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Abstract
In cloud-scale data centers, it is common to shard data
across many nodes, each maintaining a small subset of
the data. Although ACID transactions are desirable,
architects often avoid them due to performance con-
cerns. We present a novel architecture for support of
low-latency high-throughput ACID transactions in a Re-
silient Archive with Independent Nodes (ACID-RAIN).
ACID-RAIN uses logs in a novel way, limiting reliability
to a single scalable tier. A large set of independent fault-
prone nodes form an outer layer that caches the sharded
data, backed by a set of independent highly available log
services. ACID-RAIN dramatically reduces concurrency
conflicts by using prediction to order transactions before
they take actions that would lead to an abort. Simula-
tions using the Transactional-YCSB workloads demon-
strate scalability and effective contention handling.

1 Introduction
Large-scale data-center computing systems often employ
massive data sets, sharded (partitioned) over many stor-
age nodes. When client transactions access shared data
items, the issue of consistency arises. Ideally, we would
use a system with ACID transactions [2, 18, 1], because
this model facilitates reasoning about system properties
and makes possible a variety of high-assurance guaran-
tees. Nonetheless, the ACID model is widely avoided
due to efficiency concerns [15].

In case ACID transactions are needed, one of two ap-
proach is commonly used. The first is to use a central
highly available certification entity (e.g., [16, 23]) for se-
rializing transactions. However, such a central certifi-
cation entity has limited throughput, and therefore, this
approach cannot scale beyond a certain point.

Another option is to use a combination of locking or
optimistic concurrency control (OCC) with timestamped
version management in each shard, together with two
phase commit (2PC) across shards. However, 2PC is
generally avoided in high-availability systems due to per-

formance and fault-tolerance concerns. In case of fail-
ures, specifically, of the 2PC coordinator, which is not a
rare event in a large-scale system, all potentially conflict-
ing transactions must block until the failure is mended.
To avoid that, existing systems [6, 9] replace the 2PC
coordinator with a highly available one. This severely
harms throughput, as we demonstrate in Section 5.

In this paper, we present ACID-RAIN — an architec-
ture for ACID transactions in a Resilient Archive with
Independent Nodes. It is depicted in Figure 1. Our ap-
proach uses logs in a novel manner. A set of independent
highly-available logs collaboratively describe the state of
the entire system, i.e., one would need to combine all
logs in order to learn the global state. Each log is ac-
cessed through an Object Manager (OM) that caches the
data and provides the data structure abstraction. Transac-
tion Managers (TMs) provide the atomic transaction ab-
straction, certifying a given transaction by checking for
conflicts in each log via its OM. The benefit of our ap-
proach is that other than the logs, no system entities are
required to be highly-available. OMs and TMs that are
suspected to have failed can be instantly replaced; safety
is not violated by multiple copies running concurrently.

Our system uses a form of OCC: OMs respond to con-
current TM instructions with no locks. To improve la-
tency, the OMs serve requests from speculative local data
structures, referring to the logs only for certification. To
decrease abort rate, we use predictors that foresee the
likely access pattern of transactions; such predictors can
be implemented with machine learning tools [25]. To
leverage prediction, a transaction leases a version of an
object for its use. Note that unlike locks, failure to re-
spect a lease does not violate safety, and therefore does
not delay OM restoration on failures.

We evaluate ACID-RAIN through simulation with the
transactional YCSB benchmark [13, 14]. We demon-
strate the algorithm’s linear scalability, compared to the
other approaches mentioned above, and the effectiveness
of using accurate and inaccurate predictors.
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2 Related Work
The holy grail of low-latency high-throughput ACID
transactions has long fascinated the data management
community. We detail below the most relevant work with
respect to this paper.

One approach is to realize weaker consistency guaran-
tees that enable better performance, e.g., [27, 22, 26]. It
is also possible to avoid transactions altogether, an ap-
proach sometimes referred to as NoSQL [7, 28]. How-
ever, our target is full-fledged ACID transactions.

Several systems [11, 6, 4, 28] offer atomic transactions
in single shards; others [12, 10] offer mechanisms to col-
locate objects such that transactions always access col-
located objects. However, in real-world scenarios (e.g.,
social network), constant object migration is going to be
inefficient.

Several contemporary systems, such as Megastore and
its variants [2, 24], H-store [18], and Spanner [9] use
two-phase commit for cross-server transactions. Sinfo-
nia [1] uses an architecture similar in many ways to ours,
but employs locking to provide atomic transactions, and
does not take advantage of prediction as ACID-RAIN
does. The downside of these approaches compared to
ACID-RAIN is that they require a coordinator that per-
forms transactions on multiple objects to be highly avail-
able. This requires consensus for each operation, result-
ing in high latency. High latency reduces throughput,
since conflicting transactions block one another, as we
demonstrate in Section 5.

Sprint [5] and Hyder [3] order transactions by a global
service (a multicast service, and a log, resp.). The result
of each transaction, commit or abort, is determined by
the order of previous transactions. A transaction com-
mits if and only if it has no conflicts with previous com-
mitted transactions. In both cases, the global service used
is highly efficient, and sufficient for the target applica-
tion. However, at a high enough scale, a global service
becomes a bottleneck. In contrast, our system has no
such bottleneck and achieves unbounded linear scale-out.

The approach of MDCC [19] is close to ACID-RAIN.
However, unlike ACID-RAIN, MDCC requires storage
nodes to keep the metadata of all transactions ever ex-
ecuted. If the failure detector suspects a transaction to
be partially written due to a failure, it initiates a re-
execution. To prevent transaction double execution due
to a false suspicion, storage servers need to check this
history on every vote.

3 Model and Goal
Our system is designed to run in a single data center. We
assume unreliable servers that may crash or hang, in an
asynchronous, loss-prone network. To accommodate re-
liable storage, we employ highly-available, sequentially
consistent logs, as explained in Section 4.1.

OM 1

OM i (1)

OM n

TM 1 TM j TM m

Log 1 Log i Log n

OM 1 OM n

OM i (2)

Figure 1: Schematic structure of ACID-RAIN. TMs access multiple ob-
jects per transaction. Objects are managed by OMs. OMi(1) is falsely
suspected to have failed, and replaced by OMi(2), causing them to con-
currently serve the same objects. OMs are backed by highly-available
logs, where they store tentative transaction entries for serialization, and
(later) certification results.

The system exposes a transactional data store support-
ing serializable transactions. A client invokes a begin-
transaction command, followed by the transaction’s op-
erations. Each operation is either a read (e.g., a field from
a table) or an update (e.g., setting the value of a field
in a table or adding a key to a key-value store – KVS).
Finally the client invokes the end-transaction command,
and the system responds with either a commit or an abort.
Servers are equipped with predictors that predict which
objects a transaction is likely to touch during its run.

4 ACID-RAIN
4.1 System Structure
The structure of the system is illustrated in Figure 1. At
the base of ACID-RAIN are a set of independent highly-
available logs that together describe the state of the entire
system. Each log is accessed through an Object Man-
ager1 (OM) that caches the data and provides the data
structure abstraction — exporting read and write oper-
ations in the KVS case, while supporting transactions,
which are managed by Transaction Managers (TMs).

TMs provide the atomic transaction abstraction. They
receive instructions from clients to start and end a trans-
action, and operations to perform on individual objects
within the transaction. They speculatively perform each
operation with the help of the appropriate OMs, and cer-
tify the transaction by checking for conflicts in each log
(via its OM). We thus separate the consistency of indi-
vidual objects, maintained with logs, from that of full
transactions, achieved by our algorithm.

Membership monitors are in charge of deciding and
publishing which machines perform which roles, namely
which machines run the log and OM for each shard, and
which TMs are available. Any client can access any TM
for any given transaction. Other than the logs, server role

1In an implementation of the system one may use multiple OMs per
log, dividing the log’s object set, or the other way around, have multiple
logs report to a single OM. The choice depends on the throughput of
the specific implementations chosen for each service. In this paper we
use a 1:1 mapping for simplicity of presentation.
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Figure 2: An example flow of the algorithm.

assignment may be inconsistent. Each object (transac-
tion) is supposed to be managed by a single OM (TM,
resp.) at a given time, but this may change due to an
unjustified crash suspicion whereupon an object (trans-
action, resp.) may temporarily be managed by two OMs
(TMs, resp.) that do not know of one another.

Log Specification ACID-RAIN uses log servers for re-
liable storage of data. Each log server provides a sequen-
tially consistent log object, i.e., update operations are lin-
earizable, but reads may return outdated results. Multi-
ple machines may append entries to a log. Machines may
register to the log; the log then sends to each all entries,
from the first one in the log, to its end, and then new en-
tries as they arrive. A machine may instruct the log to
truncate its prefix.

Such logs may be implemented with various tech-
niques, from SMR to log chains [21, 17, 16, 29, 23]; we
abstract this away, and assume highly available logs.

4.2 Algorithm
We now describe the ACID-RAIN algorithm. An illus-
tration of the algorithm’s progress is given in Figure 2.

When receiving a begin-transaction from a client, the
TM assigns the transaction a unique identifier txnID and
awaits the transaction’s operations. It then services the
operations by routing them to the appropriate OMs. Each
operation is sent to the OM in charge of the object, along
with txnID. The response is delivered back to the client.

Each committed transaction is assigned a timestamp.
When reading an object, the timestamp of the latest trans-
action that wrote this object is returned to the TM. The
TM calculates the transaction’s timestamp by increment-
ing the largest timestamp returned to it in any of the
transaction’s operations. Once a transaction is done, the
TM also forms its log-set, the set of logs in charge of the
shards it touched.

Once a TM receives an end-transaction instruction
from a client, it notifies relevant OMs, detailing the trans-
action’s timestamp and log-set. When it receives an end-
transaction instruction, an OM appends to the log of its
shard an entry consisting of the txnID, its timestamp,
its read- and write-sets (read-set with timestamps read,
write-set with written values), and its log-set. It then
waits to see the entry appear in the log.

If the transaction was written to all logs, and it does not
conflict with previous transactions on any of them, it is
construed as having committed. Conflicts are violations
of read-write, write-read or write-write order, including
circular dependencies, and can be checked by comparing
timestamps. Each OM can only detect local conflicts by
checking the prefix of the log up to the transaction entry.
The result of the transaction can only be certified by com-
bining the information from multiple logs. A transaction
that reads an object updated by a concurrent transaction,
cannot be certified until the latter was certified.

Each OM sends its local result to the calling TM. If
none of them has conflicts, then the transaction has com-
mitted, otherwise it has aborted. The TM notifies the
client of the transaction result and instructs the OMs to
place this result in the logs. The OMs notify the TM once
the results are written to the log.

Running our algorithm for an extended period could
lead to lengthy logs. This has two drawbacks. First, an
OM that registers with the log has to replay this long
log. Second, storage bounds prohibit infinite-length logs.
Therefore we wish to occasionally truncate the log. To
do that, each OM occasionally summarizes the log pre-
fix, and places this summary in the log. However, this
summarization is not sufficient, since truncation must not
break transaction certification. Each transaction should
be either committed or aborted in all its logs, and there-
fore cannot be removed from any of them before the re-
sult is published. To verify this, the committing TM ap-
pends a GC (Garbage Collect) entry to all the transac-
tion’s logs after receiving an acknowledgement that they
all registered the transaction’s result. An OM can invoke
log prefix truncation if the prefix was summarized, and
all its transactions have corresponding GC entries.

Robustness In case of a TM or OM crash, or a miss-
ing result entry (due to message loss), resulting in a
partially certified transaction, another TM may read the
transaction entry in one of the logs, find its log-set, and
restart/continue the certification and GC process. It is
okay to have multiple result entries per transaction – they
will be the same. However, each transaction entry is writ-
ten once, with no retries on failure, to avoid duplicates.

A possible problem may arise if a TM places a trans-
action entry in a strict subset of the transaction’s log set.
When another TM is instructed to fix this, it cannot tell
whether the original TM failed or is late, and the missing
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entries would eventually arrive. Garbage collection may
lead to inconsistencies, where some clients see a transac-
tion and others do not, violating atomicity. To overcome
this, we introduce poison entries. The fixing TM places
a poison entry in the logs that miss the original entry. A
poison is interpreted as a transaction entry with a con-
flict. The original entry may either arrive eventually or
not. An entry that is preceded by a poison is ignored, and
a poison preceded by an entry is ignored. Any TM can
therefore observe the log and consistently determine the
state of the transaction, without a race hazard.

Prediction In order to facilitate rapid progress when
there are no failures (the common case), the OM main-
tains two copies of the data structure — a validated copy,
and a speculative copy that applies all updates once they
happen. An OM responds to the transactions’ operations
(reads and writes) from its speculative copy, acting as
a non-consistent cache, and applies committed changes
to the validated copy. Note that when using this mech-
anism, clients may observe inconsistent data during the
course of a transaction, however only transactions with
consistent views can commit.

ACID-RAIN leverages predictable transactions by
employing leases at the OM layer. Note that these leases
are advisory: failure to respect them harms efficiency
(aborts can be triggered), but not safety. This means they
can be ignored, and therefore do not create a risk of dead-
locks.

When a transaction starts, a black-box machine learn-
ing mechanism predicts its read and write sets. Given
these access predictions, the TM runs a simple two-phase
protocol with the OMs to lease (reserve) a set of object
versions valid at some instant in logical time, using an
ordering mechanism introduced by Lamport [20]: When
starting a transaction, the TM interrogates the OMs about
all objects it is predicted to access, they respond with the
latest timestamp of each object, and the TM chooses a
timestamp larger than maximum among the responses. It
asks the OMs to reserve the objects with this timestamp,
and the OMs grant the lease if there is no lease with a
larger timestamp. The TM then proceeds to run the trans-
action, and the OMs order accesses based on lease times-
tamps.

This scheme prohibits a lease loop deadlock, and in
case of a timeout, transactions can proceed without vi-
olating safety, which is guaranteed by the certification
procedure.

5 Evaluation
We use a custom-built event-driven simulation to evalu-
ate the architecture of ACID-RAIN. We simulate each of
the agents in the system — clients, transaction managers,
object managers and highly available logs. For every run,
we set an average transaction per unit-time rate (TPUT),

Figure 3: For an increasing number of shards, we run multiple simu-
lations to find the maximal TPUT the system can handle. We observe
linear scaling for ACID-RAIN, whereas 2PC and global log reach a
bound.

and transactions arrivals are governed by a Poisson pro-
cess with the required TPUT.

Our workloads are an adaptation of the transactional
YCSB specification [13, 14], based on the original (non-
transactional) YCSB workloads [8]. Each transaction
has a set of read/update operations spread along its ex-
ecution. Object accesses follow one of two different ran-
dom distributions — (1) uniform, where each object is
chosen uniformly at random, and (2) hot-zone, where
some of the objects belong to a so called hot-zone, and
each access is either to the hot-zone, or outside of it (cho-
sen uniformly within each zone).

Scalability To evaluate the scalability of ACID-RAIN,
we measure the maximal TPUT it can accommodate with
an increasing number of shards (with 3 reads and 3 writes
per transaction of 105 objects with uniform access). The
result, depicted in Figure 3 demonstrates a linear scaling.
This is expected, as the conflict rate in is negligible, and
our system is scaled without forming any bottlenecks.

We compare ACID-RAIN with the approaches of
(1) using 2PC and highly available independent TMs, im-
plemented as replicated state machines and (2) a global
log. In both cases, we allow the systems to skip garbage
collection (while ACID-RAIN does perform it). We sim-
ulate highly available TMs by increasing the TM’s la-
tency to that of a single point to point message (reality
would require at least RTT for Paxos or an equivalent,
i.e., even worse). To simulate a global log, we bound the
TMs’ total throughput to about 400 operations per unit
time. All other parameters are identical.

While the parameters we choose are arbitrary, the
trends are apparent; choosing other parameters would
provide similar results, though perhaps at different
scales. Improving the efficiency of the highly available
TM or the global log would allow them to handle more
load than in this example, but they would both reach a
bottleneck, at some point.

Prediction We demonstrate the benefits of prediction
of different qualities. In all runs we use an incom-
ing workload well below the system’s capacity with 16
shards. Each transaction reads and writes 10 objects. The
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(a) Uniform random (b) Hot zone (c) Slack
Figure 4: With poor prediction quality, high conflict rates, and hence high abort rates, occur with (a) uniform access to a small number of objects,
and (b) high probability of accessing a hot-zone. These problems vanish if predictions have good coverage of object-access sets. Commit ratio is
affected if the predictor leases too many objects (c).

simulation is faithful to the algorithm, with the exception
of a small shortcut – an OM grants leases by arrival time
rather than by timestamp. This results in deadlocks in
high contention scenarios, and these are resolved with
timeouts. Our full leasing algorithm would eliminate
these deadlocks; here, we simply abort when they occur.

First, we consider uniform random load (Figure 4a).
We see how commit rate drops as the number of objects
decreases. We vary the accuracy, i.e., the ratio of objects
the predictor leases in advance. Better prediction means
a better commit ratio, however even with perfect predic-
tion deadlocks appear with small numbers of objects.

With a hot-zone of 1000 (Figure 4b), increasing the
probability of hot-zone access increases the abort rate.
Note that at probability 1.0 the rates are significantly
smaller than in the uniform random case (with 1000 ob-
jects), since all accesses to the hot-zone go through a
single OM that becomes a bottleneck. On the bright
side, since object access conflicts occur mostly in a single
shard, the leases prevent deadlocks and result in perfect
commit ratio with perfect prediction.

We define slack to be the ratio of the size of the pre-
dicted object access set to the actual object access set. In
Figure 4c we compare (now with uniform random load
and a variable number of objects) the effect of using a
perfect predictor (slack=1) with predictors that overpre-
dict by factors of 2 and 4. The impact of overprediction
is surprisingly minor, a finding that should make it easier
to create a practical predictor.

Conclusion
Encouraged by these promising simulation results, we
plan to provide a full implementation of ACID-RAIN,
and publish a rigorous correctness proof.
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