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Abstract

This paper derives new entropy bounds for discrete random variables via maximal coupling. It provides bounds on the

difference between the entropies of two discrete random variables in terms of the local and total variation distances between

their probability mass functions. These bounds address cases of finite or countable infinite alphabets. Particular cases of these

bounds reproduce some known results. The use of the new entropy bounds is exemplified by relying on some bounds on the

above distances via Stein’s method. The improvement that is obtained by these bounds is exemplified.
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I. INTRODUCTION

Inequalities that relate the Shannon entropy or information divergence with the total variation distance

were extensively studied during the last fifty years (see, e.g., [7]–[10], [13], [14], [16], [18]–[21], [25]–

[27], [30]–[38], [42], [44]–[49]). Among the observations in these works, it is known that a sufficiently

small total variation distance between a pair of discrete random variables with a finite and fixed alphabet,

implies a small difference between their entropies. However, if the size of the alphabet is finite but it

is not bounded then for an arbitrarily small δ > 0 and an arbitrarily large µ > 0, there exists a pair of

discrete random variables such that the total variation distance between them is less than δ whereas the

difference between their entropies is larger than µ (see, e.g., [21, Theorem 1] with a concrete example in

its proof).

The interplay between the entropy difference of two discrete random variables and their total variation

distance was studied in [7, Theorem 17.3.3] or [10, Lemma 2.7], [11, Lemma 1], [21], [34], [42, Section 2]

and [49]. The bounds that are derived in this work improve some existing bounds as a result of their

dependence on both the local and total variation distances and the alphabet sizes (the relevant distances

are defined later in this section). The new bounds are derived via the use of maximal coupling, which is

also known to be useful for the derivation of error bounds via Stein’s method (see, e.g., [40, Chapter 2]

and [41]). It is noted that the entropy bounds in [49] are also derived via coupling, but the approach of

the analysis in this work is remarkably different (see Sections II and III). The new bounds are linked to

Stein’s method, and the improvement that is achieved by these bounds is exemplified.

We provide in the following the essential mathematical background that is required for the analysis in

this work.

Definition 1: A coupling of a pair of two discrete random variables (X, Y ) is a pair of two random

variables (X̂, Ŷ ) such that the marginal distributions of (X, Y ) and (X̂, Ŷ ) coincide, i.e., PX = PX̂ and

PY = PŶ .

Definition 2: For a pair of random variables (X, Y ), a coupling (X̂, Ŷ ) is called a maximal coupling

if P(X̂ = Ŷ ) is as large as possible among all the couplings of (X, Y ).
The following theorem is a basic result on maximal coupling that also suggests, as part of its proof, a

construction for maximal coupling. We later rely on this particular construction to derive in Section III
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some new bounds on the entropy of discrete random variables. Hence, the proof of the following known

theorem serves for the analysis in this work.

Theorem 1: Let X and Y be discrete random variables that take values in a set A, and let their

respective probability mass functions be

PX(x) = P(X = x), PY (y) = P(Y = y), ∀x, y ∈ A.

Then, the maximal coupling of (X, Y ) satisfies

P(X̂ = Ŷ ) =
∑

u∈A

min{PX(u), PY (u)}. (1)

Proof: Let B , {u ∈ A : PX(u) < PY (u)}, and let Bc , A \ B. Then, for every coupling (X̂, Ŷ )
of (X, Y ),

P(X̂ = Ŷ )

= P(X̂ = Ŷ ∈ B) + P(X̂ = Ŷ ∈ Bc)

≤ P(X̂ ∈ B) + P(Ŷ ∈ Bc)

= P(X ∈ B) + P(Y ∈ Bc)

=
∑

u∈B

PX(u) +
∑

u∈Bc

PY (u)

=
∑

u∈B

min{PX(u), PY (u)} +
∑

u∈Bc

min{PX(u), PY (u)}

=
∑

u∈A

min{PX(u), PY (u)} , p. (2)

The following provides a construction of a coupling (X̂, Ŷ ) that achieves the bound in (2) with equality,

so it forms a maximal coupling of (X, Y ). Let U , V , W and J be independent discrete random variables,

where

P(J = 0) = 1 − p, P(J = 1) = p (3)

so J ∼ Bernoulli(p), and let U , V , W have the following probability mass functions:

PU(u) =
min{PX(u), PY (u)}

p
, ∀u ∈ A (4)

PV (v) =
PX(v) − min{PX(v), PY (v)}

1 − p
, ∀ v ∈ A (5)

PW (w) =
PY (w) − min{PX(w), PY (w)}

1 − p
, ∀w ∈ A. (6)

If J = 1, let X̂ = Ŷ = U , and if J = 0 let X̂ = V and Ŷ = W . For every x, y ∈ A
PX̂(x)

= p P(X̂ = x | J = 1) + (1 − p) P(X̂ = x | J = 0)

= p PU(x) + (1 − p) PV (x)

= PX(x)

and similarly PŶ (y) = PY (y), so (X̂, Ŷ ) is indeed a coupling of (X, Y ). Furthermore,

P(X̂ = Ŷ ) ≥ P(J = 1) = p (7)

so, from (2) and (7), it follows that the proposed construction for (X̂, Ŷ ) is a maximal coupling of (X, Y ).
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Definition 3: Let X and Y be discrete random variables that take values in a set A, and let PX and PY

be their respective probability mass functions. The local distance and total variation distance between X
and Y are, respectively,

dloc(X, Y ) , sup
u∈A

|PX(u) − PY (u)| (8)

dTV(X, Y ) ,
1

2

∑

u∈A

|PX(u) − PY (u)|. (9)

Without abuse of notation, one can also write dloc(PX , PY ) and dTV(PX , PY ), respectively.

Remark 1: The factor of one-half on the right-hand side of (9) normalizes the total variation distance

to get values between zero and one. It is noted that the notation in the literature is not consistent, with

a factor 2 on the right-hand side of (9) often being present or not. It is easy to show (see, e.g., [16,

Lemma 5.4 on pp. 133–134]) that

dTV(X, Y ) = sup
B⊆A

|P(X ∈ B) − P(Y ∈ B)|.

From the last equality and the definition of the local distance in (8), it follows that dloc(X, Y ) ≤ dTV(X, Y ).
The following result is a simple consequence of Theorem 1, and it is also used for the derivation of

the new bounds on the entropy in Section III.

Theorem 2: Let X and Y be two discrete random variables that take values in a set A. If (X̂, Ŷ ) is a

maximal coupling of (X, Y ) then

P(X̂ 6= Ŷ ) = dTV(X, Y ). (10)

Proof: This follows from (1) and (9), and the equality min{a, b} = a+b−|a−b|
2

for a, b ∈ R.
The continuation of this paper is structured as follows: Section II provides a simple proof, via maximal

coupling, for an existing bound on the difference between the entropies of two discrete random variables

in terms of their total variation distance (see [21, Theorem 6] and [49, Eq. (4)]). The proof of this bound

is a shortened version of the proof in [49], and it serves to motivate the derivation of some refined bounds

on the difference between the entropies of two discrete random variables. These new bounds, proved

in Section III via maximal coupling, depend on both the local and total variation distances. Section IV

exemplifies the use of the new bounds with a link to Stein’s method, and it also compares them with

some existing bounds.

II. A PROOF OF A KNOWN BOUND ON THE ENTROPY OF DISCRETE RANDOM VARIABLES VIA

COUPLING

The following theorem relies on a bound that first appeared in [49, Eq. (4)] and proved by coupling. It

was later introduced in [21, Theorem 6] by re-proving the inequality in a different way (without coupling),

and it was also strengthened there by showing an explicit case where the following bound is tight. As is

proved in [49, Section 3], the bound on the entropy difference that is introduced in the following theorem

improves the bound in [7, Theorem 17.3.3] or [10, Lemma 2.7].

Theorem 3: Let X and Y be two discrete random variables that take values in a set A, and let |A| = M .

If dTV(X, Y ) ≤ ε, then

|H(X) − H(Y )| ≤
{

ε log(M − 1) + h(ε) if ε ∈
[
0, 1 − 1

M

]

log(M) if ε > 1 − 1
M

where h denotes the binary entropy function. Furthermore, there is a case where the bound is achieved

with equality.

The following proof of Theorem 3 exemplifies the use of maximal coupling in proving an information-

theoretic result.
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Proof: Let (X̂, Ŷ ) be a maximal coupling of (X, Y ). Since H(X) = H(X̂) and H(Y ) = H(Ŷ )
(note that the marginal probability mass functions of (X, Y ) and (X̂, Ŷ ) are the same), it follows from

Fano’s inequality and Theorem 2 (see (10)) that
∣∣H(X) − H(Y )

∣∣

=
∣∣H(X̂) − H(Ŷ )

∣∣

=
∣∣H(X̂|Ŷ ) − H(Ŷ |X̂)

∣∣

≤ max
{

H(X̂|Ŷ ), H(Ŷ |X̂)
}

≤ P(X̂ 6= Ŷ ) log(M − 1) + h
(
P(X̂ 6= Ŷ )

)

= dTV(X, Y ) log(M − 1) + h
(
dTV(X, Y )

)
.

This proves the bound in [49, Eq. (4)]. If dTV(X, Y ) ≤ ε for some ε ∈
[
0, 1 − 1

M

]
, the replacement of

dTV(X, Y ) in the last bound by ε is valid; this holds since the function f(x) , x log(M − 1) + h(x)
is monotonic increasing over the interval [0, 1 − 1

M
] (since f ′(x) = log(M − 1) + log

(
1−x

x

)
> 0 for

0 < x < 1 − 1
M

). Otherwise, if ε > 1 − 1
M

, then

∣∣H(X) − H(Y )
∣∣ ≤ max

{
H(X), H(Y )

}
≤ log(M).

Cases where the bound is tight [21]: If ε ∈ [0, 1 − 1
M

], the bound is tight when

X ∼ PX =

(
1 − ε,

ε

M − 1
, . . . ,

ε

M − 1

)

Y ∼ PY = (1, 0, . . . , 0)

which implies that

dTV(X, Y ) = ε,

|H(X) − H(Y )| = H(X) = h(ε) + ε log(M − 1).

If ε ∈ (1 − 1
M

, 1] then the bound is tight when

X ∼
( 1

M
, . . . ,

1

M

)
, Y ∼ (1, 0, . . . , 0)

so, dTV(X, Y ) = 1 − 1
M

< ε and |H(X) − H(Y )| = log(M).

III. NEW BOUNDS ON THE ENTROPY OF DISCRETE RANDOM VARIABLES VIA COUPLING

In the cases where the known bound in Theorem 3 was shown to be tight in [21] (see the last part of

the proof in Section II), it is easy to verify that the local distance is equal to the total variation distance.

However, as is shown in the following, if it is not the case (i.e., the local distance is smaller than the

total variation distance), then the bound in Theorem 3 is necessarily not tight. Furthermore, this section

provides new bounds that depend on both the total variation and local distances. If these two distances

are equal then the new bound is particularized to the bound in Theorem 3 but otherwise, the new bound

improves the bound in Theorem 3. The general approach for proving the following new inequalities relies

on the construction of the maximal coupling that is introduced in the proof of Theorem 1. The new results

are stated and proved in the following.

Theorem 4: Let X and Y be two discrete random variables that take values in a set A, and let |A| = M .

Then,

|H(X) − H(Y )| ≤ dTV(X, Y ) log(Mα − 1) + h
(
dTV(X, Y )

)
(11)
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where

α ,
dloc(X, Y )

dTV(X, Y )
(12)

denotes the ratio of the local and total variation distances (so, α ∈ [ 2
M

, 1]), and h denotes the binary

entropy function. Furthermore, if the probability mass functions of X and Y satisfy the condition that
1
2
≤ PX

PY
≤ 2 whenever PX , PY > 0, then the bound in (11) is tightened to

|H(X) − H(Y )| ≤ dTV(X, Y ) log

(
Mα − 1

4

)
+ h
(
dTV(X, Y )

)
. (13)

Remark 2: Since, in general, α ≤ 1 then the case where α = 1 is the worst case for the bound in (11).

In the latter case, it is particularized to the bound in Theorem 3 (see [21, Theorem 6] or [49, Eq. (4)]).

Remark 3: If α ≤ 1
N

for some integer N (since α ∈
[

2
M

, 1
]

then N ∈ {1, . . . , ⌊M
2
⌋}), the bound in

(11) implies that

|H(X) − H(Y )| ≤ dTV(X, Y ) log

(
M − N

N

)
+ h
(
dTV(X, Y )

)
. (14)

The bounds in (14) and [21, Theorem 7] are similar but they hold under different conditions. The bound

in [21, Theorem 7] requires that PX , PY ≤ 1
N

everywhere, whereas the bound in (14) holds under the

requirement that the ratio α of the local and total variation distances satisfies α ≤ 1
N

. None of these

conditions implies the other.

We prove in the following Theorem 4.

Proof: Assume without loss of generality (w.o.l.o.g.) that H(X) − H(Y ) ≥ 0 (note that there is a

symmetry between X and Y in |H(X) − H(Y )|, dloc(X, Y ) and dTV(X, Y )).
Let (X̂, Ŷ ) be the maximal coupling of (X, Y ) according to the construction in the proof of Theorem 1.

Then,

|H(X) − H(Y )|
= H(X) − H(Y )

= H(X̂) − H(Ŷ )

= H(X̂|J) − H(Ŷ |J) + I(X̂; J) − I(Ŷ ; J). (15)

The conditional entropy H(X̂|J) satisfies

H(X̂|J)

= P(J = 0) H(X̂|J = 0) + P(J = 1) H(X̂|J = 1)
(a)
= dTV(X, Y ) H(V |J = 0) +

(
1 − dTV(X, Y )

)
H(U |J = 1)

(b)
= dTV(X, Y ) H(V ) +

(
1 − dTV(X, Y )

)
H(U) (16)

where equality (a) holds since J ∼ Bernoulli(p) with

p = P(J = 1) = P(X̂ = Ŷ ) = 1 − dTV(X, Y )

(see the proof of Theorem 1 and the result in Theorem 2), and because X̂ is equal to V or U when J
gets that values zero or one, respectively. Furthermore, equality (b) holds since U, V,W, J are independent

random variables (due to the construction shown in the proof of Theorem 1). Similarly,

H(Ŷ |J) = dTV(X, Y ) H(W ) +
(
1 − dTV(X, Y )

)
H(U). (17)

Combining (15)–(17) yields that

|H(X) − H(Y )| = dTV(X, Y ) (H(V ) − H(W )) + I(X̂; J) − I(Ŷ ; J). (18)
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From (5) and (6), it follows that

PV (a) PW (a) = 0, ∀ a ∈ A (19)

and also, for every a ∈ A,

PV (a) + PW (a)

=
PX(a) + PY (a) − 2 min{PX(a), PY (a)}

dTV(X, Y )

=
|PX(a) − PY (a)|

dTV(X, Y )

≤ dloc(X, Y )

dTV(X, Y )
, α. (20)

In the following, we derive upper bounds on H(V ) −H(W ) and I(X̂; J) − I(Ŷ ; J), and rely on (18)

to get an upper bound on |H(X) − H(Y )|. Let A , {a1, . . . , aM}, and

si , PV (ai), ti , PW (ai), ∀ i ∈ {1, . . . ,M}.

From (19) and (20),

siti = 0, si + ti ≤ α, ∀ i ∈ {1, . . . ,M}

and H(V ) − H(W ) = −
∑M

i=1 si log(si) +
∑M

i=1 ti log(ti). Hence, for fixed α and M (since |A| = M ,

then α ∈ [ 2
M

, 1]),

H(V ) − H(W ) ≤ g(α) (21)

where g(α) is the solution of the optimization problem

maximize

(
−

M∑

i=1

si log(si) +
M∑

i=1

ti log(ti)

)

subject to



si, ti ≥ 0, si + ti ≤ α
siti = 0, ∀ i ∈ {1, . . . ,M}

M∑

i=1

si =
M∑

i=1

ti = 1
(22)

with the 2M variables s1, t1, . . . sM , tM . Fortunately, this non-convex optimization problem admits a

closed-form solution.

Lemma 1: The solution of the non-convex optimization problem in (22), denoted by g(α), is the

following:

g(α) = log
(
M −

⌈
1

α

⌉)
+ α

⌊ 1

α

⌋
log α +

(
1 − α

⌊ 1

α

⌋)
log

(
1 − α

⌊ 1

α

⌋)
(23)

with the convention that 0 log 0 means 0.

Proof: Lets first show that the solution on the right-hand side of (23) forms an upper bound on g(α),
and then show that this upper bound is tight.
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For the derivation of the upper bound, note that due to the above constraints,

1 =
M∑

i=1

ti
(a)

≤ α
∣∣{i ∈ {1, . . . ,M} : ti > 0}

∣∣

⇒
∣∣{i ∈ {1, . . . ,M} : ti > 0}

∣∣ ≥ 1

α
(b)⇒
∣∣{i ∈ {1, . . . ,M} : si > 0}

∣∣ ≤ M − 1

α

(c)⇒
∣∣{i ∈ {1, . . . ,M} : si > 0}

∣∣ ≤ M −
⌈

1

α

⌉

where inequality (a) holds since si + ti ≤ α and si, ti ≥ 0 for every i ∈ {1, . . . ,M}, (b) follows from

the constraint that si ti = 0 for every i, and (c) follows since the cardinality of the support of {si} is an

integer, and since
⌊
M − 1

α

⌋
= M −

⌈
1
α

⌉
. Hence,

−
M∑

i=1

si log(si) ≤ log
(
M −

⌈
1

α

⌉)

and therefore the solution of the optimization problem in (22) satisfies

g(α) ≤ log
(
M −

⌈ 1

α

⌉)
+ f(α) (24)

where f(α) is the solution of the optimization problem

maximize

M∑

i=1

ti log(ti)

subject to



0 ≤ ti ≤ α, ∀ i ∈ {1, . . . ,M}
M∑

i=1

ti = 1
(25)

with the M optimization variables t1, . . . , tM . Note that the above objective function in (25) is convex,

and the feasible set is a bounded polyhedron. Furthermore, the maximum of a convex function over a

bounded polyhedron is attained at one of its vertices (see, e.g., [39, Corollary 32.3.3]; this property follows

from the convex-hull description of a bounded polyhedron and Jensen’s inequality). Since the objective

function and the feasible set in (25) are invariant to a permutation of the variables t1, . . . , tM , then an

optimal point is given by

t1 = . . . = tl = α, l ,

⌊ 1

α

⌋

tl+1 = 1 − α
⌊ 1

α

⌋
, tl+2 = . . . = tM = 0

where l ≤ M
2

(since α ∈ [ 2
M

, 1]), and indeed ti ∈ [0, α] for i ∈ {1, . . . ,M}. This therefore implies that

the solution of the optimization problem in (25) is given by

f(α) = α
⌊ 1

α

⌋
log α +

(
1 − α

⌊ 1

α

⌋)
log

(
1 − α

⌊ 1

α

⌋)
. (26)

From (24) and (26), it follows that the right-hand side of (23) forms an upper bound on g(α). It remains

to show that this bound is tight. to this end, we separate into the following two cases:
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Case 1: Suppose that N , 1
α

is an integer. In this case, the upper bound on g(α) (see the right-hand

side of (23)) gets the simplified form

g(α) ≤ log
(
M − 1

α

)
+ log α = log(Mα − 1).

This upper bound on g(α) is achieved by the point (s1, t1, . . . , sM , tM) where

t1 = . . . = tN = α, tN+1 = . . . = tM = 0

s1 = . . . = sN = 0, sN+1 = . . . = sM =
1

M − N
.

Note that this point is in the feasible set of the optimization problem in (22) since 1
M−N

= α
Mα−1

≤ α
where this holds because α ∈ [ 2

M
, 1]. At this specific point

−
M∑

i=1

si log(si) +
M∑

i=1

ti log(ti)

= log
(
M − 1

α

)
+ log α = log(Mα − 1)

so this upper bound on g(α) is tight if 1
α

is an integer.

Case 2: Suppose that 1
α

is not an integer. In this case, let l ,
⌊

1
α

⌋
so l + 1 =

⌈
1
α

⌉
, and

t1 = . . . = tl = α, tl+1 = 1 − α
⌊ 1

α

⌋

tl+2 = . . . = tM = 0

s1 = . . . = sl+1 = 0

sl+2 = . . . = sM =
1

M − l − 1
=

1

M −
⌈

1
α

⌉ .

To verify that this (2M)-dimensional vector is included in the feasible set of (22), note that due to the

constraints of this optimization problem

1 =
M∑

i=1

si≤α
∣∣{i ∈ {1, . . . ,M} : si > 0}

∣∣

⇒
∣∣{i ∈ {1, . . . ,M} : si > 0}

∣∣ ≥ 1

α

⇒
∣∣{i ∈ {1, . . . ,M} : si > 0}

∣∣ ≥
⌈

1

α

⌉

and furthermore, as was shown above,

∣∣{i ∈ {1, . . . ,M} : si > 0}
∣∣ ≤ M −

⌈
1

α

⌉

so ⌈
1

α

⌉
≤
∣∣{i ∈ {1, . . . ,M} : si > 0}

∣∣ ≤ M −
⌈

1

α

⌉
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and
⌈

1
α

⌉
≤ M

2
. This yields that for j ∈ {l + 2, . . . ,M} (note also that α ∈ [ 2

M
, 1])

sj =
1

M − l − 1

=
1

M −
⌈

1
α

⌉

≤ 2

M
≤ α

and tl+1 = 1 − α
⌊

1
α

⌋
≤ α, so the vector is indeed included in the feasible set of (22). At this specific

point

−
M∑

i=1

si log(si) +
M∑

i=1

ti log(ti)

= log
(
M −

⌈
1

α

⌉)
+ α

⌊ 1

α

⌋
log α +

(
1 − α

⌊ 1

α

⌋)
log

(
1 − α

⌊ 1

α

⌋)

= g(α)

so the upper bound on g(α) from (24) and (26) is tight, and this completes the proof of Lemma 1.

Corollary 1: The solution of the non-convex optimization problem in (22) satisfies the inequality

g(α) ≤ log(Mα − 1)

and this bound is tight if and only if 1
α

is an integer.

Proof: From Lemma 1 (see Eq. (23)), it follows that

g(α) ≤ log
(
M − 1

α

)
+ α

⌊ 1

α

⌋
log α +

(
1 − α

⌊ 1

α

⌋)
log

(
1 − α

( 1

α
− 1
))

= log
(
M − 1

α

)
+ log(α)

= log(Mα − 1)

and the above inequality turns to be an equality if and only if 1
α

is an integer. This completes the proof

of the corollary.

By combining (21) and Corollary 1, it follows that

H(V ) − H(W ) ≤ log(Mα − 1)

and therefore from (18)

|H(X) − H(Y )| ≤ dTV(X, Y ) log(Mα − 1) + I(J ; X̂) − I(J ; Ŷ ). (27)

Finally, the bound in (11) follows from the inequality

I(J ; X̂) − I(J ; Ŷ ) ≤ H(J) = h
(
dTV(X, Y )

)
. (28)

We move to derive a refinement of the bound in (11) when 1
2
≤ PX

PY
≤ 2. In this case, the starting point

is the inequality in (27) where it is aimed to improve the upper bound in (28). To this end,

I(J ; X̂) − I(J ; Ŷ )

= H(J |Ŷ ) − H(J |X̂)

≤ H(J) − H(J |X̂)

= h
(
dTV(X, Y )

)
− H(J |X̂) (29)
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and, from [22, Theorem 11],

H(J |X̂) ≥ 2 log 2 P
(
J 6= JMAP(X̂)

)
(30)

where JMAP(X̂) is the maximum a-posteriori (MAP) estimator of J based on X̂ (note that the minimum

on the left-hand side of [22, Eq. (110)] is achieved by the MAP estimator). In the following, the estimator

JMAP(X̂) on the right-hand side of (30) is calculated.

1) If X̂ /∈ supp(PV ) then a.s. J = 1 (otherwise, J = 0 and X̂ = V , so X̂ ∈ supp(PV ) a.s.). Hence,

X̂ /∈ supp(PV ) ⇒ JMAP(X̂) = 1.

From (5), it follows that X̂ /∈ supp(PV ) if and only if PX(X̂) ≤ PY (X̂).
2) If X̂ ∈ supp(PV ) then, from (5), PX(X̂) > PY (X̂). Hence, from (4) and (5) with p = 1−dTV(X, Y ),

PU(X̂) =
PY (X̂)

1 − dTV(X, Y )

PV (X̂) =
PX(X̂) − PY (X̂)

dTV(X, Y )
.

Since U, V, J are independent, then from (3)

P(J = 1, X̂) = P(J = 1) PU(X̂) = PY (X̂)

P(J = 0, X̂) = P(J = 0) PV (X̂) = PX(X̂) − PY (X̂)

so, if X̂ ∈ supp(PV ), then

JMAP(X̂) =

{
1 if

PX(X̂)
2

≤ PY (X̂) < PX(X̂)

0 if PY (X̂) < PX(X̂)
2

.

To conclude, the MAP estimator of J that is based on the observation X̂ is given by

JMAP(X̂) =

{
1 if

PX(X̂)
2

≤ PY (X̂)

0 if PY (X̂) < PX(X̂)
2

.

It therefore implies that if PY

PX
≥ 1

2
whenever PX > 0, then JMAP(X̂) = 1 independently of X̂ , so in this

case

P
(
J 6= JMAP(X̂)

)
= P(J = 0) = dTV(X, Y ).

Hence, from (29), (30) and the last equality, if PY

PX
≥ 1

2
whenever PX > 0 then

I(J ; X̂) − I(J ; Ŷ ) ≤ h
(
dTV(X, Y )

)
− 2 log 2 · dTV(X, Y ).

A combination of the last inequality with (27) finally gives the refined bound in (13). Since it was assumed

at the beginning of the proof that H(X) ≥ H(Y ) while it is not necessarily known in advance which

entropy is larger, the requirement on PY

PX
can be symmetrized by requiring that 1

2
≤ PX

PY
≤ 2 whenever

PX , PY > 0. This completes the proof of Theorem 4.

Corollary 2: Let X and Y be two discrete random variables that take values in a set A, and let

|A| = M . Assume that for some positive constants ε1, ε2

dTV(X, Y ) ≤ ε1 ≤ 1 − 1

Mε2

, (31)

dloc(X, Y )

dTV(X, Y )
≤ ε2 ≤ 1. (32)
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Then,

|H(X) − H(Y )| ≤ ε1 log(Mε2 − 1) + h(ε1). (33)

Proof: From (11), (12), (32), and since α ≤ ε2

|H(X) − H(Y )| ≤ dTV(X, Y ) log(Mε2 − 1) + h
(
dTV(X, Y )

)
.

The function q(ε) , εc+h(ε) is monotonic increasing over the interval
[
0, ec

1+ec

]
(q′(ε) = c+log

(
1−ε

ε

)
> 0

if and only if 0 < ε < ec

1+ec ). Referring to the right-hand side of the above inequality, let c , log(Mε2−1),

so ec

1+ec = 1− 1
Mε2

. Hence, if the conditions in (31) and (32) are satisfied then the inequality in (33) holds.

Remark 4: By considering the pair of probability mass functions PX,Y and PX × PY (without abuse

of notation, let H(PX) , H(X)), then

H(PX × PY ) − H(PX,Y )

= H(X) + H(Y ) − H(X, Y )

= I(X; Y ).

Hence, Theorem 4 and Corollary 2 provide bounds on the mutual information between two discrete

random variables of finite support, where these bounds are expressed in terms of the local and total

variation distances between the joint distribution of (X, Y ) and the product of its marginal distributions.

The specialization of Theorem 4 to this setting tightens the bound in [49, Theorem 1], and the former

bound is particularized to the latter known bound in the case where the local and total variation distances

are equal (which is the extreme case).

Remark 5: The bound in [49, Theorem 1] was improved in [34, Proposition 1] without any further

assumptions. It is noted that by introducing the additional requirement where there exists some constant

ε2 ∈ [0, 1] such that for every y ∈ Y
dloc(PX , PX|Y =y)

dTV(PX , PX|Y =y)
≤ ε2

then it enables to refine the bound in [34, Proposition 1]. This follows by combining the proof of [34,

Proposition 1] with (33) (see Corollary 2) where Eq. (33) replaces the use of [49, Eq. (4)] in [34, Eq. (35)].

The same thing also applies to [35, Proposition 2], referring to its proof in [35, p. 305].

We proceed to consider the entropy difference of discrete random variables in a case of a countable

infinite alphabet.

Theorem 5: Let A = {a1, a2, . . .} be a countable infinite set. Let X and Y be discrete random variables

where X takes values in the set X = {a1, . . . , am} for some m ∈ N, and Y takes values in the set A.

Assume that for some η1, η2, η3 > 0, the local and total variation distances between X and Y satisfy

η2 ≤ dTV(X, Y ) ≤ η1, dloc(X, Y ) ≤ η3 (34)

where η3 ≤ η2. Let M be an integer such that

∞∑

i=M

PY (ai) ≤ η3, M ≥ max

{
m + 1,

η2

(1 − η1)η3

}
(35)

and let η4 > 0 satisfy

−
∞∑

i=M

PY (ai) log PY (ai) ≤ η4. (36)
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Then, the following inequality holds:

|H(X) − H(Y )| ≤ η1 log

(
Mη3

η2

− 1

)
+ h(η1) + η4. (37)

Proof: Let Ỹ be a random variable that is defined to be equal to Y if Y ∈ {a1, . . . , aM−1}, and it is

set to be equal to aM if Y = ai for some i ≥ M . Hence, the probability mass function of Ỹ is related to

that of Y as follows:

PỸ (ai) =

{
PY (ai) if i ∈ {1, . . . ,M − 1}∑∞

j=M PY (aj) if i = M .
(38)

Since PX(ai) = 0 for every i > m and also M ≥ m + 1 (see the second inequality in (35)), then it

follows from (38) that

dTV(X, Ỹ )

=
1

2

m∑

i=1

|PX(ai) − PỸ (ai)| +
1

2

M∑

i=m+1

PỸ (ai)

=
1

2

m∑

i=1

|PX(ai) − PY (ai)| +
1

2

∞∑

i=m+1

PY (ai)

= dTV(X, Y ). (39)

Hence, X and Ỹ are discrete random variables that take values in the set {a1, . . . , aM} (note that it

includes the set X ), and from (34) and (39)

0 < η2 ≤ dTV(X, Ỹ ) ≤ η1. (40)

Furthermore, the local distance between X and Ỹ satisfies

dloc(X, Ỹ )

= max
i∈{1,...,M}

|PX(ai) − PỸ (ai)|

(a)
= max

{
max

i∈{1,...,M−1}
|PX(ai) − PY (ai)| ,

∞∑

i=M

PY (ai)

}

(b)

≤ max{dloc(X, Y ), η3}
(c)
= η3 (41)

where (a), (b) and (c) above follow from the equality in (38), the first inequality in (35) and the second

inequality in (34), respectively. From (40) and (41)

dTV(X, Ỹ ) ≤ η1 , ε1 (42)

dloc(X, Ỹ )

dTV(X, Ỹ )
≤ η3

η2

, ε2 (43)

where 0 < ε2 ≤ 1 (since, by assumption, 0 < η3 ≤ η2). The integer M is set to satisfy the inequality

M ≥ η2

η3(1−η1)
(see the second inequality in (35)), so from (42) and (43)

ε1 ≤ 1 − 1

Mε2

.
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Hence, it follows from Theorem 4 that

|H(X) − H(Ỹ )| ≤ η1 log
(Mη3

η2

− 1
)

+ h(η1). (44)

Since Ỹ is a deterministic function of Y then H(Y ) ≥ H(Ỹ ), and from (38)

|H(Ỹ ) − H(Y )|
= H(Y ) − H(Ỹ )

= −
∞∑

i=M

PY (ai) log PY (ai) +

(
∞∑

i=M

PY (ai)

)
log

(
∞∑

i=M

PY (ai)

)

≤ −
∞∑

i=M

PY (ai) log PY (ai) ≤ η4. (45)

Finally, the bound in this theorem follows from (44), (45) and the triangle inequality.

Corollary 3: In the setting of X and Y in Theorem 5, assume that dTV(X, Y ) ≤ η for some η ∈ (0, 1).

Let M , max
{

m + 1, 1
1−η

}
, and assume that for some µ > 0

−
∞∑

i=M

PY (ai) log PY (ai) ≤ µ

then |H(X) − H(Y )| ≤ η log(M − 1) + h(η) + µ.
Proof: This corollary follows from Theorem 5 by setting η2 = η3 = dloc(X, Y ) (note that the

inequality dloc(X, Y ) ≤ dTV(X, Y ) holds), and then by replacing the parameters η1 and η4 by η and µ,

respectively.

Remark 6: The result in Corollary 3 coincides with [42, Theorem 4], which gives a bound on the

entropy difference in terms of the total variation distance by relying on the bound in [49, Eq. (4)] or [21,

Theorem 6].

IV. EXAMPLES

In the following, we exemplify the use of the new bounds in Section III, and also compare them with

some existing bounds.

Example 1: Let X be a discrete random variable that gets values in the set A = {a1, . . . , aM}. Lets

express its arbitrary probability mass function in the form

PX(ai) =
1 + uiξi

M
∀ i ∈ {1, . . . ,M} (46)

where

ui ∈ {−1, 1}, ξi ≥ 0,

0 ≤ 1 + uiξi ≤ M, ∀ i ∈ {1, . . . ,M}

and
M∑

i=1

uiξi = 0

where the latter equality is equivalent to
∑M

i=1 PX(ai) = 1.
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In the following, we derive a lower bound on the entropy H(X). Let Y be a random variable that

takes the values from A with equal probability, so H(Y ) = log M . The local and total variation distances

between X and Y are equal to

dTV(X, Y ) =
1

2M

M∑

i=1

ξi =
ξ

(M)
avg

2

dloc(X, Y ) =
1

M
max

1≤i≤M
ξi =

ξ
(M)
max

M

where ξ
(M)
avg and ξ

(M)
max denote the average and maximal values of {ξi}M

i=1, respectively. From (12)

αM ,
dloc(X, Y )

dTV(X, Y )
=

2ξ
(M)
max

Mξ
(M)
avg

so

αM =
2KM

M

where

KM ,
ξ

(M)
max

ξ
(M)
avg

. (47)

From (11) (where also H(Y ) = log M ≥ H(X)), it follows that

log M − ξ
(M)
avg log(2KM − 1)

2
− h

(
ξ

(M)
avg

2

)
≤ H(X) ≤ log M

and, since the binary entropy function is bounded between 0 and log 2, the above inequality can be

loosened to

1 − ξ
(M)
avg

2

log(2KM − 1)

log M
− log 2

log M
≤ H(X)

log M
≤ 1 (48)

which implies (since KM ≥ 1) that

lim
M→∞

ξ
(M)
avg log KM

log M
= 0 ⇒ lim

M→∞

H(X)

log M
= 1. (49)

For comparison, the bound in Theorem 3 gives that

1 − ξ
(M)
avg

2
· log(M − 1)

log M
− 1

log M
· h
(

ξ
(M)
avg

2

)
≤ H(X)

log M
≤ 1 (50)

which implies that

lim
M→∞

ξ(M)
avg = 0 ⇒ lim

M→∞

H(X)

log M
= 1. (51)

The latter condition in (51) is strictly stronger than (49). To see this, note that 1 ≤ KM ≤ M
2

(since
2
M

≤ dloc(X,Y )
dTV(X,Y )

≤ 1). On the other hand, as a concrete example for the case where the condition in (49)

holds whereas the condition in (51) does not hold, let M be an arbitrary even number, and

ui = (−1)i, ξi = β ∈ (0, 1], i ∈ {1, . . . ,M}
where, indeed,

∑M
i=1 uiξi = β

∑M
i=1(−1)i = 0. In this case, PX(ai) = 1−β

M
for odd numbers i ∈

{1, . . . ,M}, and PX(ai) = 1+β
M

for even numbers i. Furthermore, in this case KM = 1 for every even

M , so the condition in (49) holds by letting the even number M tend to infinity. On the other hand,

the condition in (51) is not satisfied since limM→∞ ξ
(M)
avg = β > 0. The upper and lower bounds in (50)
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tend to 1 and 1 − β
2
, respectively, so the gap between these asymptotic bounds is increased linearly with

β. Therefore, Theorem 4 gives a simple lower bound on the entropy H(X) in terms of the average and

maximal values of {ξi}M
i=1, which improves the lower bound on the entropy that follows from the known

bound in Theorem 3 (see (50)).

For comparison, the bound in [21, Theorem 7] is also applied to this example. In this case, since

PX , PY ≤ 1+ξmax

M
then PX and PY are less than or equal to 1

NM
with NM ,

⌊
M

1+ξ
(M)
max

⌋
. Similarly to the

above analysis, it is easy to verify from [21, Theorem 7] that

lim
M→∞

ξ
(M)
avg log

(
ξ

(M)
max

)

log M
= 0 ⇒ lim

M→∞

H(X)

log M
= 1. (52)

Since

ξ
(M)
avg log

(
ξ

(M)
max

)

log M
≥ ξ

(M)
avg log

(
ξ

(M)
avg

)

log M
≥ − log e

e log M

where the right-hand side of this inequality holds since the function f(x) = x log x for x > 0 achieves

its minimal value at x = 1
e
, it follows that if the limit on the left-hand side of (52) is zero then also

lim
M→∞

ξ
(M)
avg log

(
ξ

(M)
avg

)

log M
= 0.

Therefore, the definition of KM in (47) gives that

lim
M→∞

ξ
(M)
avg log KM

log M

= lim
M→∞

ξ
(M)
avg log

(
ξ

(M)
max

)

log M
− lim

M→∞

ξ
(M)
avg log

(
ξ

(M)
avg

)

log M
= 0.

This shows that the conclusion in (49) implies the one in (52).

A special case of (46) with numerical results: As a special case of the probability mass function in

(46), let M = 2m for some m ∈ N, let ui = (−1)i for i ∈ {1, . . . ,M}, and ξi = β for some β ∈ [0, 1].
In this special case,

PX(ai) =

{
2−m (1 − β) if i ∈ {1, 3, . . . , 2m − 1}
2−m (1 + β) if i ∈ {2, 4, . . . , 2m}.

Let Y be a random variable that gets all the values in the set {a1, . . . , aM} with equal probability (i.e.,

2−m). Then, the local and total variation distances between X and Y are

dloc(X, Y ) =
β

M
, dTV(X, Y ) =

β

2

so, from (12), α = 2
M

. The entropies of X and Y are

H(X) = (m − 1) log 2 + h
(1 − β

2

)
, H(Y ) = m log 2

so, H(Y ) − H(X) = log 2 − h
(

1−β
2

)
independently of m.

For comparison, the known bound in Theorem 3 that only depends on the total variation distance

between X and Y (with no further knowledge about their probability mass functions) gives

H(Y ) − H(X) ≤ mβ

2
· log 2 + h

(β

2

)
+

β

2
· log(1 − 2−m)
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so this upper bound increases almost linearly with m, in contrast to the exact value that is independent

of m. The new bound in (11), which depends on both the local and total variation distances between X
and Y (but again, without any further information on their probability mass functions) gives

H(Y ) − H(X)

≤ dTV(X, Y ) log(Mα − 1) + h
(
dTV(X, Y )

)

= h
(β

2

)
. (53)

Similarly to the exact value, but in contrast to the former bound, the latter bound is independent of m.

Furthermore, if β → 0 and mβ → ∞, then the exact value of H(Y )−H(X) as well as the latter bound

(that follows from Theorem 4) tend to zero, whereas the former bound that follows from Theorem 3 tends

to infinity. This shows the difference between the two bounds, exemplifying the possible advantage of

taking into account the local distance in addition to the total variation distance.

For β ∈ [0, 1
2
], the condition 1

2
≤ PX

PY
≤ 2 is fulfilled, so the tightened bound in (13) gives that

0 ≤ H(Y ) − H(X) ≤ h
(β

2

)
− β log 2. (54)

If β = 1
2
, H(Y ) − H(X) = log 2 − h

(
1
2

)
= 0.131 nats, the upper bound in (53) is equal to 0.562 nats,

and the tightened version of this bound in (54) is equal to 0.216 nats.

It is noted that since PX is majorized by PY (see [22, Definition 1 on p. 5934]), then according to [22,

Theorem 3]

H(Y ) − H(X) ≥ D(PX ||PY )

and since PY refers to a uniform distribution over a set of cardinality M = 2m then H(Y ) = m log 2, and

D(PX ||PY ) = m log 2 − H(PX)

so, the above lower bound is achieved here with equality.

In Example 1, the probability mass function of the discrete random variable X was known explicitly.

However, in many interesting applications, this is not necessarily the case. If the exact distribution of X is

not available or is numerically hard to compute, a derivation of some good bounds on the local and total

variation distances between X and another random variable Y with a known probability mass function

can be valuable to get a rigorous bound on the difference |H(X) − H(Y )| via Theorems 4 or 5. As a

result of the calculation of such a bound on the entropy difference, it provides bounds on the entropy of

X in terms of another entropy (the entropy of Y ) which is assumed to be easily calculable. For example,

assume that X =
∑n

i=1 Xi is expressed as a sum of Bernoulli random variables that are either independent

or weakly dependent, and may be also non-identically distributed. Let Xi ∼ Bernoulli(pi), and assume

that
∑n

i=1 pi = λ where all of the pi’s are much smaller than 1. In this case, the approximation of X by a

Poisson distribution with mean λ (according to the law of small numbers [24]) raises the question: How

close is H(X) to the entropy of the Poisson distribution with mean λ ? (note that the latter entropy of

the Poisson distribution is calculated efficiently in [2]). This question is especially interesting because the

support of the Poisson distribution is the infinite countable set of non-negative integers, and the entropy

is known not to be continuous when the support is not finite; hence, a small total variation distance does

not in general yield a small difference between the two entropies. This question was addressed in [42,

Section 2] via the use of Corollary 3 (which coincides with [42, Theorem 4]), combined with an upper

bound on the total variation distance between X and Y where the latter bound is calculated via the use

of the Chen-Stein method (see, e.g., [40, Chapter 2]).

Example 2: In the following, we wish to tighten the bounds on the entropy of a sum of independent

Bernoulli random variables that are not necessarily identically distributed. The bound provided in [42,

Proposition 1] relies on an upper bound on the total variation distance between this sum and a Poisson
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random variable with the same mean (see [4, Theorem 1] or [5, Theorem 2.M]). In order to tighten

the bound on the entropy in the considered setting, we further rely on a lower bound on the total

variation distance (see [42, Theorem 6 and Corollary 2]) and an upper bound on the local distance

(see [5, Theorem 2.Q and Corollary 9.A.2]). The latter two bounds provide an upper bound on the ratio

of the local and total variation distances, which enables to apply the bound in Theorem 5; it improves the

bound in Corollary 3 which solely relies on an upper bound on the total variation distance. It is noted

that the latter looser bound, which relies on Corollary 3 (or [42, Theorem 4]) was used in [42, Section 2]

for estimating the entropy of a sum of Bernoulli random variables in the more general setting where the

summands are possibly dependent.

Let X =
∑n

i=1 Xi be a sum of independent Bernoulli random variables where Xi ∼ Bernoulli(pi) for

i ∈ {1, . . . , n}. Let
∑n

i=1 pi = λ, and let Y ∼ Po(λ) be a Poisson random variable with mean λ. From

[4, Theorem 1] (or [5, Theorem 2.M]), the following upper bound on the total variation distance holds:

dTV(X, Y ) ≤
(

1 − e−λ

λ

) n∑

i=1

p2
i . (55)

Furthermore, from [42, Corollary 2], the following lower bound on the total variation distance holds:

dTV(X, Y ) ≥ k

n∑

i=1

p2
i (56)

where

k ,
e

2λ

1 − 1
θ

(
3 + 7

λ

)

θ + 2e−1/2
(57)

θ , 3 +
7

λ
+

1

λ
·
√

(3λ + 7)
[
(3 + 2e−1/2)λ + 7

]
. (58)

An upper bound on the local distance between a sum of independent Bernoulli random variables and

a Poisson distribution with the same mean λ follows as a special case of [5, Corollary 9.A.2] by setting

l = 1 (so that the distribution Ql in this corollary is specialized for l = 1 to the Poisson distribution Po(λ),
according to [5, Eq. (1.12) on p. 177]). Since the upper bound on the right-hand side of the inequality in

[5, Corollary 9.A.2] does not depend on the (time) index j, it follows that the same bound also holds while

referring to dloc(X, Y ) , supj∈N0

∣∣P(X = j) − Po(λ){j}
∣∣. Based on the notation used in this corollary,

it implies that if
(

1−e−λ

λ

) ∑n
i=1 p2

i ≤ 1
8

then the local distance between a sum of independent Bernoulli

random variables Xi ∼ Bernoulli(pi) and a Poisson random variable with mean λ =
∑n

i=1 pi is upper

bounded by

dloc(X, Y )

≤ 4
(
2 max

j∈N0

P(Y = j)
)(1 − e−λ

λ

) n∑

i=1

p2
i

(a)

≤ 4 min

{√
2

eλ
, 2e−λ I0(λ)

}(
1 − e−λ

λ

) n∑

i=1

p2
i (59)

where inequality (a) holds due to [5, Proposition A.2.7 on pp. 262–263], and I0 denotes the modified

Bessel function of order zero. Since an upper bound on the total variation distance also forms an upper

bound on the local distance, then a combination of (55) and (59) gives that

dloc(X, Y ) ≤ min

{
1, 4

√
2

eλ
, 8e−λ I0(λ)

} (
1 − e−λ

λ

) n∑

i=1

p2
i . (60)
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We now apply Theorem 5 to get rigorous bounds on the entropy H(X) by estimating how close it is to

H
(
Po(λ)

)
. Note that the improvement in the tightness of the bound in Theorem 5, in comparison to the

looser bound in Corollary 3, is more remarkable when the ratio α of the local and total variation distances

is close to zero. This happens to be the case if λ ≫ 1 where due to the asymptotic expansion of I0 (see

[1, Eq. (9.7.1) on p. 377] or [15, Eq. (8.451.5) on p. 973])

I0(λ) ≈ eλ

√
2πλ

(
1 +

1

8λ
+

9

128λ2
+ . . .

)
, if λ ≫ 1

one gets from Eqs. (56)–(58) and (60), combined with the limit in [42, Eq. (149)], that

α =
dloc(X, Y )

dTV(X, Y )

(if λ≫1)

≤
4
√

2
πλ

(
1−e−λ

λ

) n∑

i=1

p2
i

e
6

(
1 +

√
1 + 2

3
· e−1/2

)−2 (
1−e−λ

λ

) n∑

i=1

p2
i

=
24

e

√
2

π

(
1 +

√
1 +

2

3
· e−1/2

)2 √
1

λ

≈ 33.634√
λ

(61)

so, for large values of λ, the upper bound on the parameter α in (12) decays to zero like the square-root

of 1
λ

.

As a possible application, consider a noiseless binary-adder multiple-access channel (MAC) with n
independent users where each user transmits binary symbols, and the channel output is the algebraic sum

of the input symbols. The capacity region of this MAC channel is an n-dimensional polyhedron. One

feature of this capacity region is the sum of the rates that is given by RSUM ,
∑n

i=1 Ri, and it is upper

bounded by the joint mutual information between the input symbols X1, . . . , Xn and the corresponding

channel output Y =
∑n

i=1 Xi, i.e.,

RSUM ≤ max
PX:PX=PX1

...PXn

I(X1, . . . , Xn; Y )

where, since the MAC is noiseless and the output symbol is the sum of the n input symbols then

H(Y |X1, . . . , Xn) = 0, and therefore I(X1, . . . , Xn; Y ) = H(Y ).1 Hence, in the considered setting,

the maximal sum rate is the maximal entropy of the sum of n independent binary random variables where

Xi ∼ Bernoulli(pi) for i ∈ {1, . . . , n}. Under the constraint that
∑n

i=1 E[Xi] ≤ λ, it follows from the

maximal entropy result in [17], [23] and [43] that the entropy of Y is maximized when the n independent

inputs are i.i.d. with mean p = λ
n

, and consequently the channel output Y is Binomially distributed with

Y ∼ Binom
(
n, λ

n

)
. For a very large number of users, the calculation of the entropy of the Binomial

distribution is difficult, and it would be much easier to calculate the entropy H
(
Po(λ)

)
for a Poisson

distribution with mean λ (see [2]).

In the following, we make use of Theorem 5 to get an upper bound on the entropy difference

H
(
Po(λ)

)
− H

(
Binom

(
n,

λ

n

))
(62)

where, due to the maximal entropy result for the Poisson distribution (see, e.g., [17], [23] or [43]),

this difference is positive. Let X ∼ Binom
(
n, λ

n

)
be a sum of n i.i.d. Bernoulli random variables with

1The reader is referred to [6] for the consideration of the sum-rate for two noiseless multiple-access channels with some similarity to the

binary adder channel, see footnote in [6, p. 43].
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probability of success p = λ
n

, and let Y ∼ Po(λ). From (55), the total variation distance in this case is

upper bounded by

dTV(X, Y ) ≤ λ(1 − e−λ)

n
, η1. (63)

From (56) and (57), the following inequality holds:

dTV(X, Y ) ≥ e

2

1 − 1
θ

(
3 + 7

λ

)

θ + 2e−1/2

λ

n
, η2 (64)

where θ is given in (58). Furthermore, for using Theorem 5, one needs an upper bound on the local

distance between the Poisson and Binomial distributions. Eq. (60) gives that

dloc(X, Y ) ≤ min

{
1, 4

√
2

πλ
, 8e−λ I0(λ)

}
λ
(
1 − e−λ

)

n
, η3. (65)

Following the notation in Theorem 5, it follows that m = n + 1. From (35), one needs to choose an

integer M such that

M ≥ max

{
n + 2,

η2

η3(1 − η1)

}
(66)

and
∞∑

j=M

Πλ(j) ≤ η3 (67)

where Πλ(j) , e−λ λj

j!
for j ∈ N0 designates the probability mass function of Po(λ). Based on Chernoff’s

inequality,
∞∑

j=M

Πλ(j) = P(Y ≥ M) ≤ exp

{
−
[
λ + M ln

(M

λe

)]}
. (68)

Let M ≥ λe2, then it follows from (67) and (68) that it is sufficient for M to satisfy the condition

exp
(
−(λ + M)

)
≤ η3.

Combining it with (66) leads to the following possible choice of M :

M , max

{
n + 2,

η2

η3(1 − η1)
, λe2, ln

( 1

η3

)
− λ

}
(69)

where η1, η2 and η3 are introduced in (63), (64), and (65) respectively. Finally, for the use of Theorem 5,

one needs to choose η4 > 0 such that
∑∞

j=M

{
−Πλ(j) log

(
Πλ(j)

)}
≤ η4. From the analysis in [42,

Eqs. (43)–(47)], it follows from the last inequality and [42, Eq. (47)] that η4 here is equal to µ in [42,

Eq. (23)], i.e.,

η4 ,

[(
λ log

( e

λ

))
+

+ λ2 +
6 log(2π) + 1

12

]
exp

{
−
[
λ + (M − 2) log

(
M − 2

λe

)]}
(70)

where M is introduced in (69), and (x)+ , max{x, 0} for every x ∈ R. At this stage, we are ready to

apply Theorem 5 to derive a bound on the non-negative difference between the entropies in (62). From

Theorem 5, it follows that

0 ≤ H
(
Po(λ)

)
− H

(
Binom

(
n,

λ

n

))
≤ η1 log

(
Mη3

η2

− 1

)
+ h(η1) + η4. (71)

For comparison, it follows from Corollary 3 that the upper bound on the right-hand side of (71) is replaced

by

η1 log(M̃ − 1) + h(η1) + η4 (72)
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where

M̃ , max
{

n + 2,
1

1 − η1

}
. (73)

Note that the bound in (71) improves the bound in (72) if η3 < η2 (i.e., if the upper bound on the local

distance is smaller than the lower bound on the total variation distance). Furthermore, the latter bound

does not take into account the parameters η2 and η3. As a numerical example, for n = 106 and p = 0.1,

lets check the bound on the entropy difference in (62) for λ = np (i.e., λ = 105). Eqs. (63)–(65), (69),

(70) and (73) yield that

η1 = 10−1, η2 = 9.5 · 10−3, η3 = 1.0 · 10−3, η4 ≈ 0,

M = M̃ = 106 + 2

and the two bounds in (71) and (72) are, respectively, equal to 1.483 and 1.707 nats, respectively. The

value of H
(
Po(λ)

)
is 7.175 nats, so the entropy H

(
Binom(n, λ

n
)
)

ranges between 5.693 to 7.175 nats.

Note that for n = 106 and λ = 104, where p = λ
n

is decreased from 10−1 to 10−2, the upper bounds

on (62) are decreased, respectively, to 0.183 and 0.194 nats, and H
(
Po(λ)

)
= 6.024 nats. The Poisson

approximation is more accurate in the latter case, consistently with the law of small numbers (see, e.g.,

[24]).

Remark 7: Example 2 considers the use of Theorem 5 for the estimation of the entropy of a sum of

independent Bernoulli random variables. The more general case of the estimation of the entropy (via

rigorous bounds) for a sum of possibly dependent Bernoulli random variables was considered in [42,

Section II] by using the looser bound in Corollary 3 with an upper bound on the total variation distance

that follows from the Chen-Stein method (see [3, Theorem 1]). It is noted that, in principle, also the sharper

bound in Theorem 5 can be applied to obtain bounds on the entropy for a sum of possibly dependent

Bernoulli random variables. To this end, in addition to the upper bound on the total variation distance in

[3, Theorem 1], one needs to rely on a lower bound on the total variation distance (see [5, Chapter 3])

and an upper bound on the local distance (see [5, Theorem 2.Q on p. 42]). It is noted, however, that these

distance bounds are much simplified in the setting of independent summands (see Example 2).

Remark 8: The Chen-Stein method for the Poisson approximation was adapted in [28] to the setting of

the geometric distribution, and it yields a convenient method for assessing the accuracy of the geometric

approximation to the distribution of the number of failures preceding the first success in dependent trials.

A recent study of upper bounds on the total variation and local distances for the geometric approximation

(respectively, denoted by d1 and d2 in [29]) enables to apply the entropy bounds in Theorem 5 and

Corollary 3 in a conceptually similar way to Example 2. Furthermore, the entropy bound in Corollary 3

can be applied to compound geometric and negative binomial approximations, based on upper bounds on

the total variation distance that were derived via Stein’s method in [12] and [45], respectively.
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[24] I. Kontoyiannis, P. Harremoës and O. Johnson, “Entropy and the law of small numbers,” IEEE Trans.

on Information Theory, vol. 51, no. 2, pp. 466–472, February 2005.

[25] S. Kullback, “A lower bound for discrimination in terms of variation,” IEEE Trans. on Information

Theory, vol. 13, no. 1, pp. 126–127, 1967.

[26] S. Kullback, “A lower bound for discrimination in terms of variation - A correction,” IEEE Trans.

on Information Theory, vol. 16, no. 5, p. 652, 1970.

[27] E. Ordentlich and M. J. Weinberger, “A distribution dependent refinement of Pinsker’s inequality,”

IEEE Trans. on Information Theory, vol. 51, no. 5, pp. 1836–1840, May 2005.
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