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Abstract

We revisit the derivation of expurgated error exponents using a method of type class enumer-
ation, which is inspired by statistical–mechanical methods, and which has already been used in
the derivation of random coding exponents in several other scenarios. We compare our version of
the expurgated bound to both the one by Gallager and the one by Csiszár, Körner and Marton
(CKM). For expurgated ensembles of fixed composition codes over finite alphabets, our basic
expurgated bound coincides with the CKM expurgated bound, which is in general tighter than
Gallager’s bound, but with equality for the optimum type class of codewords. Our method,
however, extends beyond fixed composition codes and beyond finite alphabets, where it is nat-
ural to impose input constraints (e.g., power limitation). In such cases, the CKM expurgated
bound may not apply directly, and our bound is in general tighter than Gallager’s bound. In
addition, while both the CKM and the Gallager expurgated bounds are based on Bhattacharyya
bound for bounding the pairwise error probabilities, our bound allows the more general Chernoff
distance measure, thus giving rise to additional improvement using the Chernoff parameter as
a degree of freedom to be optimized.

Index Terms: Expurgated exponents, expurgated ensembles, Bhattacharyya distance, Cher-
noff distance, random energy model.
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1 Introduction

It is well known that the random coding exponent on the probability of error in channel coding

can be improved, at low coding rates, by a process called expurgation, that results in the so called

expurgated exponent, or the expurgated bound, which is a lower bound to the reliability function. The

idea of expurgation, first introduced by Gallager [8, Section V], [9, Section 5.7] (see also [24, Section

3.3]), is that at low rates, the average error probability over the ensemble of codes, is dominated

by bad randomly chosen codewords and not by the channel noise, therefore, by eliminating some

of these codewords (while keeping the rate almost the same), an improved lower bound on the

reliability function is obtained. The expurgated bound at zero rate is known to be tight, as it

coincides, at this point, with the straight–line bound, which is an an upper bound on the reliability

function [9, Section 5.8], [20], [21], [24, Sections 3.7, 3.8]. Omura [19] was the first to relate the

expurgated exponent at low rates to distortion–rate functions, where the Bhattacharyya distance

function plays the role of a distortion measure.

Several years later, Csiszár, Körner and Marton [3] derived, for finite alphabets, a different

expurgated bound, henceforth referred to as the CKM expurgated exponent, as opposed to the

Gallager expurgated exponent discussed above. While ref. [3] contains no details (it is an abstract

only), the CKM expurgated exponent is mentioned in [1, eq. (7)] and some hints on its derivation

can be found in [2, p. 185, Problem 17]. While the CKM expurgated exponent is equivalent to

that of Gallager for the optimum channel input assignment [2, p. 193, Problem 23(b)], it turns

out (as we will be shown below) that for a general input distribution, the CKM expurgated bound

is larger (and hence tighter) than the Gallager expurgated bound. This is important whenever

channel input constraints (e.g., power limitation) do not allow this optimum input distribution to

be used. On the other hand, since the derivation [2, pp. 185–186, Problem 17 (hint)] of the CKM

expurgated exponent relies strongly on the packing lemma [2, p. 162, Lemma 5.1], it is limited to

finite input and output alphabets (as mentioned) and to fixed composition codes, as opposed to

the Gallager expurgated exponent, whose derivation is carried out under more general conditions.

In this paper, our quest is to enjoy the best of both worlds: We use yet another analysis

technique, which has already been used in several previous works in different scenarios [7], [10], [13],

[14], [15, Chapters 6,7], [22], [23], where it has always yielded simplified and/or improved bounds
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on error exponents. This technique, which is based on distance enumeration, or more generally,

on type class enumeration, is inspired by the statistical–mechanical perspective on random coding,

based on its analogy to the random energy model [18, Chapters 5, 6], which is a model of spin

glasses with a high degree of disorder, invented by Derrida [4], [5], [6], and which is well known in

the literature of statistical physics of magnetic materials. Our technique is applicable to channels

with quite general input/output alphabets, it is not limited to fixed composition codes, and it

allows the incorporation of channel input constraints, which are, of course, especially relevant when

the channel input alphabet is continuous. In the special case of finite alphabets, our basic bound

coincides with the CKM expurgated bound along the whole interesting range of rates, and hence

is tighter, in general, than Gallager’s expurgated exponent.

Furthermore, an additional improvement of our expurgated bound is obtained by observing

that, instead of using the Bhattacharyya bound for the pairwise error probabilities (as is done in

the derivations of both the Gallager- and the CKM expurgated exponents), it turns out that for

our proposed form of the expurgated exponent, the pairwise error probabilities can more generally

be bounded using the Chernoff distance measure, whose parameter is subjected to optimization.1

Finally, as mentioned above, our analysis technique is based on a statistical–mechanical point

of view. This point of view naturally suggests a physical interpretation to the behavior of the

expurgated exponent in the following sense: Similarly as in Gallager’s and the CKM expurgated

exponents, the graph of the new proposed expurgated exponent is curvy at low rates and becomes

a straight line of slope −1 at the higher range of rates. It turns out that this passage from a curve

to a straight line can be understood as a phase transition in the analogous statistical–mechanical

system model – the random energy model. This point will be discussed as well.

The outline of the remaining part of this paper is as follows. In Section 2, we provide some

background on the expurgated exponents of Gallager and Csiszár, Körner and Marton, as well

as the relationship between them. In Section 3, we provide a few elementary observations that

serve as a basis for our proposed derivation of the expurgated exponent. In Section 4, we present

the derivation of the new proposed version of our expurgated error exponent for finite alphabets

1While Gallager’s bound has a symmetry that guarantees that the optimum value of the Chernoff parameter is
always 1/2 (in which case, the Chernoff distance coincides with the Bhattacharyya distance), this symmetry does not
appear in the new proposed bound, and hence the optimum value of the Chernoff parameter is not necessarily 1/2.
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and fixed composition codes. In Section 5, we outline the extension of this analysis to continuous

alphabet channels. Finally, in Section 6, we discuss the statistical–mechanical perspective of our

analysis.

2 Background

Consider a discrete memoryless channel (DMC), defined by the single–letter transition probability

functions2 P = {p(y|x), x ∈ X , y ∈ Y}, where X and Y are the input alphabet and the output

alphabet, respectively. Let Q = {q(x), x ∈ X} be a probability function on the input alphabet X .

Gallager’s random coding error exponent function is a well known lower bound on the reliability

function of the DMC [8], [9, Section 5.6], [24, Section 3.2]. It is given by

Er(R) = sup
0≤ρ≤1

sup
Q

[E0(ρ,Q) − ρR] (1)

where

E0(ρ,Q) = − ln





∑

y∈Y

[

∑

x∈X

q(x)p(y|x)1/(1+ρ)

]1+ρ


 , (2)

and where here and throughout the sequel, it is understood that for continuous alphabets, sum-

mations are replaced by integrals. This bound is obtained by analyzing the exponential rate of the

average error probability associated with a randomly chosen code Cn = {x1, . . . ,xM}, M = enR, R

being the coding rate and xm ∈ X n being the codeword associated message number m ∈ {1, . . . ,M},
where each component of each codeword is selected independently at random under Q.

At low rates, this lower bound on the reliability function can be improved by expurgating

the randomly chosen code. This expurgation is accomplished by discarding the ‘bad’ half of the

codebook, namely, the half of codewords whose conditional error probabilities

Pe|m = Pr{error|message m sent}

are the largest under maximum likelihood (ML) decoding. Gallager’s expurgated exponent function

[8], [9, Section 5.7] [24, Section 3.3] is given by

Eex(R) = sup
ρ≥1

sup
Q

[Ex(ρ,Q) − ρR] (3)

2Here and throughout the sequel, “probability function” is a common name for a probability mass function in the
discrete alphabet case and a probability density function in the continuous alphabet case.
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where

Ex(ρ,Q) = −ρ ln







∑

x,x′∈X

q(x)q(x′)





∑

y∈Y

√

p(y|x)p(y|x′)





1/ρ





. (4)

Improvement over Er(R) is accomplished whenever the coding rate R is small enough such that

the supremum in eq. (3) is achieved (or approached) by values of ρ that are strictly larger than 1,

as otherwise for ρ = 1, we have Ex(1, Q) ≡ E0(1, Q).

In [3] (see also [2, p. 185, Problem 17] for details), the following version of the expurgated

exponent was presented by Csiszár, Körner and Marton (CKM) for channels with finite input and

output alphabets:

Eex(R) = sup
Q

inf
Q̂XX′∈A(R,Q)

[I(X;X ′) + EdB(X, X ′)] − R, (5)

where Q̂XX′ is a generic joint probability mass function over X 2, that governs both the mutual

information and the expectation in the square brackets of eq. (5),

A(R,Q) = {Q̂XX′ : Q̂X = Q̂X′ = Q, I(X;X ′) ≤ R},

and dB(·, ·) is the Bhattacharyya distance function, defined by

dB(x, x′) = − ln





∑

y∈Y

√

p(y|x)p(y|x′)



 . (6)

In [2, p. 193, Problem 23b] it is asserted that the right–hand sides of eqs. (3) and (5) are equivalent,

thus justifying the common notation Eex(R) for both expressions. Hereafter, to avoid confusion

between the Gallager and the CKM expurgated exponents, we will deviate from the customary

notation used above, and re–define the notation EG(ρ,Q) for Ex(ρ,Q) (where the subscript G

stands for “Gallager”), and accordingly

EG(R,Q) = sup
ρ≥1

[EG(ρ,Q) − ρR], (7)

thus, Eex(R) = supQ EG(R,Q). Similarly, we will denote

ECKM (R,Q) = inf
Q̂XX′∈A(R,Q)

[I(X;X ′) + EdB(X, X ′)] − R, (8)

thus, Eex(R) = supQ ECKM (R,Q).
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While supQ EG(R,Q) = supQ ECKM (R,Q) as mentioned above, it turns out that for a general

choice of Q, the functions EG(R,Q) and ECKM (R,Q) may differ. In fact, as we shall see shortly

ECKM (R,Q) ≥ EG(R,Q) (9)

for an arbitrary input assignment Q. This is an important point since the optimum input assignment

Q∗, that achieves Eex(R), might be forbidden in the presence of channel input constraints (e.g.,

power limitation), and so, in such a case, the CKM expurgated exponent may be better than

the Gallager expurgated exponent. On the other hand, there are two advantages to the Gallager

expurgated exponent relative to the CKM expurgated exponent. The first is that, unlike the case

of the CKM bound, its derivation is not sensitive to the assumption of finite alphabets and fixed

composition codes.3 The second advantage is that the numerical calculation of EG(R,Q) requires

optimization over one parameter only (the parameter ρ), whereas the calculation of ECKM (R,Q)

seems (at least in its present form) to require optimization over the entire joint distribution Q̂XX′

(which means many parameters for a large input alphabet) and moreover, this optimization is

subjected to complicated constraints (defined by A(R,Q)).

3 Some Preliminary Observations

Before presenting the proposed alternative derivation of our expurgated exponent, we pause to offer

a few preliminary observations that would hopefully help to compare EG(R,Q) and ECKM (R,Q)

and to understand the relationships between them, as well as their relation to that of the new

bound to be derived. In particular, our first task is to transform the expression of ECKM (R,Q) to

a form that has the same ingredients as those of EG(R,Q).

We first define the function

DQ(R) = min
Q̂XX′∈A(R,Q)

E{dB(X;X ′)}. (10)

Intuitively, the function DQ(R) is the distortion–rate function of a “source” Q (designated by

the random variable X) with respect to (w.r.t.) the Bhattacharyya distortion measure dB(·, ·),
subject to the additional constraint that the “reproduction variable” X ′ has the same probability

3In fact, in the case of a continuous input alphabet, the notion of fixed composition codes does not really exist
altogether.
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distribution Q as the “source.” It is easy to see now that

inf
Q̂XX′∈A(R,Q)

[I(X;X ′) + EdB(X, X ′)] =

{

DQ(R) + R R ≤ R1

DQ(R1) + R1 R > R1
(11)

where R1 is I(X;X ′) for the optimum Q̂XX′ that minimizes [I(X;X ′) + EdB(X, X ′)] across

A(∞, Q), or equivalently, R1 is the rate R at which D′
Q(R) = −1, D′

Q(R) being the derivative

of DQ(R) w.r.t. R. Thus, we obtain

ECKM (R,Q) =











DQ(R) R ≤ R1

DQ(R1) + R1 − R R1 < R < DQ(R1) + R1

0 R > DQ(R1) + R1

(12)

where we note that the first line is intimately related to [2, p. 194, Problem 24]. We observe then

that at low rates, ECKM (R,Q) has a curvy part given by DQ(R), and for high rates it is given by

the straight line of slope −1 that is tangential to the curve DQ(R).

Let us now take a closer look at the distortion–rate function DQ(R), which is the inverse of

the rate–distortion function RQ(D), defined similarly, and again with the additional constraint

QX′ = Q. This rate–distortion function has the following parametric representation [17, eq. (13)]:

RQ(D) = − inf
s≥0



sD +
∑

x∈X

q(x) ln





∑

x′∈X

q(x′)e−sdB(x,x′)







 , (13)

where the minimizing s is interpreted as the negative local slope of the function RQ(D), i.e.,

s∗ = −R′
Q(D), s∗ being the minimizer of the r.h.s. This function can easily be inverted, similarly

as in [16, eqs. (15)–(20)], to obtain

DQ(R) = − inf
s≥0

1

s



R +
∑

x∈X

q(x) ln





∑

x′∈X

q(x′)e−sdB(x,x′)







 (14)

= sup
ρ≥0



−ρ
∑

x∈X

q(x) ln





∑

x′∈X

q(x′)e−dB(x,x′)/ρ



− ρR



 , (15)

where the second line follows from the first simply by changing the variable s to the variable

ρ = 1/s. Thus, the maximizing ρ is the negative local slope of the function DQ(R). It follows that

in the curvy part of ECKM (R,Q), where the slope of DQ(R) is smaller than −1, the maximizing ρ

is larger than 1. Thus, the maximization in the last expression of DQ(R) can be confined to the

range [1,∞), i.e., for R ≤ R1

ECKM (R,Q) = sup
ρ≥1



−ρ
∑

x∈X

q(x) ln





∑

x′∈X

q(x′)e−dB(x,x′)/ρ



− ρR





7



= sup
ρ≥1











−ρ
∑

x∈X

q(x) ln







∑

x′∈X

q(x′)





∑

y∈Y

√

p(y|x)p(y|x′)





1/ρ





− ρR











. (16)

and of course, for R ∈ [R1, R1 + DQ(R1)] we use the same expression, setting ρ = 1. This should

now be compared with Gallager’s expression

EG(R,Q) = sup
ρ≥1











−ρ ln







∑

x,x′∈X

q(x)q(x′)





∑

y∈Y

√

p(y|x)p(y|x′)





1/ρ





− ρR











. (17)

As can be seen, the only difference between the two expressions is that in ECKM (R,Q), the av-

eraging over x is external to the logarithmic function, whereas in EG(R,Q) it is internal to the

logarithmic function. Thus, Jensen’s inequality guarantees that ECKM (R,Q) ≥ EG(R,Q), and

since the logarithmic function is strictly concave, the inequality is strict for every finite ρ (which

means R > 0), unless
∑

x′∈X q(x′)e−dB(x,x′)/ρ happens to be independent of x, which is the case

when either Q and P exhibit enough symmetry, or when Q is chosen to be the optimum distribution

[2, p. 193, Problem 23b, hint (iii)].

Our second preliminary observation is the following. The derivation of Gallager’s expurgated

exponent begins from the union bound on the pairwise error probabilities, which in turn are all

upper bounded by the Bhattacharyya bound, i.e., eq. (5.7.3) in [9] reads

Pe|m ≤
∑

m′ 6=m

∑

y

√

p(y|xm)p(y|xm′), (18)

where y ∈ Yn designates the channel output vector. One might suspect that a better result can

probably be obtained by considering, more generally, the Chernoff bound

Pe|m ≤
∑

m′ 6=m

∑

y
ps(y|xm′)p1−s(y|xm), 0 ≤ s ≤ 1, (19)

where the Chernoff parameter s is subjected to optimization (in addition to the parameter ρ). After

carrying out the derivation similarly as in [9, Section 5.7], one would obtain a similar expression as

in EG(R,Q), except that the Bhattacharyya distance function is replaced, more generally, by the

Chernoff distance function

ds(x, x′) = − ln





∑

y∈Y

p1−s(y|x)ps(y|x′)



 . (20)
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Thus, EG(ρ,Q) would be replaced by

EG(ρ, s, Q) = −ρ ln







∑

x,x′∈X

q(x)q(x′)





∑

y∈Y

p1−s(y|x)ps(y|x′)





1/ρ





, (21)

and the best choice of s would be the one that maximizes EG(ρ, s, Q). However, it is easy to

see that EG(ρ, s, Q) is concave in s and that EG(ρ, s, Q) = EG(ρ, 1 − s,Q) since x and x′ play

symmetric roles in the expression of EG(ρ, s, Q). Thus, the maximizing s is obviously s∗ = 1/2,

which brings us back to the Bhattacharyya distance, and confirming that there is nothing to gain

from the optimization over s beyond Gallager’s expurgated bound.

This is not the case, however, when it comes to the CKM expurgated bound. In particular,

Csiszár and Körner also begin from the union–Bhattacharyya bound (see [2, p. 186, top]), and an

extension of their derivation would yield the same expression as (16), but again, with the Bhat-

tacharyya distance dB(x, x′) (or d1/2(x, x′)) being replaced by the more general Chernoff distance

ds(x, x′). However, here x and x′ do not have symmetric roles and hence the bound is not necessar-

ily optimized at s = 1/2. Indeed, it is easy to study a simple example of a binary non–symmetric

channel and see that the derivative of the function

E(ρ, s, Q) = −ρ
∑

x∈X

q(x) ln







∑

x′∈X

q(x′)





∑

y∈Y

p1−s(y|x)ps(y|x′)





1/ρ





(22)

with respect to s does not vanish at s = 1/2 unless Q is symmetric (see also Example 1 below, at

the end of this section).

To summarize, we observe that the CKM expurgated bound is not only better, in general, than

the Gallager expurgated bound, but moreover, it provides even further room for improvement in

the optimization over s, in addition to the optimization over ρ. Confining the framework to finite

alphabets and fixed composition codes, this gives rise to the following coding theorem.

Theorem 1 For an arbitrary DMC, there exist a sequence of codes {Cn}n≥1 of rate R and com-

position Q,4 for which the error exponent associated with the maximum error probability is at least

as large as

E(R,Q) = sup
ρ≥1

sup
0≤s≤1

[E(ρ, s, Q) − ρR] (23)

4A sequence of codes with composition Q means a sequence of fixed composition codes, where the common
empirical distribution of all codewords tends to Q as n → ∞.
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where E(ρ, s, Q) is defined as in eq. (22).

Example 1 – binary input, binary output channels. We have compared numerically the three

expurgated exponents for various combinations of P and Q associated with binary input, bi-

nary output channels. As a representative example, we have computed EG(1, Q), E(1, 1/2, Q)

and max0≤s≤1 E(1, s, Q), for the binary channel P defined by p(0|0) = p(1|0) = 0.5, p(0|1) =

1− p(1|1) = 10−10, along with the input assignment Q given by q(1) = 1− q(0) = 0.1. The results

are EG(1, Q) = 0.0542, E(1, 1/2, Q) = 0.0574, and max0≤s≤1 E(1, s, Q) = 0.0596, which is achieved

at s∗ ≈ 0.76. This means that in the range of high rates, we have

EG(R,Q) = 0.0542 − R (24)

ECKM (R,Q) = 0.0574 − R (25)

E(R,Q) = 0.0596 − R. (26)

Thus, numerical evidence indeed supports the fact that there are gaps between the three expurgated

exponents, at least for some combinations of channels and input assignments.

4 New Derivation of the Expurgated Exponent

Equipped with the background of Section 2 and the observations offered in Section 3, we next

proceed to the derivation of the new version of the expurgated bound (i.e., prove Theorem 1), but

in a manner that does not rely on the packing lemma and hence is not sensitive to the assumptions

of fixed composition codes and finite alphabets. We will assume finite alphabets only for the

simplicity of the exposition and for the sake convenience, but it should be understood that our

analysis has a natural extension to continuous alphabets (along with channel input constraints),

and we will outline this extension in Section 5.

Following the discussion in Section 3, we begin with the following upper bound on the conditional

probability of error

Pe|m ≤
∑

m′ 6=m

∑

y
ps(y|xm′)p1−s(y|xm), 0 ≤ s ≤ 1. (27)

Now, following the same rationale as in [9, Section 5.7] and [24, Section 3.3], we argue the following:

There exists a codebook Cn = {x1, . . . ,xM} of M = enR codewords such that for every ρ > 0 and

10



all 1 ≤ m ≤ M

Pe|m ≤
[

2P
1/ρ
e|m

]ρ

≤ 2ρ






E





∑

m′ 6=m

∑

y
ps(y|Xm′)p1−s(y|Xm)





1/ρ






ρ

∆
= 2ρAn(R, ρ), (28)

where the expectation operator is taken w.r.t. the randomness of the codewords {Xm}, which are

selected independently at random according to the uniform distribution over the type class TQ,

that is, the set of all sequences whose empirical distribution is (as close as possible to) Q.

For the purpose of further bounding An(R, ρ), the next step in both [9] and [24] is to use the

inequality [
∑

m′ am′ ]1/ρ ≤∑

m′ a
1/ρ
m′ , which holds for every ρ ≥ 1, and then to apply the expectation

operator on each term of the corresponding sum separately. This is a step which simplifies the

derivation to a large extent, but at the possible price of losing exponential tightness of the resulting

bound. Instead, in our derivation, we will use another approach, which yields an exponentially

tight bound. Defining

ds(x, x′) = − ln

[

∑

y

p1−s(y|x)ps(y|x′)

]

(29)

we have, due to the memorylessness of the channel,

∑

y
p1−s(y|xm)ps(y|xm′) = e−

∑n

i=1
ds(xm,i,xm′,i) ∆

= e−ds(xm,xm′ ), (30)

where xm,i is the i–th component of the codeword xm. Let Nm(Q̂XX′) be the number of codewords

{xm′} that, together with xm, fall in the joint type class corresponding to the joint empirical dis-

tribution Q̂XX′ , whose both marginals must agree with Q (as they are both empirical distributions

of codewords). Then, we have

An(R, ρ) =









E







∑

Q̂XX′

Nm(Q̂XX′) exp{−nEds(X, X ′)}







1/ρ








ρ

·
=



E

(

max
Q̂XX′

Nm(Q̂XX′) exp{−nEds(X, X ′)}
)1/ρ





ρ

=

[

E max
Q̂XX′

[Nm(Q̂XX′)]1/ρ exp{−nEds(X, X ′)/ρ}
]ρ

·
=






E
∑

Q̂XX′

[Nm(Q̂XX′)]1/ρ exp{−nEds(X, X ′)/ρ}







ρ

11



=







∑

Q̂XX′

E
{

[Nm(Q̂XX′)]1/ρ
}

· exp{−nEds(X, X ′)/ρ}







ρ

·
=

[

max
Q̂XX′

E
{

[Nm(Q̂XX′)]1/ρ
}

· exp{−nEds(X, X ′)/ρ}
]ρ

·
= max

Q̂XX′

(

E
{

[Nm(Q̂XX′)]1/ρ
})ρ

· exp{−nEds(X, X ′)}, (31)

where the notation
·
= designates equivalence in the exponential scale (i.e., an

·
= bn means that

1
n ln an

bn
→ 0 as n → ∞), and where the expectation at the exponent is w.r.t. Q̂XX′ . Now, similarly

as in [12, p. 4444, eq. (34)], we have

E
{

[Nm(Q̂XX′)]1/ρ
}

·
=

{

exp{n[R − I(X;X ′)]} R < I(X;X ′)
exp{n[R − I(X;X ′)]/ρ} R ≥ I(X;X ′)

(32)

where I(X;X ′) is the mutual information between X and X ′ associated with Q̂XX′ . This result

follows from the fact that given Xm = xm, Nm(Q̂XX′) is the sum of enR − 1 binary independent

random–variables,

Um′ = 1{(xm,Xm′) have empirical joint distribution Q̂XX′}, m′ 6= m, (33)

whose expectations are all of the exponential order of e−nI(X;X′). Upon taking into account all the

possible empirical distributions {Q̂XX′}, we readily obtain

An(R, ρ)
·
= e−n min{E1(R),E2(R,ρ)}, (34)

where

E1(R, ρ) = min
Q̂X′|X : I(X;X′)≥R

[Eds(X, X ′) + ρI(X;X ′)] − ρR (35)

and

E2(R) = min
QX′|X : I(X;X′)≤R

[Eds(X, X ′) + I(X;X ′)] − R = sup
ρ≥1

[E(ρ, s, Q) − ρR], (36)

where the second equality is obtained similarly as in the derivation of eq. (16), but with the

Bhattacharyya distortion measure being replaced by ds(·, ·). It remains to show that E1(R, ρ),

for the optimum choice of ρ, is never smaller than ECKM (R,Q). For a given s, let RQ(D) be the

rate–distortion function of X w.r.t. the distortion measure {ds(x, x′)} subject to the constraint that

QX′ = Q. Let Dρ be the distortion level at which R′
Q(D) = −1/ρ, where R′

Q(·) is the derivative of

12



RQ(·). Also, DQ(R) will denote the corresponding distortion–rate function, which is the inverse of

RQ(D). Then E1(R, ρ) admits the following expressions:

E1(R, ρ) =

{

Dρ + ρ[RQ(Dρ) − R] R ≤ RQ(Dρ)
DQ(R) R ≥ RQ(Dρ)

(37)

As the straight line Dρ + ρ[RQ(Dρ) − R] is tangential to (and below) the convex function DQ(R),

the best choice of ρ is to take the limit ρ → ∞. But E1(R,∞) = DQ(R) for all R (as RQ(D∞) = 0),

which is in turn at least as large as E2(R) = supρ≥1[E(ρ, s, Q) − ρR] for all R, and strictly so in

the linear part of the latter function.

Thus, for a given s, there exists a sequence of codes for which the exponent of the maximum

probability of error is dominated by supρ≥1[E(ρ, s, Q)−ρR]. Upon maximization over s, this yields

E(R,Q), as asserted in Theorem 1.

5 Beyond Finite Alphabets and Fixed Composition Codes

In Section 4, we have assumed finite alphabets and fixed composition codes, mainly for the simplicity

of the exposition and for the purpose of comparison with the CKM expurgated exponent. However,

as we have mentioned already, the analysis in Section 4 is not really sensitive to these assumptions.

The heart of the analysis in Section 4 is around equations (31) and (32), and therefore, the main

issue in the desired extension is to adapt this part of the analysis to continuous alphabets. Consider

now the case where X = Y = IR and then q(x) and p(y|x) are probability density functions. Let δ

be an arbitrarily small positive real. Then,

∑

m′ 6=m

e−ds(xm,xm′ ) ≤
∞
∑

k=0

e−nkδNm(k), (38)

where

Nm(k) =
∑

m′ 6=m

1 {nkδ ≤ ds(xm,xm′) < n(k + 1)δ)} , k = 0, 1, 2, . . . (39)

Let us assume now that the ensemble of codes is defined such that d(xm,xm′) cannot exceed nDmax,

where Dmax < ∞ is a constant that does not depend on n, which is normally the case when the

codewords must comply with input constraints. Then using a similar technique as in eq. (31), we

now obtain

An(R, ρ)
·
≤ sup

k≥0

(

E{[Nm(k)]1/ρ}
)ρ

· e−nkδ, (40)
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where the notation
·
≤ denotes inequality in the exponential scale (more formally, an

·
≤ bn means

lim supn→∞
1
n ln an

bn
≤ 0). The key issue is now to assess the exponential rate of the expectation of

the binary random variable,

Um′ = 1 {nkδ ≤ ds(xm,Xm′) < n(k + 1)δ} , (41)

for a given xm, namely, to find the exponent of Pr{nkδ ≤ ds(xm,Xm′) < n(k + 1)δ}. This can be

done using standard large deviations techniques, like the Chernoff bound. Let R(kδ) denote the

large deviations rate function of this probability (which depends, of course, on xm, but it would be

convenient to define the ensemble such that this rate function will be the same for all m). Then,

as in eq. (32), we then have

E{[Nm(k)]1/ρ} ·
=

{

exp{n[R − R(kδ)]} R ≤ R(kδ)
exp{n[R − R(kδ)]/ρ} R > R(kδ)

(42)

Now, similarly as in Section 4, An(R, ρ) is dominated by min{E1(R, ρ, δ), E2(R, δ)}, where

E1(R, ρ, δ) = inf
k: R(kδ)≥R

[kδ + ρR(kδ)] − ρR, (43)

and

E2(R, δ) = inf
k: R(kδ)≤R

[kδ + R(kδ)] − R, (44)

Upon taking the limit δ → 0, these become

E1(R, ρ) = inf
D: R(D)≥R

[D + ρR(D)] − ρR, (45)

and

E2(R) = inf
D: R(D)≤R

[D + R(D)] − R. (46)

The remaining details depend, of course, on the form of the large deviations rate function R(D),

which in turn depends strongly on the input assignment and the channel.

Example 2 – the Gaussian channel. Consider the memoryless additive Gaussian channel Y = X+Z,

where Z is a zero–mean Gaussian random variable with variance σ2, independent of X. Let q(x)

be the uniform distribution over the surface of the n–dimensional sphere with radius
√

nS. In

this case, the Chernoff distance is maximized at s∗ = 1/2, where it agrees with the Bhattacharyya

distance dB(x, x′) = (x − x′)2/8σ2. It is not difficult to show (e.g., using the methods of [11]) that

R(D) =
1

2
ln

[

S

8σ2D(1 − 2σ2D/S)

]

, (47)
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which has the interpretation of the rate–distortion function of the Gaussian source with variance S

w.r.t. Bhattacharyya distortion measure with the additional constraint that reproduction variable

X ′ is also Gaussian, zero–mean and with variance S. The corresponding distortion–rate function

(which is the inverse of R(D)) is given by

D(R) =
S(1 −

√
1 − e−2R)

4σ2
, (48)

which is also the curvy part of the corresponding expurgated exponent. The linear part is again

the tangential straight line with slope −1.

6 The Statistical–Mechanical Perspective

Let us take another look at the central expression that was handled in Sections 4 and 5, namely,

on the summation

Z =
∑

m′ 6=m

e−ds(xm,xm′ ), (49)

From the viewpoint of statistical physics, this can be interpreted as the partition function of a

physical system, where for a fixed xm, the various configurations (microstates) are {xm′}m′ 6=m and

the Hamiltonian (energy function) is given by (or proportional5 to) ds(xm,xm′). If the correct

codeword xm is given and the remaining codewords are considered independent and random, thus

denoted {Xm′}, then the various “configurational energies” {ds(xm,Xm′)} are also independent

random variables. As explained in [18, Chapters 5, 6] (see also [15, Chapters 6, 7] and references

therein), this setting is analogous to the random energy model (REM) in the literature of statistical

physics of magnetic materials. The REM was invented by Derrida [4], [5], [6] as a model of extremely

disordered spin glasses. This model is not realistic, but it is exactly solvable and it exhibits a phase

transition: Below a certain critical temperature, the partition function becomes dominated by

a sub–exponential number of configurations, which means that the system freezes in the sense

that its entropy vanishes in the thermodynamic limit. This combination of freezing and quenched

disorder resembles the behavior of a glass, and so, this low temperature phase of zero entropy is

called the glassy phase.6 Above the critical temperature, the partition function is dominated by an

5To enhance the analogy with physics, it is instructive to consider a parametric family of channels, pβ(y|x) ∝
[p(y|x)]β , where β is a parameter that controls the ‘quality’ of the channel (e.g., the SNR in the case of the Gaussian
channel), whose physical meaning is inverse temperature. In this case, ds(xm, xm′) of the channel pertaining to β = 1
would be multiplied by β, similarly as in ordinary partition functions.

6In physics, it typically occurs as a result of a process of rapid cooling.
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exponential number of configurations, and so, its entropy is positive. This high temperature phase

is called the paramagnetic phase.

In the derivations of Sections 4 and 5, the curvy part of the graph of E(R,Q) corresponds to the

glassy phase of the REM associated with (49), because the dominant contribution to An(R, ρ) is due

to a subexponential number (Nm(Q̂XX′) or Nm(k)) of codewords whose distance from xm is about

nDQ(R). The straight–line part of E(R,Q), on the other hand, corresponds to the paramagnetic

phase, where about en[R−R1] incorrect codewords at distance nDQ(R1) dictate the behavior. Thus,

the passage between the curvy part and the straight–line part, at R = R1 is interpreted as a glassy

phase transition.

In the Gallager expurgated bound, there is also a passage from a curvy part at low rates to a

straight–line part at high rates. However, in Gallager’s derivation, the passage happens due to a

more technical reason. Since Gallager’s analysis is based on the inequality [
∑

m′ am′ ]1/ρ ≤∑

m′ a
1/ρ
m′ ,

which holds only for ρ ≥ 1, the maximization over ρ is a–priori limited to the range ρ ≥ 1. The

linear part of the curve is then generated due to the fact that for higher rates, the unconstrained

achiever of Eex(R) is ρ∗ < 1, and so, the constrained one remains ρ∗ = 1, independently of R in

this range.
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