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Abstract

This letter derives some new exponential bounds for discrete time, real valued, conditionally symmetric martingales with
bounded jumps. The new bounds are extended to conditionally symmetric sub/ supermartingales, and are compared to some
existing bounds.
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I. INTRODUCTION AND MAIN RESULTS

Classes of exponential bounds for discrete-time real-valued martingales were extensively studied in the literature
(see, e.g., [1], [2], [4], [5], [6]–[9], [12], and [15]–[18]). This letter further assumes conditional symmetry of these
martingales, as it is defined in the following:

Definition 1: Let {Xk,Fk}k∈N0
, where N0 , N ∪ {0}, be a discrete-time and real-valued martingale, and let

ξk , Xk−Xk−1 for every k ∈ N designate the jumps of the martingale. Then {Xk,Fk}k∈N0
is called a conditionally

symmetric martingale if, conditioned on Fk−1, the random variable ξk is symmetrically distributed around zero.
Our goal in this letter is to demonstrate how the assumption of the conditional symmetry improves existing

exponential inequalities for discrete-time real-valued martingales with bounded increments. Earlier results, serving
as motivation, appear in [7, Section 4] and [15, Section 6]. The new exponential bounds are also extended to
conditionally symmetric sub or supermartingales, where the construction of these objects is exemplified later in
this section. The relation of some of the exponential bounds derived in this work with some existing bounds is
discussed later in this letter. Additional results addressing weak-type inequalities, maximal inequalities and ratio
inequalities for conditionally symmetric martingales were derived in [13], [14] and [19].

A. Main Results

Our main results for conditionally symmetric martingales with bounded jumps are introduced in Theorems 1, 3
and 4. Theorems 2 and 5 are existing bounds, for general martingales without the conditional symmetry assumption,
that are introduced in connection to the new theorems. Corollaries 1 and 2 provide an extension of the new results
to conditionally symmetric sub/ supermartingales with bounded jumps. Our first result is the following theorem:

Theorem 1: Let {Xk,Fk}k∈N0
be a discrete-time real-valued and conditionally symmetric martingale. Assume

that, for some fixed numbers d, σ > 0, the following two requirements are satisfied a.s.

|Xk −Xk−1| ≤ d, Var(Xk|Fk−1) = E
[
(Xk −Xk−1)

2 | Fk−1

]
≤ σ2 (1)

for every k ∈ N. Then, for every α ≥ 0 and n ∈ N,

P
(

max
1≤k≤n

|Xk −X0| ≥ αn

)
≤ 2 exp

(
−nE(γ, δ)

)
(2)

where

γ , σ2

d2
, δ , α

d
(3)

lesley
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and for γ ∈ (0, 1] and δ ∈ [0, 1)

E(γ, δ) , δx− ln
(
1 + γ

[
cosh(x)− 1

])
(4)

x , ln

(
δ(1− γ) +

√
δ2(1− γ)2 + γ2(1− δ2)

γ(1− δ)

)
. (5)

If δ > 1, then the probability on the left-hand side of (2) is zero (so E(γ, δ) , +∞), and E(γ, 1) = ln
(
2
γ

)
.

Furthermore, the exponent E(γ, δ) is asymptotically optimal in the sense that there exists a conditionally symmetric
martingale, satisfying the conditions in (1) a.s., that attains this exponent in the limit where n → ∞.

Remark 1: From the above conditions, without any loss of generality, σ2 ≤ d2 and therefore γ ∈ (0, 1]. This
implies that Theorem 1 characterizes the exponent E(γ, δ) for all values of γ and δ.

Theorem 1 should be compared to the statement in [11, Theorem 6.1] (see also [6, Corollary 2.4.7]), which does
not require the conditional symmetry property. It gives the following result:

Theorem 2: Let {Xk,Fk}k∈N0
be a discrete-time real-valued martingale with bounded jumps. Assume that the

two conditions in (1) are satisfied a.s. for every k ∈ N. Then, for every α ≥ 0 and n ∈ N,

P
(

max
1≤k≤n

|Xk −X0| ≥ αn

)
≤ 2 exp

(
−nD

(
δ + γ

1 + γ

∣∣∣∣∣∣ γ

1 + γ

))
(6)

where γ and δ are introduced in (3), and

D(p||q) , p ln
(p
q

)
+ (1− p) ln

(1− p

1− q

)
, ∀ p, q ∈ [0, 1] (7)

is the divergence (a.k.a. relative entropy or Kullback-Leibler distance) to the natural base between the two probability
distributions (p, 1−p) and (q, 1−q). If δ > 1, then the probability on the left-hand side of (6) is zero. Furthermore,
the exponent on the right-hand side of (6) is asymptotically optimal under the assumptions of this theorem.

Remark 2: The two exponents in Theorems 1 and 2 are both discontinuous at δ = 1. This is consistent with the
assumption of the bounded jumps that implies that P(|Xn −X0| ≥ ndδ) is equal to zero if δ > 1.

If δ → 1− then, from (4) and (5), for every γ ∈ (0, 1],

lim
δ→1−

E(γ, δ) = lim
x→∞

[
x− ln

(
1 + γ(cosh(x)− 1)

)]
= ln

(
2

γ

)
. (8)

On the other hand, the right limit at δ = 1 is infinity since E(γ, δ) = +∞ for every δ > 1. The same discontinuity
also exists for the exponent in Theorem 2 where the right limit at δ = 1 is infinity, and the left limit is equal to

lim
δ→1−

D

(
δ + γ

1 + γ

∣∣∣∣∣∣ γ

1 + γ

)
= ln

(
1 +

1

γ

)
(9)

where the last equality follows from (7). A comparison of the limits in (8) and (9) is consistent with the improvement
that is obtained in Theorem 1 as compared to Theorem 2 due to the additional assumption of the conditional
symmetry that is relevant if γ ∈ (0, 1). It can be verified that the two exponents coincide if γ = 1 (which is
equivalent to removing the constraint on the conditional variance), and their common value is equal to

f(δ) =

{
ln(2)

[
1− h2

(
1−δ
2

)]
, 0 ≤ δ ≤ 1

+∞, δ > 1
(10)

where h2(x) , −x log2(x)− (1− x) log2(1− x) for 0 ≤ x ≤ 1 denotes the binary entropy function to the base 2.
Theorem 1 provides an improvement over the bound in Theorem 2 for conditionally symmetric martingales with

bounded jumps. The bounds in Theorems 1 and 2 depend on the conditional variance of the martingale, but they
do not take into consideration conditional moments of higher orders. The following bound generalizes the bound
in Theorem 1, but it does not admit in general a closed-form expression.

Theorem 3: Let {Xk,Fk}k∈N0
be a discrete-time and real-valued conditionally symmetric martingale. Let m ∈ N

be an even number, and assume that the following conditions hold a.s. for every k ∈ N

|Xk −Xk−1| ≤ d, E
[
(Xk −Xk−1)

l | Fk−1

]
≤ µl, ∀ l ∈ {2, 4, . . . ,m}
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for some d > 0 and non-negative numbers {µ2, µ4, . . . , µm}. Then, for every α ≥ 0 and n ∈ N,

P
(

max
1≤k≤n

|Xk −X0| ≥ αn

)
≤ 2

min
x≥0

e−δx

1 + m

2
−1∑

l=1

γ2l x
2l

(2l)!
+ γm

(
cosh(x)− 1

))
n

(11)

where
δ , α

d
, γ2l ,

µ2l

d2l
, ∀ l ∈

{
1, . . . ,

m

2

}
. (12)

We consider in the following a different type of exponential inequalities for conditionally symmetric martingales
with bounded jumps.

Theorem 4: Let {Xn,Fn}n∈N0
be a discrete-time real-valued and conditionally symmetric martingale. Assume

that there exists a fixed number d > 0 such that ξk , Xk −Xk−1 ≤ d a.s. for every k ∈ N. Let

Qn ,
n∑

k=1

E[ξ2k | Fk−1] (13)

with Q0 , 0, be the predictable quadratic variation of the martingale up to time n. Then, for every z, r > 0,

P
(

max
1≤k≤n

(Xk −X0) ≥ z, Qn ≤ r for some n ∈ N
)

≤ exp

(
−z2

2r
· C
(
zd

r

))
(14)

where

C(u) , 2[u sinh−1(u)−
√
1 + u2 + 1]

u2
, ∀u > 0. (15)

Theorem 4 should be compared to [8, Theorem 1.6] (see also [6, Exercise 2.4.21(b)]) that was stated without
the requirement for the conditional symmetry of the martingale. It provides the following result:

Theorem 5: Let {Xn,Fn}n∈N0
be a discrete-time real-valued martingale. Assume that there exists a fixed number

d > 0 such that ξk , Xk −Xk−1 ≤ d a.s. for every k ∈ N. Then, for every z, r > 0,

P
(

max
1≤k≤n

(Xk −X0) ≥ z, Qn ≤ r for some n ∈ N
)

≤ exp

(
−z2

2r
·B
(
zd

r

))
(16)

where
B(u) , 2[(1 + u) ln(1 + u)− u]

u2
, ∀u > 0. (17)

The proof of [8, Theorem 1.6] is modified by using Bennett’s inequality for the derivation of the original bound
in Theorem 5 (without the conditional symmetry requirement). Furthermore, this modified proof serves to derive
the improved bound in Theorem 4 under the conditional symmetry assumption.

Extension of the inequalities to discrete-time, real-valued, and conditionally symmetric sub/ supermartingales:
Definition 2: Let {Xk,Fk}k∈N0

be a discrete-time real-valued sub or supermartingale, and ηk , Xk−E[Xk|Fk−1]
for every k ∈ N. Then the martingale {Xk,Fk}k∈N0

is called, respectively, a conditionally symmetric sub or
supermartingale if, conditioned on Fk−1, the random variable ηk is symmetrically distributed around zero.

Remark 3: For martingales, ηk = ξk for every k ∈ N, so we obtain consistency with Definition 1.
An extension of Theorem 1 to conditionally symmetric sub and supermartingales is introduced in the following:
Corollary 1: Let {Xk,Fk}k∈N0

be a discrete-time, real-valued and conditionally symmetric supermartingale.
Assume that, for some constants d, σ > 0, the following two requirements are satisfied a.s.

ηk ≤ d, Var(Xk|Fk−1) , E
[
η2k | Fk−1

]
≤ σ2 (18)

for every k ∈ N. Then, for every α ≥ 0 and n ∈ N,

P
(
max
1≤k≤n

(Xk −X0) ≥ αn
)
≤ exp

(
−nE(γ, δ)

)
(19)



4 SUBMITTED FOR PUBLICATION. LAST UPDATED: JULY 21, 2012.

where γ and δ are defined in (3), and E(γ, δ) is introduced in (4). Alternatively, if {Xk,Fk}k∈N0
is a conditionally

symmetric submartingale, the same bound holds for P
(
min1≤k≤n(Xk −X0) ≤ −αn

)
provided that ηk ≥ −d and

the second condition in (18) hold a.s. for every k ∈ N. If δ > 1, then these two probabilities are zero.
The following statement extends Theorem 4 to conditionally symmetric supermartingales.
Corollary 2: Let {Xn,Fn}n∈N0

be a discrete-time, real-valued supermartingale. Assume that there exists a fixed
number d > 0 such that ηk ≤ d a.s. for every k ∈ N. Let {Qn}n∈N0

be the predictable quadratic variations of
the supermartingale, i.e., Qn ,

∑n
k=1 E[η2k | Fk−1] for every n ∈ N with Q0 , 0. Then, the result in (16) holds.

Furthermore, if the supermartingale is conditionally symmetric, then the improved bound in (14) holds.

B. Construction of Discrete-Time, Real-Valued and Conditionally Symmetric Sub/ Supermartingales

Before proving the tightened inequalities for discrete-time conditionally symmetric sub/ supermartingales, it is
in place to exemplify the construction of these objects.

Example 1: Let (Ω,F ,P) be a probability space, and let {Uk}k∈N ⊆ L1(Ω,F ,P) be a sequence of independent
random variables with zero mean. Let {Fk}k≥0 be the natural filtration of sub σ-algebras of F , where

F0 = {∅,Ω}, Fk = σ(U1, . . . , Uk), ∀ k ∈ N.

Furthermore, for k ∈ N, let Ak ∈ L∞(Ω,Fk−1,P) be an Fk−1-measurable random variable with a finite essential
supremum. Define a new sequence of random variables in L1(Ω,F ,P) where

Xn =

n∑
k=1

AkUk, ∀n ∈ N

and X0 = 0. Then, {Xn,Fn}n∈N0
is a martingale. Lets assume that the random variables {Uk}k∈N are symmetrically

distributed around zero. Note that Xn = Xn−1 + AnUn where An is Fn−1-measurable and Un is independent of
the σ-algebra Fn−1 (due to the independence of the random variables U1, . . . , Un). It therefore follows that for
every n ∈ N, given Fn−1, the random variable Xn is symmetrically distributed around its conditional expectation
Xn−1. Hence, the martingale {Xn,Fn}n∈N0

is conditionally symmetric.
Example 2: In continuation to Example 1, let {Xn,Fn}n∈N0

be a martingale, and define Y0 = 0 and

Yn =

n∑
k=1

Ak(Xk −Xk−1), ∀n ∈ N.

The sequence {Yn,Fn}n∈N0
is a martingale. If {Xn,Fn}n∈N0

is a conditionally symmetric martingale then also
the martingale {Yn,Fn}n∈N0

is conditionally symmetric (since Yn = Yn−1 +An(Xn −Xn−1), and by assumption
An is Fn−1-measurable).

Example 3: In continuation to Example 1, let {Uk}k∈N be independent random variables with a symmetric
distribution around their expected value, and also assume that E(Uk) ≤ 0 for every k ∈ N. Furthermore, let
Ak ∈ L∞(Ω,Fk−1,P), and assume that a.s. Ak ≥ 0 for every k ∈ N. Let {Xn,Fn}n∈N0

be a martingale as
defined in Example 1. Note that Xn = Xn−1 + AnUn where An is non-negative and Fn−1-measurable, and Un

is independent of Fn−1 and symmetrically distributed around its average. This implies that {Xn,Fn}n∈N0
is a

conditionally symmetric supermartingale.
Example 4: In continuation to Examples 2 and 3, let {Xn,Fn}n∈N0

be a conditionally symmetric supermartingale.
Define {Yn}n∈N0

as in Example 2 where Ak is non-negative a.s. and Fk−1-measurable for every k ∈ N. Then
{Yn,Fn}n∈N0

is a conditionally symmetric supermartingale.
Example 5: Consider a standard Brownian motion (Wt)t≥0. Define, for some T > 0, the discrete-time process

Xn = WnT , Fn = σ({Wt}0≤t≤nT ), ∀n ∈ N0.

The increments of (Wt)t≥0 over time intervals [tk−1, tk] are statistically independent if these intervals do not overlap
(except of their endpoints), and they are Gaussian distributed with a zero mean and variance tk− tk−1. The random
variable ξn , Xn −Xn−1 is therefore statistically independent of Fn−1, and it is Gaussian distributed with a zero
mean and variance T . The martingale {Xn,Fn}n∈N0

is therefore conditionally symmetric.
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II. PROOFS

A. Combined Proof of Theorems 1 and 2

We rely here on the proof of the existing bound that is stated in Theorem 2, for discrete-time real-valued
martingales with bounded jumps (see [11, Theorem 6.1] and [6, Corollary 2.4.7]), and then deviate from this proof
at the point where the additional property of the conditional symmetry of the martingale is taken into consideration
for the derivation of the improved exponential inequality in Theorem 1.

Write Xn − X0 =
∑n

k=1 ξk where ξk , Xk − Xk−1 for k ∈ N. Since {Xk − X0,Fk}k∈N0
is a martingale,

h(x) = exp(tx) is a convex function on R for every t ∈ R, and a composition of a convex function with a
martingale gives a submartingale w.r.t. the same filtration, then

{
exp(t(Xk − X0)),Fk

}
k∈N0

is a sub-martingale
for every t ∈ R. By applying the maximal inequality for submartingales, then for every α ≥ 0 and n ∈ N

P
(
max
1≤k≤n

(Xk −X0) ≥ αn
)

= P
(
max
1≤k≤n

exp (t(Xk −X0)) ≥ exp(αnt)
)

∀ t ≥ 0

≤ exp(−αnt) E
[
exp
(
t(Xn −X0)

)]
= exp(−αnt) E

[
exp

(
t

n∑
k=1

ξk

)]
(20)

Furthermore,
E
[
exp

(
t

n∑
k=1

ξk

)]

= E

[
E
[
exp

(
t

n∑
k=1

ξk

)
| Fn−1

]]

= E

[
exp

(
t

n−1∑
k=1

ξk

)
E
[
exp(tξn) | Fn−1

]]
(21)

where the last transition holds since exp
(
t
∑n−1

k=1 ξk
)

is Fn−1-measurable. The proof of Theorem 2 proceeds by
applying Bennett’s inequality [3] (see, e.g., [6, Lemma 2.4.1]) for the conditional law of ξk given the σ-algebra
Fk−1. Since E[ξk|Fk−1] = 0, Var[ξk|Fk−1] ≤ σ2 and ξk ≤ d a.s. for k ∈ N, then a.s. (see (3))

E [exp(tξk) | Fk−1] ≤
γ exp(td) + exp(−γtd)

1 + γ
, ∀ t ≥ 0. (22)

By induction, from (21) and (22), it follows that for every t ≥ 0

E
[
exp

(
t

n∑
k=1

ξk

)]
≤
(
γ exp(td) + exp(−γtd)

1 + γ

)n

. (23)

Combining (20) and (23), followed by an optimization of the bound on P
(
max1≤k≤n(Xk−X0) ≥ αn

)
over t ≥ 0,

gives that

P
(

max
1≤k≤n

(Xk −X0) ≥ αn

)
≤ exp

(
−nD

(
δ + γ

1 + γ

∣∣∣∣∣∣ γ

1 + γ

))
. (24)

Applying (24) to the martingale {−Xk,Fk}k∈N0
gives the same bound on P(min1≤k≤n(Xk −X0) ≤ −αn) for an

arbitrary α ≥ 0. The union bound implies that

P
(

max
1≤k≤n

|Xk −X0| ≥ αn

)
≤ P

(
max
1≤k≤n

(Xk −X0) ≥ αn

)
+ P

(
min

1≤k≤n
(Xk −X0) ≤ −αn

)
. (25)

This doubles the bound on the right-hand side of (24), thus proving the exponential bound in Theorem 2.
In order to prove Theorem 1 for a discrete-time, real-valued and conditionally symmetric martingale with bounded

jumps, we deviate from the proof of Theorem 2. This is done by a replacement of Bennett’s inequality for the
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conditional expectation in (22) with a tightened bound under the conditional symmetry assumption. To this end,
we need a lemma to proceed.

Lemma 1: Let X be a real-valued RV with a symmetric distribution around zero, a support [−d, d], and assume
that E[X2] = Var(X) ≤ γd2 for some d > 0 and γ ∈ [0, 1]. Let h be a real-valued convex function, and assume
that h(d2) ≥ h(0). Then

E[h(X2)] ≤ (1− γ)h(0) + γh(d2) (26)

where equality holds for the symmetric distribution

P(X = d) = P(X = −d) =
γ

2
, P(X = 0) = 1− γ. (27)

Proof: Since h is convex and supp(X) = [−d, d], then a.s. h(X2) ≤ h(0) +
(
X
d

)2 (
h(d2) − h(0)

)
. Taking

expectations on both sides gives (26), which holds with equality for the symmetric distribution in (27).

Corollary 3: If X is a random variable that satisfies the three requirements in Lemma 1 then, for every λ ∈ R,

E
[
exp(λX)

]
≤ 1 + γ

[
cosh(λd)− 1

]
(28)

and (28) holds with equality for the symmetric distribution in Lemma 1, independently of the value of λ.
Proof: For every λ ∈ R, due to the symmetric distribution of X , E

[
exp(λX)

]
= E

[
cosh(λX)

]
. The claim

now follows from Lemma 1 since, for every x ∈ R, cosh(λx) = h(x2) where h(x) ,
∑∞

n=0
λ2n|x|n
(2n)! is a convex

function (h is convex since it is a linear combination, with non-negative coefficients, of convex functions), and
h(d2) = cosh(λd) ≥ 1 = h(0).

We continue with the proof of Theorem 1. Under the assumption of this theorem, for every k ∈ N, the random
variable ξk , Xk − Xk−1 satisfies a.s. E[ξk | Fk−1] = 0 and E[(ξk)2 | Fk−1] ≤ σ2. Applying Corollary 3 for the
conditional law of ξk given Fk−1, it follows that for every k ∈ N and t ∈ R

E [exp(tξk) | Fk−1] ≤ 1 + γ
[
cosh(td)− 1

]
(29)

holds a.s., and therefore it follows from (21) and (29) that for every t ∈ R

E
[
exp

(
t

n∑
k=1

ξk

)]
≤
(
1 + γ

[
cosh(td)− 1

])n
. (30)

Therefore, from (20), for every t ≥ 0,

P
(
max
1≤k≤n

(Xk −X0) ≥ αn
)
≤ exp(−αnt)

(
1 + γ

[
cosh(td)− 1

])n
. (31)

From (3) and a replacement of td with x, then for an arbitrary α ≥ 0 and n ∈ N

P
(
max
1≤k≤n

(Xk −X0) ≥ αn
)
≤ inf

x≥0

{
exp

(
−n
[
δx− ln

(
1 + γ

[
cosh(x)− 1

])])}
. (32)

An optimization over the non-negative parameter x gives the solution for the optimized parameter in (5). Applying
(32) to the martingale {−Xk,Fk}k∈N0

gives the same bound on P(min1≤k≤n(Xk −X0) ≤ −αn). Finally, using
the union bound in (25) completes the proof of the exponential bound in Theorem 1.

Proof for the asymptotic optimality of the exponents in Theorems 1 and 2: In the following, we show that under
the conditions of Theorem 1, the exponent E(γ, δ) in (4) and (5) is asymptotically optimal. To show this, let d > 0
and γ ∈ (0, 1], and let U1, U2, . . . be i.i.d. random variables whose probability distribution is given by

P(Ui = d) = P(Ui = −d) =
γ

2
, P(Ui = 0) = 1− γ, ∀ i ∈ N. (33)

Consider the particular case of the conditionally symmetric martingale {Xn,Fn}n∈N0
in Example 1 (see Section I-B)

where Xn ,
∑n

i=1 Ui for n ∈ N, and X0 , 0. It follows that |Xn −Xn−1| ≤ d and Var(Xn|Fn−1) = γd2 a.s. for
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every n ∈ N. From Cramér’s theorem in R, for every α ≥ E[U1] = 0,

lim
n→∞

1

n
lnP(Xn −X0 ≥ αn)

= lim
n→∞

1

n
lnP

(
1

n

n∑
i=1

Ui ≥ α

)
= −I(α) (34)

where the rate function is given by

I(α) = sup
t≥0

{tα− lnE[exp(tU1)]} (35)

(see, e.g., [6, Theorem 2.2.3] and [6, Lemma 2.2.5(b)] for the restriction of the supermum to the interval [0,∞)).
From (33) and (35), for every α ≥ 0,

I(α) = sup
t≥0

{
tα− ln

(
1 + γ[cosh(td)− 1]

)}
but it is equivalent to the optimized exponent on the right-hand side of (31), giving the exponent of the bound in
Theorem 1. Hence, I(α) = E(γ, δ) in (4) and (5). This proves that the exponent of the bound in Theorem 1 is
indeed asymptotically optimal in the sense that there exists a discrete-time, real-valued and conditionally symmetric
martingale, satisfying the conditions in (1) a.s., that attains this exponent in the limit where n → ∞. The proof for
the asymptotic optimality of the exponent in Theorem 2 (see the right-hand side of (6)) is similar to the proof for
Theorem 1, except that the i.i.d. random variables U1, U2, . . . are now distributed as follows:

P(Ui = d) =
γ

1 + γ
, P(Ui = −γd) =

1

1 + γ
, ∀ i ∈ N

and, as before, the martingale {Xn,Fn}n∈N0
is defined by Xn =

∑n
i=1 Ui and Fn = σ(U1, . . . , Un) for every

n ∈ N with X0 = 0 and F0 = {∅,Ω} (in this case, it is not a conditionally symmetric martingale unless γ = 1).

B. Proof of Theorem 3

The starting point of the proof of Theorem 3 relies on (20) and (21). For every k ∈ N and t ∈ R, since
E
[
ξ2l−1
k | Fk−1

]
= 0 for every l ∈ N (due to the conditionally symmetry property of the martingale),

E
[
exp(tξk)|Fk−1

]
= 1 +

m

2
−1∑

l=1

t2l E
[
ξ2lk | Fk−1

]
(2l)!

+

∞∑
l=m

2

t2l E
[
ξ2lk | Fk−1

]
(2l)!

= 1 +

m

2
−1∑

l=1

(td)2l E
[( ξk

d

)2l | Fk−1

]
(2l)!

+

∞∑
l=m

2

(td)2l E
[( ξk

d

)2l | Fk−1

]
(2l)!

≤ 1 +

m

2
−1∑

l=1

(td)2l γ2l
(2l)!

+

∞∑
l=m

2

(td)2l γm
(2l)!

= 1 +

m

2
−1∑

l=1

(td)2l
(
γ2l − γm

)
(2l)!

+ γm
(
cosh(td)− 1

)
(36)

where the inequality above holds since | ξkd | ≤ 1 a.s., so that 0 ≤ . . . ≤ γm ≤ . . . ≤ γ4 ≤ γ2 ≤ 1, and the last
equality in (36) holds since cosh(x) =

∑∞
n=0

x2n

(2n)! for every x ∈ R. Therefore, from (21),

E
[
exp

(
t

n∑
k=1

ξk

)]
≤

1 +

m

2
−1∑

l=1

(td)2l
(
γ2l − γm

)
(2l)!

+ γm
[
cosh(td)− 1

]n

(37)

for an arbitrary t ∈ R. The inequality then follows from (20). This completes the proof of Theorem 3.
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C. A Combined Proof of Theorems 4 and 5

The proof of Theorem 4 relies on the proof of the known result in Theorem 5, where the latter dates back to
Freedman’s paper (see [8, Theorem 1.6], and also [6, Exercise 2.4.21(b)]). The original proof of Theorem 5 (see [8,
Section 3]) is modified in a way that facilitates to realize how the bound can be improved for conditionally symmetric
martingales with bounded jumps. This improvement is obtained via the refinement in (29) of Bennett’s inequality
for conditionally symmetric distributions. Furthermore, the following revisited proof of Theorem 5 simplifies the
derivation of the new and improved bound in Theorem 4 for the considered subclass of martingales.

Without any loss of generality, lets assume that d = 1 (otherwise, {Xk} and z are divided by d, and {Qk} and
r are divided by d2; this normalization extends the bound to the case of an arbitrary d > 0). Let Sn , Xn −X0

for every n ∈ N0, then {Sn,Fn}n∈N0
is a martingale with S0 = 0. The proof starts by introducing two lemmas.

Lemma 2: Under the assumptions of Theorem 5, let

Un , exp(λSn − θQn), ∀n ∈ {0, 1, . . .} (38)

where λ ≥ 0 and θ ≥ eλ − λ− 1 are arbitrary constants. Then, {Un,Fn}n∈N0
is a supermartingale.

Proof: Un in (38) is Fn-measurable (since Qn in (13) is Fn−1-measurable, where Fn−1 ⊆ Fn, and Sn is
Fn-measurable), Qn and Un are non-negative random variables, and Sn =

∑n
k=1 ξk ≤ n a.s. (since ξk ≤ 1 and

S0 = 0). It therefore follows that 0 ≤ Un ≤ eλn a.s. for λ, θ ≥ 0, so Un ∈ L1(Ω,Fn,P). It is required to show that
E[Un|Fn−1] ≤ Un−1 holds a.s. for every n ∈ N, under the above assumptions on the parameters λ and θ in (38).

E[Un|Fn−1]
(a)
= exp(−θQn) exp(λSn−1)E

[
exp(λξn) | Fn−1

]
(b)
= exp(λSn−1) exp

(
−θ(Qn−1 + E[ξ2n|Fn−1])

)
E
[
exp(λξn) | Fn−1

]
(c)
= Un−1

(
E
[
exp(λξn) | Fn−1

]
exp(θE[ξ2n | Fn−1])

)
(39)

where (a) follows from (38) and because Qn and Sn−1 are Fn−1-measurable and Sn = Sn−1 + ξn, (b) follows
from (13), and (c) follows from (38).

A modification of the original proof of Lemma 2 (see [8, Section 3]) is suggested in the following, which then
enables to improve the bound in Theorem 5 for real-valued, discrete-time, conditionally symmetric martingales with
bounded jumps. This leads to the improved bound in Theorem 4 for the considered subclass of martingales.

Since by assumption ξn ≤ 1 and E[ξn | Fn−1] = 0 a.s., then applying Bennett’s inequality in (22) to the conditional
expectation of eλξn given Fn−1 (recall that λ ≥ 0) gives

E
[
exp
(
λξn
)
| Fn−1

]
≤

exp
(
−λE[ξ2n | Fn−1]

)
+ E[ξ2n | Fn−1] exp(λ)

1 + E
[
ξ2n | Fn−1

]
which therefore implies from (39) and the last inequality that

E[Un|Fn−1] ≤ Un−1

(
exp

(
−(λ+ θ)E[ξ2n | Fn−1]

)
1 + E

[
ξ2n | Fn−1

] +
E[ξ2n | Fn−1] exp

(
λ− θE[ξ2n | Fn−1]

)
1 + E[ξ2n | Fn−1]

)
. (40)

In order to prove that E[Un|Fn−1] ≤ Un−1 a.s., it is sufficient to prove that the second term on the right-hand side
of (40) is a.s. less than or equal to 1. To this end, lets find the condition on λ, θ ≥ 0 such that for every α ≥ 0(

1

1 + α

)
exp
(
−α(λ+ θ)

)
+

(
α

1 + α

)
exp(λ− αθ) ≤ 1 (41)

which then assures that the second term on the right-hand side of (40) is less than or equal to 1 a.s. as required.
Lemma 3: If λ ≥ 0 and θ ≥ exp(λ)− λ− 1 then the condition in (41) is satisfied for every α ≥ 0.

Proof: This claim follows by calculus, showing that the function

g(α) = (1 + α) exp(αθ)− α exp(λ)− exp(−αλ), ∀α ≥ 0

is non-negative on R+ if λ ≥ 0 and θ ≥ exp(λ)− λ− 1.
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From (40) and Lemma 3, it follows that {Un,Fn}n∈N0
is a supermartingale if λ ≥ 0 and θ ≥ exp(λ)−λ− 1. This

completes the proof of Lemma 2.

At this point, we start to discuss in parallel the derivation of the tightened bound in Theorem 4 for conditionally
symmetric martingales. As before, it is assumed without any loss of generality that d = 1.

Lemma 4: Under the additional assumption of the conditional symmetry in Theorem 4, then {Un,Fn}n∈N0
in

(38) is a supermartingale if λ ≥ 0 and θ ≥ cosh(λ)− 1 are arbitrary constants.
Proof: By assumption ξn = Sn − Sn−1 ≤ 1 a.s., and ξn is conditionally symmetric around zero, given Fn−1,

for every n ∈ N. By applying Corollary 3 to the conditional expectation of exp(λξn) given Fn−1, for every λ ≥ 0,

E
[
exp(λξn) | Fn−1

]
≤ 1 + E[ξ2n | Fn−1]

(
cosh(λ)− 1

)
. (42)

Hence, combining (39) and (42) gives

E[Un|Fn−1] ≤ Un−1

(
1 + E[ξ2n | Fn−1]

(
cosh(λ)− 1

)
exp
(
θE[ξ2n|Fn−1]

) )
. (43)

Let λ ≥ 0. Since E[ξ2n | Fn−1] ≥ 0 a.s. then in order to ensure that {Un,Fn}n∈N0
forms a supermartingale, it is

sufficient (based on (43)) that the following condition holds:

1 + α
(
cosh(λ)− 1

)
exp(θα)

≤ 1, ∀α ≥ 0. (44)

Calculus shows that, for λ ≥ 0, the condition in (44) is satisfied if and only if

θ ≥ cosh(λ)− 1 , θmin(λ). (45)

From (43), {Un,Fn}n∈N0
is a supermartingale if λ ≥ 0 and θ ≥ θmin(λ). This proves Lemma 4.

Hence, due to the assumption of the conditional symmetry of the martingale in Theorem 4, the set of parameters
for which {Un,Fn} is a supermartingale was extended. This follows from a comparison of Lemma 2 and 4 where
indeed exp(λ)− 1− λ ≥ θmin(λ) ≥ 0 for every λ ≥ 0.

Let z, r > 0, λ ≥ 0 and either θ ≥ cosh(λ)− 1 or θ ≥ exp(λ)− λ− 1 with or without assuming the conditional
symmetry property, respectively (see Lemma 2 and 4). In the following, we rely on Doob’s sampling theorem. To
this end, let M ∈ N, and define two stopping times adapted to {Fn}. The first stopping time is α = 0, and the
second stopping time β is the minimal value of n ∈ {0, . . . ,M} (if any) such that Sn ≥ z and Qn ≤ r (note that
Sn is Fn-measurable and Qn is Fn−1-measurable, so the event {β ≤ n} is Fn-measurable); if such a value of n
does not exist, let β , M . Hence α ≤ β are two bounded stopping times. From Lemma 2 or 4, {Un,Fn}n∈N0

is
a supermartingale for the corresponding set of parameters λ and θ, and from Doob’s sampling theorem

E[Uβ] ≤ E[U0] = 1 (46)

(S0 = Q0 = 0, so from (38), U0 = 1 a.s.). Hence, it implies the following chain of inequalities:

P(∃n ≤ M : Sn ≥ z,Qn ≤ r)
(a)
= P(Sβ ≥ z,Qβ ≤ r)
(b)
≤ P(λSβ − θQβ ≥ λz − θr)
(c)
≤

E[exp(λSβ − θQβ)]

exp(λz − θr)

(d)
=

E[Uβ]

exp(λz − θr)
(e)
≤ exp

(
−(λz − θr)

)
(47)
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where equality (a) follows from the definition of the stopping time β ∈ {0, . . . ,M}, (b) holds since λ, θ ≥ 0, (c)
follows from Chernoff’s bound, (d) follows from the definition in (38), and finally (e) follows from (46). Since
(47) holds for every M ∈ N, then from the continuity theorem for non-decreasing events and (47)

P(∃n ∈ N : Sn ≥ z,Qn ≤ r)

= lim
M→∞

P(∃n ≤ M : Sn ≥ z,Qn ≤ r)

≤ exp
(
−(λz − θr)

)
. (48)

The choice of the non-negative parameter θ as the minimal value for which (48) is valid provides the tightest bound
within this form. Hence, without assuming the conditional symmetry property for the martingale {Xn,Fn}, let (see
Lemma 2) θ = exp(λ)− λ− 1. This gives that for every z, r > 0,

P(∃n ∈ N : Sn ≥ z,Qn ≤ r) ≤ exp
(
−
[
λz −

(
exp(λ)− λ− 1

)
r
])

, ∀λ ≥ 0.

The minimization w.r.t. λ gives that λ = ln
(
1 + z

r

)
, and its substitution in the bound yields that

P(∃n ∈ N : Sn ≥ z,Qn ≤ r) ≤ exp

(
−z2

2r
·B
(z
r

))
(49)

where the function B is introduced in (17).
Furthermore, under the assumption that the martingale {Xn,Fn}n∈N0

is conditionally symmetric, let θ = θmin(λ)
(see Lemma 4) for obtaining the tightest bound in (48) for a fixed λ ≥ 0. This gives the inequality

P(∃n ∈ N : Sn ≥ z,Qn ≤ r) ≤ exp
(
−
[
λz − r θmin(λ)

])
, ∀λ ≥ 0.

The optimized λ is equal to λ = sinh−1
(
z
r

)
. Its substitution in (45) gives that θmin(λ) =

√
1 + z2

r2 − 1, and

P(∃n ∈ N : Sn ≥ z,Qn ≤ r) ≤ exp

(
−z2

2r
· C
(z
r

))
(50)

where the function C is introduced in (15).
Finally, the proof of Theorems 4 and 5 is completed by showing that the following equality holds:

A , {∃n ∈ N : Sn ≥ z,Qn ≤ r}
= {∃n ∈ N : max

1≤k≤n
Sk ≥ z,Qn ≤ r} , B. (51)

Clearly A ⊆ B, so one needs to show that B ⊆ A. To this end, assume that event B is satisfied. Then, there exists
some n ∈ N and k ∈ {1, . . . , n} such that Sk ≥ z and Qn ≤ r. Since the predictable quadratic variation process
{Qn}n∈N0

in (13) is monotonic non-decreasing, then it implies that Sk ≥ z and Qk ≤ r; therefore, event A is also
satisfied and B ⊆ A. The combination of (50) and (51) completes the proof of Theorem 4, and respectively the
combination of (49) and (51) completes the proof of Theorem 5.

We prove in the following Corollaries 1 and 2 that extend, respectively, Theorems 1 and 4 to real-valued discrete-
time conditionally symmetric sub/ supermartingales.

D. Proof of Corollary 1

The proof of Corollary 1 is similar to the proof of Theorem 1. The only difference is that for a supermartingale,
Xk −X0 =

∑k
j=1(Xj −Xj−1) ≤

∑k
j=1 ηj a.s., where ηj , Xj − E[Xj | Fj−1] is Fj-measurable. Hence

P
(
max
1≤k≤n

Xk −X0 ≥ αn
)
≤ P

(
max
1≤k≤n

k∑
j=1

ηj ≥ αn

)
where a.s. ηj ≤ d, E[ηj | Fj−1] = 0, and Var(ηj | Fj−1) ≤ σ2. The continuation of the proof coincides with the
proof of Theorem 1 for the martingale {

∑k
j=1 ηj ,Fk}k∈N0

(starting from (20) and (30)). Since ηk ≤ d a.s., then
Xk −X0 ≤ nd a.s. for every k ∈ {1, . . . , n}; hence, if δ > 1 (i.e., α > d), then the probability on the left-hand
side of (19) is equal to zero. The other inequality for submartingales holds due to the fact that if {Xk,Fk} is a
conditionally symmetric submartingale, then {−Xk,Fk} is a conditionally symmetric supermartingale.
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E. Proof of Corollary 2

Since {Xn,Fn}n∈N0
is a supermartingale, then a.s., for every k ∈ N, Xk − X0 ≤

∑k
j=1 ηj where, as before,

ηj , Xj −E[Xj | Fj−1]. Consider the martingale {Yn,Fn}n∈N0
where Yn ,

∑n
j=1 ηj for every n ∈ N, and Y0 , 0

(it is a martingale since a.s. E[ηj | Fj−1] = 0). Since Yk−Yk−1 = ηk for every k ∈ N, then the predictable quadratic
variation process {Qn}n∈N0

which corresponds to the martingale {Yn,Fn}n∈N0
is, from (13), the same process as

the one which corresponds to the supermartingale {Xn,Fn}n∈N0
. Furthermore, Xk − X0 ≤

∑n
j=1 ξj = Yk − Y0

for every k ∈ N. Hence, it follows that for every z, r > 0,

P
(
∃n ∈ N : max

1≤k≤n
(Xk −X0) ≥ z, Qn ≤ r

)
≤ P

(
∃n ∈ N : max

1≤k≤n
(Yk − Y0) ≥ z, Qn ≤ r

)
.

Theorem 5, applied to the martingale {Yn,Fn}n∈N0
, gives the bound in (16) and (17). If {Xn,Fn}n∈N0

is a
conditionally symmetric supermartingale, then {Yn,Fn}n∈N0

is a conditionally symmetric martingale. In this case,
applying Theorem 4 to the martingale {Yn,Fn}n∈N0

gives the improved bound in (14) and (15).
Acknowledgments. I thank Ofer Zeitouni for his help in improving the presentation of the results, and for a

suggestion that led to a weakening of assumptions in Lemma 1.
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