

IRWIN AND JOAN JACOBS

CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES

Distributed Sparse Signal
Recovery for Sensor Networks

Stacy Patterson, Yonina C. Eldar,

and Idit Keidar

CCIT Report #821
November 2012

DEPARTMENT OF ELECTRICAL ENGINEERING

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

Electronics

Computers

Communications

DISTRIBUTED SPARSE SIGNAL RECOVERY FOR SENSOR NETWORKS

Stacy Patterson, Yonina C. Eldar, and Idit Keidar

Department of Electrical Engineering

Technion - Israel Institute of Technology, Haifa, Israel

{stacyp,yonina,idish}@ee.technion.ac.il

ABSTRACT

We propose a distributed algorithm for sparse signal recov-

ery in sensor networks based on Iterative Hard Thresholding

(IHT). Every agent has a set of measurements of a signal x,

and the objective is for the agents to recover x from their col-

lective measurements at a minimal communication cost and

with low computational complexity. A naı̈ve distributed im-

plementation of IHT would require global communication of

every agent’s full state in each iteration. We find that we can

dramatically reduce this communication cost by leveraging

solutions to the distributed top-K problem in the database lit-

erature. Evaluations show that our algorithm requires up to

three orders of magnitude less total bandwidth than the best-

known distributed basis pursuit method.

Index Terms— compressed sensing, distributed algo-

rithm, iterative hard thresholding, top-K

1. INTRODUCTION

In compressed sensing, a sparse signal x ∈ R
N is sampled

and compressed into a set of M measurements, where M is

typically much smaller than N . If these measurements are

taken appropriately, then it is possible to recover x from this

small set of measurements [1].

Compressed sensing is an appealing approach for sen-

sor networks, where measurement capabilities may be limited

due to both coverage and energy constraints. Recent works

have demonstrated that compressed sensing is applicable to

a variety of sensor networks problems including event detec-

tion [2], urban environment monitoring [3] and traffic estima-

tion [4]. In these applications, measurements of the signal

are taken by sensors that are distributed throughout a region.

The measurements are then collected at a single fusion center

where signal recovery is performed. Due to limits in band-

width, storage, and computation capabilities, it may be more

efficient, and sometimes even necessary, to perform signal re-

covery in the network in a distributed fashion.

The work of Y. Eldar is supported in part by the Israel Science Foun-

dation under Grant no. 170/10, and in part by the Ollendorf Foundation.

This work was funded in part by the Arlene & Arnold Goldstein Center at

the Technion Autonomous Systems Program, a Technion fellowship, and an

Andrew and Erna Finci Viterbi Fellowship.

Distributed solutions for compressed sensing have begun

to receive attention lately. For example, one work proposes a

distributed subspace pursuit recovery algorithm for a mixed-

support set model [5]. This work assumes that every agent

knows the sensing matrix of every other agent. The need for

global knowledge of these matrices presents a scalability bot-

tleneck as individual sensors do not have the capacity to store

and process a large number of these matrices. Several works

have proposed distributed basis pursuit algorithms for sparse

signal recovery in sensor networks where the measurement

matrices are not globally known [6, 7, 8]. In these algorithms,

agents collaborate to solve a convex relaxation of the original

recovery problem. Each agent stores its own estimate of the

signal x, and, in each iteration, it updates this estimate based

on communication with its neighbors in the network. This

approach requires that every agent solve a local convex op-

timization problem in each iteration. While these algorithms

use only local communication, each agent must send its entire

estimate vector to every neighbor in every iteration. This vec-

tor is not necessarily sparse until the algorithm converges, and

therefore, the messages can be quite large. As a result, these

algorithms have a large total bandwidth cost. Furthermore,

simulations show that this bandwidth cost increases dramati-

cally as the network connectivity increases.

We propose an alternative approach to distributed sparse

signal recovery in sensor networks that is based on Iterative

Hard Thresholding (IHT) [9]. In our distributed implementa-

tion of IHT, which we call D-IHT, all agents store identical

copies of the estimate of x. In each iteration, every agent first

performs a local computation to derive an intermediate vector.

The agents then perform a global computation on their inter-

mediate vectors to derive the next iterate. A naı̈ve distributed

implementation of IHT would require global communication

of the intermediate vector of each agent in every iteration. We

find that we can dramatically reduced the communication cost

of this global computation by leveraging solutions to the dis-

tributed top-K problem in the database literature [10, 11, 12].

Our evaluations show that D-IHT requires up to three orders

of magnitude less total bandwidth than the best-known dis-

tributed basis pursuit method. D-IHT is also computationally

simpler since it does not require that agents solve local con-

vex optimization problems. While, in this work, we present

lesley
Text Box
CCIT Report #821 November 2012

our distributed recovery algorithm for compressed sensing,

we note that our solution easily generalizes to sparse signal

recovery from nonlinear measurements [13].

The remainder of the paper is organized as follows. In

Section 2, we detail our problem setting and formulation and

provide a brief description of IHT. The D-IHT algorithm is

presented in Section 3. Section 4 gives numerical results on

the performance of D-IHT.

2. PRELIMINARIES

2.1. Problem Formulation

We consider a set of P agents that form a connected, undi-

rected static network topology with E edges. The agents

may be the sensors themselves or they may be fusion nodes

that collect measurements from several nearby sensors. Every

agent knows the number of agents P , and we assume there is

a unique agent identified as agent 1. If the uniquely identified

agent is not defined a priori, one can be chosen using a variety

of well-known distributed algorithms (see [14]). Agents com-

municate with their neighbors in the network using fixed size

messages. Messaging is reliable but asynchronous, meaning

that every message that is sent is eventually delivered, but the

delay between sending and delivery may be arbitrarily long.

There is a K-sparse signal x ∈ R
N that the agents seek

to estimate. Each agent p = 1 . . . P has Mp > 0 (pos-

sibly noisy) measurements of x that have been taken using

the agent’s sensing matrix Ap ∈ R
Mp×N . There are M =

M1 + . . . + MP measurements in total. The measurement

vector of agent p, denoted bp, is given by bp = Apx + ǫp,

where ǫp ∈ R
Mp is the measurement error for agent p. Agents

do not know the sensing matrices or measurement vectors of

other agents.

Our goal is for every agent to recover the same signal x
from their collective measurements at a minimal communica-

tion cost. Let b be the vector of all measurements, and let A
be the sensing matrix for the entire system:

b :=









b1

...

bP









, A :=









A1

...

AP









.

To recover x from A and b, the agents must solve the follow-

ing optimization problem,

x̂ = arg min
x∈RN

‖Ax− b‖22 subject to ‖x‖0 ≤ K, (1)

where ‖ · ‖0 denotes the l0 norm, i.e, the number of non-zero

components.

This problem is known to be NP-Hard in general [15].

However, for suitable A matrices, efficient centralized algo-

rithms to recover x̂ exist. Our distributed solution is based on

IHT [16, 9], which we describe next.

2.2. Iterative Hard Thresholding Algorithm

IHT is a gradient-like, iterative algorithm for finding a K-

sparse vector x̂ in a centralized setting where A and b are

known. Let T
K
(v) be the thresholding operator which re-

turns a vector where all but the K entries of v with the largest

magnitude are set to 0 (with ties broken arbitrarily). The IHT

algorithm begins with an initial, arbitrary K-sparse vector x0.

In each iteration, a gradient-step is performed, followed by

application of the thresholding operator:

xt+1 = T
K

(

xt − αAT (b−Axt)
)

. (2)

It has been shown that, for α < 1/
(

2λmax(A
TA)

)

, IHT con-

verges to a local minimum of (1) [9, 13].

We note that, even if A satisfies the properties necessary

to enable recovery using IHT, it is not necessary and, in fact,

not likely that each Ap satisfies these properties. Therefore it

is not possible for any single agent to recover x̂ on its own;

agents must exchange information with one another to per-

form the recovery. In the next section, we present D-IHT, our

distributed implementation of IHT.

3. DISTRIBUTED ITERATIVE HARD

THRESHOLDING

In D-IHT, every agent stores an identical copy of xt, which

is initially 0. In each iteration t, each agent first performs

a local computation to derive an intermediate vector zpt ∈
R

N . The agents then perform a global computation on their

intermediate vectors to derive the next iterate xt+1, which is,

again, identical at every agent. We now define these local and

global computations.

Local computation. Each agent p computes a local residual

vector, ypt := bp−Apxt. The intermediate vector for agent p,

denoted zpt , is then computed as follows,

zpt =

{

xt − α (Ap)
T
zpt if p = 1,

−α (Ap)
T
zpt otherwise.

(3)

Note that each agent can compute zpt using its local informa-

tion.

Global computation. In the global computation step, all

agents must compute a function G that depends on all of their

intermediate vectors. This function is defined as follows,

xt+1 = G
(

z1t , . . . , z
P
t

)

:= T
K

(

P
∑

p=1

zpt

)

. (4)

We note that the combination of the local computation step

(3) and the global computation step (4) are equivalent to (2).

A naı̈ve implementation of G is for all agents to collabo-

rate to compute all N sums, one for each component of the in-

termediate vectors. Then, each agent can independently deter-

mine the values with the K largest magnitudes. This approach

Agent 1 Agent 2 Agent 3

z1t L1 z2t L2 z3t L3



































21

14

11

13

2

4

10

6

12

1



































(1, 21)


































28

3

26

45

20

10

1

13

18

22



































(4, 45)


































2

5

30

14

6

15

27

1

29

7



































(3, 30)

(2, 14) (1, 28) (9, 29)

(4, 13) (3, 26) (7, 27)

(9, 12) (10, 22) (6, 15)

(3, 11) (5, 20) (4, 14)

(7, 10) (9, 18) (10, 7)

(8, 6) (8, 13) (5, 6)

(6, 4) (6, 10) (2, 5)

(5, 2) (2, 3) (1, 2)

(10, 1) (7, 1) (8, 1)

(a) The vector z
p
t and the resulting sorted list Lp, at three agents.

step agent object sum τ1 τ2 τ3 τ top-2 set

1 1 1 51 21 ? ? ? {(1, 51)}

2 2 4 72 - 45 ? ? {(4, 72), (1, 51)}

3 3 3 67 - - 30 96 {(4, 72), (3, 67)}

4 1 2 22 14 - - 89 {(4, 72), (3, 67)}

5 2 10 30 - 22 - 66 {(4, 72), (3, 67)}

(b) Steps of TA to find top two objects. After five steps, the threshold τ

is 65, and objects 3 and 4 both have sums greater than τ . No remaining

objects can have a sum greater than τ . Therefore, the top two objects

have been found, and the algorithm terminates.

Fig. 1: Example execution of the TA algorithm for K = 2.

requires communication of all components of all intermediate

vectors and is thus very costly with respect to bandwidth. We

derive a more communication efficient approach by leverag-

ing work in the database literature on the distributed top-K
problem. We describe this problem and a popular solution

in Section 3.1. We then present our distributed algorithm for

computing G in Section 3.2.

3.1. The Distributed Top-K Problem

In the distributed top-K problem, each agent p has a list Lp of

pairs (o, valp(o)), where o is an object ID and valp(o) is the

value of object o at agent p. In our recovery problem, this list

is generated from the vector zpt ; o is the index into the vector

zpt and valp(o) is the value of zpt at index o. Each object

has a score; in our case, the score is the magnitude of the

sum of object’s values at all agents. The objective is to find

the objects with the K largest scores. Clearly, it is possible to

solve this problem by computing the sum for every object and

then selecting the objects with the K largest magnitude sums,

but it is often not necessary to compute all sums in order to

find the top-K objects.

The Threshold Algorithm (TA) is a solution for the dis-

tributed top-K problem that is instance optimal, i.e., TA

makes the minimum number of sum computations necessary

for a given input of lists [10, 11, 12]. As it was originally

proposed, TA requires that all values be non-negative1. Here,

we present the algorithm, assuming that this is the case. In

Section 3.2, we explain how we modify TA to support both

negative and non-negative values.

In TA, each agent first sorts its list by object value, in

descending order. One agent acts as the leader, requesting in-

formation from the other agents, computing sums for objects,

and distributing the final top-K list to all agents. The algo-

rithm proceeds as follows. The leader requests an object/score

pair from each agent’s list in sorted order, one pair from one

agent in any given step. When the leader receives a pair con-

taining an object it has not yet seen, it requests the value for

1More precisely, TA requires that that an object’s score is given by a func-

tion that is monotonic in the values.

Algorithm 1: Pseudocode for D-IHT algorithm.

1 initialize

2 x
p
0 ← 0

3 t← 0

4 while TRUE do

5 z
p
t ← value from equation (3) Local computation.

6 Lp ← Sort(zpt) Create sorted list from z
p
t .

7 x
p
t+1 ← DATA(Lp) Global computation.

8 t← t+ 1

that object from all other agents and computes the object’s

sum. The leader always stores the objects with the K largest

sums it has seen so far. In addition, the leader stores the value

of the last object seen from each agent p under the sorted ac-

cess. This value is denoted τp. It computes the threshold

value τ = τ1 + ...τP in each step. As soon as the leader has

seen K objects that each have a score of at least τ , the al-

gorithm terminates. The leader then disseminates the list of

top-K objects and their scores.

An example execution of TA is given in Figure 1. Note

that, while each list has 10 objects, the algorithm only re-

quires five sum computations to find the top two objects.

3.2. Distributed Computation of G

The computation of G is equivalent to solving a top-K prob-

lem over the vectors zpt , p = 1 . . . P . In D-IHT, we solve

this top-K problem using a modified version of TA that is

not leader-based and that accommodates both negative and

non-negative values. We describe our modifications and the

resulting algorithm below.

Support for non-negative values. As it was originally pro-

posed, TA is applicable only to score functions like sum that

are monotonic in the object values. To compute G, we need to

find the top-K magnitude sums, which means that the score

function is not monotonic unless all values are non-negative.

A simple way to address this limitation is to run two instances

of TA to find the top-K largest sums and the top-K smallest

sums (since a sum with a negative value may have a large

magnitude). The top-K magnitude objects can then be found

from this set of 2K objects. We implement a more efficient

algorithm in which the agents find the top-K magnitude sums

in a single algorithm instance by processing the sorted lists

from both the top and the bottom.

Decentralized list processing. We speed up the execution

of TA by having each agent independently processes its own

list in sorted order. Each agent initiates a group sum com-

putation for each new object it encounters, so that P group

sum computations are executed in parallel for each iteration

of the algorithm. In a group sum computation, every agent

learns the sum of the values for the specified object. There

are many distributed algorithms for group sum computation

(e.g. [17, 18]). We use an algorithm based on the well-known

broadcast-convergecast paradigm (see [19]). A request mes-

sage is propagated down a broadcast tree that is rooted at the

initiating agent. Each agent collects values from its children

(if it has any), sums up these values with its own, and sends

the result to its parent. For a network with E edges, the al-

gorithm requires a preprocessing phase of less than 2E mes-

sages to create a broadcast tree. Each group sum computation

requires 3(P − 1) messages, and each agent p sends at most

3Dp messages, where Dp is the node degree.

The algorithm. We call our modified version of TA the Dis-

tributed Absolute Threshold Algorithm (DATA). We briefly

summarize the algorithm below. The pseudocode is given in

the appendix.

In DATA, Each agent stores two variables for global

thresholds, one for sorted access from the top of the lists,

denoted τp, and one for sorted access from the bottom of the

lists, denoted τp. Both values are initially ∞. Each agent

also stores a top-K list that is initially empty. The agents

each execute the following steps.

1. If τp > τp, select next object from top of list for which

p has not received a sum in a previous iteration. Else, select

next object from bottom of list for which p has not received a

sum in a previous iteration

2. Initiate group sum computation for selected object. Agent

1 also initiates a group sum computation for the global thresh-

old, either τp or τp, depending on whether it accessed its ob-

ject from the top or bottom of its list. When participating in

the group sum computation for τp, an agent uses the most re-

cent value seen in sorted access from the top of its list, and for

τp, it uses the most recent value seen in sorted access from the

bottom.

3. On receipt of sums (from group computation) from all

agents, update top-K list with objects that have sums with the

K largest magnitudes seen so far.

4. On receipt of threshold (from group computation), up-

date appropriate global threshold variable, τp or τp. If

the top-K list contains K objects with magnitudes at least

max(|τp|, |τp|), return the list. Else, go to Step 1.

Table 1: Recovery problem parameters.

Problem N M P K α

Random 1000 250 50 20 1

Sparco 7 2560 600 40 20 0.99

Sparco 11 1024 256 64 32 0.0025

Sparco 902 1000 200 50 3 0.99

We note that in a single iteration, multiple agents may initiate

group sum computations for the same object. While, in the-

ory, this introduces unnecessary message overhead, in prac-

tice the redundant sums do not add significantly to the total

message cost.

3.3. The D-IHT Algorithm and Analysis

We combine the local computation step with DATA to arrive

at the full D-IHT algorithm. The pseudocode is given in Al-

gorithm 1. We note that while agent 1 plays a unique role in

the local and global computations, it performs the same num-

ber and types of computations and sends the same number of

messages as any other agent.

Storage complexity. Both D-IHT and distributed basis pur-

suit [6, 7, 8] require O(N) storage per agent.

Message complexity. Let T1 be the number of iterations of

D-IHT required to achieve a certain accuracy. Let Sj be the

number of group sum computations for iteration j (includ-

ing the group threshold computations). Each sum computa-

tion requires 3(P − 1) messages. Therefore, the total num-

ber of messages is 3(P − 1)
∑T1

j=1
Sj . We compare this to

distributed basis pursuit where, in every iteration, each agent

sends its estimate of x to all of its neighbors. Assuming that

the message size is limited to a single value, N messages are

required to send a single estimate. Let T2 be the number of

iterations of distributed basis pursuit required to achieve the

same accuracy as T1 iterations of D-IHT. The total number

of messages sent in distributed basis pursuit is 2NET2. For

a connected network, E ≥ P − 1, and therefore, the total

number of messages is at least 2NT2(P − 1).
The preprocessing phase of D-IHT requires at most 2EP

messages, which is less than the number of messages re-

quired for one iteration of distributed basis pursuit. There-

fore, if T1 < T2, then D-IHT requires fewer messages than

distributed basis pursuit so long as less than 2

3
N sums are

computed per iteration of D-IHT, on average. In our evalu-

ations, T1 is always at least one order of magnitude smaller

than T2, and in most cases, the average number of sums

computed per iteration of D-IHT is far fewer than 2

3
N .

4. NUMERICAL RESULTS

In this section, we present an experimental comparison of

D-IHT and distributed basis pursuit. As a representative ex-

Table 2: Evaluation results for D-IHT and D-ADMM.

(a) ER graph with connection probability of 0.25.

Problem
Total Messages Clock Ticks

D-IHT D-ADMM D-IHT D-ADMM

Random 1.06× 106 1.43× 108 5.13× 103 1.60× 106

Sparco 7 2.23× 106 1.11× 108 2.59× 104 2.02× 106

Sparco 11 3.28× 106 5.25× 108 1.24× 104 4.29× 106

Sparco 902 1.48× 106 5.58× 107 9.09× 103 7.20× 105

(b) ER graph with connection probability of 0.75.

Problem
Total Messages Clock Ticks

D-IHT D-ADMM D-IHT D-ADMM

Random 1.13× 106 1.21× 109 3.75× 103 1.18× 107

Sparco 7 2.27× 106 7.33× 108 9.66× 103 9.33× 106

Sparco 11 3.41× 106 4.88× 109 8.06× 103 3.41× 107

Sparco 902 1.54× 106 2.67× 108 5.78× 103 2.65× 106

(c) Geometric graph with d=0.5.

Problem
Total Messages Clock Ticks

D-IHT D-ADMM D-IHT D-ADMM

Random 1.05× 106 7.22× 107 2.46× 104 1.68× 106

Sparco 7 2.23× 106 6.06× 107 7.60× 104 1.99× 106

Sparco 11 3.26× 106 2.37× 108 6.24× 104 3.66× 106

Sparco 902 1.46× 106 2.94× 107 5.17× 104 6.88× 105

ample, we select D-ADMM, a distributed implementation of

the alternating direction method of multipliers that has been

shown to outperform other distributed basis pursuit algo-

rithms in terms of the number of communications in similar

experiments [8]. In each iteration of D-ADMM, each agent

exchanges its estimate with its neighbors and generates a new

estimate by solving a local optimization problem involving its

estimate and the estimates of some of its neighbors. We have

implemented D-IHT and D-ADMM in Matlab, using CVX

[20] to solve the local optimization problems in D-ADMM.

D-ADMM requires a graph coloring, which we generate us-

ing the heuristic from the Matgraph toolbox [21], as is done

in [8]. We include the preprocessing phase in our results for

D-IHT, but we do not include graph coloring pre-processing

in our results for D-ADMM.

Recovery problems. We evaluate the performance of D-IHT

and D-ADMM on four reconstruction problems, similar to

those in [8]. For the first problem, we generate the A ma-

trix with i.i.d Gaussian entries with zero mean and variance

of 1/m. The remaining three problems are from the Sparco

toolbox [22]. The parameters for each problem are given in

Table 1. For each problem, we divide the A matrix evenly

among the agents so that each agent has M/P rows. For the

randomly generated problem, we find the optimal sparse so-

lution x̂ using CVX. For the Sparco problems, we use the

provided optimal sparse solution.

Performance measures. For each algorithm, we measure the

total number of messages sent in order for ‖xp
t − x̂‖/‖x̂‖ ≤

10−2 for all agents. To standardize the bandwidth comparison

0 2 4 6 8 10 12 14 16 18 20 22
0

1000

2000

3000

Iteration

N
u

m
b

e
r

o
f

s
u

m
s

Fig. 2: Number of sums computed per iteration by D-IHT to

solve Sparco problem 7 (with N = 2560) in a 40 node ER

graph with connection probability of 0.25.

between the algorithms, we assume that only one value is sent

per message. Therefore, in D-ADMM, when an agent sends

its N -vector to its neighbor, this requires N messages. D-IHT

is designed so that only one value is sent per message. We also

measure the time required for convergence in a synchronous

network where each message is delivered in one clock tick.

For both algorithms, we only allow one message to be sent on

a link in each direction per clock tick.

Results. Table 2 shows the results of our evaluations in three

different network topologies. The first is an Erdös-Rényi (ER)

graph [23] where each pair of vertices is connected with prob-

ability 0.25 (Figure 2a), and the second is an ER graph where

each pair of vertices is connected with probability 0.75 (Fig-

ure 2b). The third network topology is a geometric graph [24]

with vertices placed uniformly at random in a unit square, and

two vertices are connected if they are within a distance of 0.5

of each other (Figure 2c).

These results show that, for every recovery problem, D-

IHT requires far fewer total messages than D-ADMM to

achieve the same recovery accuracy, between one and two

orders of magnitude in most cases. D-IHT also requires less

total time to perform the recovery than does D-ADMM. We

note that, as network connectivity increases, in D-ADMM

the total message count and total time increase (Table 2a vs.

Table 2b). In D-IHT, sums can be computed more quickly in

networks that are more connected. Therefore, in D-IHT, the

recovery time decreases as network connectivity increases.

A key to the good performance of D-IHT is that, after just

a few iterations, the algorithm finds the correct support set

(the non-sparse components of the signal). The magnitudes of

the values in the support set quickly dominate the other values

in the intermediate vectors. As a result, in DATA, the sums

for these objects are computed first, and the top-K objects

are identified after a minimal number of sum computations

(on the order of PK). This behavior is illustrated in Figure 2,

where we show the total number of sums computed for each

iteration of D-IHT for a single experiment. This figure shows

a dramatic drop in the number of sum computations after just

four iterations.

5. REFERENCES

[1] M.F. Duarte and Y.C. Eldar, “Structured compressed

sensing: From theory to applications,” IEEE Trans. Sig.

Proc., vol. 59, no. 9, pp. 4053–4085, Sep 2011.

[2] J. Meng, H. Li, , and Z. Han, “Sparse event detection in

wireless sensor networks using compressive sensing,” in

Proc 43rd Ann. Conf. Information Sciences and Systems,

2009.

[3] Z. Li, Y. Zhu, H. Zhu, and M. Li, “Compressive sensing

approach to urban traffic sensing,” in Proc. 31st Int.

Conf. Distributed Computing Systems, 2011, pp. 889–

898.

[4] X. Yu, H. Zhao, L. Zhang, S. Wu, B. Krishnamachari,

and V. O. K. Li, “Cooperative sensing and compression

in vehicular sensor networks for urban monitoring,” in

2010 IEEE Int. Conf. on Communications, 2010, pp. 1–

5.

[5] D. Sundman, S. Chatterjee, and M. Skoglund, “A greedy

pursuit algorithm for distributed compressed sensing,”

in Proc. IEEE Int. Conf. on Acoust., Speech, and Sig.

Proc. (ICASSP), 2012, pp. 2729–2732.

[6] J. A. Bazerque and G. B. Giannakis, “Distributed spec-

trum sensing for cognitive radio networks by exploiting

sparsity,” IEEE Trans. Sig. Proc., vol. 58, no. 3, pp.

1847–1862, 2010.

[7] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Basis

pursuit in sensor networks,” in Proc. IEEE Int. Conf.

on Acoust., Speech, and Sig. Proc. (ICASSP), 2011, pp.

2916–2919.

[8] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Dis-

tributed basis pursuit,” IEEE Trans. Sig. Proc., vol. 60,

no. 4, pp. 1942–1956, Apr 2012.

[9] T. Blumensath and M. E. Davies, “Iterative hard thresh-

olding for compressed sensing,” Applied and Computa-

tional Harmonic Analysis, vol. 27, no. 3, pp. 265–274,

2009.

[10] S. Nepal and M.V. Ramakrishna, “Query processing is-

sues in image (multimedia) databases,” in Proc. 15th

Int. Conf. Data Engineering, 1999, pp. 22–29.

[11] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation

algorithms for middleware,” J. Computer and System

Sciences, vol. 66, no. 4, pp. 614–656, 2003.

[12] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid, “Sup-

porting top-k join queries in relational databases,” The

VLDB Journal, vol. 13, no. 3, pp. 207–221, Sep 2004.

[13] A. Beck and Y.C. Eldar, “Sparsity constrained nonlinear

optimization: Optimality conditions and algorithms,”

CoRR, vol. abs/1203.4580, 2012.

[14] N. Lynch, Distributed Algorithms, Morgan Kaufmann

Publishers, Inc., USA, 1996.

[15] B. K. Natarajan, “Sparse approximate solutions to linear

systems,” SIAM J. Comput., vol. 24, no. 2, pp. 227–234,

Apr 1995.

[16] T. Blumensath and M. E. Davies, “Iterative threshold-

ing for sparse approximations,” J. Fourier Analysis and

Applications, vol. 14, no. 5, pp. 629–654, Dec 2008.

[17] S. Madden, M.J. Franklin, J.M. Hellerstein, and

W. Hong, “Tag: A tiny aggregation service for ad-hoc

sensor networks,” ACM SIGOPS Operating Systems Re-

view, vol. 36, no. SI, pp. 131–146, 2002.

[18] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based

computation of aggregate information,” in Proc. 44th

Ann. IEEE Sym. Foundations of Computer Science.

IEEE, 2003, pp. 482–491.

[19] A. Segall, “Distributed network protocols,” IEEE Trans.

Inf. Theory, vol. 29, no. 1, pp. 23–35, 1983.

[20] M. Grant and S. Boyd, “CVX: Matlab software for

disciplined convex programming, version 1.21,” http:

//cvxr.com/cvx, Apr 2011.

[21] E. R. Scheinerman, “Matgraph: A matlab toolbox

for graph theory,” Online: http://www.ams.jhu.

edu/˜ers/matgraph/matgraph.pdf, 2012.

[22] E. van den Berg, M. P. Friedlander, G. Hennenfent,

F. Herrmann, R. Saab, and Ö. Yılmaz, “Sparco: A test-

ing framework for sparse reconstruction,” Tech. Rep.

TR-2007-20, Dept. Computer Science, University of

British Columbia, Vancouver, October 2007.

[23] P. Erdös and A. Rényi, “On random graphs I.,” Publi-

cationes Mathematicae, vol. 6, pp. 290–297, 1959.

[24] M. Penrose, Random Geometric Graphs, Oxford Uni-

versity Press, Oxford, U.K., 2004.

A. PSEUDOCODE FOR DATA

Algorithm 2: Distributed Absolute Threshold Algo-

rithm, as it is executed by each node p.

9 function DATA(Lp = {(ndx, val)}Ni=1)

10 topKList← ∅, top← 1, bottom← N

11 τp ←∞, τp ←∞
12 done← FALSE

13 while done = FALSE do

14 if τp > τp then

15 oid← new object id from top of list

16 else

17 oid← new object id from bottom of list

18 GroupComputeSum(oid)
19 if p = 1 then

20 GroupComputeThreshold(oid)

21 Receive (ndxq, sumq) for q = 1 . . . P and receive

threshold

22 if τp > τp then

23 τp ← threshold

24 else

25 τp ← threshold

26 for q = 1 to P do

27 if |topKList| < K then

28 Add (ndxq, sumq) to topKList

29 else if sumq > min abs. sum in topKList then

30 Replace smallest magnitude element with

(ndxq, sumq)

31 if min. abs. sum in topKList ≥ max(τp, τp) then

32 done← TRUE

33 x← GenerateVectorFromList(topKList)

34 return x

