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Abstract

A new total variation (TV) spectral framework is presented. A TV
transform is proposed which can be interpreted as a spectral domain,
where elementary TV features, like disks, approach impulses. A re-
construction formula from the spectral to the spatial domain is given,
allowing the design of new filters. The framework allows deeper un-
derstanding of scales in an L1 sense and the ability to better analyze
and process textures. An example of a texture processing application
illustrates possible benefits of this new framework.

1 Introduction

The total variation (TV) functional is today a fundamental regularizing
tool in image processing. It is employed for denoising and deconvolution
[41, 15, 36, 38, 37, 27], optical-flow [10], tomographic reconstruction [42],
texture and image analysis [8, 5, 3, 46, 28] and more. Since its introduction
in [41] in the context of image processing many studies have been devoted to
its analysis and interpretation, e.g. [15, 36, 16, 17]. We attempt in this paper
to further enhance the intuition and applicability of this functional to feature
extraction and image analysis by formulating a spectral framework, where
one can decompose and reconstruct images using the basic TV elements of
the image.

Spectral analysis has been used extensively in the analysis and processing
of signals modelled as stationary random processes (see e.g. [33, 44]). For
more complex non-stationary signals, such as images and speech, harmonic
analysis methods were developed in the form of wavelets [21, 35, 23], spectral
graph theory [18] and diffusion maps [19]. We explore a way to provide
spectral information for total variation analysis.
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In [43] Steidl et al have shown the close relations, and equivalence in a 1D
discrete setting, of the Haar wavelets to both TV regularization [41] and TV
flow [1]. This was later developed for a 2D setting in [48]. The development
of features in the scale space framework [49, 31, 40, 47] and the emergence
of critical points were studied for example in [31, 11, 32, 45, 16, 28]. This
work relies on the established theory of the TV flow proposed by Andreu
et al in [1] and further developed in [2, 7, 43, 12, 6, 25] and the references
therein.

This manuscript is an extended version of the conference paper [26].

2 The TV Spectral Framework

The scale-space approach is a natural way to define scale:

ut = −p, u|t=0 = f, p ∈ ∂uJ(u), (1)

where ∂uJ(u) denotes the subdifferential of some regularizing functional
J(u).

We are interested in the total variation functional:

J(u) =

∫
Ω
|Du|, (2)

where Du denotes the distributional gradient of u. It is therefore natural
to examine the total variation scale-space, known as total-variation flow [1],
formally written as:

∂u
∂t = div

(
Du
|Du|

)
, in (0,∞)× Ω

∂u
∂n = 0, on (0,∞)× ∂Ω
u(0, x) = f(x), in x ∈ Ω,

(3)

where Ω is the image domain (a bounded set inRN with Lipschitz continuous
boundary ∂Ω). We assume f has sufficient spatial regularity.

We now give our line of thought how the transform was derived. Similar
results may probably be obtained using other, more formal, approaches.

In Fourier analysis, the sine and cosine functions (or exponents with
imaginary arguments) are the basic functions of the transform. They form
impulses in the Fourier domain. How can this be generalized to the total
variation domain? We begin by examining some atom-like elements in the
TV sense. It is well known that disks are elementary structures for the
TV functional. For instance, they satisfy the eigenvalue problem in RN :
∂uJ(u) = λu (where λ ∈ R), which implies their shape stays the same
during the entire evolution (their height decreases until they disappear).
Analytic solutions for disk regularizations and evolutions were obtained for
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the TV regularization model [36, 45], TV-flow [1, 2, 7], inverse-scale-space
evolutions [13] and more.

Let us recall the analytic solution of a simple case: evolution of a single
disk in two dimensions. The indicator function of a disk of radius r in R2

is:

I(x) =

{
1, |x| < r
0, otherwise

For a disk of height h, hI(x), we have that ∂uJ(u) = 2
r I(x) for all t until

the disk disappears. We denote by td = hr
2 the disappearance time.
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Figure 1: Illustrating the evolution of a disk in R2. The value is within
|x| < r, for example at (x1 = 0, x2 = 0). The second derivative is an
impulse at time td. [here we set r = 4, h = 2 and therefore td = 4].

The solution of the TV flow for u(t) is therefore

u(t) =

{
(h− 2

r t)I(x), 0 ≤ t < td
0, otherwise

The first and second derivatives in time are:

ut(t) =

{
−2

r I(x), 0 ≤ t < td
0, otherwise

utt(t) =
2

r
δ(t− td)I(x),

where δ(t) denotes an impulse (Dirac delta) at t = 0. See Fig. 1 for an
illustration.

We observe that utt yields an impulse of an elementary structure and is,
therefore, a good candidate for a spectral representation. We would also like
that the response will be invariant with respect to time. We normalize by
multiplying it by the evolution time t. It will be seen later that this yields
a straightforward reconstruction formula.
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2.1 TV Transform

Let the TV transform be defined by

ϕ(t) = uttt, (4)

where t ∈ (0,∞) is the time parameter of the TV-flow, Equation (3), and
utt is the second derivative in time of u in that flow.

Having defined ϕ(t) ∈ L1(Ω), we now need the inverse transform, which
reconstructs a signal from all ϕ(t) responses. The reconstruction formula is
very simple and is defined as:

w(x) =

∫ ∞

0
ϕ(t;x)dt+ ¯f(x), (5)

where f̄ = 1
Ω

∫
Ω f(x)dx is the mean value of the initial condition. Naturally,

if we do not manipulate the spectral domain for filtering, we expect to
reconstruct the image of the initial condition f , as stated in the following:

Theorem 1 For ϕ(t) defined in (4), the reconstruction formula (5) recovers
f ∈ BV (Ω) ∩ L∞(Ω), that is w(x) = f(x).

Proof. We examine the left-term on the right hand side of Eq. (5). Integra-
tion by parts yields∫ ∞

0
ϕ(t)dt =

∫ ∞

0
utttdt = utt|∞0 − u|∞0 .

We use the property of finite extinction time of the TV flow. A two-
dimensional proof by energy methods is given in [2] Th. 5. A more recent
proof for all dimensions using energy estimates and Sobolev inequalities is
given in [25] Th. 2.4, 2.5. In essence, this property means that for some
t1 ∈ (0,∞) we have u(t) ≡ const, ∀t > t1. Therefore also ut(t) ≡ 0 in a sim-
ilar time range and ut(t)t|t→∞ = 0. The expression ut ∈ −∂uJ(u) is finite
for all t ∈ [0,∞) so that utt|t=0 = 0. We can therefore conclude that the left
term utt|∞0 = 0. For Neumann boundary conditions the mean is unchanged,
therefore u|t→∞ = f̄ . Using the initial condition we have u|∞0 = f̄ − f . �

One can generalize this theorem to functionals other than TV, where the
final time extinction property may not be valid or is hard to prove. Also,
from a computational viewpoint, one may not want to evolve the entire
scale-space (until the extinction time) but still view the spectrum, perform
filtering and reconstruct an image based on an evolution until some time T .
In these cases we can use the following finite time reconstruction formula:

wT (x) =

∫ T

0
ϕ(t;x)dt+ fr(T ;x), (6)
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where fr is a residual part defined by

fr(T ;x) = u(T ;x)− ut(T ;x)T. (7)

We can prove a similar recovery of wT (x) to f(x) (assuming ut(T ;x)T ∈ L∞)
by using the same arguments as in Theorem 1, leaving the term ut(T ;x)T
as is.
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Figure 2: A single one-dimensional disk and the corresponding numerical
spectral response S(t).

Definition 1 (TV Spectral Response) The TV spectral response for t ∈
(0,∞) is defined as:

S(t) = ∥ϕ(t;x)∥L1 =

∫
Ω
|ϕ(t;x)|dx. (8)

The spectral response roughly corresponds to the amplitude of the response
in a Fourier domain (see Fig. 4). If the response is high, a large ”quantity”
of the element ϕ(t) is contained in the image. If it is low, this element can
be considered negligible. A response for one dimensional disk, as computed
discretely, is depicted in Fig. 2. We will show in our experiments that, as
can be expected, elements with high spectral response compose the main
features of the image.

2.2 Nonlinear Eigenvalue Problem

We would like to obtain a connection between eigenfunctions and the spec-
tral components ϕ(t).

The nonlinear eigenvalue problem with respect to the functional J(u) is
defined by:

p(u) = αu, p(u) ∈ ∂J(u), α ∈ R. (9)

We denote u which admits (9) an eigenfunction, where α is the corresponding
eigenvalue.
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In this manuscript we assume J(u) is the total variation functional and
u ∈ BV . The following theorem, however, can be generalized for any one-
homogeneous functional.

We refer to a functional as positively homogeneous of degree one (or
one-homogeneous for short) if

J(ku) = kJ(u), k ≥ 0.

We recall the following property of one-homogeneous functionals:

J(u) = ⟨p, u⟩.

This can be shown by using the subgradient definition

{p|J(v)− J(u) ≥ ⟨p, v − u⟩, ∀v ∈ U} ,

assigning v = ku and using J(ku) = kJ(u) yields J(u) ≥ ⟨p, u⟩. On the
other hand, assigning v = 0 and using J(0) = 0 yields J(u) ≤ ⟨p, u⟩.

Using the above, another useful property can be shown:

Lemma 1 If J(u) is one-homogeneous and p ∈ ∂J(u) then ∀k, 0 < k < ∞,
p ∈ ∂J(kf).

Proof. From the one homogeneous property, J(ku) = kJ(u), and the subgra-
dient definition, J(v) ≥ J(u)+ ⟨p, v−u⟩, we have the bound J(v)−J(ku) ≥
(J(u) + ⟨p, v − u⟩) − kJ(u). Using J(u) = ⟨p, u⟩ we can conclude that
J(v)− J(ku) ≥ ⟨p, v − ku⟩ and therefore p ∈ ∂J(kf). �

Theorem 2 For any f ∈ BV which is a solution of the eigenvalue problem
(9), the following analytic solution holds:

u(t;x) =

{
f(x)(1− αt), 0 ≤ t ≤ 1

α
0, t > 1

α

(10)

ϕ(t;x) = δ(t− 1

α
)f(x),

S(t) = δ(t− 1

α
)∥f(x)∥L1 .

Proof. We take ∆t → 0 and use the partial derivative definition to rewrite
ut = −p, Eq. (3) top row, as

u(t+∆t;x) = u(t;x)−∆tp, p ∈ ∂J(u(t;x)).

For t = 0, u(0;x) = f(x), and since f(x) is an eigenfunction we have
p = αf(x). Thus for t = ∆t the solution is u(∆t;x) = f(x)(1−∆tα). Using
Lemma 1 and assigning k = (1 − ∆tα) > 0 we have p|t=∆t = αf(x), p ∈
∂J(u(∆t;x)). By induction this follows until t = 1

α . We can thus write
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ut(t;x) = −αf(x), 0 ≤ t < 1
α and solve u(t;x) = u(0;x) − tαf(x) in this

time range and u(t;x)=0 for t ≥ 1
α . The expressions for ϕ(t) and S(t) follow

from their definitions (4) and (8), respectively. �
It is shown above that for the particular case of a signal composed of

a single eigenfunction we get a single spectral component at some time t1,
where ϕ(t1) is exactly this eigenfunction. For a signal composed of several
eigenfunctions which are well separated spatially - we observe numerically
that we get spectral peaks and ϕ(t) functions which correspond to the origi-
nal eigenfunctions. The conditions for additivity of the eigenfunctions should
be investigated more deeply. One may follow ideas of curve evolutions of
the TV-flow given in [7, 2] to obtain precise formulations.

2.3 Spectral Filtering

Let H(t) be a filter defined in the TV spectral domain as a real valued
function of t. The filtered response ϕH(t) in the spectral domain is defined
by:

ϕH(t) = ϕ(t)H(t). (11)

The filtered response in the spatial domain is then the corresponding recon-
struction procedure

fH(x) =

∫ ∞

0
ϕH(t)dt+ f̄ , (12)

An ideal filter in Fourier analysis eliminates completely energy of unde-
sired frequencies while perfectly retaining frequencies in the desired range.
We can now define analogous ideal filters in the TV spectral sense:

Definition 2 (Ideal Spectral Filters) Let t1, t2 ∈ (0,∞). We denote
ϕ(∞) ≡ u(∞) = f̄ , ϕ(0) = 0. We can now define the following ideal spectral
filters:

(i) Ideal low-pass filter:

HLPF,t1(t) =

{
0, 0 ≤ t < t1
1, t1 ≤ t ≤ ∞

(ii) Ideal high-pass filter:

HHPF,t1(t) =

{
1, 0 ≤ t < t1
0, t1 ≤ t ≤ ∞

(iii) Ideal band-pass filter:

HBPF,t1,t2(t) =


0, 0 ≤ t < t1
1, t1 ≤ t < t2
0, t2 ≤ t ≤ ∞
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(iv) Ideal band-stop filter:

HBSF,t1,t2(t) =


1, 0 ≤ t < t1
0, t1 ≤ t < t2
1, t2 ≤ t ≤ ∞

Naturally, there are close relations between the above filters. As in the
case of Fourier filters, a LPF is the spectral complement of a HPF and vise
versa. We can summarize it by the following statements:

Proposition 1 For any 0 < t1, t2 < ∞ the following identities hold:

HLPF,t1(t) = f −HHPF,t1(t);
HHPF,t1(t) = f −HLPF,t1(t);
HBPF,t1,t2(t) = f −HBSF,t1,t2(t);
HBSF,t1,t2(t) = f −HBPF,t1,t2(t);

(13)

Proof. We rewrite f as an all-pass spectral filter, that is H(t) ≡ 1, 0 ≤ t ≤
∞. The identities then follow from the filters’ definitions and the recon-
struction formula, Eq. (5), (note to take into account ϕ(∞) ≡ f̄). �
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Figure 3: Illustration of Theorem 3. TV-Flow is equivalent to a non-ideal
low-pass-filter in the spectral domain. In the plot four filters HTFV,t1 are
plotted for different values t1 = {1, 5, 10, 20}.

2.4 TV Flow as a Low-Pass-Filter

We we’ll now show that TV-Flow can be interpreted as a specific kind of
low-pass-filter. This is formalized in the following theorem:
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Theorem 3 The solution u(t1) at time t1 of the TV-flow process, Eq. (3),
is equivalent to spectral filtering with the following filter:

HTV F,t1(t) =

{
0, 0 ≤ t < t1
t−t1
t , t1 ≤ t < ∞ (14)

Proof. We apply the reconstruction formula, Eq. (12):

fHTV F,t1
=

∫ ∞

0
HTV F,t1ϕ(t)dt+ f̄ ,

which can be written as

fHTV F,t1
=

∫ ∞

t1

tuttdt− t1

∫ ∞

t1

uttdt+ f̄ .

Using integration by parts, similar to Theorem 1, the left part of the right-
hand-side is −t1ut(t1)− u(∞) + u(t1). The right term is t1ut(t1) (again we
use the property of finite extinction time yielding t1ut(∞) = 0). Thus the
terms t1ut(t1) and u(∞) = f̄ cancel out and we get fHTV F,t1

= u(t1). �
It is therefore obvious that TV-flow (and ROF for that matter) is not

an ideal low-pass-filter, as can be expected. It erodes the contrast of all
the spectral components ϕ(t). The precise extent of this erosion is now
quantified and given in Eq. (14). See Fig. 3 for plots of various TV-Flow
responses for different t1 values.

2.5 Numerical Implementation

There are many ways to implement total variation flow. We are taking a
variational approach. We would like to approximate ut = −p(u). In the
explicit method we do the following sequence of iterations:

u(n+ 1) = u(n)− dtp(u(n)),

with a small time-step dt. Following a suggestion of [39] we do the implicit
approximation which is unconditionally stable in dt:

u(n+ 1) = u(n)− dtp(u(n+ 1)).

We can write the above expression as u(n+ 1)− u(n) + dtp(u(n+ 1)) = 0,
and see it coincides with the Euler-Lagrange of the following minimization:

E(u, u(n)) = J(u) +
1

2dt
∥u− u(n)∥2l2 ,

where u(n + 1) is the minimizer u of E(u, u(n)) and u(n) is fixed. We
now have a standard ROF problem [41], which can be solved using various
algorithms (e.g. [20, 14, 30]). In [39] it was suggested to use the Split-
Bregman algorithm, which is probably the most efficient one. With current
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implementation, given e.g. in [29], we get occasionally some random spikes
in the spectrum S(t). This is still under investigation. We currently use
Chambolle’s projection algorithm [14], which gives consistent results.

To approximate the second time derivative utt(t) we store in memory 3
consecutive time steps of u and use the standard central scheme:

D2u(n) =
u(n− 1) + u(n+ 1)− 2u(n)

dt
,

with n = 1, 2, .., u(0) = f , D2u(0) = 0. The time t is discretized as t(n) =
ndt. Therefore:

ϕ(n) = D2u(n)t(n) = n (u(n− 1) + u(n+ 1)− 2u(n)) , (15)

and the spectrum is

S(n) =
∑
i∈N

|ϕi(n)|, (16)

where i is a pixel in the image and N is the image domain. Finally we
discretize the residual part fr(t) using a forward time difference Du(n) =
(u(n+ 1)− u(n))/dt, to have:

fr(n) = u(n)−Du(n)n = (n+ 1)u(n)− nu(n+ 1). (17)

The discrete reconstruction formula for iteration n = N (equivalent to
Eq. (6)) is:

wN =

N∑
n=1

ϕ(n) + fr(N). (18)

We can now show the discrete reconstruction property:

Theorem 4 For any N = 1, 2, .. the following reconstruction property holds:
wN = f , where f is the initial condition u(0) = f .

Proof. We examine the expression
∑N

n=1 ϕ(n). For N = 1 we have

1∑
n=1

ϕ(n) = u(0) + u(2)− 2u(1).

For N = 2 we have

2∑
n=1

ϕ(n) = u(0)− 3u(2) + 2u(3).

We see that u(1) was canceled out. It can be shown by induction that only
u(0) and the last two time instances of u are kept in the following way:

N∑
n=1

ϕ(n) = u(0)− (N + 1)u(N) +Nu(N + 1).
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Taking into account that fr(N) = (N + 1)u(N)−Nu(N + 1) we get wN =
u(0) = f . �

Note that the above theorem does not rely on any property related to BV
functionals. Therefore, it can be valid for most scale-spaces. In particular,
the numerical approximation of the TV-flow does not have to be precise to
get a proper reconstruction (some properties, naturally, will be lost, and
visually we’ll see the spectrum smears).

3 Texture Processing

We present a texture processing application which can benefit from the TV
spectral framework. The idea is that natural textures most often have many
scales. One may want to remove, enhance or manipulate certain texture
scales, but leave untouched other textural and structural components. This
can be viewed as a sort of generalization of the structure-texture decompo-
sition methods such as [46, 38, 5, 4, 34, 24].

The spectral framework allows a straightforward way to accomplish such
tasks. The general approach can be describe as follows:

1. Compute the spectral components ϕ(t) and the spectrum S(t).

2. Manually or automatically, analyze the spectrum and choose the de-
sired spectral components ϕ(t), t1 ≤ t ≤ t2 to manipulate.

3. Change the targeted spectral components ϕ(t) to ϕ̃(t), t1 ≤ t ≤ t2 by
attenuating, amplifying or doing any spatial filtering to them.

4. Reconstruct the image using the manipulated ϕ̃(t) for t1 ≤ t ≤ t2 and
the original ϕ(t) otherwise.

In the simplest form, this is similar to some sort of band-pass filtering of
particular texture-bands. However one can also filter spatially those bands,
allowing more elaborated and new types of responses.

We’ll show two examples of texture filtering. We use here color images,
and therefore use a vector-valued total variation and a vectorial projection
algorithm, following the work of [9].

See Figs. 7 and 8 for examples of such processes. Note that in Fig.
8 we first roughly segment the skin and produce a fuzzy mask. Then the
attenuation of textures is only for the skin part (without processing the hair,
eyes or mouth). Here we have selective spatial attenuation of the texture
channels, which is more adapted to the image than band-pass filtering.

3.1 Feature Extraction

The spectral response S(t) can be used to characterize an image. It informs
us of the dominant scales and can be used when comparing images or as
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features for a machine learning algorithms. See Figs. 6, 9 for the spectral
response and selected elements ϕ(t) of two image examples.
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Figure 4: One dimensional example of ideal low pass filtering versus scale-
space low pass filtering. Top row, processing f1 (left), middle - response by
spectral filtering (full blue line), and by TV flow (dotted green line). On the
top right the spectral response is shown. On the bottom row an analogue
linear case filters f2 with Fourier ideal LPF (full blue line) versus linear
diffusion (dotted green line).

4 Examples

Examples demonstrating the qualitative properties of this transform are
shown below.

In Fig. 4 a 1D example is shown and compared with classical low-
pass-filtering in the Fourier domain. In the classical linear setting (bottom
row) we have: f2 = sin 2πφ1 + 0.2 sin 2πφ2, (in this specific example φ1 =
0.025, φ2 = 0.15). We compare two linear low-pass filters (LPF) - an ideal
LPF and linear diffusion. The ideal LPF (shown on bottom, right, dotted
line) keeps all low frequencies and sets to zero all frequencies above the
threshold. The diffusion processes attenuates more softly the frequencies
near the threshold (as it is not an ideal LPF). We observe that the ideal
LPF retains the low frequency with better contrast.

A signal with similar properties, adapted for the TV case, is shown
in Fig. 4 top row: f1 = sign(sin 2πφ1) + 0.2 sign(sin 2πφ2). The spectral
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f

Ideal low pass response uLPF Residual f − uLPF

TV flow response uTV F Residual f − uTV F

Figure 5: Comparison between the ideal low-pass filter response and TV-
flow. In both cases the response is shown for the minimal extent of filtering
in which the smallest circle completely vanishes. One sees the considerable
reduction of contrast of the larger circles in the TV-flow versus the sharp
and stable results of the ideal TV LPF.
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f S(t)
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Figure 6: Old Technion image. Results of ideal low pass filtering. This is
compared to TV-flow with equivalent filtering in the L2 sense (the norm of
the residual, ∥f − u∥L2 , is the same). In addition, two examples of ϕ(t) are
shown for different t values.
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f fr

Attenuated bands 2-3 Amplified bands 2-5

Band 1 Band 5

Band 15 Band 40

Figure 7: Texture processing. Attenuating or amplifying certain texture
layers of an orange. Image taken from [22].
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f Approximate skin mask

Mask-attenuated bands 3-4 Mask-attenuated bands 3-10

Figure 8: Texture processing. Removing texture layers from a face. Image
taken from [22].
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f S(t)
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Figure 9: Feature extraction example. Salient features ate depicted as spec-
tral peaks (top right). The first three spectral peaks are shown as Bands
I-III. These bands are reconstructed together at the third row, right. This
reconstruction is then superimposed on the image to show the localization
of the bands. Bottom right - a color coded visualization of the image with
the selected bands.
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response S(t) shows three active bands (t < 30 high oscillations, t ≈ 100 low
oscillations, and 200 < t < 250 low amplitude step). TV flow is compared
to ideal TV LPF, as defined above with filter threshold t1 = 30. The filter
response is illustrated in a dotted line at the top right. Note that in the
TV spectral setting high frequencies are on the left side (small t values) as
oppose to Fourier domain.

One can observe the very sharp transitions of the ideal LPF using the
spectral filtering. Note that filtering with ideal LPF may result in too sharp
transitions which can produce some reconstruction artifacts. This can be
the case both in the linear and TV settings.

In Fig. 5 four circles of different sizes are processed. The ideal LPF
is compared to TV-flow. In both cases the extent of filtering is such that
the smallest circle completely vanishes. One can observe that the ideal LPF
retains almost perfectly the larger three circles, whereas TV-flow erodes
their contrast considerably.

In Fig. 6 an image of a building with landscape is examined. The ideal
LPF response is shown along with a standard TV-flow filtering. In both
cases the L2 norm of the residual f −u is the same. The ideal LPF exhibits
sharper features. In addition two spectral elements ϕ(t) are shown. One can
observe that the spatial response for any ϕ(t) is highly localized with very
particular structures that emerge. The responses for the building windows
(seen as black and white structure on the bottom row) highly resemble
2D Haar wavelets, which can be related to the analysis of [43, 48]. Other
structures can be related to the explicit solutions of structures which retain
their characteristic function, as analyzed in [7].

In Fig. 9 a possible direction for image analysis is shown. The first most
salient peaks in the spectrum are examined (around times 60, 130, 170).
We band-pass filter them, as the response is not fully concentrated near a
singular time point. The composed three bands are shown on the third row,
right. They are superimposed back on the original image. It is shown that
they contain meaningful and well localized features with semantic meaning
(in this case the eyes). Therefore they may serve as good candidates for
image features in higher-level vision algorithms (e.g. face detection).

5 Conclusion

In this study a TV transform and a corresponding reconstruction formula
were presented. This transform yields large response to all image structure
which disappear at highly concentrated time intervals during the TV flow
evolution. We can regard these structure as the ”atoms” of the image, with
respect to the total variation functional and gain a spectral understanding
in the TV sense.

We have shown numerically that these structures are well localized spa-
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tially and often represent significant image features with semantic meaning.
Thus they can serve for image analysis and as input features to higher-level
vision processing.

Extensions of this framework and relations to other TV-based formula-
tions should be further investigated. For example, it may be the case that
inverse-scale-space [13] can be interpreted as TV spectral low-pass filter-
ing. Also other scale-spaces and regularization procedure, not based on the
TV-functional, may be generalized using a similar approach.
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