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On the Corner Points of the Capacity Region of a Two-User
Gaussian Interference Channel

Igal Sason

Abstract

This work considers the corner points of the capacity regiba two-user Gaussian interference channel (GIC).
In a two-user GIC, the rate pairs where one user transmitiaiis at the single-user capacity (without interference),
and the other at the largest rate for which reliable commatiuin is still possible are called corner points. This
paper relies on existing outer bounds on the capacity regfam two-user GIC to derive informative bounds on
these corner points for the case of two-sided weak intarferdi.e., when both cross-link gains in standard form
are positive and below 1). The informative bounds on the eopoints are given in closed-form expressions, and
a refinement of these bounds that refers to the possibleaserim the rate of the second user when the first user
operates at rate that ésaway from the single-user capacity is also considered. Uapé lower bounds on the gap
between the sum-rate and the maximal achievable total tateegwo corner points are derived. This is followed
by an asymptotic analysis analogous to the study of the géred degrees of freedom (where the SNR and INR
scalings are coupled), leading to asymptotic charactéwizs of this gap. The characterization is tight for the vehol
range of this scaling, and the simple upper and lower bound#is gap are asymptotically tight in the sense that
they achieve this asymptotic characterization. The uppdrlewer bounds on this gap are improved for finite SNR
and INR, and these improvements are exemplified numerically

1. INTRODUCTION

The two-user Gaussian interference channel (GIC) has bdensively treated in the literature during the last
four decades (see, e.g., [8, Chapter 6] and referencedrthefer completeness and to set notation, the model
of the two-user GIC irstandard formis introduced shortly: this discrete-time, memoryleseiigrence channel is
characterized by the following relation between the twauisg X, X5) and corresponding two outpu(¥?, Ys):

Y1 = X1 +Vape Xo+ 24 (1)
Yo = Jan X1 + Xo + 2o (2

where the cross-link gaing;» andas; of the GIC are time-invariant, the inputs and outputs aré¢ valed, and
7, and Z, denote additive Gaussian noise samples that are indepeoidire inputs. Let} = (X1, X1n)
and X% = (X21,...,X2,) be the two transmitted codewords across the channel wkigfedenotes the symbol
that is transmitted by userat time instantj (here,i € {1,2} andj € {1,...,n}). No cooperation between the
transmitters is allowed (s&", X3 are independent), nor between the receivers; however,asssmed that the
receivers have full knowledge of the codebooks used by bsénsu The power constraints on the inputs are given
by %Z;‘ZIE[X@] < P andi > E[X3,] < P, where P, P, > 0. The additive Gaussian noise samples of
Z1 and Zg are i.i.d. with zero mean and unit variance, and they are ialdependent of the inputX{ and X3
Furthermore Z]* and Z3 can be assumed to be independent since the capacity rediodepends on the marginal
conditionalpdfs p(y;|x1, z2) for i = 1,2 (due to the non-cooperation between the receivers). Rejachronization
between the pairs of transmitters and receivers is assuntedh implies that the capacity region is convex (since
time-sharing between the users is possible).

In spite of the simplicity of this model, the exact charaizi&@tion of the capacity region of a GIC is yet unknown,
except for strong ([11], [18]) or very strong interferen@. [Specifically, the corner points of the capacity region
have not yet been determined for GICs with weak interferefareGICs with mixed or one-sided interference,
only one corner point is known (see [14, Section 6.A], [16edtem 2] and [19, Section 2.C]).

The operational meaning of the study of the corner pointhefdapacity region for a two-user GIC is to explore
the situation where one transmitter sends its informatioth@ maximal achievable rate for a single-user (in the
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absence of interference), and the second transmitter aiagn& data rate that enables reliable communication to
the two non-cooperating receivers [4]. Two questions odguhis scenario:

Question 1:What is the maximal achievable rate of the second trananfitte

Question 2:Does it enable the first receiver to reliably decode the ngessaf both transmitters ?

In his paper [4], Costa presented an approach suggestibgvtten one of the transmitters, say transmitter 1,
sends its data over a two-user GIC at the maximal interferdme rateR; = %log(l + Pp) bits per channel use,
then the maximal raté&, of transmitter 2 is the rate that enables receiver 1 to debotie messages. The corner
points of the capacity region are therefore related to aipietaccess channel where one of the receivers decodes
correctly both messages. However, [16, pp. 1354-1355]t@diout a gap in the proof of [4, Theorem 1], though
it was conjectured that the main result holds. It therefeamd$ to the following conjecture:

Conjecture 1:For rate pair§ R;, R) in the capacity region of a two-user GIC with arbitrary piwsitcross-link
gainsai2 andas; and power constraint® and P, let

1
1 =S 5 log(l —|—P1) (3)
1
(s = 5 log(l + PQ) (4)
be the capacities of the single-user AWGN channels (in tisede of interference), and let
wnl az Py
R1—210g<1+1+P2 (5)
«nl ajoPs
R2—210g<1+1+P1 . (6)

Then, the following is conjectured to hold for achievingiable communication at both receivers:

1) If Ry > Cy — ¢, for an arbitrarys > 0, thenR; < R} + 01(¢) whered;(¢) — 0 ase — 0.

2) If Ri > C1—¢, thenRy < R; —1—52(6) Whereég(e) — 0 ase — 0.
The discussion on Conjecture 1 is separated in the contomutd this introduction into GICs with mixed, strong
or one-sided interference; it is done by restating some knoesults from [4], [11], [14], [16], [17], [18] and
[19]. The focus of this paper is on GICs with weak interfe@r{ce., the channel model in (1) and (2) where
0 < a12,a91 < 1). For this class, the corner points of the capacity regi@uarknown yet, and they are studied in
the converse part of this paper by relying on some existingrdaounds on the capacity region. Although these are
not the tightest existing outer bounds on the capacity regioGICs, they provide informative and simple closed-
form expressions that are proved to be asymptotically tihe interested reader is referred to various existing
outer bounds on the capacity region of GICs (see, e.g., 311.[8], [9], [12], [14], [15], [17] and [19]-[21]).

A. On Conjecture 1 for a GIC with Mixed Interference

Conjecture 1 is considered in the following for a two-uselCGAith mixed interference. Let;o > 1 and
ao1 < 1 (i.e., it is assumed that there exists a strong interferbeteeen transmitter 2 and receiver 1, and a weak
interference between transmitter 1 and receiver 2).

Proposition 1: Consider a two-user GIC with mixed interference where > 1 andas; < 1, and assume that
transmitter 1 sends its message at &ie> C; — ¢ for an arbitrarys > 0. Then, the following holds:

1) If 1 —apg < (a12a21 — 1)P1, then

1 Py
Ro < =1 1+ — . 7
2_2 Og< +1+a21P1>+€ ()

This implies that the maximal rat, is strictly smallerthan the corresponding upper bound in Conjecture 1.
2) Otherwise, ifl — aip > (a12a21 — 1)P1, then

R2 SR;-FE. (8)

This coincides with the upper bound in Conjecture 1.
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The above two items refer to a corner point that achievesuherate. On the other hand, By > Cs — ¢, then

1 Py
<=1 1 9
R1_20g<—|—1+P2>—|—5(5) 9)
wherej(e) — 0 ase — 0.

Proof: Egs. (7) and (8) follow from [14, Theorem 10] or the earliesuk in [12, Theorem 1]. Eq. (9) is a
consequence of [12, Theorem 2]. [ |

B. On Conjecture 1 for a GIC with Strong Interference

For strong interference, whete< a1, < 1+ P; and1 < ay; < 1+ P, the capacity region of the GIC is known
exactly: it is given by the intersection of the capacity oeg of the two Gaussian multiple-access channels where
each receiver decodes both messages (see [11, TheoremnB.21&]). The resulting two corner points of this
capacity region are consistent with Conjecture 1. Ques?ias answered in the affirmative for the case of strong
interference because each receiver is able to decode theagessof both transmitters.

For very strong interference, wheags > 1 + P, andag; > 1 + P, the capacity region is not affected by the
interference [2]. This is a trivial case where Conjectureckginot provide a tight upper bound on the maximal
transmission rate (note thatdfi, > 1+ P, andag; > 1+ P, thenR; > Cy and R > ().

C. On the Corner Points of a One-Sided GIC with Weak Interfese

In [4], an interesting equivalence has been establisheddsst one-sided and degraded GICs: a one-sided GIC
with power constraints?, and P,, and cross-link gaing;s = 0 anday; = a € (0,1) in standard form has an
identical capacity region to that of a degraded GIC whosedstad form is given by

1
Y1:X1+\/;X2+Zl (20)
Yo = VaXi + Xo + Zo (11)
having the same power constrainfg (and P) on the inputs, and wherg, 7, are independent Gaussian random

variables with zero mean and unit variance. The first partrop&sition 1 implies that one corner point of the
one-sided GIC is determined exactly (the achievabilityt palies on considering the interference as noise), and the

value of this corner point is
1 1 Py
= log(l1+ Py), =1 1+——) . 12
(5 108+ P 1o (14 12 )) 12

In [16, Theorem 2], it is shown that this corner point achgetlee sum-rate of the one-sided GIC. We proceed to
a characterization of the second corner point of the capaggion: according to Proposition 1, the second corner
point of the considered one-sided GIC is given (¥, Cy) where (see (9))

| P | P
51og<1+ e >§R1§§10g<1+ ! > (13)

14+ P 1+ P

The lower bound onk; follows from the achievability of the pointR}, Cy) for the degraded GIC in (10) and
(11). The following statement summarizes this short disicuson the one-sided GIC with weak interference.

Proposition 2: Consider a two-user and one-sided GIC with weak interfexpwbich in standard form has power
constraintsP, and P, for transmitters 1 and 2, respectively, and whose crossgains area;o = 0 andas; = a
for 0 < a < 1. One of the two corner points of its capacity region is giver(i2), and it achieves the sum-rate.
The other corner point iR, C2) where R, satisfies the bounds in (13), and these bounds are tight wherl.

The achievable rate region of Costa [5] for a one-sided GI@ wieak interference coincides with the Han-
Kobayashi achievable region for i.i.d. Gaussian codebds&e [24, Section 2]). This region has a corner point
(R1,C9) whereR; is equal to the lower bound in (13). However, it remains unkmavhether the capacity-achieving
input distribution is Gaussian.
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D. Organization of this paper

The structure of this paper is as follows: Conjecture 1 issigred in Section 2 for a two-user GIC with a
two-sided weak interference. The excess rate for the stenwa.t. the corner points of the capacity region is
considered in Section 3; the study of this measure is coreid® be the main novelty of this paper. A summary
is provided in Section 4 with some directions for furthere@<h.

2. ON THE CORNERPOINTS OF THECAPACITY REGION OF ATWO-USERGIC WITH WEAK INTERFERENCE

This section considers Conjecture 1 for a two-user GIC widakvinterference. It is easy to verify that the points
(R1, R2) = (C1, R%) and (R;, C2) are both included in the capacity region of a GIC with wealerifgrence, and
that the corresponding receiver of the transmitter thataipe at its maximal rate’{ or Cs) can be designed to
decode the messages of both transmitters. We show, for deathe inclusion of the pointC, R3) in the capacity
region. Assume that two Gaussian codebooks are used byritéers 1 and 2, under the power constraiff{sor
P,, respectively. LetR; = Cy — e;1, and Ry = Rj — e9 for arbitrary smalle;,e2 > 0. At the input of receiver 1,
the power of the signal sent by transmitter 2ais P>, So sinceRy < R3, it is possible for receiver 1 to first
decode the message sent by transmitter 2 by treating theagesent by transmitter 1 and the additive Gaussian
noise of its channe{Z;) as a Gaussian noise with zero mean and varidn¢eP;. After successfully decoding
the message sent by transmitter 2, receiver 1 is able to deit®dwn message by subtracting the interfering
signal of transmitter 2 from the received signal, where theblem at this stage is reduced to a point-to-point
communication over an AWGN channel (note tiigt < C). Furthermore, receiver 2 is able to decode its message
from transmitter 2 by treating the interference from traiteenl as an additive Gaussian noise; this is made possible
becausd < aj2,a2; < 1, so from (6) we haveR; < %log 1+ 1++ia> . By swapping the indices, the point
(R7,C9) is also shown to be achievable, with the same additionalgstgghat enables receiver 2 to decode both
messages. To conclude, both points are achievable whemtiwderence is weak, and the considered decoding
strategy also enables one of these receivers to decode lesbages.

We proceed in the following to the converse part, which le@adhe following statement:

Theorem 1:Consider a two-user GIC with weak interference, and’lgtCs, R} andR; be as defined in (3)—(6),
respectively. IfR; > C; — ¢ for an arbitrarye > 0, then reliable communication requires that

& > + 2¢,
(1 + aglPl)(l + a12P2)

1 Py 1+ P
“log (1 (1 ) . 14
2 Og( +1—|-P1>+ + a21P2 6} ( )

1
Ry < min{RS + 3 log (1 +

Similarly, if Ry > C5 — ¢, then
M > + 2¢
(14 a1 P1)(1 4 a12P») ’

1 P 1+ P
=1 1 1 . 15
20g<+1+Pg>+(+a12P1>E} (15)

Consequently, the corner points of the capacity region(&ieC5) and (C1, R2) where

. 1 P, 1 P,
R¥< R < R4+ =1 1 —1 1 16
L= 1-““{ 113 Og( +(1+a21P1)(1+a12P2)>’ Og< +1+132>} (16)

. 1 Py 1 Py
R < Ry < R+ =1 1 — 1 1 . 17
2= 2_mm{ 23 Og( +(1+a21P1)(1+012P2)>’ 2 Og( +1+P1>} an

In the limit where P, and P, tend to infinity, which makes it an interference-limited ohal,
1) Conjecture 1 holds, and it gives an asymptotically tighdifd.

2) The rate pairgCi, R3) and (R}, Cy) form the corner points of the capacity region.
3) The answer to Question 2 is affirmative.

Proof: The proof of this theorem relies on the two outer bounds onctiacity region that are given in [9,
Theorem 3] and [12, Theorem 2].

1
Ry < min{RT +3 log (1 +

[\
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Suppose thaR; > C; — ¢ bits per channel use. The outer bound by Et&tral. in [9, Theorem 3] (it is also
known as the ETW bound) yields that the rafes and R, satisfy the inequality constraint

1+ P >

1 1
2Ry + Ry <= log(1+ P P =1 e
1+ 255 og(1+ Py + a2 2)+2 0g<1+a21P1

1 Py
-1 1 P e
+2 og< + ao1 1+1—|—a12P2>

which therefore implies that

1+ P 1 Py
_— — 1 1 P, — | — (log(1+ P;) — 2
1+ CL21P1> + 2 8 < tan 1+ CL12P2> (Og( + 1) E)

1 CL12P2 1 1 1 P2
=—1 1 —1 _ =1 1 P+ -— 2
2 8 < + 1+ P + 2 % 14+ an Py + 2 o8 o fat 14+ a12Ps +ee

1 1
Ry §§ log(l + P + a12P2) + 3 log (

P
+ 2e. 18
(1—|-<121P1)(1+a12p2)> y (18)

The outer bound by Kramer in [12, Theorem 2], formulated hiaran equivalent form, states that the capacity
region is included in the s&f = Ky N Ko where

< < 1 a-ppr’
’Cl = (Rl,Rg) : O0< By < 2 log <1 T ﬁp/*‘ﬁ (19)
0 < Ry < $log(1 + 3P

1

with P’ £ P, + Lt andf e [ﬁ, L] is a free parameter; the sk is obtained by switching the indices in

K1. From the boundary of the outer bound in (19), the valug dhat satisfies the equality

1 (1-B)P
510g<1+m 201—5
is given b

g y 225P2 + (2> -1)(A+P)

a21

(14 ) <P2+ i) .

Qaz21

The substitution of this value of into the upper bound o®, in (19) implies that ifR; > C; — ¢ then

1
Ry < 510?;(1 + BP')

225P2 + (22 -1)(A+P)
=—log |1+ 2
1+ P1

[

=N

=5 log (1 +1 41:2131) +6(e) (20)

where
2 1+P
(28—1)<P2+:T>
1+P+ P

1
i) = ilog 1+

The functiond satisfies that(0) = 0, and straightforward calculus shows that

1+ P1
an P’

0<d(c)<1+ Ve > 0.

It therefore follows (from the mean-value theorem of calsylthat

1+ P1> .
anPr )

0<d(e) < <1 + (21)

A combination of (18), (20), (21) gives the upper bound on e R, in (14). Similarly, if Ry > Cy — ¢, the
upper bound on the rat®; in (15) follows by switching the indices in (14).
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From the inclusion of the point&”;, R3) and (R}, Cs) in the capacity region, together with the bounds in (14)
and (15) in the limit where — 0, it follows that the corner points of the capacity regionisggtthe bounds in
(16) and (17).

Since the poin{C}, R%) is achievable, also i§R;, R}) for Ry < Cy; hence, ifR; > C} — ¢, then the maximal
rate Ry of transmitter 2 satisfies

Py >
+ 2¢.
(1+ a1 P )1+ apph)
The uncertainty in the maximal achievable rdte when R; > C; — ¢ ande — 0 is therefore upper bounded

by % log (1 + (1+a21P11)3(21+a12P2)> . The asymptotic case wherB, and P, tend to infinity and% — k for an

arbitrary k£ > 0 is examined in the following. In this cas&; — % log(1+ kai2) and ARy — 0 which proves that
Conjecture 1 holds in this asymptotic case. Since the pdififs R;) and (R}, Cy) are included in the capacity
region, it follows from this converse that they form corneirpis of this region. Finally, as is explained above,
operating at the corner poinf€’;, R3) and (R7, C2) enables receiver 1 or receiver 2, respectively, to decotte bo
messages. This answers Question 2 in the affirmative in Yymg@stic case wheré’;, P, — oc. ]

Remark 1:Consider a two-user symmetric GIC wheRe = P, = P andajs = ao; = a € (0,1). The corner
points of the capacity region of this symmetric GIC are gign(C, R;) and (R, C') whereC = % log(1+ P) is
the capacity of a single-user AWGN channel with input powangtraint?, and an additive Gaussian noise with
zero mean and unit variance. Theorem 1 gives that

1 aP 1 P 1 P
< min< - 1 1 =1 14+ —>=, =1 14 ——¢. 22
R°—mm{2 0g< * 1+P> T3 Og( * (1+aP)2>’ 2 0g< * 1—|—P>} (22)
In the following, the we compare the two terms inside the mination in (22) where the first term follows
from the ETW bound in [9, Theorem 3], and the second term digdldrom Kramer's bound in [12, Theorem 2].

Straightforward algebra reveals that, for an arbitrarg (0, 1), the first term gives a better bound dt if and
only if

1
R§§R2§R§—|—§log<1+

2a? —a+1++v5ba2 —2a+1
2a%(1 — a) '
Hence, for an arbitrary cross-link gaine (0, 1), there exists a critical SNR where above this critical vathe
ETW bound provides a tighter upper bound on the corner pham Kramer’s bound, and below this critical value
Kramer’s bound is better in this respect. The critical vadbfie”? (in decibels) as a function of the cross-link gain
a € (0,1) is depicted in Figure 1, and it tends to infinity in the two extie cases where — 0 or a — 1; this
implies that in these two extreme cases, Kramer's bound tiertor all values of P. The latter observation is
further addressed in the following:
1) If a — 0 then, for everyP > 0, the first term on the right-hand side of (22) tends to the ciypa’; this
forms a trivial upper bound on the valu&. of the corner point. On the other hand, the second term on the
right-hand side of (22) gives the upper bound%o]‘og (1 + 1%;) which is smaller tharC' for all values of

P. Note that the second term in (22) implies that, for a symimé&ilC, R, < % bit per channel use for all
values of P. In fact, the advantage of the second term in the extremewhseea — 0 for a givenP served
as the initial motivation for incorporating it in Theorem 1.

2) If a — 1 then, for everyP > 0, the first term tends t§ log (1 + HLP) +3 log % + ﬁ) which is larger
than the second term. Hence, also in this case, the secandytees a better bound for all values &f

P>

(23)

Example 1:The condition in (23) is consistent with [14, Figs. 10 and, X explained in the following:

1) According to [14, Figs. 10], fo® = 7 anda = 0.2, Kramer's outer bound gives a better upper bound on
the corner point than the ETW bound. Fok 0.2, the complementary of the condition in (23) implies that
Kramer’'s bound is indeed better in this respect ok 27.48.

2) According to [14, Figs. 11], fo® = 100 anda = 0.1, the ETW is nearly as tight as Kramer’'s bound in
providing an upper bound on the corner point. ko= 0.1, the complementary of the condition in (23)
implies that Kramer’s outer bound gives a better upper baamdhe corner point than the ETW bound for
P < 100.36; hence, forP = 100, there is only a slight improvement to Kramer’s bound thatna be
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601 1

P [dB]

| | |
0 0.2 0.4 0.6 0.8 1
Cross-link gain of symmetric GIC (a)

0 L

Fig. 1. The curve shows the critical value Bf (in decibels) on the right-hand side of (23) as a functionhef tross-link gaina) for

a two-user symmetric GIC with weak interference. For valogs? above this curve, the ETW bound is better than Kramer's baand
providing an upper bound on the corner points of the capaeigjyon; for values ofP below this curve, Kramer’'s bound is better in this
respect.

observed in the resolution of [14, Figs. 11]: Kramer's bowikes an upper bound oR. that is equal to
0.4964 bits per channel use, and the ETW bound gives an uperdbof 0.5026 bits per channel use.

Remark 2:If aj2a21 P12 > 1, then it follows from (16) and (17) that the two corner poinfsthe capacity
region approximately coincide with the point®;, C2) and (Cy, R3) in Conjecture 1.

In the following example, we evaluate the bounds in Theorefor finite values of transmitted power$y( and
P,) to illustrate the asymptotic tightness of these bounds.

Example 2:Consider a two-user symmetric GIC with weak interferencensla = 0.5 and P = 100. Assume
that transmitter 1 sends its data at the maximal single-aerof C; = %log(l + P) = 3.33 bits per channel use.
According to (17), the corresponding maximal rdte of transmitter 2 is between 0.292 and 0.317 bits per channel
use; the upper bound aR; in this case follows from the ETW bound. This gives high aecyrin the assessment
of the two corner points of the capacity region (see Remark@revin this case?P = 25 > 1). If P is increased
by 10 dB (to 1000), and transmitter 1 sends its data at €ate- %log(l + P) = 5.0 bits per channel use, then
the corresponding maximal rafe, is between 0.292 and 0.295 bits per channel use. Hence, ¢esipn of the
assessment of the corner points is improved in the latter. @dee improved accuracy of the latter assessment when
the value ofP is increased is consistent with Remark 2, and the asympgigtitness of the bounds in Theorem 1
as P, and P, tend to infinity.

Figure 2 refers to a symmetric GIC whefgé = P, = 100 and a2 = ao; = 0.5. The solid line in this figure
corresponds to the boundary of the ETW outer bound on thectgipagion (see [9, Theorem 3]) which is given
(in units of bits per channel use) by

0< Ry £3.3201
0 < Ry £3.3291
(Rl,Rg) . R+ Ry <4.1121 . (24)
2R; + Ry < 6.9755
R 4+ 2Ry <6.9755 )

Ro

The two circled points correspond to Conjecture 1; thesatpaire achievable, and (as is verified numerically)
they almost coincide with the boundary of the outer bound®inTheorem 3].
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Fig. 2. The figure refers to a two-user symmetric GIC with sttisk gainsai2 = a21 = 0.5 and a common transmitted power
P, = P, = 100 in the standard form (see Example 2). The solid curve is thendbary of the outer bound in [9, Theorem 3] (the ETW
bound in (24)), and the two circled points refer to Conjeetlir these points are achievable, and they almost coincittetixé boundary of
the outer bound.

3. THE EXCESSRATE FOR THESUM-RATE W.R.T. THE CORNERPOINTS OF THECAPACITY REGION

The sum-rate of a GIC is attained at one of the corner pointiseotapacity region for mixed, strong or one-sided
interference, and this corner point is known exactly. Thignicontrast to a GIC with two-sided weak interference
whose sum-rate is not achieved at one of the corner pointssafapacity region. It is therefore of interest to
examine the excess rate for the sum-rate w.r.t. these cpaomets by measuring the gap\) between the sum-rate
(Csum) and the maximal total rateR; + R2) that is obtainable by a corner point of the capacity region:

A £ Coym— max{ Ry + Ry: (R1, Rp) is a corner poing. (25)

We therefore havé\ = 0 for a GIC with mixed, strong or one-sided interference, s® ficus in this section is

on a GIC with two-sided weak interference. The purpose &f Haction is to derive bounds ah for the case

of weak interference, and to provide a quantitative meastithie excess rate for the sum-rate w.r.t. the corner
points. To this end, the bounds in Theorem 1 (see Section f)elisas upper and lower bounds on the sum-rate
are used to obtain upper and lower boundsgrin general, bounds on the sum-rate are provided in [6],[[9]],

[19], [22] and [23]. The proposed study measures the exadssfor the sum-rate w.r.t. the scenario where one
transmitter operates at its maximal possible single-usiy, and the other transmitter reduces its rate to the point
where reliable communication is achievable.

A. An Upper Bound on the Excess Ré&te) for the Sum-Rate w.r.t. the Corner Points

For the derivation of an upper bound da we rely on an upper on the sum-rate and a lower bound on the
maximal value ofR; + R» that can be obtained by the two corner points of the capaeijon of a GIC with
weak interference. Since the pointB}, Cy) and(C4, R;) are achievable, it follows that

max{ Ry + Ry: (Ry, Ry) is a corner point
> maX{RT + Oy, R; + 01}

1
=5 max{log(l + Py +ax Py),log(1+ P + alng)}. (26)
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Furthermore, the outer bound on the capacity region of a Gl weak interference in [9, Theorem 3] provides
the following upper bound on the sum-rate:

1 . P Py
Coum< — minqlog(l1+ P) +log (1 4+ ——— |, log(l1+ P) +log [ 1 + ——— ],
=9 { & ) g< 1—|-a21P1> Bl 2) g< 1+a12P2>

Pl PZ
1 1 P4+ — 1 1 P4+ —— . 27
og< + a1z 2+1+a21P1>+0g< + ao1 1+1+a12P2>} (27)

An upper bound om\ follows from a combination of (25)—(27), which yields that
1 . P P
A<= log(1 4+ P 1 1+ ——— ), log(l+ P 1 14+ ——
_2[mm{og( + Pp) + og< +1+a21P1>’ og(l+ P) + og< +1—|—a12P2>’

P1 P2
lo 1+ap9Py+——-——] +1o 1+a91 P + ———
g< 12479 1—|—a21P1> g( 21471 1—|—a12P2>}

— max{log(l + Py + a1 Pr),log(1 + P + alng)} . (28)

For a symmetric GIC with weak interference, whdte= P, = P anda;s = as; = a (0 < a < 1), the bound in
(28) is simplified to

A = A(P,a)
< i (14 P)+1log |1+ 2log (1+aP + P —log(1+ (1+a)P) (29)
=5 |8 ©8 1+aP ) “%% “ 1+aP ©8 “
and, consequently, in the limit where we [Bttend to infinity,
1 1
. <1 1 ‘
PlgnooA(P, a) < 5 log <a> , Yae(0,1) (30)

Note that, fora = 1, the capacity region is the polyhedron that is obtained bgrgecting the capacity regions of
two Gaussian multiple-access channels. There is therefmrexcess rate for the sum-rate w.r.t. the corner points
of this capacity region (i.e A(P, 1) = 0); hence, the bound in (30) is tight and continuous at a lefjhi®rhood
ofa=1.

B. A Lower Bound on the Excess Rate) for the Sum-Rate w.r.t. the Corner Points

For the derivation of a lower bound ah, we rely on a lower bound on the sum-rate and an upper bounkeon t
maximal value ofR; + Ry that can be obtained by the two corner points of the capaedion. From Theorem 1,
it follows that for a two-user GIC with weak interference

max{R; + Ry: (R, Rp) is a corner point

1 Py
< min{ max{ R7 + Co + = log [ 1 + ,
- { { ! 258 ( (I+anP)(1+ a12P2)>

1 Py 1
Ry+Ci+ = log (1+ , ~log(1+ P +P
2T T Og< (1+a21P1)(1+a12P2)>} 2 & ' 2)}
1min max< log(1 4+ Po+ a2 Py) + lo <1+ B >
= — X bl
2 & 2 201 & (1 + CL21P1)(1 + CL12P2)

P
14 a2 P)(1 4 ainP)

log(1+P1 —I—a12P2) —|—log <1—|— ( )}, log(1+P1 —I—Pg)} (31)
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In order to get a lower bound on the sum-rate of the capacdgioneof a GIC with weak interference, we rely
on [9] and [20]. The particularization of the outer bound 207 for the GIC leads to the outer bouri, in [8,
Section 6.7.2] which is given by

0< Ry < 3log(l+P)
0< Ry < %log(l + P)

Ry + Ry < Llog(1+ Py + a1oPs) + 3 log (1 + 1+£22P2)
Ri+ Ry < $log(1+ Py +an Pr) + L log (1 + —1+5§1P1)
Ry + Ry < $log (1 +anhs + 71+5;P1)

Ro (R1, Rg) : _|_% log (1 +an P + Mijﬁ) . (32)

2R + Ry < %log(l + P+ (112P2) + %IOg <1 + 1+£11P1>
+1log (1 + a1 Py + Jﬁ)

Ry + 2Ry < $log(1+ Py 4 a2 Py) + 3 log <1 + 71+5122P2>

+% log (1 + CL12P2 + mfﬁ)

Furthermore, if(R;, Ry) € R, then(R; — %,Rg — %) € Ruk WhereRpyk denotes the Han-Kobayashi achievable
region [11] (see [20, Remark 2] and also [8, Section 6.7.2¥; "within one bit” result in [9] and [20] is per
complex dimension, and here it is replaced by a half-bit garedsion since all the random variables involved
in the calculations of the outer bound on the capacity regiba scalar GIC are real-valued [8, Theorem 6.6].
Consider the boundary of the outer bouRg in (32). If one of the three constraints d®, + Ry for this outer
bound is active in (32) (this needs to be verified first), thgmoat on the boundary oR, that is determined by
one of these three constraints satisfies the equality

1 P
Ry +Ry = 5 min{log(l + P+ alng) + log <1 + 72> ,

1+aphP
log(1+ Py + ag1 Py) +1 <1+7p1 >
[e) a (0] ;
g 2 21471 g 1+ an P
Py P
log(1+ap P+ ——"—)+log|l+ay P+ —""— . 33
g( 12472 1+a21P1> g( 21471 1—|—a12P2>} (33)

Since (R — %,Rg — %) is a point that is included in the Han-Kobayashi achievakfgian, it follows that the

maximal value ofR; + R» over all the points of the achievable regi@yk is lower bounded by the value on the
right-hand side of (33) minus 1. Consequently, under thevalpondition,

1 . P
Csum > 3 mlﬂ{log(l + P+ a1oP;) + log <1 + ﬁ) ;

P
log(1 + P + P+ 1 14—,
og( 2 T 21 1) 0g< 1+a21P1>

P1 P2
log(1+ap P+ ——"— ) +log|l+apnP +——r — 1. 34
g< 12472 1—|—a21P1> g( 21471 1+a12P2>} (34)
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From (25), (31) and (34), it follows that

1| . P
A > = log(1 + P, P, | 14+ —=
=5 [mln{ og(14+ P + anPs) + og< + 1+a12P2>’
log(1 + Py + ag P1) + o <1+L>
g 2 21471 g 1+am P, )’
P P
1 1 P4+ — 1 1 P+ —=—
0g< + a1z 2+1+a2lpl>+0g< + an 1+1—|—CL12P2>}
min{ maxy log(1+ P + ag P1) + 1o <1+ A )
_ x 7
& 2 21 & (1+CL21P1)(1+CL12P2)

P
log(1+ Pt + a12Py) +log { 1+ ’
g ( 1 12%) g( (1_|_a21P1)(1+a12P2)>}

log(1+ P, + P2)} -1 (35)

provided that the constraint oR; + R» that refers to the three inequalities in (32) is active; théeds to be
verified as a condition for (35) to hold. In the following, th@ver bound in (35) is particularized for a two-user
symmetric GIC with weak interference, and a sufficient ctiadiis stated for ensuring that (34) and (35) hold for
this channel:

Lemma 1:For a two-user symmetric GIC with weak interference where= P, = P > 2.550 andais = as =

€ (0,1), the constraint om?; + R» in the outer bound (32) is active.

Proof: Consider the straight lines that refer to the inequalit@s2iR; + R, and Ry + 2R» in (32). For the

symmetric GIC with weak interferend@ 2 = a2; = a with 0 < a < 1), it corresponds to the straight lines

P
I 1 P
>+0g<+a +1—|—aP>}’

P
)—l—log(l—i—aP—i—l_i_aP)}

which intersect at a pointR;, Ry) where Ry = R, = R, and the corresponding value & + R, for this
intersection point is equal to

1
2R1—|—R2:§ [log(l—l—P—l—aP)—l—log(l-l— 11 aP

1
R1+2R2—§ [log(1+P+aP)+log<1+ T aP

1 P P
== |log(l+ P +aP) +1 1 1 1+aP ) 36
R+ Ry 3[og( +P+aP)+ 0g< +1+ap>+og< +a +1+GP>] (36)

The two inequalities folR; + R, in the outer bound (32), for a symmetric GIC, are given by

1 P
< —
Ri+ Ry < 5 {log(l—i-P—i-aP)—i-log <1+ 1—|—aP>]’ (37)

R1 4+ Ry <log <1 +aP + (38)

1+ aP> '
The right-hand side of (36) is equal to the weighted averddleoright-hand sides of (37) and (38) with Weigrits
and%, respectively; hence, it implies that one of the two inetjiesl for R; + R in (37) and (38) should be active
in the determination of the boundary of the outer bound (82he above intersection poiritk, R) also satisfies
R < % log(1 + P) for every0 < a < 1. To ensure the satisfiability of the latter condition, let

> + log <1+CLP+ 1_|_Pap>] , Yae|0,1]
(39)

L1 1 P
fp(a) = 5 log(1+ P) 5 {log(l + P+ aP) + log <1 +q T aP

whereP > 0 is arbitrary; the satisfiability of the condition th&t < % log(1+ P) for every0 < a < 1 requires that
fp is non-negative over the interval [0,1]. The functifinis concave over the interval [0,1] if and only& > 0.680
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(see the appendix for a proof), and alge(0) = 0. This implies thatfp(a) > 0 for all a € [0, 1] if and only if
fp(1) > 0andP > 0.680. Straightforward algebra shows thgt(1) > 0 if and only if P4+ P3—-6P?—7P—2 > 0,
which is satisfied if and only i? > 2.550 (the other solutions of this inequality are infeasible foy. It therefore
ensures that, if? > 2.550, then at least one of the inequalities fBf + R, in the outer bound (32) is active for a
two-user symmetric GIC with weak interference; it is showngooving that one of the two inequality constraints
on R; + R» in (37) and (38) is relevant for the intersection point of thve straight lines that refer to the inequality
constraints or2R; + Re and2Ry + R; in (32), and this intersection point falls inside the squ@xe”] x [0, C|
with C & % log(1 + P). This completes the proof of the lemma. [ |
Lemma 1 yields that the lower bound on the sum-rate in (34)aissfeed for a symmetric GIC with weak

interference ifP > 2.550. Consequently, also the lower bound Anin (35) holds for a symmetric GIC under the
same condition orP. In this case, the lower bound in (35) is simplified to

A = A(P,a)

. P P
mln{log(l + (a+1)P) + log <1 + m) » 2log <1 taP+ 1 +ap>}

~1 (40)

1
>
-2

— min {log(l + (a+1)P) + log (1 + ﬁ) ,log(1 4+ 2P)}

In the following, we consider the limit of the lower bound dnin the asymptotic case where we [Bttend to
infinity. For large enoughP

log(1+ (a+1)P) + log (1 t7 n aP>

oo+ 10P) +1og (14 1)

2log <1—|—aP—|—

P
=] 2P2
1 +aP> og(a”F")

so, we have

min{log(l + (a+1)P) + log <1 +

P N (a+1)%P
), 2log <1+aP+ 1+aP>} —log<T>

P
14+aP
and, for0 < a < 1,

min {log(l + (a+1)P) +log (1 + %) ,log(1+ 2P)} = log((a +1)P).

(1+a

Consequently, in the asymptotic case wheéréends to infinity, it follows from (40) that

1 1
lim A(P,a) > 3 log <1 + E> -1, Vae(0,1). (41)

P—oco -

For a symmetric GIC with weak interference, a comparisorhefdsymptotic upper and lower bounds Anin
(30) and (41) yields that these two asymptotic bounds diffeat most 1 bit per channel use; this holds irrespectively
of the cross-link gaim € (0,1). Note that the upper bound is tight ferclose to 1, and also both asymptotic bounds
scale Iike% log (é) for small value ofa (so, they tend to infinity as — 0). This study provides a quantitative

measure of the considered asymptotic excess rate (in tlievinere P — o).
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C. An Analogous Measure to the Generalized Degrees of Freettad its Implications

The following section is focused on the model of a two-usenmetric GIC, and it provides an asymptotic
analysis of the excess rate for the sum-rate w.r.t. the cqroimts of its capacity region. The asymptotic analysis
is analogous to the study of the generalized degrees ofdredvhere the SNR and INR scalings are coupled),
leading to asymptotic characterizations of this gap. Thiedng analysis relies on the closed-form expressions for
the upper and lower bounds ak derived in Sections 3-A and 3-B, leading to tight asymptet@racterizations
in a certain range of this scaling.

Consider a two-user symmetric GIC whose cross-link gasctales likeP*~! for some fixed value ofv > 0.

For this GIC, the generalized degrees of freedom (GDOF) fmel@ as the asymptotic limit of the normalized
sum-rate&t27) \when P — 0o, This GDOF refers to the case where the SNR tends to infinity, and the

log P
interference to noise ratidNR = aP) scales such th Ogg(gﬁg) = « is kept fixed for a non-negative. The GDOF

of a two-user symmetric GIC (without feedback) is definedadws:

a—1
d(a) £ lim —Csum(P’P )

42
P—oo IOg P ( )

and this limit exists for everyx > 0 (see [9, Section 3.G]).

For large P, let us consider in an analogous way the asymptotic scalirtheonormalized excess rate for the
sum-rate w.r.t. the corner points of the capacity region.thie end, we study the asymptotic limit of the ratio
A({Z’szﬂ for a fixeda > 0 when P tends to infinity. Similarly to (42), the denominator of thitio is equal to
the asymptotic sum-rate of two parallel AWGN channels withimterference. However, in the latter expression,
the excess rate for the sum-rate w.r.t. the corner pointspgkcing the sum-rate that appears in the numerator on

the right-hand side of (42). Correspondingly, for an advitra > 0, let us define

a—1
§(a) = lim 7A<P’P )

43
P—oo IOg P ( )

provided that this limit exists. In the following, we demdnage the existence of this limit and provide a closed-form
expression fow.

Theorem 2:The limit in (43) is well defined for every > 0, and the functiod admits the following closed-form
expression:

l—a!, if0§a<%

§(a) = e ifZ<a<l . (44)
0, if a>1

Proof: The capacity region of a two-user GIC with strong interfeeeris equal to the intersection of the
capacity regions of the two underlying Gaussian multigleess channels (see [11, Theorem 5.1]), and therefore
its sum-rate is also equal to the total rate at each of theecquoints of its capacity region. Consequentlyyit> 1
and P > 1 then the cross-link gain is = P! > 1, which implies that the excess-rate for the sum-rate virg.
corner points is zero. Hencé(«) = 0 for everya > 1.

Consider a two-user symmetric GIC with weak interferendee Dounds on the corner points of the capacity
region in Theorem 1 (see (16) and (17)) imply that

1 . : 1

3 log(1 + P) < max{Ry + Ry: (R1, Ry) is a corner point < 3 log(1 + 2P). (45)
For an input power constrainf® > 1 and an interference level € (0, 1), the cross-link gain iss = P*~! < 1;
this corresponds to a two-user symmetric GIC with weak fatence. From the definition of the excess-rate for
the sum-rate w.r.t. the corner points, and the bounds ondheec points of the capacity region in (45), it follows
thatforP >1and0<a <1

1 1
Csum(P, P71 — 5 log(1+2P) < A(P, P71 < Coum( P, PO71) — 5 log(1+ P). (46)
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Consequently, forx € (0,1), a division bylog P of the three sides of the inequality in (46) and a calculatién
the limit asP — oo gives that (see (42) and (43))

5(a) = d(a) — % Va e (0,1). a7)

The limit in (42) for the GDOF of a two-user symmetric GIC (agut feedback) is well-defined, and it gets the
following closed-form expression (see [9, Theorem 2]):

d(a) = min{l,max{g,l - g} ,max {a,1 — a}}

2 2
l—a, fO<a<i
a, if % <a< %
=< 1-9, f2<a<1 . (48)
5 ifl<a<?2
1, if >2
A combination of (47) and (48) completes the proof of the etbform expression fof in (44). ]

1

0.9

0.8

0.7

0.6

0.5

d(a) and 8(a)

0.4

0.3

0.2

0.1

0 0.5 1 1.5 2 2.5
Interference level (a)

Fig. 3. A comparison of the generalized degrees of freedoBDdE) in (48), and the exact asymptotic characterization af (43) (see
(44)) as a function of the non-negative interference level

Figure 3 provides a comparison of the GDOF with the functidor an interference level (i.e., the cross-link
gain isa = P®~1). Equation (47) provides a connection between these twotifums; the former is larger than the
latter by half-bit per channel use (see Figure 3).

In light of the closed-form expression éfin (44), the asymptotic tightness of the bounds in (29) ar®) (g
demonstrated in the following.

Theorem 3:Under the considered scaling of the SNR and INR for a two-ss@nmetric GIC with weak
interference (wherex € (0,1)), the bounds in (29) and (40), are asymptotically tight ia #ense that the limit (as
P — o0) of their normalization bylog P coincides withd(«) in (44).

Proof: Substitutinga = P*~! into the bound in (29) gives that, fa? > 1 anda € [0, 1),

A(P, P>

1
< Z
-2

, P . P .
mln{log(1+P)+log <1+ 1+P0‘>’ 210g<1+P + 1+Pa>}—log(l+P+P )

2 AP, PoY). (49)
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Consequently, one can verify that for largeand an arbitrary fixed value af € [0,1),

AP, P*1)

== %[min{Z —a, 2max{a, 1 — a}} - 1] log P

. l1—a |1
_mm{T"i —a‘} log P.

Hence, it implies that by normalizing the bound in (49) log P and taking its limit asP — oo gives that for
a € (0,1]

. A(P,P*Y
lim ————~
P—oco  log P

. [1—a 1
:max{mln{T, 5—(1‘},0}
L-a|, fo<a<?

:{ lLa  jf2<ac<l

= 0(a).

This demonstrates the asymptotic tightness of the uppendou(29) for the considered scaling of the SNR and

INR. Analogously, the substitution of the equality= P>~! into the lower bound in (40) gives that fé > 2.550
anda € (0,1)

1 P P
A(P, P 1) > 5 [min{log(1+P+P°‘) + log <1+ 1+Pa> ; 2log <1 + P+ 1 +Pa>}

— min {log(l + P+ P%) +log (1 + ﬁ) ,log(1 4+ 2P)}
2 AP, P (50)
Consequently, for larg& anda € (0, 1),

V

-1

AP, P71 = % [min{Q —a, 2max{a, 1 — a}} - 1} log P.

This implies that by normalizing the bound in (50) layg; P and taking its limit as®? — oo gives that, fora € [0, 1),

AP P
Poo log P
1

-4 - 2ot o1}

1 P 2
_ ‘E—OZ, |f0§a<§
l-a if§§a<1

9
= 0(a).

This demonstrates the asymptotic tightness of the lowendaduw (40) for the considered scaling, and it therefore
completes the proof of the theorem. [ |
Remark 3: The following remark provides an interpretation for the rmgyotic tightness of the upper and lower
bounds in (29) and (40), respectively, as is assured by Ened
The fact that these upper and lower bounds are asymptgtidghit is first attributed to the ability of the ETW
bound to give the exact asymptotic pre-factorlef P in the expression for the sum-rate (see [9, Theorem 2]).
Furthermore, the asymptotic tightness of the bounds in &2@) (40) for the considered setting where= P!
is also caused by the fact that, for a two-user symmetric GitE weak interference, the achievable total rate at
the two corner points taken into consideration bounded et log(1 + P) and 5 log(1 + 2P) (see (16) and
(7)) which have the same pre-factorlog P (i.e., 1). One can verify that a removal of the second termaiche
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minimization in (16) and (17) (i.e., by removing the effedtKramer’s bound while only keeping the effect of
the ETW bound in the derivation of these upper and lower beumibuld have caused a significant asymptotic
gap between the corresponding upper and lower bounds &or o € [0, %] More explicitly, the removal of this
second term inside the minimization on the right-hand sifi¢46) (i.e., a removal of the tern% log(1 + 2P))
loosens the pre-factor of the resulting lower bound&rto zero, whereas the pre-factor big P in the upper
bound is% — «; this gap is circumvented by using Kramer’s bound for thevaéion of the second term in the two

minimizations that are used in (16) and (17).

As a consequence of asymptotic analysis in this sub-semme implications are provided in the following:
1) From (42), (43), (44) and (48), it follows that far > 0

sy, fO<a<y
A(P, po—1 ) 1—4L, ifl<a<?2
o AL ) J e T sas<s (51)
0, if a>1

is the asymptotic loss in the total rate, expressed as adraof the sum-rate, when the two users operate
at one of the corner points of the capacity region; for the-ti@er symmetric GIC, it is assumed that the
cross-link gain scales, for large, like po-1,

2) Analogously to the GDOF that refers to the asymptotic radized limit of the sum-rate, the functioh is
introduced in (43) by replacing the sum-rate with the excatsfor the sum-rate w.r.t. the corner points where
it is assumed that = P*~! for somea > 0. While the GDOF is known to be a non-monotonic function of
a in the interval (0,1) (see [9, pp. 5542-5543] and (48)), liofes from (44), that als@ is a non-monotonic
function over the interval %, 1|. For P > 1, the cross-link gaim: = P*~! forms a monotonic increasing
function of & € [0,1), and it is a one-to-one mapping from the intery@l1) to itself. This implies that, for
large P, the excess rate for the sum-rate w.r.t. the corner poingsrisn-monotonic function of < (0, 1),
as is indeed supported by numerical results in Section 3-E.

3) From the closed-form expression for the GDOF of a two-ss@nmetric GIC (see (48)), ifi = P>~ for
somea € [0,1) then the worst case of interference for larBeis obtained wher ~ # (i.e., if a =~ %);

for a = % the GDOF in (48) achieves its minimal value, and it is eqoal t

1 ) Csum(P> #) 1
db)Z&%ﬁ‘ﬁﬁT‘Zﬁ' (52)

On the other hand, from (51), it follows that
A(P, 75)

. JP
lim ——Y2_ = (53)
P—oo Csum(P7 #)

so, in the worst case of interference for latgethere is no harm in operating at one of the corner points.
4) The limit on the left-hand side of (51) is bounded betweerozand one-half fon = P*~! with o > 0, and

it gets a local maximal value at = % (which is global maximum forx > %). From (48) and (51) for this

value of o, we have

Coum(P, v= A(P, = A(P, L
Pooo log P 3" P=oo Csum(P, W) 4 Poo  log P 6

5) The fact thaty(1) = 0 is supported by the asymptotic upper and lower bound&\6R, a) for large P and
a fixeda € (0,1) (see (30) and (41)) which imply that
1 1 1 1
- —l-1< 1 <= - .
5 log <1 + a) 1< }DIEHOOA(P,Q) <3 log <a> , Yae(0,1)
Since alsoA(P,a) = 0 for everya > 1, it follows that for every fixeds > 0

A(P,a)
1m =
P—oo log P
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6) The bounds on the excess rate for the sum-rate w.r.t. tmecpoints (see Sections 3-A and 3-B) refer to
the case of an operation at one of the corner points of thecagpagion of a two-user symmetric GIC. In
this case, one of the users transmits its data at a rate tequed to the single-user capacity of the respective
AWGN channel. Consider now the case where the transmissiten af this user is withire > 0 of the
single-user capacity. Then, from Theorem 1, it follows ttiegt upper bound on the transmission rate of the
other user cannot increase by more thaix{2, 1+ %}. As a result of this, the lower bound on the excess
rate for the sum-rate is decreased by no more thar{2,1 + %}5. Furthermore, the upper bound on
this excess rate can increase by no more thémote that if the first user reduces its transmission ratedy n
more thare, then the other user can stay at the same transmission xetigllpthe total transmission rate it
decreased by no more thapand consequently the excess rate for the sum-rate carasel® no more than
¢). Revisiting the analysis in this sub-section by introshgca positives to the calculations, before taking
the limit of P to infinity, leads to the conclusion that the correspondihgracterization ob in (44) stays
un-affected as long a%% tends to zero as we lg® tend to infinity. For example, if £ ¢(P) scales like

(log P)? for someg € (0,1) thene(P) — oo but lf)(gpll — 0 in the limit whereP — oo, so the corresponding
bounds in this subsection are not affectedsbn this case.

Consider a two-user symmetric GIC with weak interferencemghin standard formP, = P, = P andas =
as1 = a € (0,1). Let A denote the excess rate for the sum-rate w.r.t. the cornetgpof the capacity region, as it
is defined in (25). The following summarizes the results #ratintroduced in this section so far for this channel
model:

o The excess raté\ satisfies the upper bound in (29).

o If P > 2.550, then it also satisfies the lower bound in (40).

« For large enouglP, A = A(P,a) is a non-monotonic function aof over the interval0, 1].

« The asymptotic pre-factor afg P in A(P, P*~1) for o > 0 is given bys(«) in (44). Furthermore, a connection
between the functiod and the symmetric GDOF is given in (47) (see Fig. 3).

« Both upper and lower bounds ai(P, P*~!) yield the exact pre-factor dbg P for large P and for every
non-negativex.

« In the asymptotic case of an interference-limited channel, WhenP — o), and when the cross-link gain
is kept fixed between 0 and 1, the excess ratesatisfies the upper and lower bounds in (30) and (41),
respectively. These asymptotic boundsArscale Iike% log (%) and they differ by at most 1 bit per channel
use, irrespectively of the value of thec (0, 1] which is assumed not to scale with

o Leta = P! for somea > 0 and P > 1. Consider the loss in the total rate, expressed as a fraofion
the sum-rate, when the users operate at one of the corndsmjithe capacity region. Then, this asymptotic
normalized loss is provided in (51), and it is bounded ben/\@:and%. For large enougl®, it roughly changes
from 0 to 1 by letting a grow (only slightly) from# to 5/1?.

The following remark refers to the third item above.

Remark 4:The excess rate for the sum-rate w.r.t. the corner pointsedifference between the sum-rate and
the maximal total achievable rate by any corner point. Aditay to Theorem 1, for largé’ and two-sided weak
interference, the total achievable rate at a corner poirgnisncreasing function of. € (0, 1]. Although it is
known that, for largeP, the sum-rate of the capacity region is not monotonic desimgan a, a priori, there was
a possibility that by subtracting from it a monotonic in@®@ function ina, the difference (which is the excess
rate) will be monotonic decreasing in However, it is shown not to be the case, so the fact that fgel®, the
excess rateé\ is not a monotonic decreasing function ofs a stronger property than the non-monotonicity of the
sum-rate.

D. A Tightening of the Bounds on the Excess Rat¢ for Symmetric GICs with Weak Interference

In Sections 3-A and 3-B, closed-form expressions for upmer lawer bounds o\ are derived for GICs with
weak interference. These expressions are used in SectibfoBan asymptotic analysis in the case where- oco.
In the following, the bounds on the excess rateare improved for finiteP at the cost of introducing bounds that
are subject to numerical optimizations. For simplicity, fwmeus on symmetric GICs with weak interference. In light
of Theorem 3, a use of improved bounds does not imply any amtiopmprovement as compared to the bounds
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in Section 3-C that are expressed in closed form. Nevedbetbe new bounds are improved for finite SNR and
INR, as is illustrated in Section 3-E.

1) An improved lower bound oi: An improvement of the lower bound on the excess rate for the-iate
w.r.t. the corner pointsX) is obtained by relying on an improved lower bound on the sate-(as compared to
(34)). For tightening the lower bound on the sum-rate, ituggested to combine (34) with the lower bound in [16,
Eq. (32)] (it follows from the Han-Kobayashi achievableioeg see [16, Table 1]):

Csum > méug p(P,a,a, B3,6) (55)
where
2a0P 265 P
P 25 log (14— log (1 4+ —207
plPra,a,p,0) =9 Og( - 1+2aﬁ5P> o °g< - 1—1—2aa6P>
1-2
+ (T(;) log (1 +2(1 + 26)P)
i J o (1 + 206 P + 2a36 P 236 P + 2aad P
5 08 1+ 2a0P + 2a30P T 15 230P + 2a00P )
2a0P 236 P

§log (1 51

°8 ( T 2a0P 1 2aﬁ5P> 008 < 1+ 203P + 2aa6P>

5log 1+ 2aq0P +6 log 2050P
& 1+ 2adP + 230P T 1 200P + 2a30P

V(a,B,0) st 0<a<1l, 0<p<1, 0<d<

l\)l»—\

A combination of (25), (31) and (55) gives the following lawikeound onA for symmetric GICs with weak
interference:

a7576

A =A(P,a) > max{p(P, a,a, 3, 5)} — % min{log(l + (a+ I)P) + log (1 + ﬁ) , log(1 + 2P)}.

Furthermore, it follows from Lemma 1 that ® > 2.550, a combination of (25) and (31) with the two lower
bounds on the sum-rate in (34) and (55) gives the followigbténed lower bound o (as compared to (40)):

A > max{max{p(P, a, o, 3, 5)}7

a7576

. P &
3 mln{log(l—l—(a—l—l)P) + log <l—|- 1—|—(LP>’ 2log <1+(IP+ 1—|—(IP>} —1}

— % min{log(l + (a+1)P) + log (1 + ﬁ) , log(1 + 2P)}. (56)

2) Animproved upper bound ah: An improvement of the upper bound on the excess rate for therate w.r.t.
the corner pointsA) is obtained by relying on an improved upper bound on the satm<{as compared to (27)).
This is obtained by taking the minimum between Etkin’s boimd10] and Kramer’s bound in [12, Theorem 2].
Following the discussion in [10], Etkin's bound outperfarthe upper bounds on the sum-rate in [1], [9], [14], [19];
nevertheless, for values afthat are close to 1, Kramer’'s bound in [12, Theorem 2] outper§ the other known
bounds on the sum-rate (see [10, Fig. 1]). Consequentlyminénum between Etkin's and Kramer's bounds in
[10] and [12, Theorem 2] is calculated as an upper bound omsuherate. Combining [10, Eqgs. (14)-(16)] (while
adapting notation, and dividing the bound by 2 for a reattwdl GIC), the simplified version of Etkin's upper
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bound on the sum-rate for symmetric real-valued GICs witlakni@terference gets the form

1 P(1+0a%)y Py
Csum < gl;g{mm{i log (1 T2 ) log { 1+ (11— p?)o?

(14 P(1+a)) (P(1+a?) +02) — (P(1 + av/a) + po)’
+log ( P(1+a2)y+ (1 —p?)o? &7
where
v =a®—2apoy/a+o’a, p=aocyaty/(1-a2)(l-o%), o€l \/LE]’ a € [-1,1]. (58)

The two possible values ¢fin (58) need to be checked in the optimization of the parareekor symmetric GICs
with weak interference, Kramer’'s upper bound on the sum{se¢e [12, Egs. (44) and (45)]) is simplified to

1 B 1 2
Csumﬁilog 14+2P+ — — —4/ B2 —4P? 5_1 (59)

1

2 2
where B = a% +2P (% — 1) — 1. An improvement of the upper bound on the sum-rate in (27p\icd by taking
the minimal value of the bounds in (57) and (59); consequeattombination of (25) and (26) with this improved
upper bound on the sum-rate provides an improved upper bonn (as compared to the bound in (29)).

3) A simplification of the improved upper bound Arfor a sub-class of symmetric GICs with weak interference:

The following simplifies the improved upper bound on the esscate(A) for a sub-class of symmetric GICs with
weak interference. It has been independently demonstmatgld, [14] and [19] that if

a 0

1
O<Q<Z’ 0<P<L

then the sum-rate of the corresponding symmetric GIC is legua

Csum - log <1 + (61)

1—|—aP>'

This sum-rate is achievable by using single-user Gaussidalmoks, and treating the interference as noise. Under
the conditions in (60), the exact sum-rate coincides with dpper bound given in (57). Hence, a replacement of
the upper bound on the sum-rate in (27) with the exact sueima{61), followed by a combination of (25) and

(26) gives that
1 1 P
< = .
A_210g<1+aP+(1+aP)2> (62)

It is easy to verify that, under the conditions in (60), theo@pbound omA in (62) is positive.

E. Numerical Results

The following section presents numerical results for theras on the excess rate for the sum-rate w.r.t. the
corner points (denoted hgx) while focusing on two-user symmetric GICs with weak ingéeence.

Figure 4 compares upper and lower boundsfms a function of the cross-link gain for a two-user symmetric
GIC with weak interference. The upper and lower plots of tgsire correspond taP? = 50 and P = 500,
respectively. The upper and lower bounds Arrely on (29) and (40), respectively, and the improved upper a
lower bounds omA are based on Section 3-D. Fé&r= 50 (see the upper plot of Figure 4), the advantage of the
improved bounds o\ is exemplified; the lower bound oA for the case wheré” = 50 is almost useless (it is
zero unless the interference is very weak). The improvecuppd lower bounds oA for P = 50 do not enable
to conclude whether the function & is monotonic decreasing as a function offor weak interference where
a € [0,1]). For P = 500 (see the lower plot of Figure 4), the improved bounds/rindicate that it is not a
monotonic decreasing function af(since the improved upper bound dnat a = 0.045 is equal to 0.578 bits per
channel use, and its improved lower bound:at 0.110 is equal to 0.620 bits per channel use). The observation
that, for large P, the function of A is not monotonic decreasing im € (0,1) is supported by the asymptotic
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Fig. 4. Upper and lower bounds on the excess rate for the atenw.r.t. the corner point&A) as a function of the cross-link gai).
The plots refer to a two-user symmetric GIC with weak interfee whereP?, = P, = P andai2 = a21 = a € [0, 1] in standard form.
The upper and lower plots correspond o= 50 and P = 500, respectively. The upper and lower bounds Anrely on (29) and (40),
respectively, and the improved bounds Anrely on Section 3-D. The dashed lines refer to the asymptaijwer and lower bounds oA
in (30) and (41), respectively.

analysis in Section 3-C. This conclusion is stronger thandbservation that, for large enough the sum-rate is

not a monotonic decreasing function @fe [0, 1] (see [9, pp. 5542-5543]), as it is discussed in Remark 4 (see
Section 3-C). Figures 4 and 5 show that the phenomenon ofdhanonotonicity ofA as a function ofx is more
dominant when the value a? is increased. These figures also illustrate the advantaggedmproved upper and
lower bounds oM in Section 3-D as compared to the simple bounds®oin (29) and (40) (however, note that
the simple bounds or\ that are given in closed-form expressions are asymptbtitight, as is demonstrated in
Theorem 3).
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Fig. 5. Upper and lower bounds on the excess rate for the atenarr.t. the corner pointgA) as a function of the cross-link gaa). This
figure refers to a two-user symmetric GIC with weak intenfiee whereP, = P, = P = 40 dB andai2 = a21 = a € [0, 1] in standard
form. The upper and lower bounds dx are given in (29) and (40), respectively, and the improvegnbs onA rely on Section 3-D. The
upper plot shows upper and lower bounds Arover the range of weak interferen¢e < a < 1), and the lower plot zooms in the upper
plot for a € [0,0.1]; it shows thatA is a non-monotonic function af in the weak interference regime.

Table | compares the asymptotic approximatiordofvith its improved upper bound in Section 3-D2. It verifies
that, for largeP, the minimal value ofA is obtained atz ~ #; it also verifies that, for large’, the maximal

value of A for ¢ > —= is obtained atz ~ —. Table | also supports the asymptotic limits in (53) and (54)
showing how close are the numerical results for lafgéo the corresponding asymptotic limits: specifically, for
large P, ata = LP and SLP, the ratio@ tends to zero o%, respectively; this is supported by the numerical
results in the 5th and 9th columns of Table I. The asymptgifiraximations shown in Table | are consistent with

the overshoots observed in the plots®fwhen the cross-link gain varies between\/l—ﬁ and 3_113; this interval is
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TABLE |
COMPARISON OF THE ASYMPTOTIC APPROXIMATION OF THE EXCESS RATFOR THE SUMRATE W.R.T. THE CORNER POINTSA) WITH
ITS IMPROVED UPPER BOUND ONA IN SECTION3-D2.

Power constrainf Value of a achieving Normalized\ Value of a achieving Normalized\
in standard form minimum of A by log P maximum of A for a > LP by log P
Asymptotic Exact Asymptotic Exact Asymptotic Exact Asymptotic Exact
approximation  value approximation  valug approximation  value approximation  valug
P) (a= L) Eq. (53) (0= ) Eq. (54)
27 dB 0.045 0.050 0 0.065] 0.126 0.140 0.167 0.154
40 dB 0.010 0.011 0 0.046| 0.046 0.042 0.167 0.164
60 dB 0.001 0.001 0 0.032 0.010 0.010 0.167 0.166

narrowed as the value @? is increased (see Figures 4 and 5). Finally, it is also showfigures 4 and 5 that the
curves of the upper and lower bounds An as a function of the cross-link gain do not converge uniformly to
their asymptotic upper and lower bounds in (30) and (41)peetvely. This non-uniform convergence is noticed
by the large deviation of the bounds for finiiefrom the asymptotic bounds where this deviation takes pieves
an interval of small values af; however, this interval of. shrinks when the value a? is increased, and its length
is approximately 31P for large P. This conclusion is consistent with the asymptotic analysiSection 3-C (see
the items that correspond to Eqgs. (51) and (54)), and it i3 sigpported by the numerical results in Table 1.

4. SUMMARY AND OUTLOOK

This paper considers the corner points of the capacity negia two-user Gaussian interference channel (GIC).
The operational meaning of the corner points is a study ofsthetion where one user sends its information at
the single-user capacity (in the absence of interfererss®),the other user transmits its data at the largest rate for
which reliable communication is possible at the two nonparating receivers. The approach used in this work for
the study of the corner points relies on some existing oubemnds on the capacity region of a two-user GIC.

In contrast to GICs with strong, mixed or one-sided intenfiee, both corner points of a two-user GIC with
weak interference have not been determined yet. This padeciised on the latter model that refers to a two-user
GIC in standard form whose cross-link gains are positive lagidw 1. Theorem 1 provides rigorous bounds on
the corner points of the capacity region, whose tightnessgcially pronounced for high SNR and INR.

The sum-rate of a GIC with either strong, mixed or one-sigedrference is attained at one of the corner points
of the capacity region, and this corner point is known eya@tte [11], [14], [16], [18] and [19]). This is in contrast
to a GIC with weak interference whose sum-rate is not atthateany of the corner points of its capacity region.
This motivates the study in Section 3 which introduces analyaes theexcess rate for the sum-rate w.r.t. the
corner points This measure, denoted hy, is defined to be the gap between the sum-rate and the maaahl t
rate obtained by the two corner points of the capacity regimple upper and lower bounds dx are derived
in Section 3, which are expressed in closed form, and the pifin characterization of these bounds is analyzed.
In the asymptotic case where the channel is interferenciéelingi.e., P — oo) and symmetric, the corresponding
upper and lower bounds of differ by at most 1 bit per channel use (irrespectively of wh&ie of the cross-link
gaina); in this case, both asymptotic bounds Anscale Iike% log (é) for small a.

Analogously to the study of the generalized degrees of &ee@GDOF), an asymptotic characterization/ofis
provided in this paper. More explicitly, under the settinese the SNR and INR scalings are coupled such that
llf)i((f’NNRF;) = « for an arbitrary non-negative, the exact asymptotic characterization/ofis provided in Theorem 2.
Interestingly, the upper and lower bounds Arare demonstrated to msymptotically tight for the whole range of
this scaling(see Theorem 3).

For high SNR, the non-monotonicity ak as a function of the cross-link gain follows from the asyntipto
analysis, and it is shown to be a stronger result than thenmametonicity of the sum-rate in [9, Section 3].

Improved upper and lower bounds dnare introduced for finite SNR and INR, and numerical resultthese
bounds are exemplified. The numerical results in Section\@iify the effectiveness of the approximations for
high SNR that follow from the asymptotic analysis &f
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This paper supports in general Conjecture 1 whose intexjioatis that if one user transmits at its single-user
capacity, then the other user should decrease its rate batlath decoders can reliably decode its message.

We list in the following some directions for further resdatbat are currently pursued by the author:

1) A possible tightening of the bound in (9) for a two-user GA@h mixed interference is of interest. It is
motivated by the fact that the upper bound for the corresjpgncbrner point is above the one in Conjecture 1.

2) The unknown corner point of a one-sided GIC with weak fietence satisfies the bounds in Proposition 2;
it is given by (R;,Cy) where the gap between the upper and lower bound&om (13) is large for small
values ofa. An improvement of these bounds is of interest (see the kastgraph in Section 1-C).

3) A possible extension of this work to the class of semi-theteistic interference channels in [20], which
includes the two-user GICs and the deterministic interfeeechannels in [7].

APPENDIX: ON THE CONCAVITY/ CONVEXITY OF THE FUNCTION fp IN (39)

The following appendix is related to the proof of Lemma 1 thretkes use of the concavity of the functigp
in (39) over the interval [0,1] for alPP > 0.680. This concavity property is proved in the following, andstalso
shown that the functiorfp is convex over this interval foP = 0.

For an arbitraryP > 0, the functionfp in (39) can be expressed in the form

1 1 P
fr(a) = 5log(1+P) — ¢ [mog(l + P+ aP) —log(1 +aP) + log (1 TPty p)]

1 1 P
= —log(l1+P)— = |2log(l+ P+ aP)+1 14— v 1].
5 og(l+ P) 6[ og(l+ P+aP)+ og< +(1+aP)2>}’ a € 10,1]
Calculation of the second derivative gives
2 2
g(a):P_ 1 . 1 . P i (1+aP) i (63)
3 |A+P+aP)* (1+aP)* [Py (1+aP)?]” [P+ (1+aP)?]

For an arbitraryP > 0, the functionfp is concave over the interval [0,1] if and only ff’(a) < 0 for all a € [0, 1].
In particular, it is required that

1) = 1 1 P —(1+P)?
P @+2P) (1+P? [P+(+P)22 -
and this inequality holds if and only # > 0.680. One can verify that a (necessary and) sufficient conditoriife
second derivativg}, to be monotonic increasing over the interval [0,1] is thas iincreasing over a neighborhood
of the right endpoint of this interval. This condition is iséied if and only if

(3) 1 1 1+2P?+ P3
P():_ 3+ -
(1+2P)

1+PP [P+ (14 P)2)° =

which holds for P > 0.226. This implies that, forP > 0.680, f;, < 0 over the interval [0,1] (since}, is
monotonic increasing over [0,1], and it is non-positiveha tight endpoint of this interval). It therefore yields tha
for P > 0.680, the functionfp is concave over [0,1].

As a side note, if on the other haiéi~ 0, then it follows from (63) thatf}(a) ~ %2 for a € [0, 1]; hence, for
small enough values aP, the functionfp is convex over the interval [0,1] (but its second derivaiweclose to
zero, so the curve of p forms approximately a straight line).
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