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Abstract. Planck's formula for blackbody radiation was formulated subject to the assumption that the 

radiating body is much larger than the emitted wavelength. We demonstrate that thermal radiation 

exceeding Planck's law may occur in a narrow spectral range when the local radius of curvature is 

comparable with the wavelength of the emitted radiation. Fluctuation Dissipation Theorem needs to be 

employed for adequate assessment of the spectrum in this regime. Several simple examples are presented as 

well as experimental results demonstrating the effect.  

 

From the early days of quantum mechanics via astrophysical measurements to 

today's nanostructures, blackbody radiation (BBR) played and plays a pivotal role in 

physics. As the emitting bodies were always much larger than the wavelength of interest, 

Planck's formula (PF) described adequately the general trend of the emerging radiation 

and any deviations were descried in terms of the so-called emissivity - which is a 

characteristic of the specific body or material. Conceptually, the emissivity is assumed to 

be always smaller than unity, explicitly assuming that PF provides the upper limit of what 

a body can emit. For quite some time, manufacturing techniques facilitate 

implementation of minute structures of a size smaller or of the same order of magnitude 

as the radiation wavelength, leading to a new regime of operation in which PF no longer 
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describes adequately the BBR. Pertaining to PF as an absolute law of physics is a 

misconception which has been criticized even in textbooks (e.g. Ref. 1 p. 126). 

Recent studies [2-5] either when optimizing thermal radiation (TR) spectrum by 

minimizing the reflectivity at various angles for specific wavelength ranges, or when 

harnessing the contribution of evanescent waves near the surface to transfer heat, push 

the use of PF to its limits. Moreover, when the possibility of enhanced TR spectrum in 

the far-field was claimed to be measured [6], it was ruled out as violating the second law 

of thermodynamics [7]. It is not our goal here to argue in favour of this particular 

experiment, nor of other experimental measurements of enhanced spectrum [8,9]; but 

rather that, in principle, this is possible due to the fact that PF is not applicable when the 

local radius of curvature of the body is smaller or approximately equal to the wavelength 

of interest. 

Planck himself when determining the thermal energy density within a cavity, 

states that "No matter how small the frequency interval ν∆  may be assumed to be, we 

can nevertheless choose l  sufficiently great", where l  is the cavities' dimension [Ref. 10, 

p.273]. Much later, Rytov [11] indicates that Planck's law is applicable only if 

31 / ( / )lλ λ λ∆  , "thus, the conditions for the validity of PF are first, a not too large 

monochromaticity of the spectral interval, and second, sufficiently large dimensions of 

the volume under study in comparison to λ ". 

Weyl [12] established a purely mathematical approach for the evaluation of high 

order correction terms to PF that should not be neglected for finite size cavities; others 

further elaborated this topic as reflected in Refs. 13-15. Baltes specifically, treated the 

BBR problem and summarized his work in a textbook [16]. Unlike his predecessors, 



Baltes calculated numerically the validity bounds of these higher-order corrections. These 

results have even recently been experimentally verified and reported [17]. 

In this Letter we aim to clarify and quantify the limits of PF. Starting from a 

simple rectangular closed cavity we demonstrate that in particular at small dimensions, 

the energy density predicted by "Planck's law" may be exceeded. We proceed to Callen's 

fluctuation dissipation theorem (FDT) which for the case of the impedance of a dipole 

emitting into free-space provides exactly PF. It is shown that if the same dipole emits 

within a partially open waveguide or in the vicinity of a perfectly conducting plane, the 

emerging energy density may exceed, in a narrow frequency range, the value predicted 

by PF. Subsequently, Rytov's extension of FDT is employed in order to establish the 

thermal radiation emitted by a body of dimensions comparable with the wavelength of 

interest. In this case too, values higher than those specified by PF are predicted. Finally, 

experimental results are presented and support our theoretical findings. 

Planck's [10] original argument consists of three steps. In the first one he 

considered an ensemble of oscillators in thermal equilibrium and he established, using the 

classical Maxwell-Boltzmann statistics and using elemenatry quantum notions, that the 

energy of a system of oscN  oscillators at a given frequency is ( )osc= ,N T ωΘ , wherein 

( ) ( ) 1
, = exp / 1BT k Tω ω ω

−
Θ −   

 denotes the mean energy of a single oscillator. 

The second step was to count the number of modes ( )cavityN∆  within a frequency 

interval –that is to say, the density of states (DoS) – in a cavity of perfectly reflecting 

walls of volume cavityV . Subject to the tacit assumption that the wavelength is much 

shorter than the typical dimension of the cavity 3
cavityV , the number of modes in a range 



of frequencies ω∆  starting at ω  is  

 
2

cavity cavity 2 3= ,N V
c

ω ω
π
∆

∆  (1) 

 accounting for both possible polarizations. 

His third step was to correlate the statistics of oscillators with the DoS in a cavity, 

which is a delicate matter. Essentially, there must be an equilibrium between the radiation 

in vacuum and its source in matter, which comes about when a wave impinging upon the 

walls is absorbed, causing another wave to be radiated so that the walls can be conceived 

as perfect reflectors; thus, the matter which is modelled by oscillators and the cavity 

which is modelled as a perfect resonator, must have similar oscillations. Hence , 

osc cavity=N N∆ . With this assumption, the energy spectral density is  

 
( )

2

2 3
cavity

= .
exp / 1B

u
V c k T

ω ω
π ω −





 (2) 

 In the framework of this formulation, there is a distinction between the number of 

oscillations oscN  which is derived from geometrical considerations, and their mean 

energy Θ  which is derived from statistical considerations and is therefore independent of 

the geometry of the problem. While Θ  is correct because there is a large number of 

possible energy states in an harmonic oscillator, and osc= N Θ  is practically always 

correct since the number of atoms (microscopic emitters) is very large, one can question 

the validity of the calculation of the DoS which is only a good approximation for a cavity 

of "infinite'' volume in respect to the wave-lengths of interest. A formal mathematical 

proof for the validity of (1) given this assumption, is found in Courant [18]. As already 

indicated, the DoS was thoroughly studied by Baltes and others [12-16] and the 



correction to (1) due to the finite size cavity of perfectly reflecting walls is given by [16]: 

2 2 3
cavity cavity/ = / / 2N V c cω ω π π∆ ∆ −Λ + , where cuboid = x y za a aΛ + + , sphere = 4 / 3RΛ  

or cylinder = 4 / 3H RπΛ + . 

It is evident from Eq.(2) that Planck's BBR spectrum is linearly dependent on the 

volume of the cavity. Essentially we demonstrate that when the typical dimensions of the 

emitter are smaller or comparable to the wavelength of interest, a geometric form-factor 

needs to be included in PF. Our starting point is to consider various cavities all of the 

same volume, but of different shapes. This is accomplished by taking a cube and 

flattening it out into a thin film on the one hand, or thinning it into a rod on the other 

hand. In both cases we keep the base to be a square =x ya a , as illustrated in the inset of 

figure 1. Our goal at this point is to establish the spectral density with special emphasis 

on the geometry of the cavities characterized by the parameter 2 /z x ya a a  which is unity 

for a cube – corresponding to the minimum of the surface area. In the examples that 

follow, we push this dimensionless parameter to extremes (rod 2 / 1z x ya a a 
 or thin film 

2 / 1z x ya a a 
). 

In figure 1 we compare the energy density for a film, rod and cube. The various 

cavities store zero energy below the first mode of oscillation, and a certain amount of 

radiation at frequencies above that, when ignoring the first few modes for which one 

cannot ascribe a DoS (see top-right inset of figure 1). As these are low frequencies, there 

is a great deviation from Planck's law which conceptually is not valid in this range. More 

interesting is the deviation at higher frequencies, in which Planck's law is supposedly 

exact. While the cube (which has relatively large dimensions) is very close to Planck's 



law, the rod and film are not. The smaller the base of the rod or the height of the film, the 

more extreme are the deviations from Planck's law, and local enhancement of the energy 

spectrum may be greater than two orders of magnitude. This is one of the important 

results of the present study. It is interesting to compare the results of the film to the 

results of the discussion on heat transfer between two infinite planes which are closely 

spaced [19]. The latter is a 2D version of the former and thus the similarity. 

 

Figure  1:  Comparison of enegy density within various cavities. Rectangular cavities of 
equal volume ( 30.025[ ]mm ) are employed for assessing the energy density spectrum at 
extreme geometries: the rod (c) and film (b) have a similar surface area of 218[ ]mm  (left-
bottom inset); = 300[ ]T K . Planck's curve is plotted for comparison (dotted). For a thin 
rod, near cut-offs, the spectrum in a closed cavity may be orders of magnitude greater 
than in the case of a same volume cube (a). (top-right inset) Energy levels of the film at 
low frequencies, depicting the first modes of oscillation which are distinct and do not 
form a continuum, thus the principle of DoS is not well defined. 

 

Another approach for the assessment of thermal radiation requires employing the 

so-called Fluctuation-Dissipation Theorem (FDT) developed by Callen and Welton [20]. 



Contrary to Planck's approach where we considered the blackbody radiation spectrum 

from the perspective of the electromagnetic field, now we investigate the spectrum from 

the perspective of the oscillating electron in the matter surrounding the cavity. The latter 

is assumed to be in thermodynamic equilibrium with the radiation. Denoting by ( )V t  the 

effective voltage fluctuation experienced by the electron, its average is assumed to be 

zero ( )= 0V  and the second moment was found by Callen to be given by 

( ) ( )2

0

2= ,V d R Tω ω ω
π

∞

∫  , where = / 2ωΘ+   and ( ) ( )= ReR Zω ω    with ( )Z ω  

denoting the ratio between this voltage and the reaction of the electrons (charge Q ), 

= /Z V Q ; the term / 2ω  in   corresponds to vacuum fluctuations and will be ignored 

in what follows. 

As a trivial example, Callen and Welton considered an oscillating dipole 

( = )p ed  which radiates into free-space (FS) a total average power 

( )( )22
0= /12 /FSP p cη π ω . To this harmonic oscillator one may attribute a current 

amplitude = /I p dω  therefore, the radiation resistance is ( ) 2 2
FS = 2 /FSR P Iω ω∝ . 

Subject to these observations, the mean square of the fluctuating electric field in the 

vicinity of the dipole is ( )2 2
0 2 2

0

1= ,
3zE d T

c
η ωω ω

π

∞

∫  . Now, the relevance of FDT to 

BBR is evident, as the energy density experienced by the three dipoles ( ), ,x y zp p p  

located at a given point in free-space is ( )2 2
0 2 3

0

1= ,E d E T
c

ε ωω ω
π

∞

∫  – which is 

identical to Planck's BBR formula. 



This example provides us with a clear hint as of what approach should be adopted 

in order to exceed the value predicted by Planck's formula: we need to determine a 

configuration wherein the impedance experienced by the dipole is larger than that when 

the latter emits into free-space. In fact, the power emitted by the same dipole located at 

the centre ( = 0r ) of a dielectric layer medium ( )extintR r R≤ ≤  may exceed, near 

resonance, the free-space value by almost one order of magnitude – see figure 2 which 

shows the emitted TR spectral density for a SiC layer; the dielectric coefficient is 

illustrated in the inset. 

FDT enables a relatively simple estimate of the geometric effect in case the latter 

is of the order of the wavelength. Two additional examples warrant consideration: a 

dipole located at a height h  from an ideally conducting plane and a dipole oscillating in a 

partially open structure such as a half-infinite waveguide of rectangular cross-section 

( )x ya a× . Based on a simple image-charge argument, one should not expect, in the first 

example, an enhancement of more than a factor of 2 in the emitted power. If a larger 

enhancement is required, it would be necessary to employ an infinite series of image-

charges as is the case in the second example. 

 

 

 

 

 

 

 



 

Figure  2:  The emitted radiation by dipoles located in the center of a SiC 
dielectric layer for int = 0.5 mR µ , ext = 1.25 mR µ  (solid) and for int = 1.0 mR µ , 

ext = 1.25 mR µ (dot-dash). At resonance the emitted energy spectrum may exceed the 
Planck's prediction for a body much larger than the wavelength of interest by almost one 
order of magnitude; the dashed line illustrates Planck's formula ( = 1200[ ]T K ). In the 
inset we specify the dielectric coefficient of SiC used in the simulation. 

 

It is convenient to represent the emitted power in terms of the free-space value 

and a form factor, ( ) ( ), , , ,= ( )x y z x y z
FSP P F ω , that depends on the dipole's alignment relative 

to the geometry. For the first case, there is equal probability for the dipole to be alligned 

in a specific direction, the total form factor is ( ) ( ) ( )( )= / 3x y zF F F F+ + . All four 

quantities are plotted in the top frame of figure 3 and two conclusions are evident: first, 

for large values of /h cω  the total form-factor approaches unity; near the surface, only 

the perpendicular dipole contributes. Second and most important in the context of this 

study, the form factor may exceed unity, implying that the emitted TR spectrum may 

exceed the classical PF. 

For the second configuration, a uniform distribution of dipoles filling up the 
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volume ( )x y za a a× ×  in a semi-infinite rectangular waveguide, the average of the form 

factors is illustrated in the central frame of figure 3. As anticipated, for short wavelengths 

the form-factor always converges to unity; while for wavelengths of the same order as the 

waveguide's cross section, there is an enhancement of the radiation emitted, as compared 

to a dipole in free space. Clearly, the TR spectrum may exceed the free-space value by 

more than one order of magnitude.  

Rytov further developed Callen's FDT [21] extending it from discrete to 

distributed elements by employing Lorentz reciprocity theorem. As a straight forward 

example we consider a sphere of radius a  made of Tungsten [22]. To illustrate the form 

factor, the radiation intensity in the case of a finite radius is divided by that of the infinite 

case ( )a →∞ . This ratio reduces to the normalized absorption cross section 

2
abs /abs aσ σ π=  of Mie scattering [1]. It is well known that absσ  can be greater than 

unity, therefore it is straightforward that the thermal radiation should be greater than the 

classical derivation which accounts only for the geometrical area. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure  3: (top) Form factor of a dipole above an ideal plane as a function of its height 
normalized to the wavelength. A 20% enhancement is observed when / 0.3h   . 
(center) The radiation form factor for a uniform distribution of dipoles confined to the 
volume x y za a a× ×  within a half infinite rectangular waveguide, as a function of the 
waveguide base normalized to the wavelength. For large za  (dashed) the graph exhibits 
pronounced amplification of the thermal energy at xaλ  . When =z xa a  (solid), there is 
a suppression of the first mode at = / 2xa λ . (bottom)  Form factor of a Tungsten sphere, 
for various radii: 0.02, 0.2, and 1 [µm]. For wavelengths shorter than  the radius the form-
factor converges to unity.  For wavelengths comparable with the radius the resonant 
character of the form factor is clearly revealed.  



 

 

 

 

 

Figure 4: (left column) SEM picture of the emitting surface. Cylindrical voids (cavities) 
of 300[nm] diameter and a similar height, and  600[nm] pitch.  (right column) Energy 
flux spectrum (top) as extrapolated to the surface of the blackbody (solid) and a best fit to 
Planck's blackbody formula (dashed). A zoom-in of the range between 0.4 – 0.7[µm] 
(bottom). It clearly shows that there is a significant emission enhancement. As a 
reference, we plot the Sun's energy-flux spectrum as measured on Earth.  

 

Bottom frame of Figure 3 illustrates the form-factor of the sphere and it clearly reveals 

that its value exceeds unity for wavelengths of the the same order of magnitude as the 

radius (e.g. see maxima of 5.5 ), it converges to unity at wavelengths significantly 

shorter than the radius. 
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We conducted an experiment whose goal was to demonstrate that in a narrow 

frequency range, thermal radiation may exceed the value predicted by PF. A set of 

perforated Si wafers  polished with an accuracy of 1[nm] has been examined. The 

geometry is revealed by two SEM pictures in the left frames of figure 4. It consists of 

300[nm] diameter voids with a similar height and a pitch of 600[nm]. Due to the 

relatively  high loss,  no electromagnetic coupling between the voids is expected thus no 

collective effect are anticipated, in other words, each void acts as a separate resonator. 

After being inserted in a furnace, the wafer was gradually warmed up to about 

900[oC] and the thermal radiation emitted was measured by a spectrometer (CI Systems 

SR-5000) located about 3 meters away. Prior to measurements the spectrometer was 

calibrated with a standard blackbody.  In the top-right frame of figure 4,  the solid curve 

illustrates the experimental data of the energy flux spectrum as extrapolated to the surface 

of the blackbody. The dashed curve is a best fit to Planck's formula for the energy flux, 

   , ,S T d cu T d    . For the range between 0.4 – 1.2[µm] we found that the 

effective temperature is 
exp

1161oT K  and 6
exp

31.5 10   ; these two parameters 

minimize the functional  
2

,
i i

i

S S T     or explicitly  

   2exp
, / ,

j j jj j

S T S S T     whereas 

      
2

1
2

exp
min , , ,

i j j j ij ji

T S S T S S T S T  
               

 .  

Each data point iS  corresponds to the maximum value from a sample of 120 

measurements at each wavelength; the wavelength resolution is 3[nm] . Except at short 



wavelengths, the two curves are essentially indistinguishable.   

Bottom-right frame of figure 4 is a zoom-in of the range between 0.4 – 0.7[µm]. It 

clearly shows that there is a significant emission enhancement in particular in the range 

where the radiation overlaps geometric resonances. The peak occurs at 0.536[µm] and it 

is more than 200 times larger than the value predicted by Planck's formula at this 

wavelength and temperature.  As a reference, we plot the Sun's energy-flux spectrum as 

measured on Earth.  

In conclusion, the validity of Planck's black body formula is limited to geometries 

where the local radius of curvature of the emitting surface is larger than the radiation's 

wavelength. When this is not the case, Fluctuation Dissipation Theorem must be adopted 

for adequate assessment of the emitted radiation energy and a form-factor must be 

incorporated in order to properly describe the emission. In the framework of the quasi-

analytic examples presented in this Letter we showed that in a narrow range of 

wavelengths, the emitted spectrum may exceed Planck's value by orders of magnitude in 

closed structures or by almost two orders of magnitude in open ones. Experimental 

results support this conclusion. 
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