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Abstract

New lower bounds on the total variation distance between the distribution of a sum of independent Bernoulli random

variables and the Poisson random variable (with the same mean) are derived via the Chen-Stein method. The new bounds rely

on a non-trivial modification of the analysis by Barbour and Hall (1984) which surprisingly gives a significant improvement.

A use of the new lower bounds is addressed.
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I. INTRODUCTION

Convergence to the Poisson distribution, for the number of occurrences of possibly dependent events, naturally

arises in various applications. Following the work of Poisson, there has been considerable interest in how well the

Poisson distribution approximates the binomial distribution.

The basic idea which serves as a starting point of the so called Chen-Stein method for the Poisson approximation

[6] is the following. Let {Xi}n
i=1 be independent Bernoulli random variables with E(Xi) = pi. Let W ,

∑n
i=1 Xi,

Vi ,
∑

j 6=i Xj for every i ∈ {1, . . . , n}, and Z ∼ Po(λ) with mean λ ,
∑n

i=1 pi. It is easy to show that

E[λf(Z + 1) − Zf(Z)] = 0 (1)

holds for an arbitrary bounded function f : N0 → R where N0 , {0, 1, . . .}. Furthermore (see, e.g., [10, Chapter 2])

E
[
λf(W + 1) − Wf(W )

]
=

n∑

j=1

p2
j E
[
f(Vj + 2) − f(Vj + 1)

]
(2)

which then serves to get rigorous bounds on the difference between the distributions of W and Z, by the Chen-

Stein method for Poisson approximations. This method, and more generally the so called Stein’s method, serves as

a powerful tool for the derivation of rigorous bounds for various distributional approximations. Nice expositions

of this method are provided, e.g., in [1], [10, Chapter 2] and [11]. Furthermore, some interesting links between

the Chen-Stein method and information-theoretic functionals in the context of Poisson and compound Poisson

approximations are provided in [5].

Throughout this letter, we use the term ‘distribution’ to refer to the discrete probability mass function of an integer-

valued random variable. In the following, we introduce some known results that are related to the presentation of

the new results.

Definition 1: Let P and Q be two probability measures defined on a set X . Then, the total variation distance

between P and Q is defined by

dTV(P,Q) , sup
Borel A⊆X

(
P (A) − Q(A)

)
(3)

where the supermum is taken w.r.t. all the Borel subsets A of X . If X is a countable set then (3) is simplified to

dTV(P,Q) =
1

2

∑

x∈X
|P (x) − Q(x)| =

||P − Q||1
2

(4)

so the total variation distance is equal to one-half of the L1-distance between the two probability distributions.

Among old and interesting results that are related to the Poisson approximation, Le Cam’s inequality [9] provides

an upper bound on the total variation distance between the distribution of the sum W =
∑n

i=1 Xi of n independent

lesley
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Bernoulli random variables {Xi}n
i=1, where Xi ∼ Bern(pi), and a Poisson distribution Po(λ) with mean λ =∑n

i=1 pi. This inequality states that dTV

(
PW , Po(λ)

)
≤∑n

i=1 p2
i so if, e.g., Xi ∼ Bern

(
λ
n

)
for every i ∈ {1, . . . , n}

(referring to the case that W is binomially distributed) then this upper bound is equal to λ2

n , decaying to zero as

n → ∞. The following theorem combines [3, Theorems 1 and 2], and its proof relies on the Chen-Stein method:

Theorem 1: Let W =
∑n

i=1 Xi be a sum of n independent Bernoulli random variables with E(Xi) = pi for

i ∈ {1, . . . , n}, and E(W ) = λ. Then, the total variation distance between the probability distribution of W and

the Poisson distribution with mean λ satisfies

1

32

(
1 ∧ 1

λ

) n∑

i=1

p2
i ≤ dTV(PW , Po(λ)) ≤

(
1 − e−λ

λ

) n∑

i=1

p2
i (5)

where a ∧ b , min{a, b} for every a, b ∈ R.

As a consequence of Theorem 1, it follows that the ratio between the upper and lower bounds in (5) is not larger

than 32, irrespectively of the values of {pi}. The factor 1
32 in the lower bound was claimed to be improvable to 1

14
with no explicit proof (see [4, Remark 3.2.2]). This shows that, for independent Bernoulli random variables, these

bounds are essentially tight. Furthermore, note that the upper bound in (5) improves Le Cam’s inequality; for large

values of λ, this improvement is by approximately a factor of 1
λ .

This letter presents new lower bounds on the total variation distance between the distribution of a sum of

independent Bernoulli random variables and the Poisson random variable (with the same mean). The derivation

of these new bounds generalizes and improves the analysis by Barbour and Hall in [3], based on the Chen-Stein

method for the Poisson approximation. This letter concludes by outlining a use of the new lower bounds for the

analysis in [12], followed by a discussion on the comparison of the new bounds to the bound in [3, Theorem 2].

This work forms a continuation of the line of work in [2]–[8] where the Chen-Stein method was studied in the

context of the Poisson and compound Poisson approximations, and it was linked to an information-theoretic context

in [5], [8] and [12]. The reader is referred to a nice exposition of the Poisson approximation and the Chen-Stein

method in the tutorial paper [1].

II. IMPROVED LOWER BOUNDS ON THE TOTAL VARIATION DISTANCE

In the following, we introduce an improved lower bound on the total variation distance and then provide a

loosened version of this bound that is expressed in closed form.

Theorem 2: In the setting of Theorem 1, the total variation distance between the probability distribution of W

and the Poisson distribution with mean λ satisfies the inequality

K1(λ)

n∑

i=1

p2
i ≤ dTV(PW , Po(λ)) ≤

(
1 − e−λ

λ

) n∑

i=1

p2
i (6)

where
K1(λ) , sup

α1, α2 ∈ R,

α2 ≤ λ + 3

2
,

θ > 0

(
1 − hλ(α1, α2, θ)

2 gλ(α1, α2, θ)

)
(7)

and
hλ(α1, α2, θ) ,

3λ + (2 − α2 + λ)3 − (1 − α2 + λ)3

θλ

+
|α1 − α2|

(
2λ + |3 − 2α2|

)
exp

(
− (1−α2)2+

θλ

)

θλ
(8)

x+ , max{x, 0}, x2
+ ,

(
x+)2, ∀x ∈ R (9)

gλ(α1, α2, θ) , max

{∣∣∣∣∣

(
1 +

√
2

θλe
· |α1 − α2|

)
λ + max

{
x(ui)

}
∣∣∣∣∣ ,

∣∣∣∣∣

(
2e−

3

2 +

√
2

θλe
· |α1 − α2|

)
λ − min

{
x(ui)

}
∣∣∣∣∣

}
(10)
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x(u) , (c0 + c1u + c2u
2) exp(−u2), ∀u ∈ R (11)

{ui} ,

{
u ∈ R : 2c2u

3 + 2c1u
2 − 2(c2 − c0)u − c1 = 0

}
(12)

c0 , (α2 − α1)(λ − α2) (13)

c1 ,
√

θλ (λ + α1 − 2α2) (14)

c2 , −θλ. (15)

Proof: See Section IV-A. The derivation relies on the Chen-Stein method for the Poisson approximation, and

it improves (significantly) the constant in the lower bound by Barbour and Hall [3, Theorem 2].

Remark 1: The upper and lower bounds on the total variation distance in (6) scale like
∑n

i=1 p2
i , similarly to the

known bounds in Theorem 1. The ratio of the upper and lower bounds in Theorem 1 tends to 32.00 when either

λ tends to zero or infinity. It was obtained numerically that the ratio of the upper bound and new lower bound on

the total variation distance is reduced to 1.69 when λ → 0, it is 10.54 when λ → ∞, and it is no more than 12.91

for all λ ∈ (0,∞).

Remark 2: [7, Theorem 1.2] provides an asymptotic result for the total variation distance between the distribution

of the sum W of n independent Bernoulli random variables with E(Xi) = pi and the Poisson distribution with

mean λ =
∑n

i=1 pi. It shows that when
∑n

i=1 pi → ∞ and max1≤i≤n pi → 0 as n → ∞ then

dTV(PW , Po(λ)) ∼ 1√
2πe λ

n∑

i=1

p2
i . (16)

This implies that the ratio of the upper bound on the total variation distance in [3, Theorem 1] (see Theorems 1

here) and this asymptotic expression is equal to
√

2πe ≈ 4.133. Therefore, in light of the previous remark (see

Remark 1), it follows that the ratio between the exact asymptotic value in (16) and the new lower bound in (6) is

equal to 10.54√
2πe

≈ 2.55. It therefore follows from Remark 1 that in the limit where λ → 0, the new lower bound on

the total variation in (6) is smaller than the exact value by no more than 1.69, and for λ ≫ 1, it is smaller than

the exact asymptotic result by a factor of 2.55.

Remark 3: The cardinality of the set {ui} in (12) is equal to 3 (see Section IV-A).

Remark 4: The optimization that is required for the computation of K1 in (7) w.r.t. the three parameters α1, α2 ∈
R and θ ∈ R

+ is performed numerically.

In the following, we introduce a looser lower bound on the total variation distance as compared to the lower bound

in Theorem 2, but its advantage is that it is expressed in closed-form. Both lower bounds improve (significantly)

the lower bound in [3, Theorem 2]. The following lower bound follows from Theorem 2 by the special choice

of α1 = α2 = λ that is included in the optimization set for K1 on the right-hand side of (7). Following this

sub-optimal choice, the lower bound in the next corollary is obtained by a derivation of a closed-form expression

for the third free parameter θ ∈ R
+ (in fact, this was our first step towards the derivation of an improved lower

bound on the total variation distance).

Corollary 1: Under the assumptions in Theorem 2, then

K̃1(λ)
n∑

i=1

p2
i ≤ dTV(PW , Po(λ)) ≤

(
1 − e−λ

λ

) n∑

i=1

p2
i (17)

where

K̃1(λ) ,
e

2λ

1 − 1
θ

(
3 + 7

λ

)

θ + 2e−1/2
(18)

θ , 3 +
7

λ
+

1

λ
·
√

(3λ + 7)
[
(3 + 2e−1/2)λ + 7

]
. (19)

Proof: See Section IV-B.
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III. OUTLOOK

We conclude our discussion in this letter by outlining a use of the new lower bounds in this work: The use of the

new lower bound on the total variation distance for the Poisson approximation of a sum of independent Bernoulli

random variables is exemplified in [12]. This work introduces new entropy bounds for discrete random variables

via maximal coupling, providing bounds on the difference between the entropies of two discrete random variables

in terms of the local and total variation distances between their probability mass functions. The new lower bound

on the total variation distance for the Poisson approximation from this work was involved in the calculation of

some improved bounds on the difference between the entropy of a sum of independent Bernoulli random variables

and the entropy of a Poisson random variable of the same mean. A possible application of the latter problem is

related to getting bounds on the sum-rate capacity of a noiseless K-user binary adder multiple-access channel [12].

IV. PROOFS OF THE NEW BOUNDS

A. Proof of Theorem 2

The proof of Theorem 2 starts similarly to the proof of [3, Theorem 2]. However, it significantly deviates from

the original analysis in order to derive an improved lower bound on the total variation distance.

Let {Xi}n
i=1 be independent Bernoulli random variables with E(Xi) = pi. Let W ,

∑n
i=1 Xi, Vi ,

∑
j 6=i Xj for

every i ∈ {1, . . . , n}, and Z ∼ Po(λ) with mean λ ,
∑n

i=1 pi. From the basic equation of the Chen-Stein method,

equation (1) holds for an arbitrary bounded function f : N0 → R. Furthermore, from the proof of [3, Theorem 2],

E
[
λf(W + 1) − Wf(W )

]

=

n∑

j=1

pj E
[
f(W + 1)

]
−

n∑

j=1

E
[
Xjf(W )

]

=
n∑

j=1

pj E
[
f(W + 1)

]
−

n∑

j=1

pj E
[
f(Vj + 1) |Xj = 1

]

(a)
=

n∑

j=1

pj E
[
f(W + 1) − f(Vj + 1)

]

=

n∑

j=1

p2
j E
[
f(W + 1) − f(Vj + 1) |Xj = 1

]

=

n∑

j=1

p2
j E
[
f(Vj + 2) − f(Vj + 1) |Xj = 1

]

(b)
=

n∑

j=1

p2
j E
[
f(Vj + 2) − f(Vj + 1)

]
(20)

where equalities (a) and (b) hold since Xj and Vj are independent random variables for every j ∈ {1, . . . , n}. By

subtracting (1) from (20), it follows that for an arbitrary bounded function f : N0 → R

E
[
λf(W + 1) − Wf(W )

]
− E

[
λf(Z + 1) − Zf(Z)

]
=

n∑

j=1

p2
j E
[
f(Vj + 2) − f(Vj + 1)

]
. (21)

In the following, an upper bound on the left-hand side of (21) is derived, based on total variation distance between
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the two distributions of W and Z.

E
[
λf(W + 1) − Wf(W )

]
− E

[
λf(Z + 1) − Zf(Z)

]

=

∞∑

k=0

(
λf(k + 1) − kf(k)

) (
P(W = k) − P(Z = k)

)

≤
∞∑

k=0

∣∣λf(k + 1) − kf(k)
∣∣ ∣∣P(W = k) − P(Z = k)

∣∣ (22)

≤ sup
k∈N0

∣∣λf(k + 1) − kf(k)
∣∣

∞∑

k=0

∣∣P(W = k) − P(Z = k)
∣∣

= 2dTV(PW , Po(λ)) sup
k∈N0

∣∣λf(k + 1) − kf(k)
∣∣ (23)

where the last equality follows from (4). Hence, the combination of (21) and (23) gives the following lower bound

on the total variation distance:

dTV(PW , Po(λ)) ≥

n∑

j=1

{
p2

j E
[
f(Vj + 2) − f(Vj + 1)

]}

2 supk∈N0

∣∣λf(k + 1) − kf(k)
∣∣ (24)

which holds, in general, for an arbitrary bounded function f : N0 → R.

At this point, we deviate from the proof of [3, Theorem 2] by generalizing and refining (in a non-trivial way)

the original analysis. The general problem with the current lower bound in (24) is that it is not calculable in closed

form for a given f , so one needs to choose a proper function f and derive a closed-form expression for a lower

bound on the right-hand side of (24). To this end, let

f(k) , (k − α1) exp

(
−(k − α2)

2

θλ

)
, ∀ k ∈ N0 (25)

where α1, α2 ∈ R and θ ∈ R
+ are fixed constants (note that θ in (25) needs to be positive for f to be a bounded

function). In order to derive a lower bound on the total variation distance, we calculate a lower bound on the

numerator and an upper bound on the denominator of the right-hand side of (24) for the function f in (25).

Referring to the numerator of the right-hand side of (24) with f in (25), for every j ∈ {1, . . . , n},

f(Vj + 2) − f(Vj + 1)

=

∫ Vj+2−α2

Vj+1−α2

d

du

(
(u + α2 − α1) exp

(
−u2

θλ

))
du

=

∫ Vj+2−α2

Vj+1−α2

(
1 − 2u(u + α2 − α1)

θλ

)
exp
(
−u2

θλ

)
du

=

∫ Vj+2−α2

Vj+1−α2

(
1 − 2u2

θλ

)
exp
(
−u2

θλ

)
du − 2(α2 − α1)

θλ

∫ Vj+2−α2

Vj+1−α2

u exp
(
−u2

θλ

)
du

=

∫ Vj+2−α2

Vj+1−α2

(
1 − 2u2

θλ

)
exp
(
−u2

θλ

)
du

−(α2 − α1)

[
exp

(
−(Vj + 2 − α2)

2

θλ

)
− exp

(
−(Vj + 1 − α2)

2

θλ

)]
. (26)

We rely in the following on the inequality

(1 − 2x) e−x ≥ 1 − 3x, ∀x ≥ 0.
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Applying it to the integral on the right-hand side of (26) gives that

f(Vj + 2) − f(Vj + 1)

≥
∫ Vj+2−α2

Vj+1−α2

(
1 − 3u2

θλ

)
du − (α2 − α1)

[
exp

(
−(Vj + 2 − α2)

2

θλ

)
− exp

(
−(Vj + 1 − α2)

2

θλ

)]

≥ 1 −
(
Vj + 2 − α2

)3 −
(
Vj + 1 − α2

)3

θλ

−
∣∣α2 − α1

∣∣ ·
∣∣∣∣exp

(
−(Vj + 2 − α2)

2

θλ

)
− exp

(
−(Vj + 1 − α2)

2

θλ

)∣∣∣∣ . (27)

In order to proceed, note that if x1, x2 ≥ 0 then (based on the mean-value theorem of calculus)

|e−x2 − e−x1 |
=
∣∣e−c (x1 − x2)

∣∣ for some c ∈ [x1, x2]

≤ e−min{x1,x2} |x1 − x2|
which, by applying it to the second term on the right-hand side of (27), gives that for every j ∈ {1, . . . , n}

∣∣∣∣exp

(
−(Vj + 2 − α2)

2

θλ

)
− exp

(
−(Vj + 1 − α2)

2

θλ

)∣∣∣∣

≤ exp


−

min
{

(Vj + 2 − α2)
2, (Vj + 1 − α2)

2
}

θλ


 ·

(
(Vj + 2 − α2)

2 − (Vj + 1 − α2)
2

θλ

)
. (28)

Since Vj =
∑

i6=j Xi ≥ 0 then

min
{

(Vj + 2 − α2)
2, (Vj + 1 − α2)

2
}

≥
{

0 if α2 ≥ 1

(1 − α2)
2 if α2 < 1

=
(
1 − α2

)2
+

(29)

where

x+ , max{x, 0}, x2
+ ,

(
x+

)2
, ∀x ∈ R.

Hence, the combination of the two inequalities in (28)–(29) gives that
∣∣∣∣exp

(
−(Vj + 2 − α2)

2

θλ

)
− exp

(
−(Vj + 1 − α2)

2

θλ

)∣∣∣∣

≤ exp

(
−(1 − α2)

2
+

θλ

)
·
(∣∣(Vj + 2 − α2)

2 − (Vj + 1 − α2)
2
∣∣

θλ

)

= exp

(
−(1 − α2)

2
+

θλ

)
· |2Vj + 3 − 2α2|

θλ

≤ exp

(
−(1 − α2)

2
+

θλ

)
· 2Vj + |3 − 2α2|

θλ
(30)

and therefore, a combination of the inequalities in (27) and (30) gives that

f(Vj + 2) − f(Vj + 1)

≥ 1 −
(
Vj + 2 − α2

)3 −
(
Vj + 1 − α2

)3

θλ

−
∣∣α2 − α1

∣∣ · exp

(
−(1 − α2)

2
+

θλ

)
· 2Vj + |3 − 2α2|

θλ
. (31)
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Let Uj , Vj − λ, then

f(Vj + 2) − f(Vj + 1)

≥ 1 −
(
Uj + λ + 2 − α2

)3 −
(
Uj + λ + 1 − α2

)3

θλ

−
∣∣α2 − α1

∣∣ · exp

(
−(1 − α2)

2
+

θλ

)
· 2Uj + 2λ + |3 − 2α2|

θλ

= 1 −
3U2

j + 3
(
3 − 2α2 + 2λ

)
Uj + (2 − α2 + λ)3 − (1 − α2 + λ)3

θλ

−
∣∣α2 − α1

∣∣ · exp

(
−(1 − α2)

2
+

θλ

)
· 2Uj + 2λ + |3 − 2α2|

θλ
. (32)

In order to derive a lower bound on the numerator of the right-hand side of (24), for the function f in (25), we

need to calculate the expected value of the right-hand side of (32). To this end, the first and second moments of

Uj are calculated as follows:

E(Uj)

= E(Vj) − λ

=
∑

i6=j

pi −
n∑

i=1

pi

= −pj (33)

and

E(U2
j )

= E
(
(Vj − λ)2

)

= E





∑

i6=j

(Xi − pi) − pj




2 


(a)
=
∑

i6=j

E
[
(Xi − pi)

2
]
+ p2

j

(b)
=
∑

i6=j

pi(1 − pi) + p2
j

=
∑

i6=j

pi −
∑

i6=j

p2
i + p2

j

= λ − pj −
∑

i6=j

p2
i + p2

j . (34)

where equalities (a) and (b) hold since, by assumption, the binary random variables {Xi}n
i=1 are independent and

E(Xi) = pi, Var(Xi) = pi(1 − pi). By taking expectations on both sides of (32), one obtains from (33) and (34)

that

E
[
f(Vj + 2) − f(Vj + 1)

]

≥ 1 −
3
(
λ − pj −

∑
i6=j p2

i + p2
j

)
+ 3
(
3 − 2α2 + 2λ

)(
−pj

)
+ (2 − α2 + λ)3 − (1 − α2 + λ)3

θλ

−
∣∣α2 − α1

∣∣ · exp

(
−(1 − α2)

2
+

θλ

)
·
(−2pj + 2λ + |3 − 2α2|

θλ

)
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= 1 −
3λ + (2 − α2 + λ)3 − (1 − α2 + λ)3 −

[
3pj(1 − pj) + 3

∑
i6=j p2

i + 3
(
3 − 2α2 + 2λ

)
pj

]

θλ

−
(∣∣α2 − α1

∣∣ (2λ − 2pj + |3 − 2α2|
)

θλ

)
· exp

(
−(1 − α2)

2
+

θλ

)

≥ 1 − 3λ + (2 − α2 + λ)3 − (1 − α2 + λ)3 −
(
9 − 6α2 + 6λ

)
pj

θλ

−
(∣∣α2 − α1

∣∣ (2λ + |3 − 2α2|
)

θλ

)
· exp

(
−(1 − α2)

2
+

θλ

)
. (35)

Therefore, from (35), the following lower bound on the right-hand side of (24) holds

n∑

j=1

{
p2

j E
[
f(Vj + 2) − f(Vj + 1)

]}
≥
(

3
(
3 − 2α2 + 2λ

)

θλ

)
n∑

j=1

p3
j

+


1 −

3λ + (2 − α2 + λ)3 − (1 − α2 + λ)3 + |α1 − α2|
(
2λ + |3 − 2α2|

)
exp

(
− (1−α2)2+

θλ

)

θλ




n∑

j=1

p2
j . (36)

Note that if α2 ≤ λ + 3
2 , which is a condition that is involved in the maximization of (7), then the first term on

the right-hand side of (36) can be removed, and the resulting lower bound on the numerator of the right-hand side

of (24) gets the form

n∑

j=1

{
p2

j E
[
f(Vj + 2) − f(Vj + 1)

]}
≥
(
1 − hλ(α1, α2, θ)

) n∑

j=1

p2
j (37)

where the function hλ is introduced in (8).

We turn now to derive an upper bound on the denominator of the right-hand side of (24). Therefore, we need to

derive a closed-form upper bound on supk∈N0

∣∣λ f(k + 1)− k f(k)
∣∣ with the function f in (25). For every k ∈ N0

λ f(k + 1) − k f(k) = λ
[
f(k + 1) − f(k)

]
+ (λ − k) f(k). (38)

In the following, we derive bounds on each of the two terms on the right-hand side of (38), and we start with the

first term. Let

t(u) , (u + α2 − α1) exp

(
−u2

θλ

)
, ∀u ∈ R

then f(k) = t(k − α2) for every k ∈ N0, and by the mean value of calculus

f(k + 1) − f(k)

= t(k + 1 − α2) − t(k − α2)

= t′(ck) for some ck ∈ [k − α2, k + 1 − α2]

=

(
1 − 2c2

k

θλ

)
exp

(
− c2

k

θλ

)
+

(
2(α1 − α2)ck

θλ

)
exp

(
− c2

k

θλ

)
. (39)

By referring to the first term on the right-hand side of (39), let

p(u) , (1 − 2u)e−u, ∀u ≥ 0

then the global maximum and minimum of p over the non-negative real line are obtained at u = 0 and u = 3
2 ,

respectively, and therefore

−2e−
3

2 ≤ p(u) ≤ 1, ∀u ≥ 0.

Let u =
c2

k

θλ , then it follows that the first term on the right-hand side of (39) satisfies the inequality

−2e−
3

2 ≤
(
1 − 2c2

k

θλ

)
exp
(
− c2

k

θλ

)
≤ 1. (40)
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Furthermore, by referring to the second term on the right-hand side of (39), let

q(u) , ue−u2

, ∀u ∈ R

then the global maximum and minimum of q over the real line are obtained at u = +
√

2
2 and u = −

√
2

2 , respectively,

and therefore

−1

2

√
2

e
≤ q(u) ≤ +

1

2

√
2

e
, ∀u ∈ R.

Let this time u =
√

ck

θλ , then it follows that the second term on the right-hand side of (39) satisfies

∣∣∣∣
(

2(α1 − α2)ck

θλ

)
· exp

(
− c2

k

θλ

)∣∣∣∣ ≤
√

2

θλe
· |α1 − α2|. (41)

Hence, by combining the equality in (39) with the two inequalities in (40) and (41), it follows that the first term

on the right-hand side of (38) satisfies

−
(

2λe−
3

2 +

√
2λ

θe
· |α1 − α2|

)
≤ λ

[
f(k + 1) − f(k)

]
≤ λ +

√
2λ

θe
· |α1 − α2| , ∀ k ∈ N0. (42)

We continue the analysis by a derivation of bounds on the second term of the right-hand side of (38). For the

function f in (25), it is equal to

(λ − k) f(k)

= (λ − k)(k − α1) exp

(
−(k − α2)

2

θλ

)

=
[
(λ − α2) + (α2 − k)

] [
(k − α2) + (α2 − α1)

]
exp

(
−(k − α2)

2

θλ

)

=
[
(λ − α2)(k − α2) + (α2 − α1)(λ − α2) − (k − α2)

2 + (α1 − α2)(k − α2)
]

exp

(
−(k − α2)

2

θλ

)

=
[√

θλ (λ − α2) vk − θλ v2
k −

√
θλ (α2 − α1) vk + (α2 − α1)(λ − α2)

]
e−v2

k , vk ,
k − α2√

θλ
∀ k ∈ N0

= (c0 + c1vk + c2v
2
k) e−v2

k (43)

where the coefficients c0, c1 and c2 are introduced in Eqs. (13)–(15), respectively. In order to derive bounds on the

left-hand side of (43), lets find the global maximum and minimum of the function x in (11):

x(u) , (c0 + c1u + c2u
2)e−u2 ∀u ∈ R.

Note that limu→±∞ x(u) = 0 and x is differentiable over the real line, so the global maximum and minimum

of x are attained at finite points and their corresponding values are finite. By setting the derivative of x to zero,

the candidates for the global maximum and minimum of x over the real line are the real zeros {ui} of the cubic

polynomial equation in (12). Note that by their definition in (12), the values of {ui} are independent of the value

of k ∈ N0, and also the size of the set {ui} is equal to 3 (see Remark 3). Hence, it follows from (43) that

min
i∈{1,2,3}

{x(ui)} ≤ (λ − k) f(k) ≤ max
i∈{1,2,3}

{x(ui)} , ∀ k ∈ N0 (44)

where these bounds on the second term on the right-hand side of (38) are independent of the value of k ∈ N0.

In order to get bounds on the left-hand side of (38), note that from the bounds on the first and second terms on

the right-hand side of (38) (see (42) and (44), respectively) then for every k ∈ N0

min
i∈{1,2,3}

{x(ui)} −
(

2λe−
3

2 +

√
2λ

θe
· |α1 − α2|

)

≤ λ f(k + 1) − k f(k)

≤ max
i∈{1,2,3}

{x(ui)} + λ +

√
2λ

θe
· |α1 − α2| (45)
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which yields that the following inequality is satisfied:

sup
k∈N0

|λ f(k + 1) − k f(k)| ≤ gλ(α1, α2, θ) (46)

where the function gλ is introduced in (10). Finally, by combining the inequalities in Eqs. (24), (37) and (46), the

lower bound on the total variation distance in (6) follows. The existing upper bound on the total variation distance

in (6) was derived in [3, Theorem 1] (see Theorem 1 here). This completes the proof of Theorem 2.

B. Proof of Corollary 1

Corollary 1 follows as a special case of Theorem 2 when the proposed function f in (25) is chosen such that two

of its three free parameters (i.e., α1 and α2) are determined sub-optimally, and its third parameter (θ) is determined

optimally in terms of the sub-optimal selection of the two other parameters. More explicitly, let α1 and α2 in (25)

be set to be equal to λ (i.e., α1 = α2 = λ). From (13)–(15), this setting implies that c0 = c1 = 0 and c2 = −θλ < 0
(since θ, λ > 0). The cubic polynomial equation in (12), which corresponds to this (possibly sub-optimal) setting

of α1 and α2, is

2c2u
3 − 2c2u = 0

whose zeros are u = 0,±1. The function x in (11) therefore gets the form

x(u) = c2u
2e−u2 ∀u ∈ R

so x(0) = 0 and x(±1) = c2

e < 0. It implies that

min
i∈{1,2,3}

x(ui) =
c2

e
, max

i∈{1,2,3}
x(ui) = 0,

and therefore hλ and gλ in (8) and (10), respectively, are simplified to

hλ(λ, λ, θ) =
3λ + 7

θλ
, (47)

gλ(λ, λ, θ) = λ max
{
1, 2e−

3

2 + θe−1
}
. (48)

This sub-optimal setting of α1 and α2 in (25) implies that the coefficient K1 in (7) is replaced with a loosened

version

K ′
1(λ) , sup

θ>0

(
1 − hλ(λ, λ, θ)

2gλ(λ, λ, θ)

)
. (49)

Let θ ≥ e − 2√
e
, then (48) is simplified to gλ(λ, λ, θ) = λ

(
2e−

3

2 + θe−1
)
. It therefore follows from (6), (7) and

(47)–(49) that

dTV

(
PW , Po(λ)

)
≥ K̃1(λ)

n∑

i=1

p2
i (50)

where

K̃1(λ) = sup
θ≥e− 2

√

e

(
1 − 3λ+7

θλ

2λ
(
2e−

3

2 + θe−1
)
)

(51)

and, in general, K ′
1(λ) ≥ K̃1(λ) due to the above restricted constraint on θ (see (49) versus (51)). Differentiation

of the function inside the supremum w.r.t. θ and by setting its derivative to zero, one gets the following quadratic

equation in θ:

λ θ2 − 2(3λ + 7) θ − 2(3λ + 7)e−1 = 0

whose positive solution is the optimized value of θ in (19). Furthermore, it is clear that this value of θ in (19) is

larger than, e.g., 3, so it satisfies the constraint in (51). This completes the proof of Corollary 1.
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V. DISCUSSION: ON THE CONNECTION OF THEOREM 2 AND COROLLARY 1 TO [3, THEOREM 2]

The lower bound on the total variation distance in Theorem 2 implies the bound in Corollary 1 (see the proof in

Section IV-B). Corollary 1 further implies the lower bound on the total variation distance in [3, Theorem 2] (see

Theorem 1 here). The latter claim follows from the fact that the lower bound in (50) with the coefficient K̃1(λ) in

(51) was loosened in the proof of [3, Theorem 2] by a sub-optimal selection of the parameter θ, which leads to a

lower bound on K̃1(λ) (the sub-optimal selection of θ in the proof of [3, Theorem 2] is θ = 21 max
{
1, 1

λ

}
). On

the other hand, the optimized value of θ that is used in (19) provides an exact closed-form expression for K̃1(λ)
in (51), and it leads to the derivation of the improved lower bound in Corollary 1.

From [3, Theorems 1 and 2], the ratio between the upper and lower bounds on the total variation distance (these

bounds also appear in (5)) is equal to 32 in the two extreme cases where λ → 0 or λ → ∞. In the following, we

calculate the ratio of the same upper bound and the new lower bound in Corollary 1 at these two extreme cases.

In the limit where λ → ∞, this ratio tends to

lim
λ→∞

(
1−e−λ

λ

) ∑n
i=1 p2

i(
1− 3λ+7

λθ

2λ
(
2e−3/2+θ e−1

)
) ∑n

i=1 p2
i

(θ = θ(λ) is given in Eq. (19))

=
2

e
lim

λ→∞

θ
(
2e−1/2 + θ

)

θ −
(
3 + 7

λ

)

=
6

e

(
1 +

√
1 +

2

3
· e−1/2

)2

≈ 10.539 (52)

where the last equality follows from (19), since limλ→∞ θ = 3 +
√

3(3 + 2e−1/2). Furthermore, the limit of this

ratio when λ → 0 is equal to

2 lim
λ→0

(
1 − e−λ

λ

)
lim
λ→0

(
λ
(
2e−3/2 + θ e−1

)

1 − 3λ+7
λθ

)

(a)
=

28

e
lim
λ→0

(
2e−1/2 + θ)

θ −
(
3 + 7

λ

)
)

(b)
=

56

e
≈ 20.601 (53)

where equalities (a) and (b) hold since, from (19), it follows that limλ→0(λθ) = 14. This implies that Corollary 1

improves the original lower bound on the total variation distance in [3, Theorem 2] by a factor of 32
10.539 ≈ 3.037

in the limit where λ → ∞, and it also improves it by a factor of 32
20.601 ≈ 1.553 if λ → 0 while still having

a closed-form expression for the lower bound in Corollary 1. The only reason for this improvement is related to

the optimal choice of the free parameter θ in (19), versus its sub-optimal choice in the proof of [3, Theorem 2].

This observation motivated us to further improve the lower bound by introducing the two additional parameters

α1, α2 ∈ R in Theorem 2; these parameters give two additional degrees of freedom in the function f in (25)

(according to the proof in Section IV-B, these two parameters are set to be equal to λ for the derivation of the

loosened and simplified bound in Corollary 1). The improvement in the lower bound of Theorem 2 (in comparison

to Corollary 1) is especially significant for low values of λ, see Remark 1 in Section II. Note, however, that no

improvement is obtained for high values of λ (e.g., for λ ≥ 20).
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