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Abstract

We consider the problem of signal estimation (denoisinginfra statistical-mechanical perspective,
in continuation to a recent work on the analysis of mean+sgjearor (MSE) estimation using a direct
relationship between optimum estimation and certain fp@amtfunctions. The paper consists of essentially
two parts. In the first part, using the aforementioned refetiip, we derive single-letter expressions of
the mismatched MSE of a codeword (from a randomly selectelé)c@orrupted by a Gaussian vector
channel. In the second part, we provide several examplesnmustrate phase transitions in the behavior
of the MSE. These examples enable us to understand moreydammplto gather intuition regarding the

roles of the real and the mismatched probability measuresdating these phase transitions.

Index Terms
Minimum mean-square error (MMSE), mismatched MSE, partitiunction, statistical-mechanics,

conditional mean estimation, phase transitions, threshiect.

. INTRODUCTION

The connections and the interplay between information thestatistical physics and signal estimation
have been known for several decades [1-4], and they arebsiillg studied from a variety of aspects,

see, for example [5-17] and many references therein.

*This research was partially supported by The Israeli Science Found#Bb), grant no. 412/12.
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Recently, in [6], the well known I-MMSE relation [8], which leges the mutual information and the
derivative of the minimum mean-square error (MMSE), was &rrtbxplored using a statistical physics
perspective. Specifically, in their analysis, the authors &f gxploit the natural “mapping” between
information theory problems and certain models of manyigarsystems in statistical mechanics (see,
e.g., [18, 19]). One of the main contributions in [6] is therdstration of the usefulness of statistical-
mechanical tools (in particular, utilizing the fact tha¢ tinutual information can be viewed as the partition
function of a certain physical system) in assessing MMSE héaltMMSE relation of [8]. More recently,
Merhav [5] proposed a more flexible method, whose main idehait for the purpose of evaluating the
covariance matrix of the MMSE estimator, one may use otherinition measures, which have the form
of a partition function and hence can be analyzed using ndstlod statistical physics (see, e.g., [18-26]
and many references therein). The main advantage of the ggdmpproach over the I-MMSE relations,
is its full generality: Any joint probability functiorP (x,y), wherex andy designate the channel input
to be estimated and the channel output, respectively, cdrabéled (for example, the channel does not
have to be additive or Gaussian). Moreover, using this amiroany mismatch, both in the source and
the channel, can be considered.

This paper is a further development of [5] in the above desdritiirection. Particularly, in [5, Section
IV. A], the problem of mismatched estimation of a codewordnsmitted over an additive white Gaussian
(AWGN) channel, was considered. It was shown that the micheat MSE exhibits phase transitions at
some rate thresholds, which depend upon the real and theattised parameters of the problem, and
the behavior of the receiver. To wit, the mismatched MSE auterently differently for apessimistic
andoptimisticreceivers, where in the example considered in [5, Sectiod]yessimism literally means
that the estimator assumes that the channel is worse thaaliy iis (in terms of signal-to-noise ratio
(SNR)), and the vice versa for optimism. In this paper, we rektie above described model to a much
more general one; the Gaussian vector channel, which hasndypf applications in communications
and signal processing. It is important to emphasize thatpeoed to [5, 6], it will be seen that: (1) the
mathematical analysis is much more complicated (congisifrsome new concepts), and (2) the notions
of pessimism and optimism described above, also play afiignt role in this model, although their
physical meanings in general are not obvious. Moreoveromtrast to previous work on mismatched
estimation, in this paper, the interesting case of channginaitch is explored, namely, the receiver has
a wrong assumption on the channel. In order to demonstratausiefulness of the theoretical results
derived for the general model, we also provide a few examaéseciated with some specific channel

transfer functions, and draw conclusions and insightsrdiga the threshold effects in the behavior of
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the partition function and the MSE.

As was mentioned earlier, we consider the Gaussian vectorneh model
Y =AX+ N, (1)

where N € R” is a Gaussian white noise vector arddis a deterministicn x n matrix representing

a linear transformation induced by a given linear system. ¥deor X € R™ is chosen uniformly at
random from a codebook (which is itself selected at randomwelh. There are several motivations for
codeword estimation. One example is that of a user that, diitiad to its desired signal, receives also a
relatively strong interference signal, which carries @ilginformation intended to other users, and which
comes from a codebook whose rate exceeds the capacity afrtsstalk channel between the interferer
and our user, so that the user cannot fully decode this ertmte. Nevertheless, our user would like
to estimate the interference as accurately as possiblehéoptirpose of cancellation. Furthermore, we
believe that the tools/concepts developed in this papehdmdling matched and mismatched problems,
can be used in other applications in signal processing andremication. Such examples are denoising
(see for example, [27-29]), mismatched decoding (for exaniB0]), blind deconvolution (for example,
[31, 32]), and many other applications. Note that althoug aforementioned examples are radically
different (in terms of their basic models and systematirgtithey will all suffer from mismatch when
estimating the input signals.

In the special case of matched estimation, it will be shovat the MMSE is asymptotically given by

L2 P qy  if R>R.

27 Jo  1HH(w)P.B
lim mmse X |Y) _ @
e " 0, if R<R.
where
Al 2T
m:/)m@+m@ﬁa@m, 3)
477 0

in which mms€ X | Y') is the estimation error results from estimatiXgbased or’, using the MMSE
estimator,1/4 and P, denote the noise variance and the transmitted power, rdgggcandH (w) is
the frequency response of the linear systdmAs can be seen from the above formula, fox R, the
MMSE essentially vanishes since the correct codeword carelibly decoded, whereas fa&t > R.,
the MMSE is simply the estimation error which results by theskidr filter that would have been applied
had the input been a zero-mean, i.i.d. Gaussian procedsvaiiancel /3. Accordingly, it will be seen

that for R > R. the MMSE estimator is simply the Wiener filter. It is importaatdmphasize that while
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the above result may seem to be a natural generalizationeofe$ults in [5, 6] (whered is taken to
be identity matrix), the analysis (and results) of the misinad case is by far more complicated and
non-trivial. Indeed, it will be seen that in the mismatchese, the MSE is essentially separated into
two cases, each exhibiting a completely different behaWarther physical insights regarding the above
result and other results will be presented later on.

The remaining part of this paper is organized as follows. Inti8edI, we first establish notation
conventions. Then, the model considered is presented angrdbem is formulated. In Section I, the
main results are stated and discussed. In Section IV, we geoaifew examples which illustrate the
theoretical results. In Section V, we discuss the techniguesmethodologies that are utilized in order
to prove the main results, along with a brief background amtreary on the basic relations between
the conditional mean estimator, as well as its error comagamatrix and the aforementioned partition
function, which were derived in [5]. In Section VI, the mairsuéis are proved. Finally, our conclusions

appear in Section VII.

II. NOTATION CONVENTIONS AND PROBLEM FORMULATION
A. Notation Conventions

Throughout this paper, scalar random variables (RV’s) welldenoted by capital letters, their sample
values will be denoted by the respective lower case lettedstheir alphabets will be denoted by the
respective calligraphic letters. A similar conventionhaibply to random vectors and their sample values,
which will be denoted with same symbols in the bold face fdrtus, for example X will denote a
random vecto( X;,..., X,) andx = (x1,...,x,) IS a specific vector value ik, the n-th Cartesian
power of X'. The notations;:{ and X{ wherei and j are integers and < j, will designate segments
(xi,...,x;) and (X;,..., X;), respectively. Probability functions will be denoted gecelty by the
letter P or P’. In particular,P (x,y) is the joint probability mass function (in the discrete Jasethe
joint density (in the continuous case) of the desired chiampt vectorx and the observed channel
output vectory. Accordingly, P (x) will denote the marginal of, P (y | ) will denote the conditional
probability or density ofy given x, induced by the channel, and so on.

The expectation operator of a generic functipe, y) with respect to (w.r.t.) the joint distribution
of X andY, P (x,y), will be denoted byE {f (X,Y)}. Accordingly, E' {f (X,Y)} means that the
expectation is performed w.r.?’ (x,y). The conditional expectation of the same function given that
Y =y, denotedE {f (X,Y) | Y = y} and which is obviously identical t& {f (X,y) | Y =y}, is,

of course, a function ofy. On substitutingY” in this function, this becomes a random variable which
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will be denoted byE {f (X,Y) | Y}. When using vectors and matrices in a linear-algebraic #rm
n-dimensional vectors, like: (and X), will be understood as column vectors, the operatarsand(-)”
will denote vector or matrix transposition and vector or rixatonjugate transposition, respectively, and
so,z” would be a row vector. For two positive sequendes} and {b,}, the notationa,, = b, means
equivalence in the exponential order, i, o %log (an/by) = 0. For two sequencefu,, } and{b,},
the notationss,, ~ b, anda, < b, meanlim,_, (a,/b,) = 1 andlim,_,~ (a,/b,) < 1, respectively.

Finally, the indicator function of an evept will be denoted byl {.A}.

B. Model and Problem Formulation

LetC = {xo,...,x)—1} denote a codebook of size = e"® which is selected at random (and then
revealed to the estimator) in the following manner: Eaghs drawn independently under the uniform
distribution over the surface of the-dimensional hyperesphere, which is centered at the oriyial
whose radius is/nP,. Finally, let X assume a uniform distribution ovér We consider the Gaussian

vector channel model
Y =AX + N, 4)

whereY, X and IN are random vectors iiR", designating the channel output vector, the transmitted
codeword and the noise vector, respectively. It is assuinatdthe components of the noise vectdV,
are i.i.d., zero-mean, Gaussian random variables wittaneel /3, where is a given positive constant
designating the signal-to-noise ratio (SNR) (iBr = 1), or the inverse temperature in the statistical-
mechanical jargon. We further assume tBatand IV are statistically independent. Finally, the channel
matrix, A € R™*", is assumed to be a given deterministic Toeplitz matrix, sehentries are given by the
coefficients of the impulse response of a given linear sys&peacifically, let{#;} denote the generating
sequence (or impulse response) Af so thatA = {am-}i’j = {hi_j}ivj, and letH (w) designate the
frequency response (Fourier transform){af, }.

As was mentioned previously, we analyze the problem of misheal codeword estimation which
is formulated as follows: Consider a mismatched estimatoickvis the conditional mean oX given
Y, based on an incorrect joint distributid? (x, y), whereas the true joint distribution continues to be

P (z,y). Accordingly, themismatched MSEs defined as
mse(X | V)2 E|| X - E'{X | Y}|] (5)

where E' {X | Y} is the conditional expectation w.r.t. the mismatched mesa#l. In this paper, the

following mismatch mechanism is assumed: The input measuraiched, i.e.P (x) = P’ () (namely,
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the mismatched estimator knows the true code), both comditimeasures (“channels? (- | ) and
P’ (- | ) are Gaussian, but are associated with different channelamsit More precisely, while the true
channel matrix (undeP) is A, the assumed channel matrix (unde? is A’, another Toeplitz matrix,
generated by the impulse respor{gg }, whose frequency responseHE (w). It should be pointed out,
however, that the analysis in this paper can be easily choti¢ also for the case of mismatch in the input
distribution, or mismatch in the noise distribution, whichs been already considered in [5]. Using the
theoretical tools derived in [5], the mismatched MSE (andNiMSE as a special case) will be derived
for the model described above.

A very important function, which will be pivotal to our deation of both the mismatched estimator

and the MSE, is theartition function which is defined as follows.

Definition 1 (Partition Function)Let A = (A1, ..., \,)” be a column vector of real-valued parameters.
The partition function w.r.t. the joint distributio® (x, y), denoted byZ (y, A), is defined as

Z (y,A) = Z exp {/\Ta:} P (x,y). (6)

Texn
In the above definition, it is assumed that the sum (or integrdhe continuous case) converges uniformly

at least in some neighborhood ®f= 0 *. Accordingly, under the above described model, the misheatc

partition function is given by

7'y N EY exp{ATz} P (2,) )
el
= @r/B) "y e M exp [—5 ly — Az’ /2 + )\Ta:] . 8)
xreC

Remark 1In the above definition, the role of will be understood later on. In a nutshell, the idea [5]
is that the gradient ofn Z’ (y, A) w.r.t. A, computed atA\ = 0, simply gives the mismatched MSE
estimator,E’ { X | y}, and the expectation of the HessianlofZ’ (y, A) w.r.t. A, computed at\ = 0,
gives the MSE. Nevertheless, in the next section, where wespréle main results, the dependency of

the different quantities irk\ will not be apparent, as they will already be computed\at 0.

[11. M AIN RESULTS AND DISCUSSION

In this section, our main results are presented and disdu$be proofs of these results are provided in

Section VI. The asymptotic MMSE, which is obtained as a speci¢ ofithe mismatched cask & P’),

In case that this assumption does not hold, one can instead, paranesttizecomponend; of A as a purely imaginary

number\; = jw; wherei = \/—1, similarly to the definition of the characteristics function.
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is given in the following theorem.

Theorem 1 (Asymptotic MMSEJonsider the model defined in Subsection 1I-B, and assume Higat t

sequencg hy }, is square summable. Then, the asymptotic MMSE is given by

1 27 P,

= ——z o —dw R>R

XY 2r JO 1+ H(W)|*P.B8 ¢
lim MMSAX | Y) 9)

n—00 n 07 R< RC

where
A 1 27 5
R2 [ m (1 +H W) Pxﬁ) dw. (10)
477' 0

From the above result, it can be seen thatRor R. the MMSE is simply the estimation error which
results by the Wiener filter that would have been applied hadrthut been a zero-mean, i.i.d. Gaussian
process, with variancé/j3. Accordingly, it is also shown in Section VI that the MMSE esitor is
exactly the Wiener filter.

In the next theorem, we present the mismatched MSE. In comtréise MMSE, unfortunately, the MSE
does not lend itself to a simple closed-form expression. Asbg seen in Section VI, this complexity
stems from the complicated dependence of the partitiontiimamn A. Nevertheless, despite of the
following non-trivial expressions, it should be emphaditeat the obtained MSE expression has a single-
letter formula, and thus, practically, it can be easily akdted at least numerically. Let us define the

following auxiliary variables

o VH @) 8 (24 PoBIH@)?) + 70

Fa (w 5 (11)
(1 @) 8+10)
where~y is chosen such thaf,™ P, (w) dw = 27 P,. Next define
B2 (IH @) +70) — 2 (I (@) B8 (2+ PoBH @)[2) + ) .
(18 @) +0)
262 H (W)’ ([H (W) + 1) B (w
e PP (HEP+5)BE -
\/1 + 482 |H! (w)|* P, (w) <\H (W) + %>
9Bgn I [m -C (w)} dw "

f027r B (w) dw
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and

o__ PHT) |y 2 (1B (@) +0) Pa () + 267 [ @) (@) +3)

(|H’ (w)[? + %)2 \/1 + 452 |H! (w)]? Pa (w) (IH (@)* + %)

(15)

Let €0, 1,0 andap o be the solution of the following set of three simultaneousatipns:

1 27 265 0
R+— [ m e dw = 0 (16)
A Jo P, H (w)|” 2,0 + 2Pra1,0€5,0
1 2 4041706(2)78 + |H (W)]* oz [<|H (W)[> Py + %) ago + 26570}
o dw = P, a7
27T 0

2
(I @) azo + 201,0600)

1 27 dad el (1 + P8 H (w)‘z) +4[H ()7 a10€2 8 + 2 [H (w)|* azpes,08

27 Jo

. dw=1. (18)
2
2ﬁ6570 (’H/ (w)| 2.0 + 2a170€570)

Then, we define

K () 2 286, (B (@)]* 020 + 2010600 (19)

T (w) = 403 g2y (14 PoBH (@)) + 48 [H (@) 1,06 + 2 [H' (@) az 08,0 (20)

D () 2 |H' (@)|* ag,0 + 2010640 (21)

R (@) = dasoe + [H' (@) azo [az0 (JH @) P +26.0)| (22)

Q (@) = eso (Pe [H (@)[ a0 + 2Pras g5 (23)

vel / 7 P [H ()" 020 duw (24)
2m Jo

€5,0 (P:v = (w)|? a0+ 2an1,068,0>

11 P |H ((,u)|2 Ty + 2Pp€s 011

1>

F=_— dw 25
V2r Jo P, ’H/ (w)]Q Qg0+ 2Pm041706570 (25)
a1 g2 [Ban0eg (14 PBIH()1) + 48 [H (@),
Y= o ; K (w)
8T (w) ﬁfg,o <‘H/ (W)‘2 Qo+ 2041,o€s,o> q o6
- K2 (w) w (26)
A1 2 2K (W) Beso [H (W)[* = 4T (w) Beso (|H’ (w)[? a0 + 2041,065,0) |H' (W)|2d 7
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803 0650 (1+ PoBIH (@)[?) + 8Beso [H ()P a1,0 + 28020 [H (w)]*
K(w)

Al [
73—%/0

2
T (UJ) |:2B <|H’ (w)|2 Qg0+ 20&1,06370) + 8563,()&1,0 <|H’ (w)|2 Qg0+ 20&1’065,0>:|

- d
K? (w) “

A —4Bar ges g — Bad o [H (W)

T (w) = :
K? (w)
A1 [?74D (w) 6370 — 4R (w) €S’Od
= o D3 (w) “
B @) [(H @) P+ §) azo + 260

Al /27r
2= 27r

D? (w)

[ (@) azo (IH (@) Py + 1) D () — 2R () [H (@)

d
+ D3 (w) w
A1 778D (w)aypeso+ 2D (w) [H (w)]? ago — 4R (w) a1 0
N3 = 5= 7 ’ —dw
27 Jo D3 (w)
2
A Qg
A = d
“ D)
_ 12773 — 7273
Y2m — M2V
_ mys — 71n3
Y12 — M2
1ty T ) = A (@)
1(w) =
Y2 — 1271
3 - mY(w) = 1A (w)
2 (w) =
Y172 — M17Y2
27 2€2 P, 27 2e4 o Ppy|H' (w
J( )éi w) Jy Q(w) dw +J2 (W) Jg wd
YT o V(- F)
—_ A -
B (w) = -2J (w)H™ (w).
Finally, let

A 1 2W.— N 1 27 _ 5 5 1
E, =P, —Re = By (w)"H" (w) Ppdw +% ; 125 (W) | H (w)] px+B dw,

and

™

o 27
5, é P, Re (1/0 =, (w)* H* () dew> + A IS5 (w)|2 <|H (w)|2Px + ;) dw,
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and we define the following critical rates

2

Al 2
RS [ (Pﬂo + P8 [H (w)| )dw (42)
1 1 27
R, -4 BPJ;/ Re (H" (w) H (w)) dw
2 27T 0
L H @) B (2+ 8 H @) Pr) +70
, 2
+E ’H (W)| B 5 2 Tz
0 (1 (@) 8+ 0)
| o [H @) (34 2P H (@)2) + 70 )
A Jo (18" (@)P B+ )
R.2R. + Ry (44)
1 [ 2¢
R,2- — ln( — )dw (45)
4r Jo Py [H ()2 s + 2Pyar¢
wherea; anda, solve the set of two simultaneous equations
L om 46 @+ [H (W) ds [(\H )2 Py + %) dg + 24
2/ 5 dw = P, (46)
o (1B @) s + 264¢)
| gondade (1 + P,GH (w)|2) FAH (w))2 @828 + 2 |H (w)|* G288
— dw = 1. (47)
2
27 Jo 28¢ (\H’ (W) &2 + 25@)
and
~—1+Pgﬁ/2ﬂ]H’()—H()2d (48)
€ = QB 47‘( o w w w.

We are now in a position to state our main theorem.

Theorem 2 (Mismatched MSE)onsider the model defined in Subsection 1I-B, and assume keat t
sequence hy },. is square summable. The (asymptotic) mismatched MSE is gisdallaws:

a) ForR; > 0

0, R<R,
i, MSEX YY) . (49)

n—00 n
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b) ForR; <0

0, R <R,
. mseX|Y
hﬁm¥= E,, R, < R<R.- (50)
n—o00 n

E,, R>R.

In the jargon of statistical mechanics of spin arrays (seeef@mple [33, Ch. 6]), the ranges of
ratesR < R. for R > 0, R < R, for R; < 0, and R < R. in the matched case, correspond to
the ordered phase (or ferromagnetic phase) in which thdtiparfunction is dominated by the correct
codeword (and hence so is the posterior). Accordingly, ia tange the MSE asymptotically vanishes,
which literally means reliable communication. The intermésl range,R, < R < R., which appears
only in the mismatched case and only #§ < 0, is analogous to the glassy phase (or “frozen” phase), in
which the partition function is dominated by a sub-expor@mumber of wrong codewords. Intuitively,
in this range, we may have the illusion that there is relétiVitle uncertainty about the transmitted
codeword, but this is wrong due to the mismatch (as the magpat of the mismatched posterior
belongs to incorrect codewords). The remaining range qooreds to the paramagnetic phase, in which
the partition function is dominated by an exponential numifewrong codewords. In Section IV, we
will link between each one of the two cas&y > 0 and R; < 0, to “pessimistic” and “optimistic”
behaviors of the receiver, which were already mentionedénlbtroduction.

It is tempting to think that there should not be a range ofsébe which the MSE (MMSE) vanishes,
as we deal with an estimation problem rather than a decodiviglgm. Nonetheless, since codewords are
being estimated, and there are a finite number of them, for tayugh rates (up to some critical rate) the
posterior is dominated by the correct codeword, and thumpsatically, the estimation can be regarded
as a maximum a posteriori probability (MAP) estimation, andlee MSE vanishes. In the same breath,
note that this is not the case if mismatch in the input distidn is considered. For example, if the
receiver's assumption on the transmitted energy is wrdmgn ho matter how low the rate is, there will
always be an inherent error which stems from the fallaciowgsaging over a hypersphere with wrong
radius (wrong codebook). Precisely, in this case, the estneodeword will differ from the real one by
an inevitable scaling of/P./P,, where P! is the mismatched power.

Finally, it is important to emphasize that the mismatched MStr&ator and the MMSE estimator can
also be obtained as a byproduct of the analysis. Howevere shrey will add only little further insights

into the problem, we do not present them here. The interestder can find their explicit expressions
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in Section VI.

Remark 2Although we have assumed that the transmitted codeword flasspectrum, the analysis can
readily be extended to any input spectral densifyw). In Section VI, we discuss the technical issues
that should be considered in order to modify the analysisald for this generalization. As a concrete

simple example, in the case of MMSE estimation, one obtains

1 2”%(1@ R >R,

27 JO THHW)%S, ()8 %> ¢
fm mmse(X | Y) _ (51)

n—oo n 0’ RSRC

where
27
RE [ (14 [H @) S, () B) de (52)
47 0

Nevertheless, our assumption on flat input spectrum is red®mhen there is uncertainty at the encoder
concerning the frequency response of the channel, as theneod‘preferred” frequencies. Finally, note
that as an application of the above issue, one may wish tddemthe minimization of the MMSE w.r.t.

the input spectral density.

IV. EXAMPLES

In this section, we provide a few examples in order to illatgrthe theoretical results presented in the
previous section. In particular, we present and exploreptiese diagrams and the MSE’s as functions
of the rate and some parameters of the mismatched channemaimegoal in these examples is further

understanding of the role of the true and the mismatchedghitity measures in creating phase transitions.

Example 1We start with a simple example where bdth(w) and H' (w) are low-pass filters (LPFs)

that differ in their cutoff frequencies and gains

1, |w[<3F
H(w) = ; (53)
0, else
and
X5 ’w‘ < we
H (w) = (54)
0, else

for somey > 0 and0 < w, < . In the numerical calculations, we choge= P, = 1. Figures 1 and

2 show, respectively, the phase diagrams and the MSE’s asdosaif R andw,, for various values of
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the gainy. The first obvious observation is that the maximum range ofsrtewhich the ferromagnetic
phase dominates the partition function occurssat 7/2 for each gain, as expected. Next, consider the
case ofy = 1, which means that the gain is matched. In this case, it isrebdehat forw. < 7/2, there

are two phases: the ferromagnetic phase and the paranaghete, and hence, based on Theorem 2,
Ry > 0. On the other hand, faw, > 7/2, the glassy phase begins to play a role, and tRys< 0.
Intuitively speaking, the case aof. < 7/2 corresponds to a pessimistic assumption of the receiver -
lower bandwidth which translates to lower effective SNR, l&/hi. > 7/2 corresponds to an optimistic
assumption - higher effective SNR. These behaviors are ¢ensiwith the results obtained in [5], where
the case of mismatch in the noise variance was considereite (@dsuming thatd = A’ is the identity

matrix).

In [5], Rq > 0 simply translates t@ > 3’ (the mismatched noise variance is larger than the actud) one
namely, the estimator is pessimistic, while in the case efréversed inequality it is overly optimistic.
Accordingly, in the pessimistic case, the partition fuoctiexhibits a single phase transition, but at the
price of a lower critical rate (compared to the matched casbjch means that the range of rates for
which reliable communication is possible is smaller. In tiptimistic case, however, there is no loss in
the critical rate, but there is a price of an additional phtraasition. Now, fory # 1, the notions of
pessimism and optimism are not a priori obvious. For exaniplean be seen that foy < 1, and for a
large enough cutoff frequeney,, the mismatched estimator can be regarded as an optimisticAlso,
for x > 1, apparently, the “price” of being too optimistic in the gamsults in a dominant range of
the glassy phase. Finally, note that the fact that the rangate$ for which the ferromagnetic region
dominates the partition function (namely, vanishing MSE)asréasing with the excess of the optimism
(e.g., fory = 1 and increasing of the cutoff frequency) is reasonabliedeed, the uncertainty in the
frequency domain, causes the receiver to assume that tlesvoads are distributed in some subspace
of the n-dimensional hypersphere. The size of this subspace is, wkepincreasing as the receiver’s
assumption is more optimistic. Accordingly, the probapibf error also increases, and thus the threshold

rate for reliable communication decreases.

%In [5], in contrast to our case, fg8 < 8’ (Rg < 0), the critical rateR. is fixed for any mismatched noise variance value,

namely, it is independent of the optimistic behavior of the receiver.
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X=0.75

Ferromagnetic -
Glassy -

Paramagnetic

Fig. 1. Example 1: Phase diagram in the planeRof/s. w. with various gain values. The arrows are directed towards the

boundaries of the various phase transitions.

Example 2Let H (w) be a multiband filter given by

Lot Fl<gorfwk i<
H(w) = : (55)

0, else

and let the mismatched filter be given by a band-pass filter

17 wr, S ‘w‘ S WR
H' (w) = , (56)

0, else

with constant bandwidthyr — wy, = /8, i.e., smaller than the real one. In the numerical calonest;
we again choses = P, = 1. Figures 3 and 4 show, respectively, the phase diagram and/18te

as functions ofR and wy,. First, observe that fowr < w/4, which means thaH’ (w) and H (w)
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X =0.75
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R
x=1.5
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Fig. 2. Example 1: Mismatched MSE as a functionfofand w. with various gain values.

are equal to one over non intersecting frequency rangeeg ikeno ferromagnetic phase, as expected.
Accordingly, forwr > m/4, the ferromagnetic phase begins to play a role, and it carebe that for
m/4+ /8 < wr < w/2, which means maximal intersection between the two filters,rtéinge of rates
for which the ferromagnetic phase dominates the partitiorction is maximal. Since the matched filter
has two bands, obviously, the same behavior appears albe isecond band. Thus, in this example, we
actually obtain two disjoint glassy (and ferromagnetigjioas, which correspond to the two bands of
the matched filter. Also, as shown in Fig. 4, in the ranges wherfemomagnetic phase exists, the MSE
within the paramagnetic phase is larger than the MSE withérréigions where ferromagnetic phase does

exists, as one would expect.

Remark 3Example 2 actually demonstrates that there can be arbjtraghy phase transitions. Generally
speaking, for a matched multiband filter wifi disjoint bands, and a mismatched bandpass filter (with

small enough bandwidth), there ahé disjoint glassy and ferromagnetic phases.
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Ferromagnetic -
0, =314 | Glassy -
Paramagnetic I:I

Fig. 3. Example 2: Phase diagram in the planeRofs. wr..

Example 3In this example, we consider more realistic filters. Ee{z) denote a Type-Il FIR filter given
by (in the Z domain)

H(z) = (1 — 6j0'8”z_1)2 (1 — e_jo‘&rz_l)2 , (57)

and let the mismatched filter be given is
H () = (1 - Z(]Z_l) (1 - z(’)‘z_l) (1 - ejo'&rz_l) (1 - e_j0'8”z_1) (58)

wherez, is a mismatched zero. In the numerical calculations, weelagsing = P, = 1. Fig. 5 shows
the amplitude response of the real and the mismatched filbergafious angular frequencies defined as
10) 2 arg (z0). Figures 6 and 7 show, respectively, the phase diagram and®teas functions of? and

¢. In this example, the roles of the differences between the and mismatched filters, are emphasized.
Starting with the obvious, observe that the maximal rangeatdsr for which the ferromagnetic region
dominates the partition function occurs@t= 0.8, as expected. Less trivially, for angular frequencies
within the range[0.27, 0.257], the ferromagnetic region is negligible. Looking at Fig. 5¢din be seen

that within this range of angular frequencies, the true ddnismatched filters are “almost orthogonal”
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10.6

10.5

10.4

x 10

Fig. 4. Example 2: Mismatched MSE as a function®fandwry,.

in the L, sense, namely, their inner product is almost zero. Accgigirusing the methods in Section
VI, it can be easily shown that for orthogonal filters we havattR;, = 0, namely, no ferromagnetic
region exists (note that in this examplg, is never equal to zero since the filters are never orthogonal).
Finally, for angular frequencies within the ranffe 0.27], the ferromagnetic region returns to play a
role. Indeed, Fig. 5 shows that, within this range, the matded the mismatched filters “share” more
similarities (in the sense of larger inner product).
Example 4Let H (z) be given by
H(z) =z — 2cos (0.87) + 2z~ *

— 5. (1 o ejO.SﬂZfl) (1 o eij,STerl) (59)

and let the mismatched filter be given as
H (2) =H(z)z¢ (60)

whered € Z is a mismatched delay. As before, in the numerical calanati we choses = P, = 1.
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4.5

w
5

Filter Amplitude
N
N ol w

=
Ul

Frequency

Fig. 5. Example 3: Amplitude of the real filter and mismatch filters for savehases.

| Ferromagnetic -
| Glassy -

| Paramagnetic

Fig. 6. Example 3: Phase diagram in the plangRofs. ¢.
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Fig. 7. Example 3: Mismatched MSE as a functionf®fand ¢.

Figures 8 and 9 show, respectively, the phase diagram and 8te &4 functions ofR and d. First, we

see thatR,. is constant, approximately equal @29, which makes sense sinde. is given by

R, = i 0% In [Px (wo + [H ()] 5)] dw, (61)

and thus independent of the delay (note that according tp(Liks also independent of the delay). Next,
let us take a look ak,; given in (45)

1 1 2
R, =3 + 5Pz%/0 Re (H™ (w) H (w)) dw

] (@)1* 8 (2+ BH @) P) + 10 )
(1 @) 5+ 10
. i/mr H (W) 8 (3+2Px6|H(w)12) +%
iy (B@Ps+0)

In contrast toR., R, does depend on the delay via the second term, which in thecoastdered takes

L Zﬂ\H’(w)fﬂ
47T 0

T

(62)

the formRe (H* (w) H (w)) = [H (w)|? cos (wd). Actually, in the settings considered, it is easy to show

thaty, = 1/P, = 1, thus obtaining

27

=5 | Re(H"(w)HW) dw — — Qﬂ\H’ (w)]? dw (63)
T Jo

R
d 27T0
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21 2m
_ 2i I (w0)? cos (wd) dew — 21/ H ()] dw (64)
T Jo T Jo
27
= 2i |H’ ((,u)‘2 [cos (wd) — 1] dw < 0. (65)
T Jo

Therefore, we obtain thak,; is hon-positive, and hence for all (except the trivial case ap = 0) there

is a glassy phase. This result is consistent with Figures 8 ado®e importantly, it can be observed
that the MSE vanishes (or equivalently, the ferromagnetasphdominates the partition function) only
in cased = 0, namely, zero delay. This is a reasonable result, as a delape@fsample (linear phase)
is enough to cause a serious degradation in the MSE. Actualyarly fixed rate the error is constant,
independently of the delay, as one would expect. Finallye tloat the MSE is larger in the glassy region
than in the paramagnetic regibrThis is also a reasonable result: As the rate increases, ek more

codewords are possible, since the MSE estimator is actualgighted average (w.r.t. the posterior) over
the codewords, the MSE can only decrease (each codeword itcottebook contributes approximately
the same estimation error). Accordingly, for small codédsoflow rates) the MSE is larger, since the

averaging is performed over “fewer” codewords.

V. PROOFOUTLINE AND TOOLS
A. Proof Outline

In this section, before getting deep into the proof of TheoBemve discuss the techniques and the main
steps which will be used in Section VI. Generally speaking, ¢kialuation of the mismatched partition

function, Z’ (y, A), for a typicaly, essentially boils down to the evaluation of the expon¢itider of

1 AT X
Pr{QHy—A’XlHQ— - 1W} (66)

for every value ofe in some range. In case that’ = I [5, 6], this probability can be calculated
fairly easily. Indeed, in this case, the above probabilityequivalent to calculating the probability that a
randomly chosen vectaK on then-dimensional hypersphere shell would have an empiricaletation
coefficientp (induced by the constrairity — || /2 — ATx /8 ~ ne) with a given vectory’ = y + A/j.
Geometrically, this probability is actually the probatyilihat X falls within a cone of half anglerccos (p)

aroundy’ (for more details, see [34, 35]). However, in our case, bseai the “interactions” between

3Note that the MSE, in contrast to the MMSE, must not be monotonically istrgas a function of the rate.

“In the considered settings, the posterior, is proportionalxtm{ —Blly — Az’ /2}, and after expansion of the norm, the
exponent includes an “external-field term,” proportionaktd A’x, and a “pairwise spin-spin interaction term,” proportional to
[ENE
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different components oX, which are induced by’, the methods in the aforementioned papers are not
directly applicable. In our case, the purpose is to estirtteteprobability that a randomly chosen vector
X on then-dimensional hypersphere shell would fall within the istmstion of this hypersphere and the
n-dimensional hyperellipsoid (which is induced by the evien{66)). All our attempts to approach this
calculation using the “geometric” route have failed. Thus, will use a different route.

The main idea in our approach is, to “eliminate” the intex@tsi between the different components
of X, by passing to the frequency domain. Sindeis a Toeplitz matrix, according to Sz&g theorem
[36-39], it is asymptotically diagonalized by the discréteurier transform (DFT) matrix (ifA’ is a
circulant matrix then the DFT matrix exactly diagonalizgs Tthus, multiplying both sides of (4) by the

DFT matrix, F = {e=72mmi/n/ \/ﬁ}nm_llzo we “asymptotically® have that

Y=XX+N (67)

where S 2 diag (01,...,0,), X =2 FIX, ¥ 2 FPY and N 2 FIN. Accordingly, we evaluate
(66), using

pr{; lo-=x *ﬁX N } (68)

whereX = FTX. Now, in order to evaluate (68), it is desirable to estimate tolumé of the following

set: For a given pair of vectors, y) andé > 0, we define the conditional-type of  giveny as

g - =z|> N'@
2 B

This set is regarded as a conditional type of (wrong) codesv@rdjiven ¢ as it contains all vectors

— ne

Ta(i\ﬂ)é{vaR”r 1312 - np2| <5,

g&}. (69)

which, within §, have the same energy related to the partition functionABgr calculating the volume
of (69), the probability in (68) can then be easily estimatddwever, as was previously mentioned,
calculating the volume of such a set is a tedious task whenoapping it directly. We will use instead
the following relaxation. We start with partitioning themponents ofz into £ bins each of dimension
ng, such thatc = n/n,, and we approximate the eigenvalues, which are the diagdealents of¥, to

be piecewise constant over these bins. This partition lifenaeans that we transform the original model

SRigorously, in the proof, we first assume that is a circulant matrix, and thus (67) is exact for amyThen, when taking
the limit n — oo, using Sze@'s theorem, this assumption will be dropped. Finally, note that the aggmgf the square
summability of the generating sequenge, } in the theorems presented earlier, is made in order to usedSzthgorem.

®Recall that the volume of a set C R" is defined as Vo[.A} = [, da.
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in (67) into k subchannels, each having the form
Yvi’,«:JTXi—‘rNZ’, i:('r—l)nb—i—l,...,r'nb, (70)

for r = 1,..., k. With this partitioning in mind, at the final stage of the amsddy(after taking the limit
n — 00), we take the limitk — oo. This partitioning will enable to calculate the desired voki Then,
using large deviations considerations, the mismatchetitiparfunction will be obtained. Finally, in order

to derive the MSE, we will use the tools of [5], which are brieflegented in the following subsection.

B. Optimum Estimation Relations - Background and Summary

1) Matched Casellet X = (Xy,...,X,) andY = (Y3,...,Y,,) be two random vectors, jointly
distributed according to a given probability functidh(z,y). The conditional mean estimator ot
based onY, i.e., X = E{X | Y} is well known to minimize the MSEE (XZ- —Xi)Q for all i =
1,...,n. Accordingly, the MMSE in estimating; equals toE {(Xi — E{X; | Y})Q}, i.e., the expected
conditional variance ofX; given Y. More generally, the MMSE error covariance matrix is @arx n
matrix whose(i, j)-th element is given byE {(X; — E{X; | Y}) (X, — E{X; | Y})}. This matrix
can be represented as the expectation (Wf}.of the conditional covariance matrix oX given Y,
henceforth denoted by cdX | Y'). In particular, using the orthogonality principle, the MMSiror

covariance matrix is given by
E{cov(X |Y)}=E{XX"} -E{E{X |Y}E{X"|Y}}. (71)
Based on Definition 1, the following relations readily follow

E{X|Y =y} =Vog(A)InZ(y,A) (72)

E{cov(X |Y)}=E{VilnZ (Y ,\)} (73)

where for a generic functiog, we useVog (A) andVig (A) to designateVxg (A)|y_, and V3 g () ‘)\:0’
respectively, and/, and V%\ denote the gradient and Hessian operators w.tespectively. Finally, it

is easy to verify that the following relation holds
E{cov(X |Y)}=E{XXT} - E {[vo InZ (Y, \)][VolnZ (Y, )\)]T} , (74)
and upon taking the trace of the above equation one obtains

mmse(X | Y) 2 zn:E {(Xi - E{X;| Y})z}
i—1
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}] | @
A=0

Further relations between information measures and estimguantities can be found in [5, 6].

_ zn: [E (x2) - E{ [‘%lzag,)\)r

=1

2) Mismatched CaseConsider a mismatched estimator which is the conditionadrmef X given
Y, based on an incorrect joint distributid? (x, y), whereas the true joint distribution continues to be
P (x,y). Then, the following relation holds
A / / T
Ef{co/ (X |YV)} SE{(X-F{X|Y}) (X-E{X|Y})}
=E{XX"} -Ep{E{X|Y}E {X"T|Y}}
~E{E{X|Y}E{X"|Y}}
+E{E{X|Y}E {X"|Y}}, (76)

2

where coV(X |Y) = (X - E'{X |Y})(X — E'{X | Y})". Upon taking the trace of (76), one

obtains

mse(X | Y) £ ZH:E{(XZ — E'{X; | Y})Q}

n !
:Z E{X?}—ZE{aan(Y’)\)‘ .aan(Y,}\)‘ }
i— 8)\1 AZO 8)\1 )\:0

+E{ [aan' (Y,A)r AZOH | 7)

o\
VI. PROOF OFTHEOREM 2

For a giveny, the mismatched partition function is given’by

Z'(y N =Y e e |<ply - Az|’ 2+ N 2| (78)
xeC
= e "Fexp [—ﬁ Hy — A’on2 /24 /\cho] (79)
+ Y e |[-Blly- Az’ /2+ATa] (80)
TeC\{To}
£ ZL(y, N + 2L (y, N) (81)

"Note that there should be a normalization factor®f/3)~"/>

in (78). Nonetheless, since this constant is independent of
A, it has no effect on the MSE (which is obtained by the gradiedhd’ (y, A) w.r.t. A). Hence, for simplicity of notation, it

is omitted.
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where without loss of generality, the transmitted codewsrcdassumed to be:y, and Z/ (y,A) and
Z! (y,A) are the partial partition functions induced by the correaeword and the wrong codewords,
respectively. By the law of large numbers (LLN)y — A'zo|” ~ ||(A — A’) zo||* +n/8, and therefore,
with high probability

Z (g, A) = e exp {_g [H(A ~ A |’ + g] +A%O} 62)
:exp{ <R+2 5liA 2:')w0\|>+)\T;po}. 3)

More precisely, for any > 0,

2n
/
gexp{ <R+ L Bl A') ol >+>\T:no} (84)
2 2n
with probability tending to one as — oo. As for Z/ (y, A), we have
Z! (y,A) = e "F / N (e) e Pede (85)
R
where
A ly — Alz;|? )\Ta;i B
Z ]l{a:z 5 3 AN nep, (86)

to wit, \V (¢) is the number of codewordge;} in C\ {zo} for which ||y — A'z;||* /2 — AT@;/8 ~ ne,
namely, betweene andn (e + de). We proceed in two steps: First, the typical exponential oodé\ (e)
is computed, and then (85) is calculated.

Step 1 Giveny, N (e) is a sum of(M — 1) i.i.d. Bernoulli random variables and therefore, its expdc

value is given by

Ty
BN (9 ZP{ — ABX“”} >
/ 2 T
= (enR—l).Pr{”yéxln — A B)(l %ne}. (88)

Assuming thatA’ is a circulant matri&, it is known that the discrete Fourier transform (DFT) matrix

diagonalizes it [36-39], and thus multiplying both sidesenfuation (4) by the DFT matrixF'’, one

8Recall that this assumption is only an intermediate step in the analysis, andewditbpped later on. Alternatively, instead of
this assumption, one could use the spectral decomposition theorem, tnfisdhonormal basis which diagonalizes the matrix

A’, and project (4) on this basis, to obtain the form of (89).
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obtains
Y=YX+N (89)

where S’ 2 diag (o},...,0%), X 2 FIX, Y 2 FEY and N 2 FEN. Since a unitary operator
is applied onX, then X is still uniformly drawn on then-hyperesphere with radiugnP, (as in the
original setting). SimilarlyN' has the same statistics as before, namely, its components.eér complex
Gaussian random variables with zero mean and varidf\@eFor simplicity of notation, in the following,
the “tilde” sign over the various variables will be omittéeeping the original notation. Therefore, instead

of evaluating (88), the exponential order of

_yx* AN'Xx
Pr{”y 5 il )\ﬁ I%ne}, (90)

will be evaluated, wherd ' X — X°. For a given pair of vectorgr, y) andd > 0, define the conditional

o-type of x giveny as

V(2 T

Ts (x| y) = {:c e R": ‘|]1:H2 —an‘ <4, ly 2Ea:|| — )‘Bm —nel < (5}. (91)
The following lemma is proved in Appendix A.
Lemma lLet k¥ and n, be natural numbers such thdt = n/n,'°. Define the setsG s 2
{6-i:91=0,1,...,[kP,;/d]} and Gy 5 2 {6-i:i=—-1k/0],...,—1,0,1,...,[k/d]}. Also, let

~ N k
PRy m=1
where X designates a Cartesian product, and
4 A ny mny 2
B, (P, pm) = { & € R™ ‘ m(m—l)m-&-lH —npPm| <0,

Re { Z ngixi} — NpPm, Pym]amm

€L,

<9 } (93)

®Note thatF"” XA may be a complex quantity (in contrast X). This fact will be taken into account later on.

owithout loss of generality, it is assumed that (bin length) is a divisor ofr, and that thek various bins have equal sizes.
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whereZ,, 2 [(m — V) + Lommy), 5i 2 yf + 2, Pyn = 2 Y sr 104 Pon 2 12 Yoz ol
and?!
5O k 1o
P :{Pegm: k;Pi—Px Sé} (94)
PR k 1< ~ - .
Rp = {P €025 |3 ;Pi\/ P, iPyi—p| < 5} (95)

whereG} ; and G} ;5 are thekth Cartesian power off; 5 and g, 5, respectively, and

N ' |otxi|* 4+ Py — 2¢

; (96)

e
where P, 2 LS |wl*. Then,
T (@ y) CTs(x|y) CTs (x| y). (97)

Next, the eigenvaluego;},, are approximated to be piecewise constant over the vabss At the
final stage of the analysis (after taking the limit— oo), we will take the limitk — oo so that this
approximation becomes superfluous. Accordingly, underatppxoximation,15(,7m = \oﬁn|2 P,,, and (with

abuse of notation)

TH=ly= | >< B, (P, pm) (98)
PR m=1
where now
2
%6( mapm)é{mER"b' mblnﬁ‘lH —anm‘S(S?
Re {Jvlﬂ Z ylxl} — ppm) Pyan |07 Pr| < 5} (99)
=
and
RS, 2 {pegg’(gz | pir/ By — <5} (100)
where
1 k 712
LSk o2 P+ P, —2
ﬁ é k Zl:l |0-z’ + Yy 6' (101)

2

The purpose of the subscript symbol R is to emphasize the dependence of itBn More precisely, these sets should
be understood as joint-power-correlation allocations, which are “livinghe intersectior?® N "R%. Accordingly, P,, and p..,

are the power and correlation constraints within thth bin, respectively.
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In the following, the volume off5 (x | y) is evaluated. On the one hand, using Lemma 1, one obtains

that
Vol {T; (@ | )} < Vol {7 (= | y) | (102)
k
< ) Vol{>< B, (Pm,pm)} (103)
P°NRS m=1
k
< Njj - max VOI{ X A (Pm,pm)} (104)
PNRS m=1

where the second inequality follows for the union bound, ang is a constant depending dnand o

(but not onn). This constant can be roughly bounded by

Nox < |P°|[RS| < <kpx(5+2‘5>k (2 k?) . (105)
On the other hand,
VoI {T; (| )} > Vol {7, (| ) } (106)
> Pﬁ%wvm { m><1 B (P, pm)}. (107)
The following lemma is proved in Appendix B.
Lemma 2For everym =1,...,k andv > 0,
(1—-v)exp {% In (71'6193’“)} < Vol {%’6 (P, pm)} < exp {% In (Weﬁg)} : (108)
where
93 = Pu+ 06— Py (pm — 0)° (109)
and
03 _ = Pp— 06— P (pm +9)°. (110)
In particular,
lim lim_ ;b 0ol {2, (P, pm) } = %m (rePy (1—p2)). (111)

Now,

Vol { S B (Pous pm } H Vol {5, (P ) } (112)

June 1, 2013 DRAFT



29

Whence, using Lemma 2, (112), (104) and (107), one obtairts tha

k
Vol > n/2 0N (02 113
(Tolely)h 2 max,  (re) exp{ 5 mZ::l n (W) (113)
and
k
n/2 np
Vol {75 (x| y)} < Nsp, - Prér%a%g: (re)™? exp {2 mzjlln (79§’+)} . (114)
Thus,
k
| 1 h )
lim lim I Vol {7; (2 | y)} = 5 1In (me) + max {2 mz::lln (P (1 pm))} (115)
where
= PeRk:lzk:Pi—Pz (116)
k =1
k 1 k ~ ~
Rp={peR": > |oi| pi/PyilPi = p (117)
=1
Finally, the probability in (90), is given by
e x, 2 AT Vol { T
i Lpe = EXT NX L i L (YO (@ 0} . (118)
n—o0 N 2 15} h—06—0n—00 1, Vol {Tn(;}

in which 7.5 is the set ofn-dimensionake-complex vectors with norm/nP;.

Lemma 3The volume of7"; is given by

| 1
lim lim —1n Vol {T2s} = g In(mePy). (119)
Proof: Readily follows by using almost the same proof of Lemma 2 (sppefdix B). ]
Thus, applying Lemma 3 on (118), one obtafs
ly-=X.° ATx: | - ~
Pr{ 5 5~ ne p = exp {nF (e)} (120)
with probability tending to one as — oo, and
k
~ AL h Pm 2
F(E)_%%g%}i{zéln<& (1 pm)>} (121)

2Note that at this stage, using once again the dominated convergencenth@€T) [40] and Szeijs theorem [36-39], we

can refine the bin sizes by taking the Iinim'té ny/n = 1/k — 0, and then to solve a variational problem. However, it turns

out that it is better to refine the bin sizes only at the last stage of the analysis.
DRAFT
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Therefore, using (88)

E{N (¢)} =exp {n (R +T (e)) } . (122)

To finish step 1, the following lemma is proposed and proved ppehdix G2

Lemma 4Let
gé{eeR:R+f(e)>o}. (123)
Then,
1 R+T(e), e€e€é&
lim —InN (e) = (124)
n—oo n

with probability (w.p.) 1.

Step 2 Using Lemma 4, (85), and Varadhan’s theorem [41], one obttiat [42, 33, Ch. 2],

ZI (Y, A) =e B max exp {n (R +T (e) — ﬁe)} (125)
= exp {n {r?ez?(g( {f (€) — Be}} } , (126)
namely, w.p. 1,

Let " (¢) be defined as in (121), but without the limit ovér It is verified in Appendix D that the

maximization and the limit oveh can be interchanged, namely, (127) can be rewritten asafsifo

mZz (Y,A)
7(1) ~ lim max {T'(¢) — Be} (128)

with probability tending to one. For simplicity of notatigin the following, the notion ofypical sequences

is used to describe an event that is happening with high pitityaFor example, we say that fortgipical

8Lemma 4 simply states that, if we chossuch that,R + T (¢) > 0, then the energy level will be “typically” populated
with an exponential number of codewords, concentrated very strarglynd its mearnE {\ (¢)}. Otherwise (which means
that E {N (¢)} is exponentially small), the energy levelwill not be populated by any codewords “typically”.

¥ another approach to “handle” the limit ovéris, to first prove the theorem for a linear system whose frequencymess
a staircase function (namely, “ignoring evaluate” the limit okein (118)). Then, using the fact that every frequency response
can be approximated arbitrarily well by a sequence of staircase furatiith sufficiently small spacing between jumps (S¥eg
theorem), the main theorem is proved. Note that (128) literally means tagbattition function for any transfer function is

obtained via a limit (w.r.th) of a sequence of partition functions corresponding to staircase fasciith spacings:.
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realization ofy, Z! (y,A) is given by the right hand side of (127), with the meaning thadtappens
with probability tending to one as — co. Also, in the following, in order not to drag the limit ové,
it will be omitted and then reverted when it has a role.

Next, an explicit expression fa¥! (y, A) is derived. Based on (116), (117), and (12)¢) can be
rewritten as

h P,
Jmax = Z In <-Px (1 — p%))

(PY_ Aot 2 57

1 (& . 1 1., 1
s.t. (Z 07| oA/ P Pym — 5 || Py — 3 o | P — ) = —¢

k
1
- Z P, = P,. (129)

Proposition 1 Let {uz‘}le be a vector of real scalars such that 1.; = k. Then, (129) can be transformed

into

-1 1 .
S.t ‘a;}pl Pz‘Py,i 2|O-Z’2Px ‘;‘QPZ_%:_,U’ZQ 'l:l,...,k
1< 1<
p o Pn =i 2 m =1 o

Proof of Proposition 1:Given a solution of (130), it is to verify that it is feasiblerfthe optimization

problem given by (129). Conversely, given a soluti9®;;, pi, }, of (129), by taking

(07l P/ P Pym = 3 10ml* Po = 3 om|* Py — 55

€

it can be seen thatPy, pr,, k. } is feasible for (130). Thus, the two problems are equivalent. =

Using the first constraint in (130), the optimization problam(130) can be transformed into

2
%|0m’2Px+%|0’;n|2Pm+%—,um€

k
h P,
max 5 E In{ — [1—

PY_And, 2520 | Pe 1071 \/ PPy
st 1S hops Ly ot 132)
k i=1 , k m=1 "
Therefore, for a typical realization of the vectgr Z! (y, A) is given by
InZ! (y,\)

~ max max
n P E{uitety
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2

k 1 2 1 7 12 1
h P s5|om|” Pe + 5 |00,|" P + 55 — fbme€
52 |y B | 2ol B 3loml Pt gy i ~2Bpme |, (139)
m=1 z lot. 1\ P Pym
in which
A 1 b
o k. _
Using the subadditivity property of the maximum norm oneaats (for typicaly)
In Z/ k
nZ; (y,A) < max gz
n P7{M'i} m=1
2
1 2 1,1 |2 1
slom|” Pe + 5|00, P+ 53 — me€
maxIn{ =% |1 [ 2 [oml” Fe 3 oml L — 2B ime. (135)
¢ g 93] v/ Prn Py

Note that except the subadditivity, in the above optimaathe maximization is carried ové;} € R”
rather than{.;} € .. (as it should be), hence increasing further the bound. Ghgritpe variables,

m€ — €, the values ot,, for which the derivative vanishes are the solutions of thiefdng equation

2 (% —em + S |om* Pr+ 3 ]a;n\QPm)

. . 2
1 2 1, (2 1
lo! ‘Qﬁympm 1-— <2|Um Potslonml Prt 35 “m€>
m ) / 1,
|07, P Py

which after simple algebra, boils down to a quadratic eguaivhose solutions are

28 =0, (136)

2+ (0% 2 8P + 0l? BPy + /14 482 |04 Py Prn

€m,1 55 (137)
2+ |O-;n|2 BPn + |Um|2 P, — \/1 + 432 |U;n’2 panPm
€m72 = Qﬂ . (138)

Substitution ofe;, , in the objective function of (135) reveals thdj, ; is not in the objective function
domain, and thus only},, , is considered. In the following, the cagg , € & is first analyzed. Substituting

€m.2 1IN (135), one obtains (for typica))

2 2 2
mZ(yA) hz’“:ln P |, _ ((3loml* et 3100l P+ 35 = 6 _ope
n ~ P} 2 = P, 01| /P Pym m,2

(139)
Let~ be the Lagrange multiplier associated with the power coimstr8hen, the derivative of the objective

function in (139) w.r.t.P,, is given by

1= /14410, 2P By
2P

—|on|? B+ —y =0, (140)
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which vanishes at

o8 (14 BPm) +9

, (141)
m 2
(I 8+ 7)
independently ot} ,, and~y is chosen such that’, P, = kP,. Therefore (for typicaly),
2
! k * HomlP P+ Lol P P+ o — ¢
1nZe(y,>\)§@Zln Pl _ 3 lom| 5 loml” Pr+ 35 — €m _ope
n 2 P, / % P
m=1 ‘O-m| PmP%m
£ Foar, (142)
wheree?, 2 €m.2 (Pr,)- Hence, an upper boundpar, onln Z; (y, A) /n is obtained. On the other hand,
by taking
ko x
&= D16 (143)
k
ke
= n_ (144)
8 Zf:l €
and (141), this bound is achieved. Summarizing the abovétsest] (y, \) is given by (for typicaly)
F I'(e)+R>0
1 Z/ par;

T (es) — Bes, F(e*)ﬂ-RSO'

Since at the final step of the calculation, the partition fuorctfor its derivative w.r.tA) is evaluated at
A =0, the rangd’ (¢*) + R > 0 should be computed at the vicinity &f = 0. First, note thatl—:’y,i, given
in Lemma 1, can be written as

. 1 21 1 11
Pi=|o>P,+=+2>"Rel|— Ay — pWES 146
yi = loil” Pot 5+ 5 e(a, > )+52’0ﬂ2nb > (146)

i rei-th bin rei-th bin

Hence, substitutind\ = 0 in (141), one obtains

0?8 (148 Pyan| )+

Prlx=o = N 2 (147)
(Il 8+ 0)
07l 8 (2+ 81wl P ) + 0
= 5 (148)
(Il B+ 0)
where~y, is chosen such that
kP. =Y Phla_g- (149)
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Substitution of P [y_, and €}, (P [x—o)|x_o IN T (¢), reveals that
2

2 2
3 loml® Po+ 5 |0, Phlao + % — emlazo

b
/ Py p
|0m| \/ m‘)\fo Y,m A—0

P*
g = Zl @ 1

(150)
and that
2+ [0 * B Pilaco + loml? 822 — /1 + 482100, By Pl
€mlaco = 2 : (151)
Then, substituting (151) in theith term of the sum in (150), it becomes
JUH AL 5 Palaso P, <1
In — = , (152)
2P, | 242 P, m)
which after substitution of (147), boils down to
1
5 . (153)
Prryo + ‘Uén‘ P,
Hence, substituting (153) in (150), one obtains
h & 2
D ()laco =~ mzzjlln (Pxfyo + |0t Pxﬂ) . (154)
Accordingly, the regiord” (¢*) + R < 0 is equivalent to
h & A
R< 23 m(Poo+|on P8) = R (155)
2 m=1
and hence
F R>R
1 Z/ A par; €
! I'(c)~fes,  R<R

The next step in the evaluation &f (y, \), is taking into accounZ/ (y, ). To this end, the following
relation is used

1 —na —nb
lim n(e +e )

n—00 n

= —min (a,b). (157)

Accordingly, within the rangek > R., for a typical code and realizations of the vecigrwe search

rates for whichZ. (y,0) > Z! (y,0), namely,
InZ' (y,0
077(,y) > Fpar|)‘:0. (158)
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Recall that Fady _, is given by
Fpaly—g =T'(€") — Be* (159)

k
h
-5 Z{ ( Py + P, ‘am‘ [3) + 28€, [ \— 0} (160)
m=1
and that
In Zé (y ) 1 B / 2
( ——<R+2+2nMA—u®xﬂ> (161)
1 hp b 2
:—R—Q—-ng\;—aﬂ<a (162)
Hence the inequality in (158) becomes
1 hp
Zln( foO+P|Um‘ ,8>—*—7 —~ ! _O'm‘QPJ,‘
+h§j{2+b@fﬂﬂ;»ﬂ+wm2ma—Vﬁ+@¢wgﬁamfmuﬂ} (163)
m=1
k
h
52111( Py + P, |am‘ ﬁ) + = —l—hﬁZRe(J O'm)Px
m=1
h/B - * h »
222% (Plazo — 10—22%¢L+wﬂ¢ﬁamﬁﬁhﬂ. (164)
SubstitutingP? , given in (148), in the last two terms of (164), one obtains
R<72ﬁ%1m+Ph%]@+ +w§:mQ7%Ja
k |U;n|2/8 2+5|0m|2pﬂc + %
+ % Z ‘O-;n 2/8 ( 2) P,
2 )
m=1 (|Um| ﬁ + 70)
072 8 (34 2P o) + 70 a6s)

(12 8+ )
Refining the bin sizes by taking the limit— 0, while using Szeg's theorem, it is shown in Appendix

E that (165) becomes
A
R < R.+ Rq= R, (166)

where
(167)

Al o[
&:MAldﬂmHH@WQQm
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and
2
Ri2) + 6P, 177/0 Re (H"* (w) H () dw

B (@5 (2+ BH @) +70
(B @25 +10)’
2n [ () B (3 + 2P, 8 [H (@)) + 70

A Jo (1F (@) B+ %)
Hence, within the rang®& > R., Z. (y,0) > Z! (y,0) (again, typical code and realization vecigy for

27 9
+ — H' (w)|” 8

(168)

{R<RJ}N{R>R.}={R.<R<R.+Ry=R.}, (169)

which is a non-empty set if?; is positive. Next, within the rang& < R., Z/(y,0) > Z! (y,0) for
rates which satisfy (for typical code and realizatiomgf

In Z; (y,0)

p > T (e5) — Pes|y_g - (170)

First, recall thate, satisfiesk + I" (¢;) = 0, and hencd” (¢;) = —R. Thus, (170) can be rewritten as

—R—;—ff;‘a;n—am‘QPx>—R—ﬁes|)\:0, (171)
which is equivalent to
k
€s/a—o > Z Um‘pr. (172)

Applying ' (+) to (172), one obtains

k
1 h
I (eslx=o) > (5 5 Z O-m‘zpz> ; (173)
and hence
k
Re-T (=425 ol —0ulP)| 2R, (174)
28 1 2 £~ o
where
k
1 h 9
r (25+2;\a;10m| Px> —
k
h P,
- 1 -mo— gn )
PY e, 27;1 ! (Pm (1= pm)
k
S.t. ;(Z m‘pm\/ —%|J;H‘Q(Pm—Pz)—RG(U;;;Um> Pz> =0
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| =
]~

P,, = P,. (175)
m=1
To conclude,Z’ (y, A) is given by (for a typical code angl)
Fpar, R > R.V R,
!
mZ7 WA I e - e, R,<R<R. (176)
n

Iz, (y,A) /n,  {Re<R<RJ}U{R<Ry;AR.}

wherea V b 2 max (a,b) anda A b 2 min (a,b). In the following, the relation
R;>0 = R. <Ry, a77)

is verified. Recall thai?; follows from the requirement that

B 1,8 o InZ! ( ,0)
<R+2+2nH(A Az H) —e = (178)
> Fpal y—g (179)
=T (€) = B [xo0 = —Re = B [x=0 (180)
which can be rewritten as
* 1 B / 2
R< Re+ Be|y_g— 5JF%H(A—A):J[:OH : (181)
and thusR, is given by
Rq = Be*|y_g — 1+£}|(A’—A) o] ) . (182)
A=0\2 " 2n
Accordingly, R4 > 0 is equivalent to
* I 2
B |azg > §+%H(A—A’) @o||”. (183)
Now, within the rangeR < R., Z. (y,0) > Z. (y,0) if (172)
1
Beslazo > 5+ 3, 0 (A - A) z|*. (184)

However,R < R. is equivalent ta* ¢ &, and thuse,|,_, > €*|5_,. Therefore, ifR; > 0, the following
holds

Beslrc > Blrce > 5+ o [|(A — A) ao[*. (185)

2
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Whence, (184) holds true within the whole regith< R., and thereforeR. < R,. Thus, forRg > 0,

Z' (y,A) becomes (for a typical code realizatign

E R>R
InZ' by pan c
nZ (y.A) . (186)
InZ! (y,A) /n, R <R,
If however, R; < 0, thenR, < R., and hence (for a typical code realizatigh
Fpar’ R > Re
InZ (y, A
75) ~ 1§ —R — fBes, R,<R<R,- (187)
kané(ya)‘)/T% RgRg
Recall thate, is the solution of the equation
I'(es) + R=0, (188)
wherel (e;) is given by
k
h (Pm 9 >
max — In{ — (1—p;,
Py Apite, 2 mz_:l Py ( )
k
1 , L, 1, , 2 1\
S.t. k<;|am‘pm Py, y7m_§|o-m| Px_iam P 26) —€s
1 F
- Zl P, = P,. (189)

Similarly to the optimization problem in (132), the above innaization problem can be rewritten as
2

h P, 3 lowml* P + 3 opa|* P + g5 — Hmes
kmax . 5 Z In F 1-— =
Pyt 2 02 z o) PmPym

k k
1 1
st. o > Pn=P, - > pm =1 (190)
m=1 m=1
Accordingly, the derivative of the objective function Ww.tP,, vanishes at
40&16? + ’J;TJQ a9 (]S%mag + 265>

P = 5 (191)
2
(]a§n[ a9 + 2()[165)

and the derivative w.r.tu,, it vanishes at
405%63 (1 + P8 |Um|2> +4 ‘O';n|2 Q1€s (OQ - pr,mOQ + Bes + PrBos ‘O'm|2)

2
20¢s (\U{n\Q ag + 204165)

L,
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|U;n|4 Qg <a2 - pr,mQZ + QBGS + Px,BOQ |Um|2)
+

5 (192)
20¢s (|0’7’n|2 Qg + 204165)

whereq; is chosen such thdtP, = > Py, andas is chosen such that= ) . Substituting the

above maximizers in the objective function one obtains

k
T (e,) = g S n ( 2¢s > . (193)

p)
= Py |ol,|” ag + 2Py €

For completeness, a closed-form expressionHgris derived. Based on (174)

1 h )
Ry=-T|=+= = P
g (25 QmZ::ll“m T | z) .

Using (193), and upon taking the limit — 0 (while using Sze@'s theorem, as was done in (168))

(194)

1 [ 2¢
Ry =—— In ( 5 — ~) dw (195)
4 Jo P, |H (w)|” &2 + 2P0 €

whered&; andas solve the simultaneous equations

| pem 4@+ [H (W) as [(yH (W) By + %) Go + 25]
/ dw =P, (196)
0

9 2
27 (18" (@) G2+ 264¢)

| e AR (14 PBIH (@)]7) + 4 |H () @8 + 2 | ()" 42e8

o ; dw=1, (197)
™ Jo 26€(|H’(w)|2d2+2d1€>
and
1 P 2T 9
E=—+ = H (w) - H : 198
=gt [ @ -HE w (198)

Obtaining Z’ (y, A), using the tools presented in Subsection V-B, the MSE is noivet&rThe MSE
estimator of theith component chip) of «’, within the ¢th bin, is given by the derivative of’ (y, )
w.r.t. A, evaluated at = 0%°. The derivative ofF,, is given by

R { P, By
s 22 P+ 2ol 50N

OFpar
6)\(11‘

oY

} . (199)
A=0

15 very similar analysis applies also to the derivatig% In Z (y, A), which is essentially a weighted average oxemwith
weights proportional taEN (e)e=?¢ for € € &. Thus, the exponentially dominant weight is due to the term that maximizes
the exponent [5, 6]. Hence, in this case, the commutativity between thatile w.r.t. A and the limitn — oo is legitimate.
Another approach to justify the interchange of the order of these opesado use well-known results (for example, [43, Ch.
16],[44, 45]) on functional properties of a limit function, which areplgable in our case due to the uniform convergence of

the various relevant terms (see Appendix D).
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Let z, 2 0v/0Xg | x—o- Using (141), one obtains

7 2
(Il 52 ]y +0) (|5l +0)

4
(log)* +0)

2 (‘02‘2 +70) (“72}26 <1 + 5153/:!1‘)\ 0) +’YO) Zq

opr;
N

- = : (200)
4
(los]* + )
and forl # q
2 ~
op; (1077 +90) 2y =2 (Io* +70) (1" 8 (1+ 8| ) +70) 24 oo
= 4
P Iazo (logf* +0)
where by using (146)
aﬁy,q 2 Yq
O, |, Boym (202)
mf'whzo =1+ |02 P53, (203)
Sincen is chosen to satisfyy | P[,_, = kP, it follows that
0 <~ oPr
0= . Z;Pr Z (204)
r= A=0 =
= 2
B |Uq‘262 %PTJQQ A—0 <|0q‘ +70>
- 4
(logl” +0)
2 ~
E(lon+70) =2 (lor +0) (lon B (L + 8Py )+
N (e e (] (% NN R
r=1 (IOH2 + 70)
and thus
62 aP/q /
- il TS JR < L A— (206)
2
(lof* +%) ¢ m(Jog* +10) €
where
E(lorl+70) =2 (lon? 8 (1+ BB, +
C é Z < 0) ( ( - Y :O> 0> ] (207)
= (los2 +0)
Next, 0y /0N, |\_, is calculated. Using the definition af,, in (11) one obtains
oP; . ~ oP:
g 2, 00 _262’0‘ <7A=0Pq{>‘=0+qu’A 0 Pa; Ao)
|og| 8 . (208)
g | O, | x—o Sl 2 A
1+ 45 |o | qu‘)\ 0 Pyl a0
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and forl # q

282 |ol)* P, ‘ oF/
B loql” Py, A= P

oYy
OAg, A—0

- A=0 (209)
. 2 ~ %
SRVIEREIRTE NN

Substituting (206), (208) and (209) in (199), the MSE estimatahe rangeR > R. and R > R., for

opr;
=l 55,

R; > 0 and R4 < 0, respectively, (note that all the terms are dependeng,otinearly via z,) is given
byl6

an Fpar

/
E {Xq'i a)\qb

Y}~

= &10Yg (210)
A=0

1 20,3 b P,
=5 2q — { S +Bz—Cz}
(!ag] +70) c 1= Py +Pelof|" B

where

712 2 .
1 2<’Jq‘ +70) Pq‘)\:o

—Z11=
\/1 +482|osf* Byl Pils,

2 D !
B 232 ‘Utll‘ Py,q’)\zo 20, (211)

\/1 +45° ‘02‘2 Py,q)A:O P;‘)\:O (‘0“2 +70)

with

(o) (e ) (s ) o)

2 4
(lof]* +70)
252 |0‘2|2 Py’l’)\zo Bl (213)
21112 P * .
L+l Bl Pl

Next, the MSE estimator in the regioR, < R < R, for Rq < 0 is derived. The derivative of the

C =

partition function w.r.t.\,, is given by

O0Fyjas Oes
=-0 . (214)
g Ia=o g |a=o
Recall thate, is the solution of the equation
I'(es) + R=0, (215)

5The relation between the right and the left hand sides of (210) is an as§enequality between two random variables, in

the sense that the difference between them converges to zero w.p. 1.
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whereTl (e;) is given as
k

Py (l;’: (1—p?n)>

kmaX . 9
P} e, m=1

1 (& . 1 1., 1
st k(Zb;n‘pm PmPy7m_*|O'm|2Px—*‘0;n Pm_>:—€s

m=1
1 k
=Y Pyp=Ps (216)

Similarly to the optimization problem in (132), the maxintioa problem in (216) can be rewritten as
2

h k P, %|Um|2Px+%’U;n‘2Pm+%_Nm€s
max 5 Z In 2 1-— =
(Bt m=1 r O-;n PmPyvm
k k
1 1
st ¢ > Pn =P, - > pm =1 (217)
m=1 m=1

The derivative of the objective function w.rk,,, vanishes at

. 40‘1‘% + |O—7I’n’2 Qa9 (py,mOQ + 263)

= 2 (218)
(’0471’2 a9 + 2041€s>

and the derivative w.r.tu,,, vanishes at

103¢2 (14 Puplowl’) + 4107, ares (a2 = BPymas + Bes + Prfas o)

fm, 5 2
20¢s (\a§n| ag + 204165)

’O';nrl (6%) (ag — 6Py7ma2 + 2,865 + Pg;,BOdg ’O’m’2)

2
20¢; (|a§n|2 g + 2a165>

whereq; is chosen to such thatP, = > Py, anday is chosen such thdt = ) . Substituting

N (219)

the above maximizers in the objective function of (217) ob&aims

I (e) = g Ek: In ( 2¢ ) . (220)

2
=1 P, ’O';n’ a9 + 2P, o €5

Thus, (215) becomes

h F 2¢5
22111( >+R:0. (221)

2
— P, lol|" as + 2P, €

yAN . A . A A yAN
Let Tg = Ges/akqi\)\zo, a1q = 8(11/8)\qi|/\:0, Qgq = 0a2/8)\qi|)\:0, a1,0 = 041|)\:0, Q20 = 042|)\:0

andeg o 2 €s|xo- Differentiating (221) w.r.t.\, one obtains

k 2
0— Z Py loy,|” oo + 2P pes o

2650

m=1
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2 (Px |O’;n|2 Qg0 + 2an1,06370> Tq — 26570 (Px |O';n|2 0'427(] + 2Px0.é17q65,0 + 2anl,0$q)

% 5 (222)
(P:E ‘O-{m|2 a0+ 2an1,068,0>
i P, |0'fm|2 Q20Tq — €s5,0 (Px |0;n’2 ('127q + 2Pmd17q65,0> (223)
m=1 €5,0 (Px ot |2 Qg0 + 2an1,063,0)
and thus
U-
Ty = F; (224)
where
k ) )
= Py lof,|? azo + 2Ppan €5
and
k 2
P !
vESY = |oml” 020 . (226)

2
m=1 €s,0 (Pz o7, | 20 + 2Pza1,o€s,0)
Hence, in order to calculate, one needs to find; o, 1,0, @20, év1 4, G24. The termseg o, a1 0, a2 9 are

calculated using the set of simultaneous equations

I'(e5)|xeg + R=0 (227a)
1 k
- Zl Pllxeo = Pe (227b)
L
T 221 Hmla=o =1, (227c)
and accordingly, the term$, ,, &2, are calculated using the set of equations
k
P*
OF, =0 (228a)
k
ou’t
L =0. (228b)
,mz:l 8)\% A=0

Givene, o, a1,0, a2, closed-form expressions far 4, & , are now derived. Using (218), (228a) can be

written as
. . 2 &
Mai,g + N202,q + 1N3Tq + g |‘7:1’ Pyq=0 (229)
where P, , 2 6]3y7q/6)\qi‘)\ , and
=0

k 2
A 4Dm6510 — 4R €50

77122 D3

m=1 m

(230)
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A k Dy, ’U;n’2 [<|0m|2 Py + %) Q2,0 + 263,0}
N2 =
D3,

m=1

07l @20 (ol Pe + ) D = 280l

Fo¥ (231)
m
k 2
8D 2D d —4R
s A Z mQ1,0€s,0 + mD|gm| a2 M0 (232)
m=1 m
5 90 (233)
77q = 7’7
Dj
in which
A 2
Dy, = |0'7,n‘ Q2,0 + 201 0650 (234)
A 2
R, = 4a1’06570 + ‘O‘;n’ Qg0 |:Of2,() <|O'm|2 P, + 26570):| . (235)
Similarly, using (219), (228b) can be written as
. ) 2 =
Y101, + Y2024 + V3T4 + Vg |O'(/1‘ Pyyq =0 (236)
where
L 8041706370 (1 + P8 |am]2> + 48 \0;71\2 6270
"=
m=1 Km
8Tmﬂeg70 <|o'7/ﬂ|2 a0 -+ 20&1706570) (237)
K3,
A Fo 2K Besg |of, |t — AT Beso (l%l2 azo + 2041,065,0) o7
7 = = (238)
m=1 m
A i 804%706570 (1 + P.B ‘0'7271‘) + 8565’0 ‘U;n‘Q a0+ 2504270 ’0'471’4
V3= Z K,
=1
2
T [2/3 (|0§n!2 a0+ 2a1,o€s,o) + 8fes 010 <\0§n\2 Qg+ 2a17063,0>]
— 239
e (239)
2
A —4Barges oo — Ba3 |oh ]
Yq = ’ ; (240)
K3
in which
A ) 2
K,, = 2,86570 (’O’m‘ Q20 + 20(1706570) (241)
A 2 4
T = 407 g€l (1 + P.f3 yamg) + 4B o, |  cr0es g + 2|0l | az0Bes 0. (242)
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Thus, solving the pair of equations, (229) and (236), oneinbta

_ /e ms/me L Ye/Y2 T/
m/me —y1/v2" 0 m/m2— 7/
Y3/v1 — n3/m Yo/ = Mg/ | 25 A 12 5

= Tq+ 04| Pygq =122+ Jog |0, Pygq- (244)
no/m —v2/m ! nz/nl—-wz/71’ il P o+ |oa] " P

"7:1‘2]5%‘1 érleI"‘qu‘U:z‘Qﬁy,q (243)

1,9

2,q

Substitutinga; ; andde 4 in (224), simple rearrangement of terms reveals that

~ Jig Sor 2¢50Pu/Qum + Jog Sor 1 265.0P |07, |7 /Q

2 2
Tq = Vi-F) }U;’ P, 4 (245)
where
k 2
P, |o!
vey 9m[ 020 (246)
m=1 €s,0 (Px o1 | a0 + 2an1,0€s,0)
k /12
1 €s,0 (Px loy, |7 o + 2P$6570’I”1)
EEY (247)
V= €s,0 (Px o1 | a0 + 2an1,065,0)
N ;2
Qm = €50 (Pa: oh,|” 20 + 2Pz041,065,0> : (248)
Let
J A Jiq Z'lel 262,0]336/@7% + Joq Zﬁmzl 2€5,0P; ’U;n‘z /Qm (249)
T V(1-F) ’
and so
zg = Jg|ol|* P, _ g %0 (250)
q q 19| Tygq q 53 Yq; -
Therefore,
F
(X, |V}~ 2 haes (251)
8)‘%‘ A=0
Oé€g
S = Y. 252
where
A 20.1*
g2 = —Jg—+. (253)

Finally, the mismatched MSE estimator in the regiBn< R, and R < R, for Ry < 0 and Ry > 0,
respectively, is derived. Based on (83), it readily follothat

olnZg,.

E'{X, |Y}~
1 g 1o

~X,. (254)
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To conclude, the mismatched MSE estimator is given as follows

ForR; >0
qu R S RC
E'{X,|Y}~ . (255)
§¢,1Y4:, R > R,
ForR; <0
.
Xg.» R <R,
E'{Xy|Y}~1¢,Y,, Ry<R<R, (256)
fq,qum R > Re

where the above equalities are asymptotic equalities letwgo random variables, in the sense that the
difference between them converges to zero in probability.
The mismatched MSE is given by
mse(X |Y) =) E{X}} -2Re(E{E(X;|Y)E"(X;|Y)})
=1
+E{|F' (X |V)[*}. (257)
Therefore, based on (257), in order to calculate the MSE, the ME&nator should be obtained first.
SubstitutingA = A’ in Ry, given in (168), one can see th&f = 0. Thus, the MMSE estimator is given
by

gl,quw R > Re
E{X, |V}~ (258)

X, R<R,

In order to findR,., according to (155)y, is needed. However, in this case it can readily be verified that

v = 1/P,, and thus

1 2
Rent 2 R. = 4/ In (1 +H (w)|2BPI) dw. (259)
T Jo
Finally, substitution ofo,,, = o/, in (211), reveals that
Bog Py
flg= —5—, (260)
I 1+ |Jq|2 Pxﬂ
and thus
Boi Py
1+\aq|2P,5Yqi’ R> Rewm
E{X, | Y}~ . (261)
Xq,) R<R.um
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Based on the second term of the sum in (257), several case&ddh® considered. FaR; > 0, since
R. < R. v, there are three region® < R., R. < R < R,y and R > R. . For R < R., both the
matched and the mismatched estimators are asymptotiagligl ¢o X, with high probability, and thus

mse(X | Y) =0. (262)

For R. < R < R one readily obtains

k k
mse(X |Y) . s 2 2 1
. — P, — 2hRe (Z §m710me) + hmzﬂ &mal? (|om|? P + 3) (263)

m=1

and similarly, forR. s < R,

mse(X |Y) B Bor, Py ( 2 1>
— = 2hRe<Z§m11+’ P Pig |Tm| Px+ﬁ )
+hz |‘Sm,1|2 (’Jm2px+;> (264)
m=1
i 1
— P, — 2hRe (n; g;,lagpx) 2 (yo—myQ P, + B) . (265)

Thus, the MSE's in the last two ranges are the same. In the sameahgayISE forR,; < 0 is calculated.
For R < R,

mse(X |Y) =0. (266)
ForRy < R< R,
k
mseX]Y) 2 2 1\ &
el p -2 P m w2 P+ = | = , 267
- hRe<Zg 20 >+hmzl\g 2| <|a | +5)=msa (267)
and forR > R,
k
mse(X |Y) _ 2< 9 1>A
—— = = — P, —2hRe r 05 Py | 4+ h mil> (lom> Po4+ =) =mse. (268
: (S 6ras) £ ol (s (256

Finally, take the limith — 0 (aftern — o). Using Sze@'s theorem (as was done in (168)), one obtains

(i=1,2)

2 2w 1
; =k * =. 2 2, -
nl;r{:omsa =P, — / Re (B} (w)H* (w))dw + — 5 |2 (w)] <|H(w)\ + ﬁ) dw (269)
whereZE; (w), for : = 1,2, are given in (15) and (39).
In the matched case, fd® > R. s
mmse(X | Y) :ZE{XE}—E{\E{XZ- | Y}|2} (270)
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k ny
—nP= > Y B{IB{X,, | Y}} (271)
m=114,,=1
k 2
* P, 1
=nP, — % np <\am|2 P, + ) (272)
=1+ om|” P B
k 2 2 k
|om|” P, P,
=nP,—ny h— 2 N p— T (273)
mzl 3+ loml* Pe mzl 1+ |om|? Pof3

which upon taking the limitx — 0, becomes

mmse X | Y 1 [ P
lig MMSAX 1Y) _ 1 / LA (274)
n—co n 2 Jo 14 H(w)|” P
Remark 4 (Generalization to Any Input Spectral Distributiokd was mentioned in Section I, the

above analysis can be modified to hold for any input spectrakitie S, (w). Technically speaking,
the following modification should be considered: Lit,, be the (real) transmitted power over theh
bin. Then, because of the separable form of the partitiontiomover the bins, we will essentially obtain
exactly the same results with the exception/bf,, instead ofP,. Precisely, instead af, which appears
in the numerator of the logarithm function in (133), one ddaimply replace it toP, ,,. Following the
same lines of derivation, at the final stage of the refinemenh®fbin sizes, we will finally obtain the

spectral densitys, (w) as a limit function of{ P, ,,,}, ..

VIlI. CONCLUSION

In this paper, we considered the problem of mismatched attim of codewords corrupted by a
Gaussian vector channel. The derivation was build upon alsimgation between the MSE and a
certain function, which can be viewed as a partition functiand hence be analyzed using methods of
statistical mechanics. As a special case, the MMSE estinaatdrits respective estimation error was
derived. In particular, it was shown that the MSE essentisdlparated into two cases each exhibiting a
different behavior: In one case, the MSE exhibits single phasnsition, which divides the MSE into
ferromagnetic and paramagnetic phases. In the other ¢as®)SE exhibits two phase transitions, which
divide the MSE into three phases consisting of the two previghiases and a third glassy phase. Then,
using the theoretical results obtained, a few numericaingtes were analyzed, by exploring the phase
diagrams and the MSE’s as functions of the mismatched paresnigtecach problem. This leads to
physical intuitions regarding the threshold effects anel tble of the mismatched measure in creating
them. Indeed, it was shown that the aforementioned separafithe MSE is linked to pessimism and

optimism behaviors of the receiver, according to its misiet assumption on the channel. Note that in
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contrast to previous related papers [5, 6], in which the @ngal examples did not completely emphasize
the necessity of the use of the analysis techniques of titatiphysics for deriving the MSE, we believe
that the considered problem in this paper does, as standfanminiation theoretic approaches do not lend
themselves to rigorous analysis. Finally, we believe thatttols developed in this paper for handling
optimum estimation problems, can be used in other appieatiOne such application, which has been
already considered for a simple model is estimation of sggahpartial support [6, Section V. D] which
has motivation in compressed sensing applications. It &vbalnatural to generalize the model considered
in [6, Section V. D] to a much more rich and applicable one (ie #pirit of the considered model in

this paper), and perhaps assessing the MSE using the contssei®ped in this paper.

APPENDIXA

PROOF OFLEMMA 1

Proof: We first show the inclusion
Ts(x|y) CTs5(z|y), (A1)

namely, for anyz € 7; (z | y) alsox € 7; (x | y). Recall that

5 A 2
B, (P pm) = e R |llapre, —nbpm‘ <4,
Re { Z Uz,gzxz} — NpPm Py,mpo,m § (5} 3 (AZ)
i€
and that
_ E/ 2 T
Ts (x| y) = {:c e R": ‘|]1:H2 —an‘ <4, ly 5 z|” _ )‘ﬁm —nel < 5} : (A.3)
First, note that the second constraint in (A.3) can be resvritts
1 n
Re< — ixi » —p| <6 A4
e{n;%w} p| < (A.4)
where
LS olaP + Py — 26
p= n 1=1 Y ) (A5)

2
Then, for anyx € 75 (x | y), we first show that there exist a sequer{clén}f”n:1 € P° such that for
anyl <m <k,

mny

2
(m—l)nb—i-lH B nbpm‘ < 0. (A6)

o
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mny

2
To this end, for each < m < k, P, is chosen to be the nearest point Hm(m—l)n H in the
p+1

2
set gf5, namely P,,, = U ”;fbl)nﬁl” /(nbé)J - 6. Under this choice, obviously, (A.6) holds, and

(P, }F _ e P?, since

k k mnyg
1 1 H (m ].TL(,+].H
ka:le—Pw = Ez §—P, (A7)
k
< nm;H ’Z?”lnHH §— P <6 (A.8)

where the last equality follows from the fact thate 75 (x | y). Next, we show that there exist a

sequeanpm}’;:1 € R§,, such that for anyl < m <k,

Re { Z aggixl} — NpPm Py,mpmm <. (A.9)
€T,
Similarly, by taking
Re i O'ZIQZ:L’Z
pm = P L M se G 55 (A.10)
L nb& / Py,mPo,m
obviously, (A.9) holds, and als¢pP,,, o} € PO NRY, since
k k /-
1 = = - 1 Re {Zz Z, Uz‘yil’i} - _
- > o\ PyanPom — | = - > Elm L -7 Py Py — P (A.11)
m=1 m=1 nb(S\ / Py7mpg7m

k
1
< ZRe{Zalyzxz}—ﬁ (A.12)
m=1 i€,
1 n
= R - /‘_z’ PP — ) A.13
e{n;%yw} p| < (A.13)

where the last equality follows from the fact thate 75 (« | y). For the second inclusion, we need to

show that7s s (z | y) € Ts (@ | y). For anyz € Ty, (x| y)

k mnyg 2
= zjl T || nP,
k k
2
- Z w(mil)nb—&-l - Z 1 P
m=1 m=1
k 9 5
<>yl - anm‘ <kz=98 (A.14)
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where the second equality follows from the definitior@f, the third inequality follows from the triangle
inequality, and the forth inequality follows from the defiait of %2, (P,,., pm). In the same way, for
anyx € Ty (z | y)

n 1 n
=1

i=1

k k
Z Re { Z O'Z,:ljzxz} ) Z Pm\/ py,mpa,m
m=1 m=1

1€L,

< k% =6 (A.15)

where the first equality follows from the definition GR%, and the second inequality follows from the

triangle inequality and the definition B2, (P, pm). Thus 75 (z | y) C Ts(z | y) C To (x| y). m

APPENDIX B

PROOF OFLEMMA 2

Proof: For simplicity of notation, the following conventions aread. Calculating the volume of

B (P, pm) is equivalent to calculating the volume of the set
n

Re {Z xzy;‘} —np\/PrPy
=1

whereP, 2 |z|? /n and P, 2 |ly||* /n, for a given vectoy € C". Due to the symmetry of the vectats

Fs (Py, p) 2 {a} e R"™: ’HwHQ —nP| <9,

< 5} (B.1)

andy in the DFT domain (recall that in the time domain the considesectors are real), i.ex; =« _,

1

fori=1,...,n (and similarly fory), for the volume calculation of (B.1), only vectors with dimsion

n/2 should be considered, while the other half is fixed. Accordinthe constraints in (B.1) take the

form
n/2
>olad® = 5P| <4, (B.2)
i=1
and
n/2 n
Re ;azzy:‘ 5P P,P,| <. (B.3)

Letm 2 n/2. Consider the following Gaussian measure

m

m A 1 1
Ay () = T exp {—192 |2 — ayi\Q} dz (B.4)

=1

wherea, 92 € R. Then,
1 =G {R"} > g {Fs5 (Pe,p)} (B.5)
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z/f wexp{_g[ +6—20/PP, (p— ) + 0P, } da (B.7)
1

:VOI{Fg(Px,p)}Wexp{ “ [P +0—2a\/PuP, (p— 5)+a2p}} (B.8)

It is easy to verify that

VAN Px
Ao = Fy (p—19), (B.9)
and
ﬁgépx—l-(s—Za\/ﬁ(P—(s)"’azPy (B.10)
— P46 Py(p—0)> (B8.11)

maximize the right hand side of (B.8) (w.rd.and¥?). Thus, on the one hand,

Vol {F5 (P, p)} < exp {mIn (wed?)}. (B.12)
On the other hand,
1 =& {Fs (Pa, p) U F§ (o, p)} (B.13)
=/ Gy p{ y Zm i }da:+76n (75 (o)) (8.14)
< VOl {F5 (Py, p)} exp { —m1n (wed? ) } + 78 {Fs (Pe, )} (B.15)

where the last inequality follows by the same consideratias before, and
02, =Py —0— Py (p+9)°. (B.16)

Using Boole’s inequality

76 AF5 (Pesp)} <06 {m } +9¢ {a: : |Re {ny} —mp\/PuPy| > 5} .
=1
(B.17)
It is easy to verify that the parametarsand ¢ that are maximizing the Gaussian measure are given by
Re (Z Tiy;) A P

===l s = & B.18

P, P, (B.18)
1 & Re (X", ziyl)’ o 5 p2

PBy= oS - R W) L p P (8.19
i=1 Y Yy
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where s and P, are the empirical correlation and the input variance, retpsy. Let ve,m denote the
Gaussian measure associated with the parameters s, namely,y¢ s is given by (B.4) witha = aps

and¥? = 9¥%,. Accordingly, it is easy to verify that undex; s, the following hold
E'YG.M {HXH2} =mby, (BZO)

and

ZXZy:] } = my/ P, Pyp. (B.21)

=1

E,. ., {Re

Thus, using the LLN, the two terms on the right hand side of (Bdré)negligible asn — oo, namely,

G AFS (Peyp)} <€ (B.22)
for any e > 0. Thus,
Vol {F5 (Py,p)} > (1 —€)exp {mIn (776195,”)} . (B.23)
Finally, combining (B.12), (B.23), and taking the limit— 0, the lemma follows. ]
APPENDIXC

PROOF OFLEMMA 4

Proof: Recall that

BN (9} = exp{n(R+T(e)} 1)
and that!’
var{N (e)} = exp{n(R+T(e))} (1 —exp{nl'(¢6)}). (C.2)
Thus,
var{iN (9} =exp{-n(R+T(e)}. C.3
el e (alr T O) €3

For anye ¢ &, the expectation ol (¢) can be written adZ {\ (¢)} = ¢~ "¢+ whereC; = R+T (e) > 0.
Thus, by Markov inequality (sincd/ (¢) € NU {0})

P{N () > 0} < E{N ()} = e ", (C.4)

YGiveny, N () is a sum ofM — 1 i.i.d. Bernoulli random variables and therefore its variancgMs — 1) p (1 — p), where

p is the success probability, which in our case, was shown to be given=byxp {nl (¢)}.
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On the other hand, for anye & andd > 0, using Chebyshev’s inequality
P{’M_1'>5}§W£e—n02 (C.5)
E{N ()} V(EAN ()})
whereCy = R+ v (e) > 0. Thus, in this caseV (¢) is concentrated very strongly aroudl{/\ (¢)}.
Finally, let.A,, 2 {IN (e) — E{N ()} 1 {&}| > d}. Then, using (C.4) and (C.5), it is easy to verify that

> P (A) < oo (C.6)
i=1
Thus, using Borel-Cantelli Lemma, one obtains that
P {lim sup .An} =0, (C.7)
n—oo
and hence (124) follows. ]
APPENDIXD

PROOF OF(128)

Equation (128) follows by the following lemma.

Lemma 5Let f : R x R — R be a smooth function such that

g (z)=lim f (z,h), (D.1)

h—a

uniformly for everyz € R. Assume thatimy,_,, max, f (z, h) exist. Then,

lim max f (x,h) = max lim f (z,h). (D.2)
h—a T T  h—a
Proof of Lemma 5: Let
A .
A = lim max f (z,h), (D.3)
h—a T
and
g (z0) 2 max ¢ (r) = max }llim f(x,h). (D.4)
€ € —a

Based on (D.3)Ye; > 0 there existy; > 0 such that
max f (x,h) — | < €1 (D.5)
whenever) < h — a < 61. Accordingly, by (D.1),Ves > 0 there exist)s > 0 such that

| (2, h) — g (z)] < e (D.6)
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whenever) < h — a < §2. Let us assume by contradiction that (without loss of geiigyal
A
A =g (xg) — Al > 0. (D.7)

However, by using the triangle inequality, one obtains that

0 < A =g (o) = M| < |g (w0) —max f (w,h)| + |max f (2. h) = A|. (0:8)

and hence
0< A1 < g (ao) —max f (w.h)] < lg (o) ~ f (w0, )] (0.9)
for 0 < h —a < min(é1,d2), which contradicts the assumption in (D.1) (or (D.6)). Thiis; 0. ]

Remark 5As the proof shows, Lemma 5 remains valid for functighsX x ) — R.

In our case, the assumptions of Lemma 5 hold true: the unifanvaergence is due to the absolutely
(square) summability of the sequenfky} and Szed's theorem, and the existence the limit over the
maximization problem indeed exists as was obtained. Thasrither of limit overh and the maximization

overe in (128) can be interchanged.

APPENDIX E

DERIVATION OF (168)

Sze@'s theorem [36-39] basically states that, for a sequencioeplitz matricesl’,, = {t;_;}, ; with

dimensionn x n, for which {t;} is absolutely (square) summable, the following holds

n—1 2T
.1 1
fin 23 F(na) = 5 | Fre)a E.1)

where {7}, are the eigenvalues df',, T (w) is the Fourier transform oft;}, and F'(-) is some
polynomial function. Furthermore, if',, are Hermitian, then (E.1) holds true for any continuous fiomct
F(").

In our case, however, the matrices and A’ are not necessarily Hermitian. Nevertheless, based on
(165), it can be seen that the dependency of the variousinearlterms (except the third term) on the
eigenvalues is only viay;n|2, which can be regarded as eigenvalues of the Hermitian xndtff A, and
so Sze@’s theorem can be applied. Regarding the third term in tgbktrand side of (165), it can be

shown [38] that a product of Toeplitz matrices also satisfiee®z theorem, namely,

n—1 27
lim 3" F (poy) = 21/ F(T (@) S (w)) dw (E.2)
k=0 TJo

n—oo n
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where{p, 1}, are the eigenvalues of product of the Toeplitz matri@ss,,, andT (w) andS (w) are

the respective Fourier transforms. Accordingly, sincetttiel term in (165) is originated from a product
of Toeplitz matrices (162), (E.2) can be used. Therefore, ectapplication of (E.1) and (E.2) on (165),
we finally obtain (168). Finally, note that these considerstiare utilized to justify the other places in

the paper (for example, (195) and (269)) in which S¥egheorem is applied.
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