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Abstract

It is known that for memoryless sources, the average and maximal redundancy of
fixed–to–variable length codes, such as the Shannon and Huffman codes, exhibit two
modes of behavior for long blocks. It either converges to a limit or it has an oscillatory
pattern, depending on the irrationality or rationality, respectively, of certain parame-
ters that depend on the source. In this paper, we extend these findings, concerning the
Shannon code, to the case of a Markov source, which is considerably more involved.
While this dichotomy, of convergent vs. oscillatory behavior, is well known in other
contexts (including renewal theory, ergodic theory, local limit theorems and large de-
viations of discrete distributions), in information theory (e.g., in redundancy analysis)
it was recognized relatively recently. To the best of our knowledge, no results of this
type were reported thus far for Markov sources. We provide a precise characterization
of the convergent vs. oscillatory behavior of the Shannon code redundancy for a class
of irreducible, periodic and aperiodic, Markov sources. These findings are obtained by
analytic methods, such as Fourier/Fejér series analysis and spectral analysis of matrices.

Index Terms: Shannon code, average redundancy, Fourier series, uniform convergence,

spectral analysis, analytic information theory.
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1 Introduction

Recent years have witnessed a resurgence of interest in redundancy rates of lossless coding,

see, e.g., [1], [3], [6], [10], [13], [14], [15], [16], [17], [18]. In particular, in [18] Szpankowski

derived asymptotic expressions of the (unnormalized) average redundancy Rn, as a function

of the block length n, for the Shannon code, the Huffman code, and other codes, focusing

primarily on the binary memoryless source (BSS), parametrized by p – the probability of

‘1’. A rather interesting behavior of Rn was revealed in [18], especially in the cases of

the Shannon code and the Huffman code: When α
△
= log2[(1 − p)/p] is irrational, then Rn

converges to a constant (which is 1/2 for the Shannon code), as n → ∞. On the other hand,

when α is rational, Rn has a non–vanishing oscillatory term whose fundamental frequency

and amplitude depend on the source statistics in an explicit manner.

More precisely, confining the discussion to the Shannon code, in [18] the average unnor-

malized redundancy

Rn = E {⌈− log2 P (X1, . . . , Xn)⌉ + log2 P (X1, . . . , Xn)} , (1)

was analyzed for large n, assuming that the source P , that governs the data to be com-

pressed, X1, X2, . . ., is a BSS. A straightforward extension (see also [14]) of the Shannon–

code redundancy result of [18], to a general r–ary alphabet memoryless source, with letter

probabilities p1, . . . , pr, yields the following expression:

Rn =

{

1
2 + 1

M

(

1
2 − 〈βMn〉

)

+ o(1) all {αj} are rational
1
2 + o(1) otherwise

(2)

where β
△
= − log p1, αj = log pj/p1, j = 2, 3, . . . , r, 〈u〉 is the fractional part of a real

number u (i.e., 〈u〉 = u−⌊u⌋), and M is the smallest common multiple of all denominators

of the rational numbers {αj} when presented as ratios between two relatively prime integers.

This erratic behavior, where Rn is either convergent (and then the limit is always 1/2) or

oscillatory, depending on the rationality of {αj}, was related in [14] to wave diffraction

patterns of scattering from partially disordered media, where the existence/non–existence

of Bragg peaks depends on the rationality/irrationality of certain optical distance ratios.

Our goal in this paper is to extend the scope of this analysis to irreducible Markov

sources and to evaluate precisely (for large n) the average redundancy of the Shannon code

for a finite alphabet, first order Markov source with given transition probabilities. In doing
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so, we also provide a more complete analysis than in [14] and [18]. As will be seen, this

extension to the Markov case appears rather non–trivial, both from the viewpoint of the

conditions for oscillatory behavior and from the aspect of the asymptotic expression of Rn

in the oscillatory mode. These depend strongly on the dominant eigenvalues and on the

detailed structure of the matrix of transition probabilities. For example, in contrast to the

memoryless case, where there is only one oscillatory term, when it comes to the Markov case,

in the oscillatory mode there are, in general, contributions from multiple oscillatory terms,

and in the convergent mode, Rn may converge to a constant other than 1/2 (see Example 2

below). Moreover, it turns out that the behavior of the redundancy depends quite strongly

on important dynamical properties of the Markov chain, such as reducibility/irreducibility

and periodicity/aperiodicity.

We begin our study (Sections 2 and 3) from the relatively simple case where all single–

step state transitions have positive probability. Our main result in Section 2, Theorem 1, is

then an extension of formula (2) to the Markov case with strictly positive state transition

probabilities. To give the reader a general idea of this theorem, an informal description of

it can be stated as follows: Rather than the parameters {αj} of the memoryless case, we

now define a matrix {αjk}
r
j,k=1 of log–ratios of certain transition probabilities (the exact

definition will be provided in the sequel). If at least one of these parameters is irrational,

then similarly as in the memoryless case, Rn = 1
2 + o(1). If, on the other hand, all these

parameters are rational, then as in the memoryless case, let M be their smallest common

denominator. In this case, Rn = Ωn +o(1), for “most large values” of n (a term that will be

defined precisely in the sequel), where Ωn is a linear combination of certain functions of n,

for which we have an explicit formula in terms of the source parameters. These functions

oscillate as n varies, with amplitude 1/M and a fundamental frequency that depends on

the source parameters.

In Section 4, we relax the strict positivity assumption, but still assume the Markov chain

to be irreducible. Under this assumption, we first assume that the chain is also aperiodic,

and then further extend the scope to allow periodicity. In these cases, the extension of

eq. (2) is still available, though it is somewhat less explicit (than in the positive transition

matrix case) in the sense that it depends on certain parameters of the source, for which we

have no closed–form expressions, but which can be found by numerical procedures. It is

also demonstrated (in Example 2) that the irreducibility assumption is essential, since the
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above described two–mode behavior ceases to exist when this assumption is dropped.

We should point out that minimax redundancy and regret for the class of Markov

sources were studied in the past – see, e.g., [10], [15]. Interestingly enough, the minimax re-

gret for memoryless and Markov sources does not exhibit the two–mode behavior of either

convergent or oscillatory mode [3]. This dichotomy, of convergent vs. oscillatory behav-

ior, with dependence on rationality/irrationality of certain parameters, is a well recognized

phenomenon in mathematics and physics, ranging across a large variety of areas, including

renewal theory, ergodic theory [7], local limit theorems and large deviations for discrete

distributions [2], [4]. This phenomenon, however, was observed in information theory only

relatively recently [7], [18]. On the other hand, the oscillatory phenomenon for discrete ran-

dom structures is a well known fact in analysis of algorithms [5], [19], and also in information

theory [3], [13], [19].

2 Formulation and Results for Positive Transition Matrices

In this section, we first establish notation conventions and spell out our assumptions. Then,

we present our main result for the case of a positive transition probability matrix (Theorem

1), discuss it, and provide an example for its use.

Throughout this paper, we adopt the customary notation conventions in the information

theory literature: Random variables will be denoted by capital letters (e.g., X), specific

values they may take will be denoted by the corresponding lower–case letters (e.g., x), and

their alphabets will be denoted by the corresponding calligraphic letters (e.g., X ). Random

vectors of length n (e.g., (X1, X2, . . . , Xn)) will be denoted by capital letters superscripted

by n (e.g., Xn), and specific values of these vectors (e.g., (x1, x2, . . . , xn)) will be denoted

by lower–case letters superscripted by n (e.g., xn). Finally, the set of vectors of length n,

with components taking on values in X , will be denoted by X n. Logarithms will always

be understood to be taken w.r.t. the base 2. The function I(·) will denote the indicator

function, that is, for a given statement E, I(E) = 1 if E is true, and I(E) = 0 if E is false.

Consider a source sequence X1, X2, . . ., Xt ∈ X = {1, 2, . . . , r} (r – positive integer),

t = 1, 2, . . ., governed by a first–order Markov chain with a given matrix P of state–

transition probabilities {p(j|k)}r
j,k=1. The initial state probabilities will be denoted by

pk, k = 1, 2, . . . , r. The stationary state probabilities will be denoted by πk, k = 1, 2, . . . , r.

Thus, the probability of a given source string xn = (x1, . . . , xn) ∈ X n, under the given
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Markov source, is

µ(xn) = px1

n
∏

t=2

p(xt|xt−1). (3)

The average unnormalized redundancy of the Shannon code is defined as

Rn
△
= E{⌈− log µ(Xn)⌉ + log µ(Xn)}, (4)

where here and throughout the sequel, E{·} denotes the expectation operator w.r.t. the

underlying Markov source µ just defined.

As mentioned in the Introduction, in this paper, we assume that P is irreducible. We

remind the reader that an irreducible Markov chain is one where there is positive probability

to pass from every state j ∈ X to every state k ∈ X within a finite number of steps, namely,

for every j and k, there exists a positive integer l such that the (k, j)–th element of P l is

strictly positive. Another important concept we will need is periodicity. The period dj of a

state j is the greatest common divisor of all integers n for which Pr{Xn = j|X0 = j} > 0.

A state is called periodic if dj > 1 and aperiodic if dj = 1. Since all states of an irreducible

Markov chain are in the same class of communicating states, then dj is the same for all

states, and hence will be denoted collectively by d. An irreducible Markov chain is then

called periodic if d > 1 and aperiodic if d = 1. The case where all entries of P are

positive, henceforth referred to as the case of a positive matrix P , is obviously a case of

an irreducible, aperiodic Markov chain. However, the positivity of P is not a necessary

condition for irreducibility and aperiodicity of a Markov chain. Throughout the remaining

part of this section, as well as in Section 3, we assume that all entries of P are strictly

positive.

Our main result in this section is the following (the proof appears in Section 3).

Theorem 1 Consider the Shannon code of block length n for a Markov source µ with a

a given vector p = (p1, . . . , pr) of initial state probabilities and a positive state transition

matrix P . Define

αjk = log

[

p(j|1)p(j|j)

p(k|1)p(j|k)

]

, j, k ∈ {1, 2, . . . , r}. (5)

Then, the redundancy Rn is characterized as follows:

(a) If not all {αjk} are rational, then

Rn =
1

2
+ o(1). (6)
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(b) If all {αjk} are rational, then for every j, k ∈ {1, . . . , r}, let

ζjk(n) = M [−(n − 1) log p(1|1) + log p(j|1) − log p(k|1) − log pj ], (7)

and

Ωn =
1

2

(

1 −
1

M

)

+
1

M

r
∑

j=1

r
∑

k=1

pjπk̺[ζjk(n)], (8)

where ̺(u)
△
= ⌈u⌉ − u and M is the smallest common integer multiple of the denominators

of {αjk}, when each one of these numbers is represented as a ratio between two relatively

prime integers. Then, there exists a positive sequence ξn → 0, which depends only the source

parameters, such that Rn is upper bounded and lower bounded as follows:

Rn ≤ Ωn +
1

M

r
∑

j=1

r
∑

k=1

pjπkI{̺[ζjk(n)] /∈ (ξn, 1 − ξn)} + o(1). (9)

Rn ≥ Ωn −
1

M

r
∑

j=1

r
∑

k=1

pjπkI{̺[ζjk(n)] /∈ (ξn, 1 − ξn)} − o(1). (10)

As a technical comment, it should be pointed out that the choice of the index 1 in the

conditioning of p(j|1) and p(k|1), that appear in the definition of αjk and in (7), is com-

pletely arbitrary. One may choose any other index in {1, 2, . . . , r}, as long as it is the same

index in both places in the expression of αjk, as well as in the second and third terms in

the square brackets of (7). Also, p(1|1) in (7) can be replaced independently by p(l|l) for

any l ∈ {1, 2 . . . , r}.

Discussion. Theorem 1 tells us that, similarly as in the memoryless case, in the positive

matrix case, Rn has two modes of behavior. In the convergent mode, which happens

when at least one αjk is irrational, Rn → 1/2. In the oscillatory mode, which happens

when all {αjk} are rational, Rn oscillates and it asymptotically coincides with Ωn for most

large values1 of n, provided that log p(1|1) is irrational. This follows from the following

consideration: If log p(1|1) is irrational, then by Weyl’s equidistribution theorem [12], the

sequences {ζjk(n)}n≥1 are uniformly distributed modulo 1, i.e., they fill the unit interval

mod 1 with a uniform density as n exhausts the positive integers. Thus, for every fixed

ξ, ̺[ζjk(n)] /∈ (ξ, 1 − ξ) for a fraction 2ξ of the values of n. This means that for ξn → 0,

1The statement “Rn asymptotically coincides with Ωn for most large values of n” means that for every
ǫ > 0, the fraction of values of n, within the range {1, . . . , N}, for which |Rn − Ωn| > ǫ, tends to zero as
N → ∞.
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the terms I{̺[ζjk(n)] /∈ (ξn, 1 − ξn)} vanish for most large values of n, and then the lower

bound and the upper bound on Rn asymptotically coincide with Ωn. If, on the other

hand, log p(1|1) is rational, then ̺[ζjk(n)] are periodic sequences. If for none of the values

n in a period, ̺[ζjk(n)] = 0, then beyond a certain value of n, ξn is smaller than the

minimum value of ̺[ζjk(n)] along the period and 1 − ξn is larger than the maximum, and

so, I{̺[ζjk(n)] /∈ (ξn, 1 − ξn)} all vanish for all large n. The expression

1

M

r
∑

j=1

r
∑

k=1

pjπkI{̺[ζjk(n)] /∈ (ξn, 1 − ξn)},

which generates the gap between the upper bound and the lower bound on Rn, can be

interpreted as an asymptotic approximation of the probability that − log µ(Xn) falls in

the vicinity (within distance O(ξn)) of an integer. For example, when the source is purely

dyadic (M = 1), then − log µ(Xn) is integer with probability 1, and indeed, the expression

in the last display is equal to 1. In this case, Theorem 1 is useless, but it is also redundant,

because in this case, we clearly know that Rn vanishes. The reason for this “uncertainty”

around integer values of − log µ(Xn) is that these are the discontinuity points of the func-

tion ̺[− log µ(Xn)], and in the proof of Theorem 1, the function ̺ is expanded as a series of

trigonometric polynomials whose convergence is problematic in the neighborhood of discon-

tinuities. Thus, we believe that the uncertainty in the characterization of Rn around these

points should be attributed more to the limitations of the analysis methods than to the real

behavior of Rn. In other words, we conjecture that, in fact, Rn = Ωn + o(1) for all large

n, and not just for most large values of n. It should be pointed out that these issues were

admittedly overlooked in [14] and [18] (beyond the cases of a purely dyadic source, which

was ruled out in the first place). The essential results therein are nonetheless re-confirmed

here as a special case, upon carrying out a more rigorous analysis.

The expression of the oscillatory case, Ωn, is not quite intuitive at first glance, therefore,

in this paragraph, we make an attempt to give some quick insight, which captures the essence

of the main points. The arguments here are informal and non-rigorous (the rigorous proof

is in Section 3). The Fourier series expansion of the periodic function ̺ is given by

̺(u) =
1

2
+
∑

m6=0

ame2πimu (11)

and the important fact about the coefficients is that they are inversely proportional to

m, so that for every two integers k and m, am·k = am/k. Now, when computing Rn =
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E{̺[− log µ(Xn)]}, let us take the liberty of exchanging the order between the expectation

and the summation, i.e.,

Rn =
1

2
+
∑

m6=0

amE{e−2πim log µ(Xn)}. (12)

It turns out that under the conditions of the oscillatory mode, E{e−2πim log µ(Xn)} tends to

zero as n → ∞ for all m, except for multiples2 of M , namely, m = ℓM , l = ±1,±2, . . ..

Thus, for large n, we have

Rn ≈
1

2
+
∑

ℓ 6=0

aℓME{e−2πiℓM log µ(Xn)}

=
1

2
+

1

M

∑

ℓ 6=0

aℓE{e−2πiℓM log µ(Xn)}

=
1

2
+

1

M

{

E̺[−M log µ(Xn)] −
1

2

}

=
1

2

(

1 −
1

M

)

+
1

M
E̺[−M log µ(Xn)]. (13)

Now, consider the set of all {xn} that begin from state x1 = j and end at state xn =

k. Their total probability is about pjπk for large n since Xn is almost independent of

X1. It turns out that all these sequences have exactly the same value of ̺[−M log µ(xn)],

which is exactly ̺[ζjk(n)] (or, in other words, ̺[−M log µ(xn)] = ̺[ζx1xn(n)] independently

of x2, . . . , xn−1) and this explains the expression of Ωn. The reason for this property of

̺[−M log µ(xn)] is the rationality conditions 〈M · αuv〉 = 0, u, v ∈ {1, 2, . . . , r}, which

imply that 〈M log p(xt|xt−1)〉 = 〈M log[p(xt|1)p(1|1)/p(xt−1|1)]〉, and so,

〈−M log µ(xn)〉 = 〈−M log pj〉 +
n
∑

t=2

〈−M log p(xt|xt−1)〉 mod 1

= 〈−M log pj〉 +
n
∑

t=2

〈−M log[p(xt|1)p(1|1)/p(xt−1|1)]〉 mod 1 (14)

which, thanks to the telescopic summation, is easily seen to coincide with the fractional

part of ζjk(n), and of course, ̺[ζjk(n)] depends on ζjk(n) only via its fractional part.

Consider next the following example for using Theorem 1.

Example 1. Consider a Markov source for which the rows of P are all permutations of the

first row, which is p = (p1, . . . , pr). Now, assuming that αj
△
= log(p1/pj) are all rational,

let M be the least common multiple of their denominators (i.e., the common denominator)

2The convergent mode can be treated as a special case of this statement with M = ∞.
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when each one of them is expressed as a ratio between two relatively prime integers. Then,

̺[ζjk(n)] = ̺[−M(n − 1) log p(1|1) + M log p(j|1) − M log p(k|1) − M log pj ]

= ̺[−M(n − 1) log p1 + M log pj − M log pk − M log pj ]

= ̺[−M(n − 1) log p1 − M log pk]

= ̺(−Mn log p1 + M log p1 − M log pk)

= ̺(−Mn log p1), (15)

where in the last step, we have used the fact that (M log p1 − M log pk) is integer and

that ̺ is a periodic function with period 1. Thus, with the exception of the minority of

‘problematic’ values of n, we have

Rn =
1

2

(

1 −
1

M

)

+
1

M

r
∑

j=1

r
∑

k=1

pjπk̺[ζjk(n)] + o(1)

=
1

2

(

1 −
1

M

)

+
1

M

r
∑

j=1

r
∑

k=1

pjπk̺(−nM log p1) + o(1)

=
1

2

(

1 −
1

M

)

+
1

M
̺(−nM log p1) + o(1). (16)

If not all αj are rational, then Rn → 1/2, as predicted by Theorem 1. To see why the

conditions of Theorem 1 lead to the rationality condition herein, let us denote ujk =

〈m log[p(j|1)/p(k|1)]〉, and vjk = 〈m log[p(j|j)/p(j|k)]〉. Then, the conditions of Theorem 1

mean that ujk +vjk = 0 and for all pairs j and k. Therefore, the number of constraints here

is of the order of r2, whereas the number of degrees of freedom that generate these variables,

in this example, is r − 1, i,e., the variables 〈m log(p1/pj)〉, j = 2, 3, . . . , r. Thus, we can

think of this as an overdetermined set of homogeneous linear equations whose only solution

is zero, meaning that 〈m log(p1/pj)〉, j = 2, 3, . . . , r, all vanish. Note that the memoryless

source is a special case of this example, where the rows of P are all identical to the first

row, (p1, . . . , pr). Indeed, eq. (16) coincides with the expression of the memoryless case (see

[14], [18] and the Introduction of this paper).

3 Proof of Theorem 1

3.1 Introductory Comments

The main idea behind the analysis of Rn = E{̺[− log µ(Xn)]} is to approximate the pe-

riodic function ̺(·) by a sequence of trigonometric polynomials, and then to commute the
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expectation with the summation and analyze the various terms of the series. For these

commutations to be legitimate, a sufficient condition is that the convergence would be uni-

form, but unfortunately, it cannot be uniform since the function ̺ is discontinuous. An

alternative route that we take is to sandwich ̺ between two continuous periodic functions,

̺−θ and ̺+
θ , both with period 1, and both indexed by some parameter θ, which when tends

to zero, the bounds become tighter and tighter. Fejér’s theorem (see, e.g., [20]), which

is the trigonometric version of the Weierstrass theorem, provides a concrete sequence of

trigonometric polynomials, which converges uniformly to any given periodic function which

is continuous. The program of the proof is to apply Fejér’s theorem to ̺−θ , and ̺+
θ , and use

them to obtain sandwich bounds on Rn.

3.2 Preliminaries of the Proof

Define the function ̺−θ as

̺−θ (u) =

{

1−θ
θ · 〈u〉 0 ≤ 〈u〉 < θ

1 − 〈u〉 θ ≤ 〈u〉 < 1
(17)

and

̺+
θ (u) = ̺−θ (u) + ∆θ(u) (18)

where

∆θ(u) =











1 − 〈u〉
θ 0 ≤ 〈u〉 < θ

0 θ ≤ 〈u〉 < 1 − θ
1
θ (〈u〉 + θ − 1) 1 − θ ≤ 〈u〉 < 1

(19)

Obviously, ̺−θ (u), and ̺+
θ (u) are continuous, periodic functions, with period 1, and ̺−θ (u) ≤

̺(u) ≤ ̺+
θ (u) for every u. Now, ̺−θ and ∆θ have the following Fourier representations:

̺−θ (u) =
1

2
+
∑

m6=0

am(θ)e2πimu; am(θ) =
1 − e−2πimθ

(2πim)2θ
(20)

and

∆θ(u) = θ +
∑

m6=0

bm(θ)e2πimu; bm(θ) =
1 − cos(2πmθ)

2θπ2m2
. (21)

Note that for any given integers k and ℓ,

aℓ·k(θ) =
aℓ(kθ)

k
(22)

and similarly

bℓ·k(θ) =
bℓ(kθ)

k
. (23)
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These identities will be important later on, in order to return from the series expansions

back to the original functions. The N–the order Féjer approximations are given by

{

̺−θ (u)
}

N

△
=

1

2
+

N
∑

|m|=1

am(θ) ·

(

1 −
|m|

N + 1

)

e2πimu (24)

and

{∆θ(u)}N
△
= θ +

N
∑

|m|=1

bm(θ) ·

(

1 −
|m|

N + 1

)

e2πimu. (25)

According to Fejér’s theorem, as N → ∞, these functions converge uniformly to ̺−θ (u) and

∆θ(u), respectively. However, it should be kept in mind that in order to guarantee that the

absolute error would be uniformly within less than a given ǫ (for all three functions ρ+
θ , ρ−θ ,

and ∆θ), the integer N should be at least as large as some N0(ǫ, θ) (or N0 for shorthand

notation), which grows both as ǫ decreases and as θ decreases. In particular, following the

proof of Fejér’s theorem [20, p. 6] (see also Appendix herein), it is readily seen that for all

three functions, ρ+
θ , ρ−θ , and ∆θ,

ǫ0(N, θ)
△
= inf

0<δ<1/2

[

δ

θ
+

1

N sin2(πδ)

]

(26)

is an upper bound on the maximum approximation error when N terms of the Fejér series

are used. Thus, N0(ǫ, θ) can be defined as the smallest integer N such that ǫ0(N, θ) ≤ ǫ.

Obviously, by definition

ǫ0[N0(ǫ, θ), θ] ≤ ǫ. (27)

We will make use of this simple inequality later on.

3.3 General Lower and Upper Bounds on Rn

We proceed with some general lower and upper bounds on Rn. As for the lower bound, we

have

Rn = E {̺(− log µ(Xn))}

≥ E
{

̺−θ (− log µ(Xn))
}

≥ E







1

2
+

N0
∑

|m|=1

am(θ) ·

(

1 −
|m|

N0 + 1

)

e−2πim log µ(Xn) − ǫ







=
1

2
+

N0
∑

|m|=1

am(θ) ·

(

1 −
|m|

N0 + 1

)

E
{

e−2πim log µ(Xn)
}

− ǫ. (28)
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Now, clearly

E
{

e−2πim log µ(Xn)
}

=
∑

x∈Xn

n
∏

t=1

[p(xt|xt−1) exp {−2πim log p(xt|xt−1)}] . (29)

Define the r × r complex matrix Am whose entries are

ajk(m) = p(k|j) exp [−2πim log p(k|j)] , j, k = 1, . . . , r. (30)

Also define the r–dimensional column vectors

cm = (p1 exp[−2πim log p1)], . . . , pr exp[−2πim log pr])
T , (31)

and 1 = (1, 1, . . . , 1)T , where the superscript T denotes vector/matrix transposition. Then,

it follows that

E
{

e−2πim log µ(Xn)
}

= cT
mAn−1

m 1. (32)

Let lj,m and rj,m be, respectively, the left eigenvector and the right eigenvector pertaining

to the eigenvalue λj,m (j = 1, 2, . . . , r) of the matrix Am. Here, we index the eigenvalues of

Am according to a non–increasing order of their modulus, that is,

|λ1,m| ≥ |λ2,m| ≥ · · · ≥ |λr,m|. (33)

Since P is a stochastic matrix (so, its maximum modulus eigenvalue is 1) and its elements

are the absolute values of the corresponding elements of Am, it follows from [8, Theorem

8.4.5] (see also Lemma 1 in Subsection 3.4) that |λ1,m| ≤ 1 (and hence |λj,m| ≤ 1 for all

j = 1, 2, . . . , r). Also, the sets of left– and right eigenvectors form a bi-orthogonal system,

i.e., lTj,mrk,m = 0, j, k = 1, 2, . . . , r, j 6= k. We scale these vectors such that lTj,mrj,m = 1 for

all j = 1, 2, . . . , r. Then by the spectral representation of matrices [8], we have

An−1
m 1 =

r
∑

j=1

λn−1
j,m · lTj,m1 · rj,m, (34)

and so,

cT
mAn−1

m 1 =
r
∑

j=1

λn−1
j,m · lTj,m1 · cT

mrj,m. (35)

On substituting this back into the lower bound on Rn, we obtain:

Rn ≥
1

2
+

N0
∑

|m|=1

am(θ) ·

(

1 −
|m|

N0 + 1

)

·
r
∑

j=1

λn−1
j,m · lTj,m1 · cT

mrj,m − ǫ. (36)
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In a similar manner, we obtain the following upper bound

Rn = E {̺(− log µ(Xn))}

≤ E
{

̺+
θ (− log µ(Xn))

}

= E
{

̺−θ (− log µ(Xn))
}

+ E {∆θ(− log µ(Xn))}

≤
1

2
+ θ +

N0
∑

|m|=1

[am(θ) + bm(θ)] ·

(

1 −
|m|

N0 + 1

)

E
{

e−2πim log µ(Xn)
}

+ ǫ

=
1

2
+ θ +

N0
∑

|m|=1

[am(θ) + bm(θ)] ·

(

1 −
|m|

N0 + 1

) r
∑

j=1

λn−1
j,m · lTj,m1 · cT

mrj,m

+ǫ. (37)

Let us define now

γn(ǫ, θ)
△
=

N0
∑

|m|=1

[|am(θ)| + |bm(θ)|] ·

(

1 −
|m|

N0 + 1

)

∑

j: |λj,m|<1

|λj,m|n−1|lTj,m1 · cT
mrj,m|

+ǫ + θ. (38)

and recall that N0 depends on ǫ and θ. Obviously, for every fixed ǫ and θ, the double

sum over m and j, in the expression of γn(ǫ, θ), tends to zero as n → ∞ since all terms

contain a factor |λj,m|n−1 and by definition of these terms, only |λj,m| < 1 are included in

the summation. This means that if we let ǫ and θ tend to zero slowly enough with n, thus

denoting them by ǫn and θn, we have γn(ǫn, θn) → 0. In particular, let us define ǫn and θn

to be the minimizers3 of γn(ǫ, θ). Then, obviously, γn
△
= γn(ǫn, θn) → 0 as n → ∞. Then,

our upper and lower bounds become

Rn ≥
1

2
+

N0
∑

|m|=1

am(θn) ·

(

1 −
|m|

N0 + 1

)

·
∑

j: |λj,m|=1

λn−1
j,m · lTj,m1 · cT

mrj,m − γn, (39)

and

Rn ≤
1

2
+

N0
∑

|m|=1

[am(θn) + bm(θn)] ·

(

1 −
|m|

N0 + 1

)

∑

j: |λj,m|=1

λn−1
j,m · lTj,m1 · cT

mrj,m + γn. (40)

3.4 Criteria for the Convergent and Oscillatory Modes

Considering the derived lower bound and the upper bound on Rn (eqs. (39) and (40), it

is apparent that the key issue that distinguishes between the convergent mode and the

oscillatory mode of Rn, is to determine under what conditions the modulus of the dominant

3Note that with this choice, θn and ǫn depend only on the parameters of the source µ.
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eigenvalue, λ1,m, namely, the spectral radius of Am, denoted ρ(Am), is equal to unity and

under what conditions it is strictly less than unity (obviously, it cannot be larger than unity).

The former case is the oscillatory mode and the latter case is the convergent one. To this

end, the following lemma, that appears in [8] (with minor modifications in its phrasing),

and that has already been used in earlier related studies [9], [11], proves useful.

Lemma 1 [8, Theorem 8.4.5, p. 509] Let F = {fkj} and G = {gkj} be two r × r matrices.

Assume that F is a real, non–negative and irreducible matrix, G is a complex matrix,

and fkj ≥ |gkj | for all k, j ∈ {1, 2, . . . , r}. Then, ρ(G) ≥ ρ(F ) with equality if and only

if there exist real numbers s, and w1, . . . , wr such that G = e2πisDFD−1, where D =

diag{e2πiw1 , . . . , e2πiwr}.

The proof of the necessity of the condition G = e2πisDFD−1 appears in [8] (see also [9],

[11]). The sufficiency is obvious since the matrix DFD−1 is similar to F and hence has the

same set of eigenvalues.

We wish to apply Lemma 1 in order to distinguish between the two aforementioned cases

concerning the spectral radius of Am. Consider the state transition probability matrix P in

the role of F of Lemma 1 (i.e., fkj = p(j|k)) and the matrix Am in the role of G. Since P

is assumed positive in this part, then it is obviously non–negative and irreducible. Since it

is a stochastic matrix, its spectral radius is, of course, ρ(P ) = 1. Also, by definition of Am,

as the matrix {p(j|k) · exp[−2πim log p(j|k)]}, it is obvious that the elements of P are the

absolute values of the corresponding elements of Am, and so, all the conditions of Lemma

1 clearly apply. The lemma then tells us that ρ(Am) = ρ(P ) = 1 if and only if there exist

real numbers s and w1, . . . wr such that:

−m log p(j|k) = (s + wk − wj) mod 1, j, k = 1, . . . , r, (41)

where x = y mod 1 means that the fractional parts of x and y are equal, that is, 〈x〉 = 〈y〉.

To find a vector w = (w1, . . . , wr) and a number s with this property (if exist), we take

the following approach: Consider first the choice k = j in (41). This immediately tells us

that s, if exists, must be equal to −m log p(j|j) (mod 1) for every j = 1, . . . , r. In other

words, one set of conditions is that −m log p(j|j) are all equal (mod 1), or equivalently,

〈

m log
p(j|j)

p(1|1)

〉

= 0, j = 2, 3, . . . , r, (42)
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and then s is taken to be the common value of all 〈−m log p(j|j)〉. Thus, eq. (41) becomes

m log
p(j|j)

p(j|k)
= (wk − wj) mod 1, j, k = 1, . . . , r, (43)

and it remains to find the vector w if possible. To this end, observe that if w satisfies (43),

then for every constant c, w + c also satisfies (43). Taking c = −w1,
4 it is apparent that if

(43) can hold for some w, then there is such a vector whose first component vanishes, and

then by setting k = 1 in (43), we learn that

wj =

〈

m log
p(j|1)

p(j|j)

〉

, j = 1, . . . , r, (44)

is a legitimate choice. Thus, (43) becomes

〈

m log

[

p(j|1)p(j|j)

p(k|1)p(j|k)

]〉

= 0 j, k = 1, . . . , r. (45)

Note that by setting k = 1 in (45), we get (42) as a special case, which means that (45),

applied to all j, k ∈ {1, 2, . . . , r}, are all the necessary and sufficient conditions needed for

ρ(Am) = 1. Now, a necessary and sufficient condition for eq. (45) to hold for some integer

m, is that the numbers

αjk = log

[

p(j|1)p(j|j)

p(k|1)p(j|k)

]

(46)

would be all rational.

We next prove the asymptotic expressions for Rn, first, for the case where some {αjk}

are irrational, which means that ρ(Am) < 1 for all m 6= 0 (convergent mode), and then for

the case where all {αjk} are rational, which means that there are non–zero values of m for

which ρ(Am) = 1 (oscillatory mode).

3.5 Bounds on Rn in the Convergent and Oscillatory Modes

When some αjk are irrational, then for all m 6= 0 and j ∈ {1, 2, . . . , r}, we have |λj,m| <

1, and so, the second terms (i.e., the sums over m) in eqs. (39) and (40) do not exist.

Consequently, we immediately get Rn ≥ 1
2 − γn and Rn ≤ 1

2 + γn, namely, Rn = 1
2 + o(1).

Consider now the case where all {αjk} are rational, and so, there exist m 6= 0 with

ρ(Am) = 1. Our first step is to establish the fact that if M is the smallest positive integer

m that satisfies (45), then any other non–zero integer m satisfies this property if and only if

it is an integral multiple of M . The fact that integer multiples of M satisfy (45) is obvious

4The choice of the first component of w is arbitrary.
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since 〈k · Mαjk〉 = 〈k · 〈Mαjk〉〉 = 〈k · 0〉 = 0. To see why the converse is true as well,

let M ′ be another integer satisfying (45). If M ′ is not an integer multiple of M , it must

be larger than M since M was defined as the smallest integer satisfying (45). Now, if M

and M ′ both satisfy (45), then so does M ′′ = M ′ − ⌊M ′/M⌋ · M , but M ′′ must be strictly

smaller than M , which is a contradiction.

This means that for m = ℓM , ℓ = ±1,±2, . . ., and only for these integers, Am has a

modulus 1 eigenvalue

λ1,ℓM = exp [2πi 〈−ℓM log p(1|1)〉] = exp [−2πiℓM log p(1|1)] (47)

and the corresponding vector w is ℓ times (mod 1) the vector w associated with m =

M . By the Perron–Frobenius theorem [8], all other eigenvalues have modulus strictly

less than 1, and they will contribute exponentially small terms to Rn. Since λ−1
1,ℓMAℓM

is similar to P , under the transformation matrix D = diag{e2πiw1 , . . . , e2πiwr}, wj =

〈ℓM log[p(j|1)/p(j|j)]〉, j = 1, 2, . . . , r (see Lemma 1), then by (44), the right- and left

eigenvectors associated with λ1,ℓM are, respectively,

r1,ℓM = D · 1 =
(

1, e2πiℓM log[p(2|1)/p(2|2)], . . . , e2πiℓM log[p(r|1)/p(r|r)]
)T

, (48)

and

l1,ℓM = (π1, . . . , πk) · D
−1 =

(

π1, π2e
−2πiℓM log[p(2|1)/p(2|2)], . . . , πre

−2πiℓM log[p(r|1)/p(r|r)]
)

.

(49)

Thus, the dominant term in cT
ℓMAn−1

ℓM 1 becomes:

λn−1
1,ℓM · lT1,ℓM1 · cT

ℓMr1,ℓM =
∑

j,k

pjπke
2πiℓζjk(n), (50)

where ζjk(n) is defined as in Theorem 1. Combining this relation with eq. (39), Rn is further

lower bounded as follows:

Rn ≥
1

2
+

⌊N0/M⌋
∑

|ℓ|=1

aℓM (θn) ·

(

1 −
|ℓM |

N0 + 1

)

·
∑

j,k

pjπke
2πiℓζjk(n) − γn

=
1

2
+

1

M

⌊N0/M⌋
∑

|ℓ|=1

aℓ(Mθn) ·

(

1 −
|ℓM |

N0 + 1

)

·
∑

j,k

pjπke
2πiℓζjk(n) − γn

=
1

2
+

1

M

⌊N0/M⌋
∑

|ℓ|=1

aℓ(Mθn) ·

(

1 −
|ℓ|

⌊N0/M⌋ + 1

)

·
∑

j,k

pjπke
2πiℓζjk(n) −
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1

M

⌊N0/M⌋
∑

|ℓ|=1

aℓ(Mθn) ·

[

|ℓ|

(N0 + 1)/M
−

|ℓ|

⌊N0/M⌋ + 1

]

·
∑

j,k

pjπke
2πiℓζjk(n) − γn

≥
1

2
+

1

M

∑

j,k

pjπk

{

̺−Mθn
[ζjk(n)] −

1

2
− ηn

}

−

1

M

⌊N0/M⌋
∑

|ℓ|=1

aℓ(Mθn) ·

[

|ℓ|

(N0 + 1)/M
−

|ℓ|

⌊N0/M⌋ + 1

]

·
∑

j,k

pjπke
2πiℓζjk(n) − γn

≥
1

2

(

1 −
1

M

)

+
1

M

∑

j,k

pjπk̺[ζjk(n)] −
1

M

∑

j,k

pjπk∆Mθn
[ζjk(n)] −

1

M

∑

j,k

pjπk

⌊N0/M⌋
∑

|ℓ|=1

aℓ(Mθn) ·

[

|ℓ|

(N0 + 1)/M
−

|ℓ|

⌊N0/M⌋ + 1

]

· e2πiℓζjk(n) −

γn −
ηn

M
, (51)

where ηn is defined as the maximum approximation error of the function ̺−Mθn
using

⌊N0(ǫn, θn)/M⌋ terms of the Fejér series. We wish to show now that ηn → 0 as n → ∞.

Let us assume that ǫn and θn are small enough to make N0 = N0(ǫn, θn) not smaller than

2M , and so, ⌊N0/M⌋ ≥ N0/M − 1 ≥ N0/2M . Then, using eq. (26),

ηn ≤ ǫ0

[

N0(ǫn, θn)

2M
,Mθn

]

= inf
0<δ<1/2

[

δ

Mθn
+

2M

N0(ǫn, θn) sin2(πδ)

]

< inf
0<δ<1/2

[

2Mδ

θn
+

2M

N0(ǫn, θn) sin2(πδ)

]

= 2M · ǫ0[N0(ǫn, θn), θn]

≤ 2Mǫn → 0, (52)

where the last inequality follows from eq. (27). Thus, ηn/M in the last line of (51), is upper

bounded by 2ǫn. The first two terms in the last expression of (51) form Ωn, as defined in

Theorem 1. Now, for the absolute value of the fourth term, it is first observed that upon a

standard algebraic manipulation under the assumption N0 ≥ 2M , we have

∣

∣

∣

∣

1

(N0 + 1)/M
−

1

⌊N0/M⌋ + 1

∣

∣

∣

∣

=
M | 〈N0/M〉 + 1/M − 1|

(N0 + 1)(⌊N0/M⌋ + 1)

≤
2M2

N2
0

. (53)

Thus, the fourth term of (51) is upper bounded by the weighted sum (with weights pjπk

17



for each pair (j, k)) of terms, that are bounded as follows:

∣

∣

∣

∣

1

M

N0/M
∑

|ℓ|=1

aℓ(Mθn) ·

[

|ℓ|

(N0 + 1)/M
−

|ℓ|

N0/M + 1

]

· e2πiℓζjk(n)

∣

∣

∣

∣

≤
4M2

N2
0

⌊N0/M⌋
∑

ℓ=1

ℓ · |aℓ(Mθn)|

=
2M

πN2
0

⌊N0/M⌋
∑

ℓ=1

|1 − e−2πiℓMθn |

2πℓMθn

=
2M

πN2
0

⌊N0/M⌋
∑

ℓ=1

√

2[1 − cos(2πℓMθn)]

(2πℓMθn)2
. (54)

To bound the summand of the last expression, consider the following: For every positive t,

clearly, sin t ≤ t, and so, for every α > 0,

1 − cos α =

∫ α

0
sin tdt ≤

∫ α

0
tdt =

α2

2
, (55)

which for α = 2πℓMθn, implies that the summand is bounded by 1, and hence the expression

in the last chain of inequalities is further upper bounded by δn
△
= 2/(πN0). Since N0 =

N0(ǫn, θn) → ∞, then δn → 0, and we have

Rn ≥
1

2

(

1 −
1

M

)

+
1

M

∑

j,k

pjπk̺[ζjk(n)] −
1

M

∑

j,k

pjπk∆Mθn
[ζjk(n)] − γn − 2ǫn − δn

≥
1

2

(

1 −
1

M

)

+
1

M

∑

j,k

pjπk̺[ζjk(n)] −

1

M

∑

j,k

pjπkI{̺[ζjk(n)] /∈ (Mθn, 1 − Mθn)} − γn − 2ǫn − δn, (56)

and so, the lower bound of Theorem 1 is obtained with ξn
△
= Mθn. In the very same manner,

the upper bound on Rn is given by

Rn ≤
1

2

(

1 −
1

M

)

+
1

M

∑

j,k

pjπk̺
−
Mθn

[ζjk(n)] +

1

M

∑

j,k

pjπk∆Mθn
[ζjk(n)] + γn + 2ǫn + δn (57)

≤
1

2

(

1 −
1

M

)

+
1

M

∑

j,k

pjπk̺[ζjk(n)] +

1

M

∑

j,k

pjπkI{̺[ζjk(n)] /∈ (ξn, 1 − ξn)} + γn + 2ǫn + δn, (58)

which is the upper bound of Theorem 1. Here, one has to bound also an expression similar to

(54), but with aℓ(Mθn) being replaced by bℓ(Mθn), and the bounding technique is similar.

This completes the proof of Theorem 1.
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4 Extensions

We now discuss some extensions of Theorem 1. In particular, we drop the assumption that

all transition probabilities must be strictly positive and first assume that P corresponds to

an irreducible aperiodic Markov source. Then we drop the aperiodicity constraint.

4.1 Irreducible Aperiodic Markov Sources

When some of the entries of the matrix P vanish, then obviously, Theorem 1 cannot be used

as is since the corresponding parameters αjk are no longer well defined. Lemma 1, which

stands at the heart of the proof of Theorem 1, can still be used as long as P is irreducible,

but more caution should be exercised. The key issue is still to determine whether there

exist parameters s and w (and to find them if exist) that satisfy

−m log p(j|k) = (s + wk − wj) mod 1, (59)

but now these equations are imposed only for the pairs (j, k) for which p(j|k) > 0 (as for the

other pairs ajk(m) = p(j|k) = 0 satisfy the conditions of Lemma 1 automatically anyway).

The approach taken in the solution for s and w, that was derived in the first part of Section

3, can still be applied, with some minor modifications, as long as at least some particular

subsets of the entries of P are still positive.

For example, if one or more diagonal element of P is positive, and for all positive p(j|j),

the numbers 〈−m log p(j|j)〉 are equal, then s can still be taken to be the common value of

all these numbers. If, in addition, at least one row of P is strictly positive, say, row number

l, then wj can be taken to be 〈m log[p(l|l)/p(j|l)]〉, and then the rationality condition of

Theorem 1 is replaced by the condition that

α′
jk = log

[

p(j|l)p(l|l)

p(k|l)p(j|k)

]

(60)

must be rational for all (j, k) with p(j|k) > 0. The bounds on Rn in the oscillatory mode

would be exactly as in Theorem 1, but with the above assignments of s and w.

For a general non-negative matrix P , however, it may not be a trivial task to determine

whether equations (59) have a solution, and if so, what this solution is. In fact, it may be

simpler and more explicit to check directly if Am has an eigenvalue on the unit circle (which

thereby dictates s) and then to find w using Lemma 1. This would lead to the following

generalized version of Theorem 1.
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Theorem 2 Consider the Shannon code of block length n for an irreducible aperiodic

Markov source. Let M be defined as the smallest positive integer m such that

ρ(Am) ≡ |λ1,m| = 1 (61)

and as M = ∞ if (61) does not hold for any positive integer m. Then, Rn is characterized

as follows:

(a) If M = ∞, then

Rn =
1

2
+ o(1). (62)

(b) If M < ∞, then the bounds of Theorem 1, part (b), hold with ζjk(n) being redefined

according to

ζjk(n) = M [(n − 1)s + wj − wk − log pj ], (63)

where

s =
arg{λ1,M}

2π
(64)

and

wj =
arg{xj}

2π
, j = 1, 2, . . . , r, (65)

xj being the j–th component of the right eigenvector x of AM , which is associated with the

dominant eigenvalue λ1,M .

The proof of Theorem 2 is very similar to that of Theorem 1, and hence we will not provide

it here. In a nutshell, we observe that the Perron–Frobenius Theorem and Lemma 1 are

still applicable. Then, we use the necessity of the condition Am = e2πisDPD−1 and the

fact that once this condition holds, the vector x = D · 1 = (e2πiw1 , . . . , e2πiwr)T is the right

eigenvector associated with the dominant eigenvalue λ1,m = e2πis.

Unfortunately, Theorem 2 does not suggest a practical way to find M . One must start

with m = 1, check if ρ(A1) = 1; if not – increment m to 2, check ρ(A2), and so on. In

the event that M = ∞, we do not have a stopping rule and we may keep incrementing m

indefinitely. An interesting point to note, however, is that the oscillatory expression goes

to 1/2 when M grows without bound. This means that given the block length n, it is

sufficient to stop incrementing m at some m(n), where m(n) is an arbitrary function that

grows (and no matter how slowly) with n. This is because the oscillatory expression will

then be 1/2 + o(n) anyway, just like the convergent expression, so the distinction between

the two modes looses its meaning.
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Finally, it is instructive to demonstrate an example of a reducible Markov source, for

which Theorems 1 and 2 do not hold, and see that even in a simple situation (r = 2), once

the irreducibility assumption is dropped, the two–mode behavior, predicted by Theorems 1

and 2, disappears. Thus, the point in Example 2 below is that the irreducibility assumption

is not imposed just for technical convenience. It is actually essential for Theorems 1 and 2

to hold.

Example 2. Reducible Markov source. Consider the case r = 2, where p(1|2) = 0 and

α
△
= p(2|1) ∈ (0, 1), i.e.,

P =

(

1 − α α
0 1

)

. (66)

Assume also that p1 = 1 and p2 = 0. Since this is a reducible Markov source (once in state

2, there is no way back to state 1), we cannot use Theorems 1 and 2, but we can still find

an asymptotic expression of the redundancy in a direct manner: Note that the chain starts

at state ‘1’ and remains there for a random duration, which is a geometrically distributed

random variable with parameter (1 − α). Thus, the probability of k 1’s (followed by n − k

2’s) is about (1 − α)k · α (for large n) and so the argument of the function ̺(·) should be

the negative logarithm of this probability. Taking the expectation w.r.t. the randomness of

k, we readily have

Rn =
∞
∑

k=0

α(1 − α)k̺[− log α − k log(1 − α)] + o(1). (67)

We see then that there is no oscillatory mode in this case, as Rn always tends to a constant

that depends on α, in contrast to the convergent mode of Theorems 1 and 2, where the limit

is always 1/2, independently of the source statistics. To summarize, it is observed that the

behavior here is very different from that of the irreducible case, characterized by Theorems

1 and 2.

4.2 Irreducible Periodic Markov Sources

Consider now an irreducible periodic Markov source. The Perron-Frobenius theorem and

Lemma 1 still hold [8]. However, the matrix P now has d eigenvalues on the unit circle,

namely, all the d–th roots of unity [8], where d is the period, i.e.,

λ′
t = e2πit/d, t = 0, 1, . . . , d − 1. (68)
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Let rt and lt be the right- and the left eigenvectors of P that are associated with λ′
t. The

analysis is similar as in the aperiodic case, except that we now have d oscillatory terms, one

for each eigenvalue on the unit circle. Indeed, suppose that for some m, the matrix Am has

a modulus–1 eigenvalue λ = e2πis. Then, of course,

A′
m

△
= e−2πisAm (69)

has eigenvalue 1. By definition, the entries of P are still the absolute values of the corre-

sponding entries of A′
m, as in Lemma 1. Thus, by this lemma, A′

m is similar to P , and so it

has the same eigenvalues as P . Among them, the d–th roots of unity λ′
t, t = 0, 1, . . . , d − 1

are eigenvalues of A′
m. Therefore, Am has the following eigenvalues on the unit circle:

λt,m = e2πi(s+t/d), t = 0, 1, . . . , d − 1. (70)

Let us relabel, if necessary, the eigenvalues of Am such that s ∈ [0, 1/d). This means that

the definition of s in Theorem 2 should be restricted to the half open interval [0, 1/d). Thus,

Theorem 2 holds except that ζjk(n) are replaced by

ζjkt(n)
△
= M

[

(n − 1)

(

s +
t

d

)

+ wj − wk − log pj

]

, j, k ∈ {1, 2, . . . , r}, t = 0, 1, . . . , d−1

(71)

and the double summations over (j, k) with weights pjπk, are replaced by corresponding

triple summations over (j, k, t) with weights pjrt,jlt,k, where lt,k is the k–th component of

lt and rt,j is the j–th component of rt. Note that r0,j = 1 and l0,k = πk, so for d = 1 we

indeed obtain the expression (63) of the aperiodic case as a special case.

Appendix

In this appendix, we establish the relation (26). As is shown in [20], the coefficients of

the N–th order Fejér series expansion, {f(u)}N , of a general periodic function f(u), with

period 1, are given by the Fourier coefficients fm multiplied by the “triangular window”

1 − |m|/(N + 1). This means that in the original u-domain, the reconstruction {f(u)}N is

given by the convolution between f(u) and the kernel

KN (u) =
N
∑

m=−N

(

1 −
|m|

N + 1

)

e2πimu =
sin2[(N + 1)πu]

(N + 1) sin2(πu)
. (A.1)
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Since
∫+1/2
−1/2 KN (u)du = 1, we have

|f(u) − {f(u)}N | =

∣

∣

∣

∣

f(u) −

∫ +1/2

−1/2
dtf(u − t)KN (t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ +1/2

−1/2
dt[f(u) − f(u − t)]KN (t)

∣

∣

∣

∣

≤

∫ +1/2

−1/2
dt|f(u) − f(u − t)| · KN (t)

=

∫

|t|≤δ
dt|f(u) − f(u − t)| · KN (t) +

∫

δ≤|t|≤1/2
dt|f(u) − f(u − t)| · KN (t) (A.2)

for every δ ∈ (0, 1/2). Now, in our case, for all three functions, |t| ≤ δ implies |f(u)− f(u−

t)| ≤ δ/θ, since the maximum absolute slope of all three of them is 1/θ. Since KN (t) ≥ 0

and
∫ 1/2
−1/2 dtKN (t) = 1, the first integral in the last line is bounded by δ/θ. As for the

second integral, in our case, |f(u) − f(u − t)| ≤ 1 for all three functions. Since the sine

function is monotonically increasing in the range [0, π/2], then 1/2 ≥ |t| ≥ δ implies

KN (t) ≤
1

(N + 1) sin2(πδ)
<

1

N sin2(πδ)
. (A.3)

Thus, for every δ ∈ (0, 1/2),

|f(u) − {f(u)}N | ≤
δ

θ
+

1

N sin2(πδ)
(A.4)

and eq. (26) is obtained upon minimizing the r.h.s. over the free parameter δ.
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