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Abstract— Consider a workload comprising a consecutive sequence of program execution segments, where each segment can 
either be executed on general purpose processor or offloaded to a hardware accelerator. An analytical optimization framework 
based on MultiAmdhal framework and Lagrange multipliers, for selecting the optimal set of accelerators and for allocating 
resources among them under constrained area is proposed. Due to the practical implementation of accelerators, the optimal 
architecture under area constraints may exclude some of the accelerators. As the fraction of the workload that can be 
accelerated decreases, resources (e.g. area) may shift from accelerators into the general purpose processor. The framework 
can be extended in a number of ways, spanning from SoC partitioning, bandwidth to power distribution, energy and other 
constrained resources.  

Index Terms— MultiAmdahl, Chip Multiprocessors, Modeling of computer architecture.  

——————————      —————————— 

1 INTRODUCTION
arge scale multiprocessor SoCs may be composed of 
several heterogeneous processing elements. These 
elements, spanning from DCT and motion estimation 

to GPUs, are customized hardware accelerators that are 
specifically designed to speed up certain tasks. Today’s 
SoC architects have at their disposal a wide range of such 
heterogeneous accelerators to utilize. It is up to the sys-
tem architect to efficiently allocate the resources among 
the accelerators, while considering physical limitations 
(area, power) of the design. To reach an optimal solution, 
the architect should take into account the efficiency of 
these units under resource constraints as well as the spe-
cifics of the workload.  

Several previous studies use analytic models to derive 
optimal resource allocation of multiprocessors. Zidenberg 
et al. ‎[9] presented the MultiAmdahl model that considers 
the implications of accelerating portions of the workload 
on the overall execution. Cassidy et al. ‎[2] optimized pro-
cessor area vs. L2 cache area vs. number of cores for a 
parallel-execution area-constrained symmetric multicore 
using Lagrange multipliers. MultiAmdahl differs from 
previously-published models  ‎[2], ‎[3], ‎[5], ‎[8]  by  describ-
ing  a system with several heterogeneous hardware units 
operating in sequence, directly modeling  various  design 
constraints and accounting for their impact. 

The MultiAmdahl model provides the framework to 
resolve the following question: given an architecture 
composed of a predefined set of accelerators, what is the 
optimal resource allocation among the accelerators. The 

architect therefore must first select, prior to the optimiza-
tion stage, a set of accelerators to use, and then allocate 
the resources among the selected accelerators.  

At the optimal resource allocation point, all accelera-
tors reach an equilibrium state in which if some area is 
taken from one accelerator and given to another, the 
overall runtime increases. While searching for such opti-
mal point, one must take into account all accelerators’ 
characteristics, total area constraints and the workload 
specifics. Thus, any a-priori, ad-hoc selection criteria 
based on performance threshold or otherwise (let alone 
universal criteria) electing a subset of the accelerators 
may yield only sub-optimal results. Hence, the key con-
tribution of this paper is to enable the SoC architect to 
select an optimal subset of accelerators and allocate the 
area among them, without having to iterate in an ad-hoc 
fashion. In this paper we thus generalize the original Mul-
tiAmdahl framework to allow the optimal selection of a 
subset of available accelerators given the workload and 
the resource budget. 

2 OPTIMIZATION OF MULTI-ACCELERATOR SOC 

The MultiAmdahl ‎[9] model optimally distributes a 
limited resource, such as chip area or power, among the 
units of a heterogeneous chip. The model assumes a 
workload consisting of M+1 execution segments. Each 
segment i of the workload requires 𝑡  seconds to run on a 
reference processor. Assume that each segment i can be 
accelerated by using a special purpose accelerator, where 
each accelerator’s performance speedup 𝑃𝑒𝑟𝑓 (𝑎 ), rela-
tive to performance on the reference processor, is a func-
tion of the area assigned to it. The acceleration function 𝑓 (𝑎 ) represents the inverted performance speedup of the 
ith accelerator having area 𝑎 : 𝑓 (𝑎 )   𝑃𝑒𝑟𝑓 (𝑎 ) (1) 
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Assume that the acceleration functions 𝑓 (𝑎 ) are mon-
otonic and continuously differentiable. The runtime of the 
ith segment on the ith accelerator is thus 𝑓 (𝑎 ) ∙ 𝑡 . It is fur-
ther assumed that the first accelerator, namely i=0, is a 
General Purpose Processor (GPP) responsible for the exe-
cution of the portion of the workload that may not be of-
floaded to any of the hardware accelerators, whereas the 
rest of the accelerators are application specific. Given the 
area allocation 𝐴  {𝑎 , 𝑎 , … , 𝑎 } among the cores, the 
total execution time of the workload is thus:     ∑ 𝑓 (𝑎 )      𝑡  (2) 

where MA stands for MultiAmdahl [2], and 𝑡  represents 
the aggregated time devoted to part of the workload that 
can be accelerated by the ith accelerator. Note further the 
segments are not concurrent, that is, only a single acceler-
ator operates at a time. The sum of the areas assigned to 
all units is bounded by the total chip area 𝐴     : ∑ 𝑎        𝐴      (3) 

As the accelerator functions 𝑓 (𝑎 ) are continuously dif-
ferentiable, the optimal solution is then found using La-
grange multipliers ‎[6], and satisfies:  𝑡 𝑓  (𝑎 )  𝑡 𝑓  (𝑎 ) (4) 

where 𝑓  (𝑎 ) is the derivative of the ith acceleration func-
tion. MultiAmdahl provides the optimal execution time 
when the accelerators deliver higher performance than 
the GPP. Due to practical implementation of accelerators, 
this precondition is not always met.  

Figure 1 depicts a practical model for accelerators, 
where the accelerator is useful within a limited range, 𝐴     𝑎  𝐴    .The area 𝐴     represents the minimal 
area that must be assigned to the ith accelerator, below 
which it is ineffective, and 𝐴     is the diminishing return 
point beyond which any further area assignment has neg-
ligible effect on performance.  

 
Figure 1. Practical accelerator model (Performance vs. area) 𝐴    is an inherent property of any accelerator as min-
imal area is required for the accelerator’s proper function-
ing (e.g. basic functionality logic, storage etc.). Moreover, 𝐴    incorporates overhead reserved for SoC inter-
connectivity (e.g. area reserved for bus-interface, arbitra-
tion logic and the like). 𝐴    accounts for a significant 
portion of the total area of smaller accelerators. Further-
more, any area assignment below the accelerator’s 𝐴   will effectively render such accelerator inoperable. 
For instance, consider an FFT accelerator. The minimum 
useful area may be a single hardware butterfly unit cou-
pled with the SoC inter-connectivity logic, and the maxi-
mum useful area could comprise the largest number of 
butterfly units that can be active in parallel for a given 
problem size. There is thus an effective range in which the 
accelerator outperforms the GPP and therefore should be 

utilized. Let’s assume we are provided with a GPP and M 
accelerators such that:  ∑ 𝐴           𝐴      (5) 

Only a subset of the accelerators can therefore be inte-
grated. The research question is thus generalized as fol-
lows: which subset of the accelerators should be integrated and 
what is the optimal resource allocation among them? Since the 
optimal resource allocation may exclude several accelera-
tors from the potential set, we therefore revise the execu-
tion time (2) to select the faster option for each task i:      𝑓 (𝑎 )𝑡  ∑   (𝑎 , 𝑎 )      𝑡  (6) 

where:   (𝑎 , 𝑎 )      (𝑓 (𝑎 ), 𝑓 (𝑎 )) (7) 

Note that GMA stands for the “Generalized Multi-
Amdahl” model (in which GPP takes over tasks which it 
executes faster than an accelerator). The min function is 
represented using a step function 𝑄(𝑥), obtaining:   (𝑎 , 𝑎 )  𝑓 (𝑎 )𝑄(𝑓 (𝑎 )  𝑓 (𝑎 )) 𝑓 (𝑎 )𝑄(𝑓 (𝑎 )  𝑓 (𝑎 )) 

(8) 

A sigmoid function is used as a differentiable approxima-
tion of the step function 𝑄(𝑥):  (𝑥)     𝑒    (9) 

A larger k corresponds to a sharper transition at 𝑥  0. 
We will thus redefine    replacing 𝑄(𝑥) by  (𝑥). Now 
that the equations are all differentiable, we can proceed to 
solving them with Lagrange multipliers. We will thus 
minimize (6), subject to (3). Using Lagrange:  [    ] 𝑎    [∑ 𝑎  𝐴           ] 𝑎  0 (10) 

For every 0  (∀𝑗, 𝑘)  𝑀 the following equality holds:  [𝑓 (𝑎 )𝑡  ∑   (𝑎 , 𝑎 )      𝑡 ] 𝑎   [𝑓 (𝑎 )𝑡  ∑   (𝑎 , 𝑎 )      𝑡 ] 𝑎  

(11) 

To solve (11) we define a helper function:    𝑓 (𝑎 )  𝑓 (𝑎 ) (12) 

The optimal solution does not contain any accelerators in 
which    0 (if the GPP and the accelerator provide the 

very same performance, the allocation in which the accel-
erator is eliminated and its resource (e.g area) is assigned 
elsewhere results in overall better performance). Note 
that   (  ) ≅ 0 for   ≠ 0 for a very large k. Solving    (  ,  )   :    (𝑎 , 𝑎 ) 𝑎   [𝑓 (𝑎 ) (  )  𝑓 (𝑎 ) (   )] 𝑎   𝑓  (𝑎 ) (  )  𝑎  𝑎  𝑓 (𝑎 )  (  )     𝑎   𝑓  (𝑎 )  𝑎  𝑎  (   )  𝑓 (𝑎 )  (   )  (   ) 𝑎 ≅ 𝑓  (𝑎 ) (  )  𝑎  𝑎  𝑓  (𝑎 ) (   )  𝑎  𝑎  

(13) 



 

 

Equation (13) reduces to: 𝑗  0      (𝑎 , 𝑎 ) 𝑎  𝑓  (𝑎 ) (  ) ∀  𝑗, 𝑗 ≠ 0     (𝑎 , 𝑎 ) 𝑎  𝑓  (𝑎 ) (   ) 

(14) 

Substituting (14) to (11), ∀𝑘 ≠ 0, all utilized accelerators: 𝑓  (𝑎 ) [𝑡  ∑  (  )      𝑡 ]  𝑓  (𝑎 ) (   )𝑡  (15) 

Similarly, substituting (14) into (11), ∀𝑗, 𝑘 ≠ 0, for all uti-
lized accelerators: 𝑓  (𝑎 ) (   )𝑡  𝑓  (𝑎 ) (   )𝑡  (16) 

Finally, combining (15) and (16), for all utilized accelera-
tors ∀𝑗, 𝑘 ≠ 0: 𝑓  (𝑎 ) [𝑡  ∑  (  )      𝑡 ]   𝑓  (𝑎 ) (   )𝑡  𝑓  (𝑎 ) (   )𝑡  

(17) 

The optimal resource allocation satisfies (17), and 
comprises of two sets: accelerators that are utilized and 
thus included in the SoC (𝑎 ≠ 0,   < 0) and accelerators 
that are excluded (𝑎  0,    0). Actual solutions that 
satisfy (17) may be found, e.g., by numerical Lagrange 
solvers ‎[1]. Equation (17) reverts back to MultiAmdahl (4) 
when all accelerators are utilized. Note further that    
may be augmented with an area bias    𝑓 (𝑎 )  𝑓 (𝑎 )  𝜀 representing accelerator’s integration overhead.  

3 PERFORMANCE OPTIMIZATION – DUAL 
ACCELERATOR ARCHITECTURE 

We first demonstrate our model by maximizing per-
formance of a system that integrates a GPP with a multi-
core accelerator, similar to ‎[3], ‎[5] and ‎[9]. The parallel 
fraction f of the workload may be executed on either the 
multicore accelerator or the GPP, whereas the sequential 
fraction   𝑓 of the workload is executed only on the 
GPP. Following Pollack's rule ‎[4] and ‎[8], the GPP’s in-
verted performance may be written as follows (coeffi-
cients translating from area to performance units are 
scaled to unity): 𝑓   (𝑎   )   𝑎     (18) 

The exponent 𝛽 typically varies from 0.3 to 0.7 ‎[7]. We 
shall use 𝛽  0.5 ‎[4] in our plots. Other values of 𝛽 do not 
significantly affect our results. The multicore accelerator’s 
inverted performance function may be written as: 𝑓  (𝑎  )   𝑎   (𝑎   𝑎     ) (19) 

where  (𝑎   𝑎     ) nullifies the speedup function 
when 𝑎  < 𝑎     . Note that multicore accelerator per-
formance grows linearly with the number of integrated 
processing cores. 𝑎      represents the minimal infra-
structure area that must be allocated to the multicore ac-
celerator before it becomes operational (for example, min-
imal area allocated for shared bus, memories, caches and 
the like). Figure 2 depicts the GPP performance function 
vs. several multicore accelerator performance functions 
measured in Instructions Per Second (IPS), each having a 

different 𝑎     . 

 
Figure 2: GPP and various Multicore performance functions as a function of 

their respective area 

In Figure 3 and Figure 4, MA represents MultiAmdahl 
(dotted lines) and GMA represents the Generalized Multi-
Amdahl model (solid lines). Figure 3 depicts the optimal 
area of the GPP as a function of 𝑎     , the minimal effec-
tive area of a multicore accelerator, drawn for 𝑓  0.6. 
Note the following zones:  
Zone-A: 𝑎      is small enough and the multicore acceler-
ator is allocated area larger than 𝑎     . Both Multi-
Amdahl and GMA yield the same solution; Zone-B: for 
larger values of 𝑎     , both MA and GMA select a mul-
ticore accelerator of the minimal area, as it is still worth-
while to keep the accelerator despite the larger 𝑎     ; 
Zone-C: While MA allocates a multicore accelerator, GMA 
eliminates the multicore and allocates all area to the GPP. 

 
Figure 3: GMA (solid) and Multi-

Amdahl (dotted) optimal GPP area 

as a function of the 𝑎      

Figure 4. GMA (solid) and Multi-

Amdahl (dotted) optimal execution 

time as a function of 𝑎      

Figure 4 shows the optimal execution time as a func-
tion of the multicore accelerator 𝑎     , drawn for 𝑓  0.6. In Zone-C, GMA’s execution time is determined solely 
by the GPP. The MA execution time is longer because the 
GPP’s segment is slowed down when large area is allo-
cated to the multicore accelerator. 

In general, for smaller 𝑓, the GMA model shifts area 
from the multicore accelerator to the GPP, until the execu-
tion time is determined solely by the GPP. 

4 PERFORMANCE OPTIMIZATION – QUAD 
ACCELERATORS ARCHITECTURE 

In this section we consider the impact of 𝐴      con-
straint on quad-accelerator architecture. Consider a fixed 
workload consisting of four tasks, with execution times 𝑡  {70, 80, 90,  00} seconds on a reference CPU, respec-
tively. The SoC architect wishes to optimize execution 
time under an area constraint, and may utilize up to four 
distinct accelerators, out of which accelerator #0 is the 
GPP, and the rest are application specific. In Figure 5, the 
horizontal axis depicts eight total area scenarios, charac-
terized by multiples of a baseline SoC area AT, 1×, 2×, … , 

C A B 

C A B 



 

 

128×. The vertical axis shows the optimal distribution of 
total SoC area among the four accelerators. Each hypo-
thetical accelerator speedup function corresponds to: 𝑓 (𝑎 )    (𝑎  𝑎    )𝑎    (20) 

and is characterized by exponent 𝛽  {0.4, 0.5, 0.6, 0.7},  
minimum area 𝑎     𝐴 × {0.99, 0.65, 0.8, 0.95}, and 
maximum area  𝑎     𝐴 × { 000, 2, 2.5, 3} respectively. 
As evident from Figure 5, when the total SoC area in-
creases from 1× to 2×, the GMA model shifts area re-
sources from the GPP (𝑎 ) to the stronger accelerators 
with the lowest 𝑎     (i.e., to accelerator 𝑎 ). Under fur-
ther area growth to 4× all four accelerators are utilized. 
When area increases to 8× the GPP consumes most of the 
added resources. This follows Equation (17): the slower 
GPP needs much more area if it is to match the execution 
time improvement of the other accelerators.  

 
Figure 5: Optimal resource allocation of quad-accelerator multi-processor, 

as a function of baseline SOC area, and the trend-line (dotted) 

Additional area growth to 16× increases the GPP area 
and thus its performance, while no additional resources 
are allocated to the 𝑎  accelerator due to performance 
saturation, 𝑎    . Area increase to 32× makes the 𝑎  ac-
celerator weaker than the GPP, at which point it is elimi-
nated and its task reverts back to the GPP. In a similar 
manner, from 64× to 128×, the 𝑎  accelerator is eliminated, 
leaving only the GPP and the 𝑎  accelerators. In general, 
as the total SoC area grows, the GMA eventually elimi-
nates all lower-performing / saturated accelerators, as-
signing their tasks to the GPP. 

5 CONCLUSIONS 

This paper describes a multi-accelerator optimization 
algorithm that, given a sequential workload and a set of 
potential accelerators, selects an optimal subset of the 
accelerators and allocates hardware resources among the 
general purpose processor and the accelerators. The algo-
rithm relies on modeling the performance of each acceler-
ator as a function of the resources it uses. Note that in our 
case only a single accelerator operates at a time. 

Practical implementation of accelerators is subject to 
certain performance limitations, i.e.,  A    (e.g. due to 
overhead and A    (e.g. due to performance saturation) 
and in a constraint environment, the architect may not 
need to utilize all potential accelerators. At times, given 
that the GPP is allocated with sufficient area, a task may 
be executed faster on the GPP than on an accelerator. This 

is especially true when the required area for an accelera-
tor lies outside its effective area range, and thus limits the 
performance of other accelerators. At highly constrained 
area, the model allocates the entire area to the GPP. As 
the total SoC area is increased, the model shifts area from 
the GPP first to the stronger accelerators with the lowest A    having the largest reference runtime, followed by 
accelerators with larger A    that outperform the GPP 
under the current GPP area allocation. Further increase in 
total SoC area increases the GPP area and thus its perfor-
mance. Thus, accelerators with performance saturation at A    are eventually eliminated (that is, not assigned with 
any area) and their tasks are reassigned to the GPP. 

We have proved that the optimal resource allocation 
takes into account the time spent on tasks, the accelera-
tor’s speedup functions, accelerator’s speedup functions 
first derivative, as well as the GPP’s speedup function 
and its first derivative. Only at the optimal resource allo-
cation point, each addition of infinitesimal area would 
create the same improvement in the total execution time 
on any utilized accelerator. Otherwise, area allocation is 
unbalanced and some area should be removed from one 
accelerator and reallocated to another. 

We have provided the architect a practical analytical 
tool for SoC partitioning which leads to the optimal exe-
cution time, given an area constraint. Furthermore, our 
framework offers an efficient alternative to iterative pro-
cesses for exploring the design space. The Generalized 
MultiAmdahl framework can be extended in a number of 
ways, spanning from SoC partitioning, bandwidth to 
power distribution, energy and other constrained re-
sources. In addition the Generalized MultiAmdahl 
framework may be applied to software resource-sharing 
and scheduling in heterogeneous systems, where the op-
timal workload partitioning given a set of tasks, under 
timing, power, energy and other constrains, is pursued.  
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