.

The value of γ is the root of the equation,

∂

∂λv
i,j

(qi + qj) =
∂

∂λv
i,j

qi +
∂

∂λv
i,j

qj = 0.

To find this value, each node sends information about its partial derivative to the other. We show
that this information can be encapsulated in two coefficients αv

i and βv
i (see Appendix A.2). Each

node then independently computes γ as follows,

γ = −(βv
i + βv

j )/(α
v
i + αv

j ), (14)

and updates its copy of λv
i,j .

The values of the α and β coefficients for a given node are determined by the node’s samples
and the values of its other shared variables, and the shared variables depend on the values of
variables shared with other nodes, which in turn, depend on additional shared variables. For the
coordinate update step to be performed correctly, both nodes involved in the update must compute
their coefficients using a consistent shared state. We proceed to explain how we ensure that each
coordinate is updated atomically.

Implementing atomic updates We enforce the update atomicity by assigning a leader and a
follower to each shared variable; the node with the smaller ID is the leader. Note that each node
may act as a follower for some variables and as a leader for others. Whenever a node decides
it is necessary to update a variable, either when another shared variable changes in the course of
convergence or due to dynamics (see below), it sends a notifymessage to the leader of that variable
(either its neighbor or itself). The leader processes one notification at a time. It initiates the update
step by sending an updatemessage containing its coefficients to the respective follower, and it waits
for a response. While it is waiting, it does not process any update messages for variables for which
it is not the leader. When a follower receives coefficients from a leader, it sends its coefficients to
the leader, and it updates its copy of λv

i,j . Note that the follower does not block during the update
exchange. When the leader receives the coefficients from the follower, it updates its copy of λv

i,j .
After the update, the leader is free to deal with its other notifications and updates.

Ensuring essentially cyclic update order In order to enforce the essentially cyclic scheduling
policy, while it waits, the leader queues all incoming notify and update messages from other
neighbors. After the update is completed, it handles the queued messages in order. It first deals
with all variables of which it is a follower (the update messages), since these do not require
blocking. It then processes the next notification. This internal scheduling ensures that the update
frequency ratio between different shared variables is bounded, thus obtaining an essentially cyclic
update rule.
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Dealing with dynamics Shared variables may have to be updated for several reasons. As
explained above, in the course of convergence, the update of a shared variable may trigger the
update of another shared variable belonging to the same node. In addition, dynamic system
behavior may also trigger such updates. Whenever a node’s sample set Sti changes, all of its shared
variables require an update. Additionally, changes to a node’s neighbor set entail a change of its
shared variable set (addition or removal of a λ), which, in turn, may require updating all of its
shared variables. In all these cases, the node can independently detect a change in αv

i and βv
i for a

shared variable λv
i,j . When this happens, node i notifies the leader for the λv

i,j that an update step
is needed.

Whenever one of its shared variables are updated, a node may have to update other variables,
as explained above. If so, it notifies the leader of all such variables. At most one notifymessage
is sent for a variable per update of that variable. A leader sends its coefficients only in response
to a notification on the relevant shared variable, and a follower responds with its coefficients only
after receiving the leader’s coefficients. Therefore (after GST) when the system reaches the optimal
solution to problem (13), after a finite period of time no additional notify or update messages
are sent, and the system achieves quiescence.

5 Algorithm for Estimation with Cubic Splines

The distributed algorithm for optimal estimation with cubic splines (as defined in Section 3.2.2) is
nearly identical to the algorithm presented in the previous section. The two points of difference are
the dual problem formulation and the information exchange for the coordinate update step. We
explain these two points below.

5.1 Forming the Dual Problem

We begin by defining the dual problem for the optimization problem stated in equations (4) - (6).
The Lagrangian for this problem is

L(Θ,Λ;S ) =
∑

i∈N

Ci(Θi;Si) +
∑

v∈V

∑

i,j∈M(v)
i 6=j

λv,1
i,j (θv,i − θv,j) +

∑

v∈V

∑

i,j∈M(v)
i 6=j

λv,2
i,j

(

g′i(vx, vy; Θi,Φi)− g′j(vx, vy; Θj ,Φj)
)

+

∑

v∈V

∑

i,j∈M(v)
i 6=j

λv,3
i,j (φv,i − φv,j)

As in the previous section, each equality θv,i = θv,j constraint in (5) is assigned a Lagrange multiplier

λv,1
i,j ∈ R. Each equality constraint involving the first derivative of gi (Equation (6)) is assigned

a Lagrange multiplier λv,2
i,j ∈ R, and each equality constraint involving the second derivative of gi

(Equation (7)) is assigned a Lagrange multiplier λv,3
i,j ∈ R. For sector i with vertices u and v, the

value of g′i at vertex v is given by,

g′i(vx, vy; Θi,Φi) = cθuv,iθu,i + cθvv,iθv,i + cφu

v,iφu,i + cφv

v,iφv,i, (15)

where cv,i are coefficients that depends on which vertex is considered; i.e., the function g′i evaluated
at vertex v has different coefficients than the same g′i evaluated at vertex u. As shown by (15),
each equality constraint in (6) involves all of node i’s variables, θu,i, θv,i, φu,i and φv,i.
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The dual function is
q(Λ;S )

∆
= inf

Θ;Φ
L(Θ,Φ,Λ;S ), (16)

and as before this function can be expressed as a sum over the nodes in N ,

q(Λ;S ) =
∑

i∈N

qi(Λi;Si).

The optimization problem in (16) can be solved analytically using information local to sector i; the
solution is given in Appendix B. The resulting dual problem is of the same form as (13).

Strong duality also holds for the problem (4) - (6). Therefore, the argument Λ̂ that solves the
dual problem gives the solution to the primal problem,

Θ̂, Φ̂ = argmin
Θ,Φ

L(Θ,Φ, Λ̂;S ).

5.2 Distributed Block Coordinate Ascent Algorithm

As in the algorithm for piecewise linear estimation, we use a distributed coordinate ascent algorithm
to solve the dual problem. In the piecewise linear estimation setting, for each vertex v, there is a
shared variable λv

i,j for every pair of nodes i, j ∈ M(v). In the case of cubic splines, every pair of
nodes i, j ∈M(v) has two shared variables, one for the constraint in (5) and one for the constraint
in (6). We denote these shared variables by λv,1

i,j and λv,2
i,j respectively. Rather than optimizing

for one shared variable at a time, our algorithm optimizes for both shared variables in a single
update step. This approach is known as block coordinate ascent [21]. We now detail the pairwise
information exchange in our distributed block coordinate ascent algorithm.

Block Coordinate Update Step To execute an update step between nodes i and j on vertex
v, the nodes must collaborate to find γ = [γ1 γ2 γ3]

T such that

γ = arg min
λ
v,1

i,j
,λ

v,2

i,j
,λ

v,3

i,j

q(Λ;S ) = arg min
λ
v,1

i,j
,λ

v,2

i,j
,λ

v,3

i,j

(

qi(Λi;Si) + qj(Λj ;Sj)
)

.

The vector γ is the solution to the equation

∂

∂λv
i,j

(qi + qj) =
∂

∂λv
i,j

qi +
∂

∂λv
i,j

qj = 0.

Here we use λv
i,j to denote the vector [λv,1

i,j λv,2
i,j λv,3

i,j ]
T. To find γ, each node sends information

about its qi to the other. This information for node i can be encapsulated in four coefficients,
αv,1
i , αv,2

i , αv,3
i , and αv,4

i (see Appendix B). After receiving coefficients from its neighbor, each node

independently computes γ. The node then updates its copy of the shared variables λv,1
i,j , λ

v,2
i,j , and

λv,3
i,j with the values γ.

6 Convergence

In this section, we prove the correctness of the distributed estimation algorithms presented in
Sections 4 and 5. For clarity, we formulate the proof in the context of the distributed linear
estimation algorithm only. We note that the distributed spline estimation algorithm is identical to
the distributed linear estimation algorithm with respect to the elements of our proof. Therefore,
all convergence results apply directly to this algorithm as well.
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In order to prove that the algorithm in Section 4.3 converges to the optimum, we first show
that it simulates the centralized coordinate ascent algorithm (as described in Section 4.1). We then
prove that the order of coordinate updates follows the essentially cyclic rule. From these, we derive
the convergence proof.

Simulation The state of the centralized system consists of the Lagrange multipliers Λ. In each
step of the centralized algorithm, one Lagrange multiplier is chosen and updated, with the others
held constant, moving the system into a new state.

We define a mapping F between the state of the distributed algorithm and the state of the
centralized one. For a given state of the distributed algorithm at time t, F returns a state where
the value of each multiplier λ is its value at the node with the higher ID of the two nodes sharing it
(follower). Under this mapping, the distributed algorithm simulates the centralized one, as stated
in the following lemma. We defer the proof to Appendix D.1.

Lemma 1 (Simulation). After GST, the distributed algorithm simulates the centralized coordinate
ascent algorithm, under the mapping F .

Essentially Cyclic Rule We consider the pairwise steps of our algorithm, where a follower node
sends coefficients to its neighbor. Lemma 2 states that there exists a bound T such that in every
step sequence of length T after GST, each shared variable λv

i,j is chosen at least once.

Lemma 2 (Essentially Cyclic). For every execution of the distributed algorithm, the simulation un-
der F yields an execution of the centralized coordinate descent algorithm that follows an essentially
cyclic policy.

The proof, deferred to Appendix D.2, is performed by bounding the maximal ratio between
steps of shared variables that are not at the optimum value.

Convergence We now prove Theorem 1, which states that the distributed algorithm converges
to the optimal solution.

Theorem 1. After GST, the values of the variables in Θ, as maintained by the nodes, converge to
the optimal estimate, i.e., the solution of Problem (2-3).

Proof. Lemma 1 shows that the distributed algorithm simulates the centralized coordinate ascent
algorithm, and Lemma 2 shows that the order of coordinate updates of the simulated algorithm
follows the essentially cyclic rule. As shown in [21], a centralized coordinate ascent algorithm using
an essentially cyclic rule converges to a stationary point. In our problem formulation, the stationary
point is the unique, optimal solution of Problem (13). Since the steps of the distributed algorithm
correspond to the messages updating the values of the optimization variables, and since they occur
at most every maxDegree×maxChain×2×∆ (Lemma 4), we conclude that the distributed algorithm
converges to the solution of Problem (13), as required.

As explained in Section 4.2, convergence of Λ to the optimum implies convergence of the vari-
ables Θ to the solution of Problem (2-3), as required in Theorem 1.
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7 Conclusion

We have presented a distributed optimization algorithm for estimating a continuous function over
a geographic region based on samples taken by sensors inside the region. The region is divided into
sectors, with a node in charge of each sector. Sample data for a particular sector is not transmitted
to other sectors, and the algorithm generates a continuous, piecewise estimate that minimizes a
global error function with respect to all samples. Our algorithm accommodates dynamic inputs
(samples) and node arrivals and departures. It converges to the global optimum with only local
communication. To achieve this, we first formulate the dual of the optimization problem in order to
eliminate the need for vertex-wise coordination. We then devise a novel, distributed implementation
of coordinate ascent optimization to solve this dual problem.

This work demonstrates the benefits and power of distributed selective learning, where agents
cooperate to calculate a global optimum, while each of them learns only a part of the solution.
These results call for future work, studying the possibility of relaxing the communication patterns
even further and extending the algorithm to other optimization problems with different objective
functions and constraints. We note that our algorithm is generic in essence. It can be directly
applied to many equality constrained convex optimization problem whose constraints coincide with
the communication topology.
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A Mathematical Derivations for Piecewise Linear Estimation

A.1 Derivation of qi

In our examples, each qi can be written as

qi(Λi;Si) = inf
Θi

ΘT

i (X
T

i Xi)Θi − 2zTi X
T

i Θi + zTi zi +
∑

v∈Vi





∑

j∈M(v),j 6=i

sgn(j − i)λv
i,j



 θv,i

With some abuse of notation, we use Θi to also represent the vector form of the set. The function
sgn(j − i) returns 1 if i < j, i.e. i is the leader, and returns 0 otherwise. The matrix Xi and the
vector zi are completely determined by the vertices and samples of sector i. The precise definitions
of Xi and zi are given below

Definition of Xi for a road segment For a road segment with id i, Xi is a k×2 matrix, where
k = |Si|. Each row j corresponds to a sample (xj , yj , zj) ∈ Si, and is defined

X
[j,:]
i =

[

1− (loci(xj , yj)/di) loci(xj , yj)/di
]

Recall that di is the length of road segment i and loci(·, ·) is a function that maps a sample location
to its distance along the road segment from the vertex with the smallest ID.

Definition of Xi for a triangular sector Let the vertices of sector i be u, v, and w, and let
the location of these vertices be (ux, uy), (vx, vy) and (wx, wy). The matrix Xi has k rows, with
k = |Si| and three columns. Each row j corresponds to a sample (xj , yj , zj) and is given by

X
[j,1]
i =

1

a
((xj − vx)(wy − uy) + (yj − vy)(vx − wx))

X
[j,2]
i =

1

a
((xj − wx)(uy − wy) + (yj − wy)(wx − ux))

X
[j,3]
i =

1

a
((xj − ux)(vy − uy) + (vy − uy)(ux − vx))

where a is as defined in Equation (1).

Definition of zi For both the road network and two-dimensional examples, zi is vector with
k = |Si| components, one per sample. Each component corresponds to a sample (xj , yj , zj) and its
value is the value of the sample, zj .

We define a vector Γi with one component for each vertex of sector i. The component for vertex
v is

Γ
[v]
i =

∑

j∈M(v)
j 6=i

sgn(j − i)λv
i,j .

Note the components of Γi are ordered according to the vertices of sector i. If the vertices of sector
i are, in order, u and v (for the road network example), the first component of Γi corresponds
to vertex u and the second component corresponds to vertex v. This order is mimicked in the
components of Θi and Λi and in the rows of Xi.

Each qi is a quadratic minimization problem and thus can be solved analytically at each node
i. The expression for qi simplifies to

qi(Λi;Si) = zTi Xi

(

XT

i Xi

)−1
XT

i zi + zTi XiΓi −
1

4
ΓT

i

(

XT

i Xi

)−1
Γi.
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A.2 Algorithm Coefficients

To simplify the notation, we define the following

Ai
∆
=

(

XT

i Xi

)−1
bi

∆
= XT

i zi.

Let the components of Ai and bi be denoted a
[j,k]
i and b

[j]
i respectively.

We can then rewrite qi as

qi(Λi;Si) = bTi Aibi + bTi Γi −
1

4
ΓT

i AiΓi.

We wish to find the partial derivative of qi with respect to a single component λv
i,j ∈ Λi when

all other components are held fixed. The partial derivative is of the form

∂

∂λv
i,j

= αv
i λ

v
i,j + βv

i .

We specify the values of the coefficients αv
i and βv

i for our examples below.

Road Network Let the vertices of segment i be u and v, where u corresponds to the first com-
ponent in the vector Θi and v corresponds to the second component. For an update of coordinate
λu
i,j ,

αu
i = −

1

4
a
[1,1]
i βu

i = b
[1]
i −

1

2
a
[1,2]
i Γ

[2]
i −

1

2
a
[1,1]
i

∑

k∈M(u)
k 6=i,k 6=j

sgn(k − i)λu
i,k.

For an update of coordinate λv
i,j ,

αv
i = −

1

2
a
[2,2]
i βv

i = b
[2]
i −

1

2
a
[1,2]
i Γ

[1]
i −

1

2
a
[2,2]
i

∑

k∈M(v)
k 6=i,k 6=j

sgn(k − i)λu
i,k.

2-Dimensional Region Let the vertices of sector i be u, v, and w, where u corresponds to the
first component in the vector Θi, v corresponds to the second component, and w corresponds to
the third component. For an update of coordinate λu

i,j

αu
i = −

1

2
a
[1,1]
i βu

i = b
[1]
i −

1

2
a
[1,2]
i Γ

[2]
i −

1

2
a
[1,3]
i Γ

[3]
i −

1

2
a
[1,1]
i

∑

k∈M(u)
k 6=i,k 6=j

sgn(k − i)λu
i,k.

For an update of coordinate λv
i,j ,

αv
i = −

1

2
a
[2,2]
i βv

i = b
[2]
i −

1

2
a
[2,1]
i Γ

[1]
i −

1

2
a
[2,3]
i Γ

[3]
i −

1

2
a
[2,2]
i

∑

k∈M(v)
k 6=i,k 6=j

sgn(k − i)λv
i,k.

For an update of coordinate λw
i,j

αw
i = −

1

2
a
[3,3]
i βw

i = b
[3]
i −

1

2
a
[3,1]
i Γ

[1]
i −

1

2
a
[3,2]
i Γ

[2]
i −

1

2
a
[3,3]
i

∑

k∈M(w)
k 6=i,k 6=j

sgn(k − i)λw
i,k.
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B Mathematical Derivations for Estimation with Cublic Splines

For a sector i with vertices u and v, the vector of variables that parameterize the estimate gi is

ηi =
[

θu,i θv,i φu,i φv,i

]T

The function qi in Section 5.1 is by

qi(Λi;Si) = inf
ηi

ηTi (X
T

i Xi)ηi − 2zTi Xiηi + zTi zi + (17)

∑

v∈Vi

u∈Vi,u 6=v









∑

j∈M(v)
j 6=i

sgn(j − i)λv,1
i,j +

∑

j∈M(v)
j 6=i

sgn(j − i)cθvv,iλ
v,2
i,j +

∑

k∈M(u)
k 6=i

sgn(k − i)cθvu,iλ
u,2
i,k









θv,i (18)

+
∑

v∈Vi

u∈Vi,u 6=v









∑

j∈M(v)
j 6=i

sgn(j − i)λv,3
i,j +

∑

j∈M(v)
j 6=i

sgn(j − i)cφv

v,iλ
v,2
i,j +

∑

k∈M(u)
k 6=i

sgn(k − i)cφv

u,iλ
u,2
i,k









φv,i (19)

The matrix Xi is a k × 4 matrix, where k is the number of samples in Si. Each row j of Xi

corresponds to a single sample (xj , yj , zj) and is given by,

X
[j,1]
i = 1−

loci(xj , yj)

di

X
[j,2]
i =

loci(xj , yj)

di

X
[j,3]
i = −

1

6di
(loci(xj , yj))

3 +
1

2
(loci(xj , yj))

2 −
1

3
diloci(xj , yj)

X
[j,4]
i =

1

6di
(loci(xj , yj))

3 −
1

6
diloci(xj , yj).

The vector zi is a k-vector, where the jth component is the value of the corresponding sample, zj .
We define the vector Γi with two components for each vertex v ∈ Vi, one corresponding to the

expression involving θv,i in (18) and one for the expression involving φv,i in (19),

Γθv
i =

∑

j∈M(v)
j 6=i

sgn(j − i)λv,1
i,j +

∑

j∈M(v)
j 6=i

sgn(j − i)cθvv,iλ
v,2
i,j +

∑

k∈M(u)
k 6=i

sgn(k − i)cθvu,iλ
u,2
i,k

Γφv

i =
∑

j∈M(v)
j 6=i

sgn(j − i)λv,3
i,j +

∑

j∈M(v)
j 6=i

sgn(j − i)cφv

v,iλ
v,2
i,j +

∑

k∈M(u)
k 6=i

sgn(k − i)cφv

u,iλ
u,2
i,k .

Here u corresponds to the other vertex of sectori, u 6= v.
As in the first-order estimation examples, each qi is a quadratic minimization problem and thus

can be solved analytically at each node i. The expression for qi simplifies to

qi(Λi;Si) = zTi Xi

(

XT

i Xi

)−1
XT

i zi + zTi XiΓi −
1

4
ΓT

i

(

XT

i Xi

)−1
Γi.
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B.1 Derivation of Algorithm Coefficients

To find the partial derivative of qi with respect to λv,1
i,j , λ

v,2
i,j , and λv,3

i,j , we first rewrite qi in terms
of these variables. It is straightforward to show that qi can be expressed as,

qi(Λi,Θi;Si) =
(

αv,1
i λv,1

i,j + αv,2
i λv,2

i,j + αv,3
i λv,3

i,j

)2
− 2αv,1

i αv,3
i λv,1

i,j λ
v,3
i,j + αv,4

i .

The coefficients α are determined by values of the other variables in Λi and the locations and values
of samples.
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C Distributed Algorithm Pseudocode

Algorithm 1 details the distributed algorithm described in Section 4.3.

Algorithm 1: Distributed Optimization Algorithm with Pairwise Communication

1 state
2 neighbors, initially neighbors = {i}
3 myLambdas, initially ⊥
4 busy, initially ⊥
5 samples, initially ∅
6 requestQueue, initially empty
7 notificationQueue, initially empty
8 notified, initially ∅

9 function init()
10 notifyLeaders(neighbors)

11 function notifyLeaders(N)
12 for j ∈ N \ notified do
13 if j < i then
14 notified← notified ∪ {j}
15 send(j, notify)

16 function processQueue()
17 while requestQueue not empty do (follower)
18 〈j, coeffs〉 ← pop(requestQueue)
19 update myLambdas according to

Eq. (14), myLambdas and coeffs
20 if myLambdas have changed then
21 coeffs ← coefficients according to

Appendix A.2
22 send(j, coeffs)
23 notifyLeaders(neighbors \ {j})

24 if notificationQueue not empty then
25 j = pop(notificationQueue)
26 busy← j
27 coeffs ← coefficients according to

Appendix A.2
28 send(j, coeffs)

29 on addSamplei(x, y, z)
30 samples← samples ∪ {(x, y, z)}
31 notifyLeaders(neighbors)

32 on delSamplei(x, y, z)
33 samples← samples \ {(x, y, val)}
34 notifyLeaders(neighbors)

35 on addNeighbori(j)
36 neighbors← neighbors ∪ {j}
37 for vertex v belonging to i and j do
38 myLambdas(j, v)← 0
39 notifyLeaders(neighbors)

40 on delNeighbori(j)
41 neighbors← neighbors \ {j}
42 for vertex v belonging to i and j do
43 myLambdas(j, v)← ⊥
44 notifyLeaders(neighbors)
45 if busy = ⊥ then processQueue()

46 on recvi(j, coeffsj)
47 if i < j then (I’m the leader)
48 update myLambdas according to Eq. (14)
49 busy ← ⊥
50 processQueue()

51 else (j is the leader)
52 notified← notified \ {j}
53 push(requestQueue, 〈j, coeffsj〉)

54 if busy = ⊥ then processQueue()

55 on recvi(j, 〈notify〉)
56 push(notificationQueue, j)
57 if busy = ⊥ then processQueue()
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D Convergence Proof Lemmas

D.1 Simulation Lemma

Lemma 1 (restated) After GST, the distributed algorithm simulates the centralized coordinate
ascent algorithm, under the mapping F .

In order to prove Lemma 1, we first prove Claim 1 and Lemma 3.

Claim 1 (Simulation Initialization). The function F maps initial states of the distributed algorithm
to valid initial states of the centralized one.

Proof. The claim follows from the definition of F , since the centralized algorithm can be initialized
to an arbitrary state.

Lemma 3 (Simulation Step). After GST, let state1 be a reachable state of the distributed algorithm
where F(state1) is a reachable state of the centralized algorithm, and let state2 be the state of the
distributed algorithm after one step. Then, the step from F(state1) to F(state2) is a valid step of
the centralized coordinate descent algorithm.

In order to prove this lemma, we use the following claim, which states that a node does not
participate in the optimization of more than one shared variable concurrently. Each shared variable
is shared by two nodes i and j (assume i < j). We call these the owners of the variable; the one
with the lower ID (i) is the leader, and the one with the higher ID (j) is the follower.

Claim 2. For any two steps x1 > x2 > GST where node i sends coefficients to node j1 in step x1,
and node i sends coefficients to node j2 in x2 (with j1, j2 < i), there exists a step x1 < y < x2 in
which i receives coefficients from j1.

Proof. Node i sends coefficients to its follower j1 (line 28), only after setting its busy flag (line 26),
and will not send coefficients again until it receives one from j1 (line 49).

We now prove Lemma 3.

Proof. A step of the distributed algorithm affects the mapped state only if it includes an update of
a shared variable by its follower. We map all other steps to empty steps of the simulated centralized
algorithm (i.e., the centralized algorithm does not perform a step).

For a step x in which a node i updates one of its shared variables λ, for which it is the follower,
the update function is the same update equation as that of the centralized algorithm. It is therefore
left to prove that the distributed algorithm uses the same parameters as the centralized one. The
update of a shared variable is a function of the shared variables of the nodes that own it, for
example consider the update steps in Appendix A for the road network example and for the two
dimensional region. We therefore have to prove that the shared variables owned by the nodes i and
j, as used in the step, are the same as they were at the end of step x− 1.

When a leader i sends the coefficients to its follower j, it moves to a busy state by setting its busy
flag, and deferring all message processing by pushing incoming messages to queues. Specifically,
(1) it does not perform follower steps, and therefore the state of the shared variables for which it
is a follower does not change, and (2) it does not send new coefficients as a leader, nor does it have
pending exchanges (Claim 2), therefore no other node changes the shared variables for which it is
a leader. Therefore, when the follower j processes the coefficients received from i, the i-side shared
variables on which the coefficients are based on are the same as those of the centralized algorithm.
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When the follower j processes the coefficients received from i, the shared variables for which it is
a leader are the same as those sent by its followers (otherwise it would still be busy), therefore they
are the same as those of the centralized algorithm. The shared variables for which it’s a follower are
also the same as those of the centralized algorithm, since it updates them before sending (line 19).

Therefore, a follower node updates its shared variable using coefficients generated from shared
variables of step x − 1. The transition of the mapped states is therefore a transition that the
centralized coordinate descent algorithm would make if it chose to optimize that λ.

Lemma 1 follows directly from Claim 1 and Lemma 3.

D.2 Essentially Cyclic Rule Lemma

Lemma 2 (restated) For every execution of the distributed algorithm, the simulation under F
yields an execution of the centralized coordinate descent algorithm that follows an essentially cyclic
policy.

Definition 2 (Stable shared variable). A shared variable λ is stable at time t if its value, as sent
by the latest message from its follower, is the optimal one considering the samples taken by its
owners, and the other shared variables they have at t (as sent by the latest messages from followers
before t).

Lemma 4. A shared variable λ that is not stable at t, will take a pairwise step after at most
maxDegree×maxChain× 2×∆ time units.

Proof. Initially, before the network is connected, there are no shared variables. Then, if a shared
variable is not stable, one of the nodes sharing it had a state change — its neighbor set, the values
of its other shared variables, or its sample set. Once the state has changed, the station notified
the leader of λ with the notifyLeaders function. The leader receives the message at most ∆ later
and adds the appropriate neighbor ID to its notificationQueue (line 56) The leader will process the
notification once it cleared previous notifications. To clear each notification, it sends coefficients
to a follower, and waits for a reply. A follower replies to a coefficient message once it becomes not
busy, i.e., after sending coefficients to a follower and getting an answer at most once. For each
follower this takes at most 2∆ plus the time it takes for the follower’s follower to reply. There may
form a chain of nodes waiting for one another, each as the follower of the next. Note that there may
not be a cycle since the leader/follow relations are ID based. Therefore in each step, the ID of the
follower is larger than the previous one. In summary, the leader may have to wait to each of its other
followers, and for each one the length of a long chain. In total: maxDegree×maxChain×2×∆.

Lemma 5. A pairwise step for a specific shared variable takes place every 2δ time units or more.

Proof. Since after GST the message latency is bounded from below by δ, the minimal time for a
pairwise step is 2δ (leader detects a change and notifies itself (0), sends coefficients to its follower (δ),
and receives the follower’s coefficients (δ).

We now prove Lemma 2.

Proof. We conclude from Lemmas 4 and 5 that the rate between pairwise steps of different vertices
is at most maxDegree×maxChain×2×∆

2δ . While one shared variable takes maxDegree×maxChain×2×∆

time to take a step, each of the other vertices in the system take at most ⌈maxDegree×maxChain×2×∆
2δ ⌉

steps. Therefore, in every T = ⌈maxDegree×maxChain×2×∆
2δ ⌉ pairwise steps, each shared variable is

updated at least once, so this T satisfies the definition of an essentially cyclic execution.
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In the distributed algorithm, some of the shared variables (or all of them) may reach quies-
cence, in which case these shared variables do not take pairwise steps. This situation maps to the
centralized coordinate descent algorithm as steps where the coordinates are at their optimum, and
the state is not changed.
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E Global Estimation with Vertex-Wise Communication

We present our distributed algorithm optimal piecewise linear estimation using vertex-wise com-
munication. While we restrict the prevention to the example of estimation over a road network,
it is straightforward to extend the algorithm to estimation over a two-dimensional region. Our
algorithm is based on the method of coordinate ascent2, but unlike the pairwise algorithms pre-
sented in Sections 4 and 5 that solve the dual problem, we solve the primal problem directly. We
first show how to the rewrite problem (2) - (3) as an unconstrained convex optimization problem
(Section E.1). We then present the details of the vertex-wise optimization algorithm that solves
this unconstrained problem (Section E.2).

We note that the vertex-wise distributed estimation algorithm operates under a slightly different
model than presented in Section 3. Namely, we assume that all nodes know the bound ∆.

E.1 Problem Formulation

In the distributed algorithm in Section 4, every node i ∈ M(v) has its own copy of θv,i, and the
nodes converge to agreement at the optimal value of θ at vertex v. In the vertex-wise algorithm,
we assign a single variable θv to each vertex v ∈ vertexSet. We denote the vector of all θ variables
by Θ = [θ1, θ2, . . . , θm], where m is the number of vertices. Each vertex v ∈ Vi is assigned a unique
local ID, either 0 or 1, and we define a mapping π(i, localID) from each sector i and local ID localID
to the relevant global ID in Θ.

We write an unconstrained convex optimization problem that is equivalent to (2) - (3) by making
the continuity constraints implicit,

minimize
Θ

C(Θ;S ) =
m
∑

i=1

Ci(θπ(i,0), θπ(i,1);Si). (20)

With this reframing of the optimization problem, we are able to apply the method of coordinate
descent. We describe our distributed implementation below.

E.2 Distributed Coordinate Descent Algorithm

We first present our distributed coordinate descent algorithm in the context of a static network
with a fixed set of samples. We then show how to extend the algorithm to accommodate dynamics,
namely the addition and removal of segments and samples.

The objective is to solve the unconstrained optimization problem in Equation (20). This problem
can be solved using the method of coordinate descent, where the coordinates are θv, v = 1 . . .m.
Each θv is a shared variable. Every node i ∈ members(v) stores a copy of the shared variable, and
the nodes collaborate to perform the coordinate update step on it. We now explain the details of
this update step.

Coordinate Update Step The node with the lowest ID among those in M(v) acts as the leader
for vertex v. It is responsible for performing the descent step for coordinate θv and communicating
the results to all stations in M(v). To perform the descent iteration, the leader must find θv such
that

θv = argmin
ξ

C(θ1, . . . θi−1, ξ, θi+1, . . . , θn;S).

2Coordinate descent is identical to coordinate ascent, except in each update step, we find the argument that
minimizes the objective function with respect to the chosen coordinate.
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This can be achieved by taking the partial derivative of C with respect to θv and then finding the
root of that partial derivative. The partial derivative of C with respect to θv is

∂C

∂θv
=

m
∑

i=1

∂Ci

∂θv
=

∑

i∈M(v)

∂Ci

∂θv
. (21)

The last equality follows from the fact that the partial derivative of Ci is 0 if node i is not adjacent
to v. Therefore, θv depends only on information from nodes adjacent to v.

Each node i ∈M(v) finds the partial derivative of Ci with respect to θv and sends this partial
derivative information to the leader. This information can be encapsulated in two coefficients αv

i

and βv,localID
i as follows. Let Xi be the matrix formed from the sample locations where each row

j corresponds to a sample (xj , yj , zj) and is given by

X
[j,:]
i =

[

1−
xj

di

loci(xj ,yj)
di

]

.

We denote the entries in the matrix XT

i Xi and the row vector zTi Xi as follows,

[

a1i a2i
a2i a1i

]

∆
= XT

i Xi

[

b1i b2i
]T ∆

= yTi Xi.

The two coefficients are

αv
i

∆
= 2a1i βv,localID

i

∆
=

{

2a2i θπ(i,1) − 2b1i if localId = 0

2a2i θπ(i,0) − 2b2i otherwise,
(22)

and the partial derivative of Ci with respect to θv can be expressed as

∂Ci

∂θv
= αiθv + βside

i .

Once the leader has received coefficients from all nodes inMv, it constructs the partial derivative
of C To find value θv by summing as in (21). It then finds to the root of this partial derivative,

θv =

∑

i∈M(v) β
v,localID
i

∑

i∈M(v) α
v
i

, (23)

and sends the new value for θv to all nodes in M(v).

Atomic Vertex-Wise Communication To initiate the update step, the leader sends a request
message to all followers. Each follower i computes its corresponding partial derivative locally and
sends the coefficients to the leader in a reply message. When the leader receives all replies, it
computes the value for the update and sends it to all followers in an update message.

When the leader sends a request message, it does not block while waiting for replies and
can send and receive messages relating to both of its vertices, but when a follower responds to a
request message, it blocks while it waits for the update message. This means that, while the
stations in M(v) are waiting for an update for vertex v, they cannot participate in updating their
other vertices by sending reply messages. Note that vertices that are not adjacent to any station
in M(v) may continue to be updated while the stations in M(v) are blocked.
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Dealing with dynamics We now overview the algorithm flow. Changes to neighbor sets (en-
tailing leader changes) while messages outstanding are handled with timeouts to avoid blocking on
an obsolete leader. After GST, every vertex has unique leader known to all nodes adjacent to that
vertex, and since all messages arrive within a known bound, no timeouts expire.

Each station i with vertices u and v can independently detect whether its coefficients for a vertex
v have changed since the previous update. This can occur due to a change of i’s sample set, or an
update of the value θu at the node’s other vertex. When this happens, the station should notify
v’s leader to perform an optimization step on θu by sending it a notify message. However, if the
station has sent it a reply message for which it has not yet received an update, it is blocked, and
therefore, it records the occurrence by setting a newUpdate flag. Then, once the update arrives, it
sends the notify message. If the leader receives a notify message from any follower, it eventually
sends a new request.

A request messages is only triggered by notify messages, and a notify message is only
triggered by changes to the partial derivative for a vertex at a station. Therefore, if after GST, the
system reaches the optimal solution to problem (20), then after a finite period of time, the system
achieves quiescence and no additional messages are sent.

Convergence

Theorem 2. After GST, the values of the θu variables, as maintained by the stations, converge to
the optimal estimate, i.e., the solution of Problem 20.
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