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Abstract

Associative processing systems draw a growing interest in the field of computer
vision. The ASP100 associative processor chip was designed primarily for
implementation of compact, easily extendible modular SIMD parallel
processing systems for real-time image processing and computer vision tasks.
The processor architecture, including 1K word associative memory array,
parallel image 1/O buffer and peripheral associative mechanisms, were designed
and implemented using VLSI CAD tools. The associative memory array
consists of two parts, one of them implementing the main processing and
storage unit, while the second one serving as an image I/O buffer operating in
parallel with processing of images. The peripheral associative mechanisms
include a fast response counting circuit, a select first circuit and a some/none
response circuit. Chip design and simulation combined two different
techniques: semi-custom (cell based) and full-custom. The design of basic cell
of CAM array is described including detailed analysis of design goals and
technology limitations. Physical (power consumption, silicon area, clock
generation) and design (interface between full custom and cell-based parts,
multilevel simulation) considerations were examined in detail. The ASP100
performance is estimated while performing some low-level and mid-level vision
tasks.
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1. Theoretical background

This thesis deals with the design and hardware implementation of a
highly parallel associative computer for image processing and computer vision
basing on an Associative Real Time Vision Machine (ARTVM) that was
introduced and developed by Ruhman and Akerib [1]. There are three basic
problem areas that must be integrated to produce an effective machine design:
computer vision, computer architecture and engineering. The computer vision
area is necessary to determine the desired facilities of a machine. The computer
architecture area determines what machine structure should be selected and
what basic techniques should be implemented to meet the requirements set by
computer vision area. The engineering problem deals with limitations of current
fabrication technology and determines what can actually be built within these
limitations. The present thesis is focused on computer architecture and
engineering areas. The practical goals are the design of a computer
microarchitecture, logic design and simulation, circuit design and simulation,
CAM array design, and at last re-evaluation and re-design of the ARTVM
architecture and its software model. This results in VLSI implementation of the
associative processor chip (designated as ASP100), that serves as a basic
functional block for the ARTVM.

1.1 Content addressable memory and associative processing

The Content Addressable Memory (CAM), also called an Associative
Memory is defined as a store whose registers are not identified by their name or
position but by their content [2]. Three basic operations are defined for a CAM
atray: compare, write and read. A CAM is accessed by broadcasting a data
value to all memory cells. This operation activates logic in each of the memory
cells, that compares the data stored in the cell to the pattern being broadcast. If
the values match, then the cell is selected. In specific CAM that the ASP100
associative processor is based on, there is a mechanism that makes it possible to
read and write contents of the selected cell. Compare, write and read operations
can be performed either on whole data stored in a cell or on a subset of they as
well. There are two registers usually associated with CAM. The
COMPARAND register stores the search value. The MASK register stores the



mask pattern, that is broadcast along with the search value such that only not
masked bits (fields) are activated in every CAM cell.

There are some additional mechanisms also provided by CAM. A Count
Tag mechanism allows counting the number of CAM cells selected by compare
operation. It is usually either very slow or; if fast, it requires expensive
hardware support. The Select First mechanism chooses the 'first' of the selected
CAM cells. This is essential for reading the CAM contents if more than one
cell was selected by compare., The RSP mechanism indicates whether any or
none of the cells was selected. In the ASP100, these mechanisms are
implemented as one-dimensional logic arrays.

Two main primitives of an associative processor based on CAM are
COMPARE and WRITE. Since this combination implements relation 'if
condition then action', all logical and arithmetic functions can be performed.
All operations of an associative processor are both word- and bit-parallel, that
makes possible parallel execution of many image processing and computer
vision algorithms and thus provide the desired performance.

1.2 SIMD parallel architectures for image processing

The quantity of data in an image is too great and the processing required
is too complex for a serial machine, in a reasonable amount of time. Image
processing and computer vision applications need parallel processing in some
form, Using well-known Flynn's taxonomy [3], a vision machine should be of
SIMD, MISD or MIMD class. The MISD one can be eliminated because
usually image processing application can not be effectively mapped onto such a
structure. The question is whether SIMD or MIMD is better. Theoretical ideal
solution is some combination of these structures and it is beyond. However, it
is known [2] that SIMD vision machines do provide the greatest speed for low
level image processing tasks. More specifically, it should be an architecture in
which there are a large number of processing elements (PE), each of which
operates on a single pixel or a group of pixels. The PEs in such machine are
arranged in some kind of network, that allows fast communication between
neighbors. The networks used are as follows: ‘

+ Two way (linear connection between neighboring PEs arranged in a linear
array). ' ' '



» Four way (PEs are arranged in a square grid; every PE connects to its north,
west, south and east neighbor). This type is also called mesh network.,
« Eight way (PEs are arranged in a square grid; every PE connects to all its
nearest neighbors).
The main difficulty in implementation of such an architecture is VLSI
technology limitations. The most important ones are chip size, I/O rate, number
of chips per board, number of boards, power dissipation of a single chip and the
whole system and operation frequency. Even today, using high density and low
power silicon technologies, there is still impossible to integrate such SIMD
machine on a single chip, for processing images of reasonable size and rate.
There are some machines that come close enough to providing the desired
combination of features and even have been actually built. Architectures 1 to 4
are examples of earlier massively parallel SIMD image processors, while 5 to 8
are examples of the latest designs in this area.

The first of these machines is CLIP-4. This is the fourth version of CLIP
machine series constructed in 1973-1975 at University College, UK [2]. The
CLIP-4 is a 96 by 96 array of bit-serial PEs, each with 32 bits of memory,
connected by an eight way mesh. The destination of the CLIP-4 was
processing of binary images. The only feedback mechanism provided by CLIP-
4 was fast response count circuit. One of the interesting features of this
machine is the separation of image processing and image input/output (I/O) that
was implemented by a set of shift registers.

The second design is Massively Parallel Processor (MPP), built for
NASA by Goodyear Aerospace Group [4]. This machine is one of most
advanced earlier parallel image processors. It contains 16,384 PEs arranged in a
128 by 128 four way connected mesh. Each MPP PE is a bit serial processor
with 1024 bits of memory. The only feedback mechanism in this machine is
some/none responder. There is no response counter circuit. The limitation of
this machine is relatively small array size, so images are processed region by
region. : _ '
The third machine is Content Addressable Array Parallel Processor
(CAAPP) designed by Weems in 1984 [2]. Most of the goals towards design of
a real time associative. SIMD image processor defined by Weems are still valid
now. These design goals are: |

1. Host driven architecture

2. Image I/O in a video frame time
3. 512 by 512 array of PEs (PE per pixel)
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According to the design goal set, the CAAPP consists of 512 by 512 array of
bit-serial PEs connected by four way square mesh. The CAAPP machine was
divided into 64 boards, 64 chips per board, 64 PEs (configured as 8 by 8 mesh)
per chip. The interchip communication is implemented by bit serial shift
network. Thus all PEs in a chip can be configured as two way linear array, such
that only two bounding PEs have an external bit-serial connection. The
estimated performance of this machine is in range 1 to 10 GOPS.

The fourth machine is LUCAS designed by Fernstrom, Kruzela and Swensson
in 1986 [5]. This LUCAS is a linear array of 128 PEs. Every PE contains 4K
CAM, ALU and Select First circuit. Every PE of the LUCAS can be directly
connected to seven different PEs. One interesting feature of this machine is a
built-in perfect shuffle-exchange network, dedicated FFT calculation. The
LUCAS can perform maftrix multiplication of 128 by 128 matrix (usmg 8 bit
fixed point multiplication) within 0.5 sec.

The fifth machine is an Associative String Processor (ASP) designed by Aspex
company [20,21]. This machine is organized as linear array of ASP modules
connected'by a communication network. Every ASP module contains stn'né of
ASP PEs connected by an internal communication network and data interface
unit that contains a vector data buffer and data exchanger. Every PE consists of
70 bit CAM, one bit ALU and control logic. The ASP performance is 10 - 100
GOPS, while performance/cost ratio is about 10 MOPS per $1,000.

The sixth design is an associative real time vision machine (ARTVM) designed
by Ruhmam, Scherson and Akerib in 1985-1993. The ARTVM is a full
associative processor. It contains 256K lines CAM, fast count circuit, select
first circuit and RSP (some/none) circuit, linear shift network for
communication between PEs (a PE is associated with each CAM line) and



image 1/O buffer (dedicated for load/dump images simultaneously with
processing).

The seventh architecture called CAPRA was designed by Grosspietch and
Reetz in 1992-1993. The main feature of this machine is three level memory
organization. Every PE is associated with RAM line, CAM line, and content
addressable processor/register (CAPR), that contains 4 bit fully parallel ALU.
Some interesting feature of CAPRA is that a photo sensor, an A/D converter
and the processor are integrated on the same piece of silicon.

The eighth architecture, the GLiTCH Associative Processor was designed by
Storer and Duller in 1987-1993. The machine is partitioned into a number of
dies, each of them containing 64 PEs and image I/O buffer. Every PE contains
64 bit CAM and one-bit ALU. The data communication network is
implemented as a linear shift register, one bit of which is associated with each
PE. There is a some/none response circuit. A 64 PE test chip designed using 2
m CMOS combined 90K gates. Power dissipation was 1W and operation
frequency was 20MHz.

The common feature of these machines (both those that have been actually built
and those only evaluated) is that none has been dedicated for general use, like
personal computers. The common limitations of a massively parallel SIMD
vision machine are;

1. Technology restriction

Silicon technology of recent years did not provide the desired level of
integration thus there was not possibility to allocate a reasonable number of
PEs on a single chip. Addition problems caused by partitioning of the system
are necessity to simplify a communication network due to chip pad limitation,
decreasing of operation frequency, complex control and high synchronization
requirements.

2. Physical size

In order to process an image of reasonable size (256 by 256 or 512 by
512) in real time mode, number of PE in an associative machine should be
128K - 256K. Number of PEs per chip can be between 1K to 4K using current
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silicon technology. Number of chips per board can be among 8 to 32. It means
the number of boards in a system is 4 to 64. An example of system integration
is CAAPP that was divided into 64 boards, 64 dies per board.

3. Power dissipation

A massively parallel SIMD machine achieves its best performance while
all image data are processed in word-parallel manner. In some type of machines
processing is restricted to bit-serial. Nevertheless, associative processing could
be word- and bit-parallel. It means that activity ratio of an associative machine
on-chip hardware is much higher than that of a regular processor. Thus, power
consumption of a SIMD machine chip is quite high. The second factor is a high
number of such chips in the system. Result power consumption could be among
hundred to 1K watts,

4, Cost

The cost of a massively parallel SIMD vision machine is highly affected
by all technical limitations. Thus, high power consumption and number of chip
pins define the package type, while package cost is a great part of a chip cost.
Chip size and number of T/O pads define the board size affecting the overall
cost of system. Special software, control circuits, some peripheral and interface
mechanism are components of high systems cost.

The follows design issues were selected for comparative analysis of the SIMD
vision architectures:

1. Performance

The main purpose of all architectures described above is meeting real time
image processing and computer vision requirements. This purpose is achieved
by implementation of massively parallel computation, on all image data
simultaneously. There are some machines employing PE per pixel strategy,
while the others utilize a single PE for processing of multiple pixels.
Obviously, the first group provides better performance due to higher
parallelism level. From the other hand, there are three different groups of
architectures, employing various types of processing element. First group is
based on associative memory only, without a dedicated hardware for data
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processing. The second one utilizes one-bit arithmetic/logic unit serving for
data processing in every PE. The third group does not conceptually differ from
the second one, employing a bit parallel ALU. Actually, most SIMD vision
architectures belong to group 1 and 2 or 1 and 3, using both associative
memory and dedicated ALU in every PE. The best performance is obviously
achieved by the third group architectures, while the full associative machine is
probably the ‘slowest’ one. This result stays true while considering regular
arithmetic/logical operations. Nevertheless, the associative machine is
inherently both word-parallel and bit-parallel processor, therefore it can
overcome other architectures while performing bit-parallel algorithms (like
mathematical function calculation via look-up tables).

2. Integration

This point is very important due to enormous physical size of a SIMD vision
machine. Unfortunately, most advanced architectures have most irregular
structure, therefore integration level of such machines is very small. Moreover,
memory is much denser than random logic, therefore full memory based
architecture has inherently higher integration level (even using a special CAM
cell) rather than ALU-based one. There is no explicit information about
integration level of different SIMD machine design, therefore the complete
quantitative analysis is not possible. Nevertheless, since integration level
actually defines the cost of the system, some comparisons can be made basing
on the cost information. Thus, the most advanced Associative String Processor
cost is estimated at =$1,000,000 ,while the ASP100 based ARTVM one is
estimated at ~100,000 (for prototype, icluding NRE).

3. Power consumption

As mentioned above, all SIMD vision machines have very high power
consumption due to both high parallelism and high activity factor. Obviously,
power consumption due parallelism is essential for every SIMD architecture.
On the other hand, power consumption of a single PE differs for various
architectures. Generally, it is proportional to the performance. Thus, the bit-
paralle] ALU PE has highest consumption (including dissipation in memory
array during load/store operations and in random logic during calculations),
while the associative PE probably has the lowest power consumption,

.14 -



1.3 Goals towards design of an associative real time vision
machine

Given all constraints and limitations claimed in the previous section, the
designed goals should be selected very carefully. The main purpose of design
goal selection is definition a strategy that allows both achieving the desired
features and keeping resulting design within reason taking into account the
current technology state. Some goals stay the same as were defined by Weems,
while others modify to meet technology advancing and destination variation.

The first goal is that the machine be driven by a host processor. The preferred
host could be a personal computer (PC), such that the vision machine can
probably be integrated within extended PC system. The host would
communicate with a dedicated controller that will direct the vision machine
operations. '

The purpose of the vision machine is processing of an image or sequence of
images in real time. This requires image I/O at video frame rate (1/30 sec) at
least. In most massively parallel vision machine architectures there is a
dedicated mass storage device (shift register block), that implements an image
I/0 buffer and operates in pipeline with processing an image. Thus, the second
design goal is video rate image I/C.

The third goal is an efficient communication between PEs. The most useful
communication networks are, as mentioned above, linear two way network,
four and eight way mesh and 'one to some' network. Some machines implement
special purpose networks like shuffle-exchange one. There is a clear trade-off
between throughput of such a network to its implementation complexity, like
internal chip routing and board routing. Thus the eight way network is probably
most attractive from throughput point of view. However, until the machine can
be integrated within a single chip, the number of chip external connections is
unreasonably large. From the other hand, two way network is most simple for
implementation but its throughput would not satisfy some image processing
tasks. One possible solution is separation of inter-chip and intra-chip
communication and using two different communication rates. However, this
does not solve communication problem for low level vision algorithms, in
which the same processing is carried out on all image date at the same rate.

_ 15 .



According to this, the goal is to provide as high throughput as possible under
limitation of chip pad number.

The fourth design goal is one PE per each pixel. The PE per pixel concept was
first used in CAAPP. It became to a basic design philosophy since PE per pixel
style of programming is conceptually much simpler than that of group of pixels
per PE. In addition, this approach does simplify a microarchitecture of a chip
and shorten design time.

The fifth goal is a full associative processing. Most SIMD vision machine PEs
have some arithmetic/logical unit. Usually, it serves as accelerator, or ‘co-
processor' for arithmetic and logic operations. The consideration to avoid this
mechanism is that such machine already has extremely high performance due to
highest level of parallelism, and it is rather important to reduce the size and
power consumption than to increase the performance. The practical reason for
this is a fact that a memory (even associative one) is much dense and consumes
less power during operations than random logic. -

The sixth goal is an optimal trade-off between bit-serial and bit-parallel
processing. This approach allows using bit parallel processing whenever it is
possible. Most associative arithmetic and logical operations are carried out in
bit-serial manner. Therefore, activity of the CAM array is quite low.
Nevertheless, there is a great challenge to develop new algorithms or to adapt
the known ones to let them to use the CAM in bit-parallel manner. An example
to such ‘associative' approach is mathematics function calculation. In an
ordinary processor, such function is calculated by a sequence of arithmetic
operations, using series. In associative processor, a function of n-bit argument
can be calculated in 2" cycles using 'look-up table' approach, with no arithmetic
calculation. '

The seventh goal is an appropriate selection of the CAM width (wordlength).
According to recent researches, 32 bit width is sufficient for most black-white.
image processing applications. The goal of the current design is ability to
process color images at first, and ability to implement some high level
computer vision algorithms at second. This requires 48 - 64 bits per CAM line.

The eightieth design goal is integration of image I/O buffer and processor itself
into a common CAM array. This approach is based on ability of CAM to
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operate as two-dimensional memory, that allows fast exchange between buffer
and processing array. This leads to an addition goal, that is building buffer with
a variable width. This allows very high utilization of the CAM storage. For
example, if the machine processes the color images, then buffer width is
maximal (24). Otherwise, buffer width is 8, and rest of the array space is used
for processing.

The ninth goal is to implement all peripheral mechanisms associated with a
CAM, namely fast response count circuit, select first circuit and RSP
(some/none) circuit. Introduction of these circuits allows fast implementation of
classic associative techniques, like searching for patterns, sorting, look-up
tables, histogram calculation etc..

The tenth goal 1s arranging the machine architecture and design in most suitable
for VLSI design manner. This means including considerations like instruction
set, chip physical size, power consumption, layout and floorplan, number of
pads and so on into all stages of top to bottom design.

2. The ASP100 - associative computer chip for image
processing and computer vision.

The ASP100 is an associative processing chip. It is intended to serve as part of
the Associative Real Time Vision machine, most likely in an array of multiple
ASP100 chips, and in conjunction of a dedicated controller chip.

The ASP100 consists of an associative memory array of 1K72x bits, peripheral
circuitry, image FIFO 1/O buffer, and control logic. The ASP100 runs under a
special software dedicated for efficient implementation of arithmetic-logical
operations and data transmission using associative techniques. The top-level
architecture of the ASP100 is described in section 2.1. Software model and
instruction set are discussed in section 2.2. Detail description of the ASP100
microarchitecture and building blocks is given in section 2.3. Some important
design limitations and restriction are discussed in section 2.4. Section 2.5
describes design of the CAM array, including design goals and considerations,
basic cell classification and implementation, design of response count, select
first and RSP circuits. At last, section 2.6 describes the ASP100 multilevel
simulation.
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2.1 Top-level architecture

The top-level view of the ASP100 is shown in Figure 2.1. ARRAY is the main
CAM processing array. FIFO is the image I/O buffer, that serves for image
load/dump. The ARRAY and the FIFO are integrated into a common CAM
MATRIX. SIDE is the side array, consisting of the TAG register, the tag logic,
the response count circuit (tag count), the select first circuit, the RSP
(some/none response) circuit, the line drivers and sense amplifiers, and the shift
network. TOP consists of the mask and comparand registers, control circuits
and column drivers. BOTTOM contains the output register and sense
amplifiers. The following Table 2.1 contains the partial pin list of the ASP100
chip. '

VIN | PBUS SHBUS High
TOP
{
MATRIX
FIFO - ARRAY SIDE b

— |

VOUT BOTTOM
SHBUS Low

Figure 2.1: The ASP100 top level view
1007970/8 DY DY 5N N 2.1 91N
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Table 2.1 Pinout of the ASP100 chip

Enable FIFO I/O

Pin Name Description 1/0 | #pins
DBUS Data bus, serves CAM read out and Datain | [/O | 32
VIN Video In Bus I 24
VOUT Video Out Bus O 24
SHBUS Shift network In/Out /O |32
CTAG Count Tag Serial Cutput O 1
RSP RSP (response exists) O 1
CLK First Clock (25 MHz) I 1
DCLK Delayed Clock (25 MHz) I 1
FFUL FIFO Full (Image I/O Completed for the | O 1
chip)
FIRSTIN Initialize select first circuit I 1
LIN Shift Up Enable I 1
HIN Shift Down Enable I 1
WE Write Enable I 1
SETAG Set Tag I 1
FIRCNTEN | Connects tag to select first and response | I 1
count circuits
FENB I 1

2.1.1 Processing ability

The processing core of the ASP100 associative computer chip is a classical bit-
and word-parallel CAM array. The main associative primitives of the ASP100
are compare and write operations. During write operation, the data stored in the
comparand register is written into selected fields. During compare operation,
the data stored in every CAM line are compared with a pattern being broadcast
along by the comparand register. If the patterns match, an appropriate bit of the
tag register is set high. In both write and compare operations, the active fields
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are selected both by a value stored in mask register and a value stored in tag
register, The selection based on tag register creates mechanism of conditional
write depending on results of compare, that actually allows implementation of
an arbitrary logical/arithmetic operation [6]. Obviously, this operation is
executed in word- and bit-parallel manner for a great amount of data.
Computational power of the ASP100 can be shown using example of vector
addition operation, depicted in Figure 2.2, This operation is executed in word-
parallel and bit-serial manner. Before execution, the vector operands are
located in two CAM fields (A and B). The result sum is written into field B
(destructive addition). A carry vector generated during operation is stored in an
additional CAM column. In every operation step, only three bit slices (of A and
B respectively, and current carry slice) are activated. Then, contents of selected
columns are compared with sequence of input combinations (according to
Table in Figure 2.2), and sum-carry pattern is written to result field in matching
lines. An advantage of destructive addition is that input combination that does
not change value stored in result field (see Table in Figure 2.2) does not have to
be checked. This can provide significant reducing of computation time, but
order of comparisons becomes important. One bit binary addition involves four
compare-write cycles {11]. Both compare and write ASP100 instructions
occupy a single clock cycle then execution time of n-bit addition is 8r. This
means the ASP100 can add up 1K 8-bit operands within 64 clock cycles.

There are additional computational facilities based on peripheral
associative circuits. Thus, the response count mechanism is very useful for
‘mass addition-accumulation operations, that run over all data stored in CAM.
Examples of such operations are histogram calculation, since the result value
equals to number of logic 'l's stored in the tag register, and mean square error
calculation, since the result is an accumulated sum of values allocated in a
certain CAM field. The RSP some/none mechanism is useful for control of
iterative computational processes, in which a break condition occurs if RSP
returns zero. The select first mechanism provides a serial access to selected
CAM lines if there is necessity to read them.
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CAM array during addition CAM array after addition
A C B C A+B jorder
0 0 0 0 0 -
0 0 1 0 1 -
0 1 6 0 1 1
0 1 1 1 0 2
1 0 0 0 1 4
1 0 1 1 0 3
1 1 0 1 0 -
1 1 1 1 | -

Figure 2.2: Associative addition
YVNINIDN 91300 2.2 1Y

2.1.2 Data communication

Data communication problems in massively parallel SIMD machines were
considered and discussed in the previous sections. According to ASP100 design
goals, the data communication network has to provide a maximal flexibility and
speed data transmission under constraint of chip pin number and
internal/external routing complexity. Obviously, in actual chip desigh this
constraint is a fuzzy one. The number of pins provided by available packages
(supplied by ASIC fabs) reaches 400-500. For reasonable amount of PEs per
chip (1-2K), even full four way mesh (requiring about 200 external
connections) becomes feasible. Nevertheless, the internal/external routing
factor (that is usually defined as ratio between area occupied by wires to area
occupied by devices) is too high for such kind of communication network.
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Unfortunately, we found no quantitative criterion, that can aid in configuring an
optimal network a priori. Thus, the design of communication network was
based on practiéal reason and trial and error, In the: ASP100 communication
network (designated as shift network) every PE (actually, a bit of the SIDE
array associated with the CAM line) is connected to its south and north nearest
neighbors and to its south and north neighbors located by b positions apart.
Formally, every j-th PE (je1,..,,N, where N is the SIDE array length) is
connected to (j-I)-th, (j+I)-th, (j-b)-th and (j+b)-th PEs (overflows are sent off
chip). Image is normally loaded into the ASP100 by raster scan. Therefore the
line neighboring pixels are physically allocated in neighboring PEs. Column
neighboring pixels are spaced by N positions., Thus the ASP100 shift network
can transmit data in line direction within a single cycle, while transmission in
column direction takes (N/b) cycles. If N=b, the ASP100 shift network
becomes a regular four way mesh. Design experience shows that optimal values
of b (under constraints we defined earlier) are 16 or 32.

2.2 Software model

Software model of a real time associative vision machine contains full set of
operations defined for classical CAM. The basic CAM primitives (group 4 of
Instruction Set, see Table 2.2) support arithmetic and logical operations. An
additionally defined read instruction (group 5 of Instruction Set) is dedicated to
support a random access to the CAM., Count Tag and First Select instructions
(group 5 of Instruction Set) activate fast response count and select first circuit.
There is no instruction activating the RSP circuit, which is instantaneous. Shift
Tag instructions (group 3 of Instruction Set) activate the shift network
supporting data transmission. Set and Let instructions (group 1 of Instruction
Set) serve for load of search and mask values to comparand and mask registers
respectively. All instructions of this group can affect only one sector (see
Section 2.3.1. for definition of sector). Exclusive instructions operate on
specified sector clearing two others. These instructions were defined to
guarantee reducing number of active CAM columns decreasing peak power
consumption of the chip. SetTag and ResetTag instructions (group 2 of
Instruction Set) set TAG register high or low respectively. Configure FIFO
instruction (group 5 of Instruction Set) defines the I/O buffer area
disconnecting it from the processing array. All ASP100 instructions except
instructions of group 5 have a single cycle execution time. In the ASPI00
Instruction Set there are three types of instructions:
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i

Instruction without operand

One operand instruction (operand is sector number)
Two operand instruction (first operand is sector number, second is 24-bit

data word)

The ASP100 instruction format is shown in Figure 2.3. It contains generally
one bit for NOP, seven OpCode bits and 24-bit for second operand. The first
operand if needed is included in OpCode field. The actual ASP100 instruction
set is shown in Table 2.2

31 30 23

L Operand

OpCode

NOP bit

Figure 2.3: The ASP100 Instruction format
1007079/ YW N0 11y 2.3 Y

In the table, d(n) is a n-bit argument, n=24, and s(2) is a 2-bit sector number.

Table 2.2 The ASP100 instruction set

No. Instruction Format | Cycle
s

Group 1

1 Load Mask LM s(2),d(24) |1

2 Load Comparand LC s(2),d(24) 1

3 Load Mask and Comparand LMC s(2),d(24) |1

4 Load Mask, Clear Comparand LMCC 1

s(2),d(24)
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5  |Load Mask, Clear Comparand Both Exclusive | LMCCXX 1
$(2),d(24)

6 Load Comparand, Set Mask LCSM 1
s(2),d(24)

7 Load Mask Exclusive LMX s(2),d(24) 11

Load Comparand Exclusive LCX s(2), d(24) |1

9 Load Mask, Set Comparand LMSC 1
s(2),d(24)

10 | Set Mask Exclusive SMX s(2) 1

11 [Set Comparand Exclusive SCX s(2) 1

Group 2

12 {Reset Tag RESETAG 1

13 |SetTag SETAG 1

Group 3

14 | Shift Up SHUP 1

15 |Shift Down SHDN 1

16 |Long Shift Up (16 places) LGUP 1

17 |Long Shift Down (16 places) LGDN 1

Group 4 ‘

18 |Compare COMPARE 1

19 |Write WRITE i

Group 5

20 |Read READ s(2) 3

21 {Count Tag COUNTAG 31

22 |First Select FIRSEL 23

23 |Configure FIFO - CONFIFO 1

\ d(2:0)
Group 6
24 [NoOp NOP 1
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Current ASP100 instruction format allows parallel execution of instruction of
different groups. According to this, instructions of either group 1 and 3 or
groups 1,2 and 4 can be carried out in parallel. Examples of such 'horizontal
instructions can be {LMCXX (operand 1, operand 2); SETAG; WRITE} and
{LMCXX (operand 1, operand 2); SETAG; COMPARE] fitting the ARTVM
theoretical software model [11].

2.3 Microarchitecture and operation

2.3.1 ARRAY-FIFO (MATRIX) architecture

The MATRIX is a CAM array of 1024 by 72 associative processing elements,
logically organized in three columns of 24 elements each, and physically split
into three blocks of 342x72. Logic column of 1024 by 24 elements is
designated as sector. Therefore, there are three sectors, 0 to 2. The ARRAY
part of matrix operates as main processing array. Sectors O and 1 of the
MATRIX belong to the ARRAY only. Sector 2 of the MATRIX is
reconfigurable as follows:

1. All 24 bits serve as FIFO (total ARRAY width is 48).
2. 16 bits FIFO, 8 bits ARRAY (total ARRAY width is 56).
3, 8 bits FIFFO, 16 bits ARRAY (total ARRAY width is 64).

The first configuration is used for processing of RGB images, the second one is

used for stereo vision, and the third one used for black and white image

processing. Integration of ARRAY and FIFO allows better utilization of the
CAM array area and improves the chip layout.

The associative processing element (APE) is a CAM basic cell. It consists of
three parts:

Storage device;

‘Write device;
Match device.
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There are three vertical incident buses and four horizontal incident buses in the
associative processing element: ‘

Vertical: Bit Line (BL)
Inverse Bit Line (IL)
Mask Line (MASK)

Horizontal: | Write Line (WL)
Match Line (ML)
VDD
VSS (GND)

The Storage device consists of two cross coupled CMOS invertors. The Write
device implements the logical AND of MASK and WL. The Write device
purpose is supporting both vertical and horizontal masking. Therefore, only
cells selected by both MASK and TAG registers are affected by write
operation. The Match device implements a dynamic EXCLUSIVE OR (XOR).
Its goal is implementation of COMPARE operation. The schematic circuit
diagram of the associative processing element is shown in Figure 2.4. More
detailed description on modes of operation, design goals and considerations of
CAM basic cell design is given in Section 2.5. The MATRIX interconnection
structure is depicted in Figure 2.5,

N —I |_ - ML
b
i
sk | ﬁuﬁ B ;{JASK

Figure 2.4: The associative processing element
FIAYVNIFION PAY NN 2.4 ANy
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APE APE APEH
— I WL

T TTT I o

Figure 2.5: The MATRIX interconnection structure
MATRIX 9w 030 ©y992%0 H3an 2.5 19y

The FIFO is designed to input and output image data in parallel with
computations carried out on the ARRAY, It consists of a reconfigurable matrix
of 1024x[24 or 16 or 8] APEs, three columns of 1024 Bi-directional Switches
each, and Address Generator (Figure 2.6). The corresponding section of the
Comparand register (in TOP) serves as the FIFO input register, and the
corresponding section of the Output Register (in BOTTOM) serves as the FIFO
Output Register. The FIFO Controller FC resides in TOP.

The Address Generator consists of a shift register and implements a sequential
addressing mode. It selects the currently active FIFO word line during image
1/0. '

The FIFO has two modes of operation, IMAGE I/O Mode and IMAGE
EXCHANGE Modes. The bi-directional Switches (one column of the three)
disconnect the FIFO from the ARRAY in IMAGE I/O Mode (see below) and
connects the FIFO to the ARRAY in IMAGE EXCHANGE Mode, creating a
combined array of APEs. The Input and Output Registers serve as buffer
registers for the image I/O.
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CO:;SS@,_’ FIFO Input Register (part of Comparand)
by I 1 4 I 1 L4
C1024*8 [ 10248 10248
APEs APEs APEs
|| L\ L]
vy v vy v vy !

FIFO Output Register (part of (\S)utput Register)

VOUT
Address generator

Figure 2.6: The FIFO

IMAGE I/O Mode

Bi-directional
switch

In IMAGE I/O Mode, a new image is read into the FIFO, while the processed
(preceding) image is written out. The IO activity is performed asynchronously

of the computation in the rest of the chip.

The basic operation of IMAGE 1/O mode is carried out as follows. The pixel at
the VIN pins is entered into the FIFO Input Register (the FIFO section of the
comparand register). The Address Generator enables exactly one word line.
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The corresponding word is read into the FIFO OQutput Register (the FIFO
section of the Output Register), and through it directly to the VOUT pins, in an
operation similar to Read execution. Subsequently, the word in the FIFO Input
Register is written into the same word, similar to 2 Write execution. The VOUT
pins are 3-state. They are enabled and disabled internally as needed.

This sequence of operations is carried out in a loop 1024 times.

Multiple ASP100 chips can be chained together with an 'Enable FIFO'/FIFO
full' (FENB/FFUL) chain, where the first ASP100 receives the FENB from an
external controller, the FIFUL of each ASP100 is connected directly to the
FENB input of the next chip, and the last FFUL goes back to the controller.

IMAGE EXCHANGE Mod

In IMAGE EXCHANGE Mode, the image previously loaded into the FIFO is
transferred into the ARRAY for subsequent processing, and the previously
processed image from the ARRAY is transferred to the FIFO for subsequent
output. These transfers are carried out via the TAG register of the SIDE block
by a sequence of COMPARE and WRITE instructions, as follows:

IMAGE IN

A destination bit slice of the ARRAY is masked by MASK register and is then
reset by a chain of {SETAG; LC (0); WRITE} instructions (which can all be
executed in one cycle). A source bit slice of the FIFO is masked by the MASK
register. The contents of the bit slice are passed to the TAG register as a result
of the COMPARE operation. The destination bit slice is masked again and then
the contents of the TAG register are passed to the destination bit slice by a
{SCX; WRITE} operation. In summary, the following three cycles are
employed:

FOR (all bit slices of FIFO)

{
LMCCXX (sector 0/1/2, destination ARRAY bit) ; SETAG; WRITE;

/* reset destination bit slice in the proper array sector */
LMC (sector 2, source FIFO bit); COMPARE;
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I* copy source slice (FIFO sector) to TAG */
LMC (sector 0/1/2, destination ARRAY bit); WRITE;
/* copy TAG to-destination in the proper sector */

IMAGE QUT

This operation is carried out in exactly the same way as IMAGE IN, except that
a destination bit slice is allocated in the FIFO while a source bit slice is
allocated in the ARRAY. Note that IMAGE EXCHANGE operation requires
two different fields in the ARRAY (a first field for allocation of a new image,
and a second one for temporary storage of the processed image). The two
operations (IMAGE IN and IMAGE OUT) can be combined in one loop.

2.3.2 SIDE Architecture

The SIDE block contains the TAG register, the shift network (containing
NEAR neighbor connections and FAR neighbor connections), the response
counter, the select first circuit, the RSP circuit, and the required horizontal bus -
drivers and sense amplifiers.

The TAG register consists of a column of 1024 TAG_CELLs. The TAG_CELL
is shown in Figure 2.7. The TAG register is implemented by D flip flop (FF)
with an asynchronous set input and non-inverse output. The input is selected by
means of an 8-input multiplexor, with the following inputs: FarNorth,
NearNorth, FarSouth, NearSouth, MatchLine (via sense amp), TAG (feedback
loop), GND (for tag reset), and select first circuit output.

The NEAR neighbor connections interconnect the TAG_CELLSs in an up/down
shift register manner to nearest neighbors. They are typically employed for
neighborhood operations along an image line, since pixels are stored
consecutively by lines. The FAR connections interconnect TAG_CELLs 16
apart. They are typically used for neighborhood operations between image
lines. See Figure 2.8.
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29y

In this design, b=16

wenb

WL
and

InAddr

RstCnt
e —



The following instructions affect TAG: SETAG, SHUP, SHDN, LGUP,
LGDN, COMPARE, FIRSEL..

The response count circuit counts the number of TAG_CELLSs containing '1'. It
consists of three iterative logic arrays of 1342x cells each. Every logic array
consists of 18 pipeline stages, 19 cells each. See Figure 2.9. The side inputs of
the counter are fed from the TAG register outputs. The count circuit operates in
a bit-serial mode, starting with the least significant bits, The operation is '
executed within two phases: initial and iterative, Both phases are pipelined,
starting with the topmost pipeline stage and propagating downwards. In the
initial phase (it occupies a single clock cycle), the adder section inputs are
connected trough the mux to outputs of TAG register (respin). In the iterative
phase (it occupies [log,19] =5 cycles) the adder section inputs are connected to
the FFs outputs. In each cycle, the carry bits are retained in the FF for the next
cycle, and the sum is propagated down to the next stage. The outputs of all
three blocks are added by a summation stage, which generates the final result in
a bit-serial manner, Response count circuit is activated by the COUNTAG

instruction.
InAddr cntin
respin
adder - FF
mux »  section
Y
b
v cntout

RstCnit

Figure 2.9 a: Response count circuit cell
MANN NYOTY 119230 DY NI /N2.9 1
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tag[18:0] tag[361:343 tag[702:684
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stage
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Figure 2.9 b: Response count circuit pipeline
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The select first circuit finds the first TAG_CELL containing 'l’, and resets all
other TAG_CELLs to '0'. It is activated by the FIRSEL instruction. The
beginning of the chain is fed by external initializing signal ('first in'), and if it is
L.OW then all TAG_CELLSs are reset to '('. This is intended to chain the FIRST-
SELECT operation over all ASP100 interconnected together, and the OR of the
RSP outputs of the lower-numbered ASP100 should be input into 'first in'.
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Figure 2.10: Select First Circuit
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About 60% of the SIDE unit hardware belong both to select first and response
count circuits. These circuits respond every change in TAG register but outputs
of these circuits are read during COUNTAG and FIRSEL instructions only.
This means power can be saved either if these circuits are disconnected from
the power supply lines or their inputs are disconnected from TAG outputs
whenever the circuits are not active. The second technique is much simple
while saving about 95% of power consumption of the circuits (in VLSI CMOS
process only 5% of power consumption is not due to charge/discharge of
capacitance). The TAG outputs can be disconnected from the select first and
response count circuits by pulling FIRCNTEN control input to '0',

The some/none responder (RSP) circuit generates '1' on the RSP output pin
after COMPARE instruction, if there is at least one 'l' TAG value. This output
is registered in order to keep the response until next compare occurs.

The sense amplifier of the Match line is shown in Figure 2.11. The sense
amplifier is implemented by an unbalanced inverter with enable inputs. The
enable inputs (Penb and Nenb) allow disconnecting the Match line sense
amplifier from the power supply lines in order to save power whenever the
sense amplifier is not in use. The Match line sense amplifier design is
described in detail in Section 2.5
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Figure 2.11: ML Sense Amplifier
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2.3.3 TOP Architecture

The TOP block consists of the COMPARAND and MASK registers and their
respective logic, and the vertical bus drivers. See Figure 2.12.

I DBUS
L 4 ‘ ¥
FIFO Mask Comparand
Controller I I
' Top A
Logic Control

Pipeline

Yo 1T |

Figure 2.12: The TOP
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The COMPARAND register contains the word that is compared against the
ARRAY. It is 72 bits long, and is partitioned according to FIFO configuration.
It is affected by the group 1 instructions. As mentioned above in Section 2.2, all
these instructions affect only one of the three sectors at a time, according to the
sector bits. The exclusive instructions also clear the comparand bits of the non-
addressed sectors. The FIFO section of the COMPARAND operates
differently, as described above in Section 2.3.1.

The MASK register masks (by '0") the bits of the COMPARAND which are to
be ignored during comparison and write. The Bit Lines and Inverse Bit Lines of
the masked bits are kept at '0' to conserve power. It is affected by group 1
instructions. Like in COMPARAND, the relevant instructions affect only one
sector at a time, whereas exclusive ones also clear the mask bits of the non-
addressed sectors. The FIFO section of the MASK operates differently, as
described above in Section 2.3.1.

The 24 bit data input from DBUS (the operand) are pipelined by three stages,
so as to synchronize the operand and the corresponding control signals,

2.3.4 BOTTOM Architecture

BOTTOM contains the Read sense amplifiers, ‘the Output Register, the RSP
Output Logic and Response Count Output logic. See Figure 2.13.

The Read sense amplifier is shown in Figure 2.14. Since the ARRAY is
phystcally organized in three columns, the output of the three Read sense
amplifiers must be resolved. A Sense Amplifier Resolve unit (see Figure 2.13)
selects which column actually generated the output, as follows:

READ: Select the column whose RSP is true,

FIFO OUT: Select the column in which the address token is in.

The Output Register is 72 bits long. 8 or 16 or 24 bits serve the FIFO and are
connected to the VOUT pins, On READ operation, one of the three sectors
(according to the sector bits) is connected to 24 bits of SHBUS via a
multiplexor. See Figure 2.14.
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SHBUS multiplexor connects bits [15:0] (bit O is LSB) of the Qutput Register
to SHBUS[15:0], and bits [23:16] of the Output Register to SHBUS[23:16].

The SHBUS I/O buffers control whether the SHBUS is connected as input or
output, and are controlled by special control signal.

M
Top ‘
X

i SHBUS
] T/O Buffers

=

MATRIX SIDE
SHBUS

BOTTOM | M .’gm
X

SHBRUS
.1/O Buffers

Figure 2.15: Read Output connection to SHBUS
SHBUS & nxtrap nndryr 1430 2,15 99y

2.3.5ASP100 pipeline and microcontrol notes.

The ASP100 is controlled by means of an external microcoded state machine,
and it receives the decoded control lines. The external microcontroller allows
horizontal microprogramming with parallel activities. |
The combined operation of APS100, its microcontroller, and the external
controller is organized in a five-stage instruction pipeline, consisting of the
following stages: Fetch, Decode, microFetch, Comparand, and Execute. In the
Fetch stage, the instruction is fetched from the external program memory, and
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is transferred over the system bus to the IR. In the Decode stage, the instruction
(from the IR) is decoded by the microcontroller and stored in the ulR. In the
pFetch stage, the control codes are transferred from the external pIR, through
the input pads, into the internal pIR. In the Comparand stage, parts of the
execution that affect the Comparand register are carried out, and the control
codes move from the internal pIR to the internal pIR2. In the Execute stage, the
execution in the ARRAY and other parts takes place. See Figure 2.16,

!

1 Program Fetch
Memory

Y.

9 microROM Decode

System
"""""""""""""" ASP100
3 Pads microFetch
4 Comparand
5 Execute

Figure 2.16: ASP100 Instruction Pipeline
1007979/80 YU PINPE 91908 2.16 118

Branches are handled by the external controller, and are interpreted as NOP by
the APS100 microcontroller. Similarly, non-ASP operations arc treated as

NOPs. Instructions which execution time is longer than one cycle (READ,
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COUNTAG, and FIRSEL) are divided to sets of one cycle micro instructions
by compiler. Therefore, all code words being fetched from the program
memory have one cycle execution time.

2.3.6 System configuration

As mentioned before, the ASP100 is implemented to serve as part of the
Associative Vision Computer. An arbitrary number of the ASP100 chips can be
easily added to the system, according to the following interconnection
algorithm:

DBUS of every ASP100 chip is connected to the system DBUS

VIN bus of every ASP100 chip is connected to the system VIN bus

VOUT bus of every ASP100 chip is connected to the system VOUT bus

Control signals of every ASP100 chip are connected to the system control

bus

5. SHBUS[15:0] of the succeeding chip is connected to SHBUS[31:16] of the
preceding chip

6. SHBUS[31:16] of the succeeding chip is connected to SHBUS[15:0] of the
preceding chip

7. FENB input of the succeeding chip is connected to FFUL output of the
preceding chip

8. FIRSTIN input of the succeeding chip is connected to RSP output of the
preceding chip

9. CTAG output of every ASPI00 chip is connected to system parallel
summation unit

10.RSP output of every ASP100 chip is connected to OR circuit generating the

system RSP signal

e

The symbolic interconnection scheme of the Associative Vision Computer is
depicted in Figure 2.17.

~d0 .



Shift Control Data
VOUT VIN Network  Bus  Bus

Fenp firstin Controlley
Vin SBUS | ey

vout PBUS

a2 A

Fiul Rsp

Fenb firstin

Vin
SBUS
Vour DBUS

Fful Rsp

4

wpunenua-
PC Bus

-

y y
Fenb firstin

"| Vin
SBUS
Vout DBUS

Fful Rs

4 4 I

Fenb  firstin

T1Vin gpyusl |
DBUS le
Voul

Fful Rsp ¥

h

Figure 2.17. System configuration
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2.4 ASP100 design considerations and restrictions

2.4.1 Fabrication technology and CAD tools

The following issues were considered while choosing fabrication technology:
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1. Density;

2. Speed;

3. Power dissipation;
4. Availability (technology that is provided by most of VLSI fabs);
5. Standard cell libraries that are obtainable for this technology.

According to these considerations, 0.8t two-metal one-poly CMOS process has
been used.

Two design methods were employed. Semi-custom (cell based) design was
used for peripheral digital logic, and full custom design was used for the
associative memory array, sense amplifiers and some/none response (RSP)
circuit,

The great advantage of first method is that the cells have already been designed
and characterized. Thus, design efforts have to be invested in area of logic
design. In this case, there is almost full identity between logic model behavior
and actual chip behavior. In contrast, in full custom design great part of effort is
invested in area of generation, simulation, characterization and verification of
the base hardware cells. Obviously,~evei‘y such design step increases the
likelihood of fault. In order to increase reliability of the design, we use the cell
based design wherever it is possible. Thus, the SIDE, the TOP and the
BOTTOM were designed using elements from standard cell libraries. The
MATRIX was built and simulated as a full custom unit. Standard libraries
given by a vendor are represented by some phantom cells. This means we can
not have the full set of characteristics of the cells, but a number of models
(abutment model for place and route, behavioral model for simulation, RC
model for timing verification).

Implementation of both cell based and full custom design techniques requires
using VLSI CAD tools that can integrate those methods. The ASP100 was
designed using COMPASS Design Automation system. The specific tools that
were employed are:

Layout Editor - used for drawing of custom layout;
Extractor - used for circuit extraction;

SPICE and ELDO - used for circuit simulation;
LVS - used for layout verification;
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Logic Assistant - used for logic design;

VHDL Assistant - used for RTL logic simulation;
Mixed-mode simulator - used for gate level simulation;
ChipCompiler - used for place and route;

. NetCompare - used for chip layout verification;

1() Mainsail Compiler - used for behavioral modeling of the CAM array for

logic simulation

11. Timing Verifier - used for static timing analysis and verification

Integration of cell based and full custom design has a number of specific
features, as follows: |

Combination of synchronous control and data path (TOP, SIDE and
BOTTOM) with asynchronous CAM array (MATRIX). The biggest
difficulty of this combination is that most of the signals entering the
MATRIX must be spike-free. Appearance of hazards on control signals -
may cause unrecoverable faults and even destroy operation completely.
Hazard on the Match line precharge and discharge signals may fail
COMPARE operation. Hazards on Write lines may initiate a false write
operation, while hazards on Bit (Inverse Bit) lines may cause both
compare and write mismatch. Since the cell based design is intended to be
synchronous, there are no automatic tools aiding generation of spike-free'
logic units. To fix this problem, latching of the relevant MATRIX inputs
was employed.

Interface between full-custom part and cell based part. Obviously, most of
circuit characteristic parameters differ for these parts. First, no satisféctory
information about signal levels is available from library vendor. The signal
level in ASIC design is represented by logic values like '1' (logical one), '0f
(logical zero), '1z' (precharged floating), '0z' (discharged floating), 'u'
{unknown) etc., and there is no indication of the actual value. Second,
there is no information about actual strength of standard cell buffers
driving the full-custom blocks. This kind of information is essential for
accurate full-custom circuit design and characterization. A proper solution
to improve interface is using SPICE model of 'boundary' standard cells. In
this design, the approprlate models were provided by the vendor after
special request.
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3. Simulation. The cell based units are simulated using behavioral models
that are available for every standard cell. The full custom unit needs
SPICE simulation. The SPICE simulation is carried out within two levels.
First level is circuit simulation that validates the formal behavior. Second
level is SPICE simulation of 'extracted’ circuit, i.e., simulation with actual

“values of resistance and capacitance and parasitic devices. This simulation
yields exact timing parameters (input/output capacitance, time delay,
output driver power, signal ramp etc.) These parameters can be passed
from SPICE model to a behavioral model of the circuit. This behavioral
model can be processed by logic simulator. In the ASP100 case,
introduction of timing parameters into behavioral model is essential for
logic simulation accuracy. The ASP100 simulation is described with more
details in Section 2.6

2.4.2. Power consumption

As mentioned above, there are two reasons that the ASPI100 power
consumption is expected to be higher than that of a regular processor. First, the
ASP100 is a large processor, containing 1024 independent processing elements
and peripheral circuits. Second, the activity factor (defined as ratio of the
number of operative gates to overall number of gates) is higher than that of a
regular processor because of high parallelism of operations. The ASP100
contains some independent power consumers, as following:

"MATRIX
Power consumption of the CAM array is determined by type of operation
(write, read, compare), number of active bit slices and number of active CAM

lines.

1. Write. In this operation, new data are written into selected APEs. Most
power is dissipated while switching Bit lines and Inverse Bit lines, and it
obviously depends on the number of both active CAM columns and CAM
lines. The worst case occurs while all CAM lines are active. The number of
active lines is data dependent parameter and there is no possibility to affect
it by program modification. On the other hand, the number of active
columns depends on the algorithm and therefore can be controlled by a
program. In order to restrict a power spike in the system, the number of



simultaneously active ARRAY (excluding FIFO) columns is limited to 24.
This purpose is achieved by introduction of exclusive instructions.

2. Compare. In this operation, power is dissipated while precharging Match
line, switching Bit and Inverse Bit lines and discharging Match lines (if
mismatch occurs). Desired value of precharge current is defined by
precharge device width. The worst case occurs while all CAM lines are
active. ' '

The Match line sense amplifier is a CMOS device, and hence it does not
consume a static power. Moreover, it is enabled only during compare

operation.

3. Read. In this operation, power is dissipated in Bit and Inverse Bit lines
while precharging and in Read sense amplifiers. The Read sense amplifier
consumes both static and dynamic power components only while enabled. It
is completely shut down by VSS (ground) line disconnection during
execution time except read operation.

SIDE

TAG register is affected by WRITE, COMPARE and shift instructions ‘only.
The FF state changes only during COMPARE, shift and FIRSEL instructions.
Otherwise, it is disabled and hence the power consumption decreases (to about
40% of consumption while enabled). The select first and response count
circuits are normally disconnected from FF, thus their states do not change
while SETAG and COMPARE instructions are executed. However, as
mentioned above, they are not disconnected from supply lines. These circuits
are affected by FIRSEL and COUNTAG instructions only.

TOP and BOTTOM
The TOP logic is affected by Group 1 instructions (load Mask and Comparand)
and CONFIFO instruction. The BOTTOM logic is affected by READ and

CONFIFO instructions. In both TOP and BOTTOM, all inactive registers are
disabled (consuming about 40% of power while enabled).
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110 power consumption

The ASP100 image I/O bus (namely VIN and VOUT) operates with 50%
activity factor (image 1/O is carried out as sequence of FIFO READ/WRITE
operations, while output buffers are activated during READ). The load
capacitance of VOUT output bus is about 150 pF (eight or sixteen ASP100
chips are connected to the same system bus). This turns the VOUT drivers the
largest I/O power consumer of the processor. The activity of the ASP100
external shift network (SHBUS) is highly algorithm and data dependent. For
neighborhood operations like convolution, it is typically 30-40% (see Section 3,
Convolution implementation example). The load capacitance of SHBUS is
about 15-20 pF.

At 25MHz operation frequency, the ASP100 core power consumption is about
2-2.5W, while 1/O power consumption is about 1-1.5W. The overall ASP100
average power consumption is 3.5W. Both power consumption of the cell-
based designed units (TOP, SIDE and BOTTOM) and I/O power consumption
were estimated using COMPASS Power Estimation Tools, basing on average
consumption of all basic cells, activity factor and operating frequency. The
power consumption of the full-custom designed units was obtained by
calculating both peak and average current drawn by those units under 'worst
case’ conditions (Vdd=5.5 V, Process=N Fast, P Fast, Temperature=0°C). The
estimation was done using SPICE simulation. '

2.4.3. Chip Area

The ASP100 chip area is defined by an area of full custom block and an area of
standard cell block. The full custom block area depends on the CAM array size
and layout density. The standard cell block area depends on type of cell library
used and routing between cells and blocks. There are two types of COMPASS
cell Iibraries: high density cell library and high performance one. In current
ASP100 design, the high density library is used. Routing factor depends on
wire material and number of metal layers used for interconnection.
Unfortunately, the COMPASS high density cell library uses polysilicon for
inter-cell connections. It decreases utilization of metal 2 and thus decreases the
routing factor. Typical cell routing factor in the standard cell part of the
ASP100 is about 1.1 (it means that about 53% of area are occupied by wires).
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2.4.4. Clock generation

The ASP100 uses two overlapping clocks called clk and dclk. Both clk and dclk
are of the same duration, and dclk is delayed by a quarter of a period relatively
to clk (see Figure 2.18). Numbers of implementations of a clock generator
circuit were considered. The clk signal load is about 120pF, while dclk signal
one is about 50pF. Unfortunately, the COMPASS standard cell libraries do not
provide buffers with sufficient output gain. The only solution within cell-based
design area is wusing the very high speed COMPASS clock pads.
Implementation of this technique requires connecting the output of the clock
generator circuit to the input of the pad. Thus, the simplest solution is using an
external clock generator. '

CLK

DCLK| : | | f

Phase Phase Phase  Phase Phase
1 2 3 4 1

Figure 2.18: The ASP100 clock generation
100/979/80 Y Y Soing 2.18 1Y

Utilization of two clock generators allows four-phase operation (using positive
and negative edges of both clock sources, such that there is a clock event every
quarter of a period). Four-phase operation is used to match the CAM array
performance and overall system performance, The system performance is
affected by the SIMD machine timing limitations (defined by number of
boards, number of chips per board, number of shared buses, connectivity etc.).
The system frequency was estimated to be 20-25 MHz. On the other hand, most
basic CAM events (like precharge/discharge of Match line, precharge/discharge

-47.



of Bit line, write operation) take about 6-10 ns. According to this, some of the
ASP100 instructions were implemented using four phases, as follows:

WRITE. The WriteEnable signal is active during first two phases. The Bit lines
and Inverse Bit lines are valid during the first through third phases. During the
fourth phase, the Bit and Inverse Bit lines are driven low.

COMPARE. The Precharge signal is active during the first phase. The Bit and
Inverse Bit lines are driven low during the first phase and valid during the
second through fourth phases.

FIFO READ. The Bit and Inverse Bit lines are precharged during half a period
(two phases). Then they stay floating until end of cycle. The FIFOWriteEnable
signal is active during the third and the fourth phases.

SETAG. This instruction uses asynchronous set input of the FF, then it should
be certainly separated from clock event that the FF samples at. In this case,
SETAG signal is active during second and third phases.

2.5 Design of content addressable memory array

The CAM array is the main processing and storing block of the ASP100. It
obviously takes the largest part of the chip area and power consumption.
Moreover, the basic CAM cell (APE) is repeated 72K times in this design. The
Match line sense amplifiers and RSP circuit elements are repeated 1K times.
This creates a very high motivation in selection of design goals and very high
accuracy in CAM cell and peripheral circuit design.

2.5.1 Design requirements and goals

The following issues are most significant for a CAM cell design:

1. Reliability of information store. A datum once written into a CAM cell will
never disappear until new write to this cell,

2. Reliable operations. This means the CAM cell operations are not to depend
on
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- condition of floating nodes
- values of node capacitance
- device sizes

- clock duration

- noise level

3. Silicon area. The cell area is most affected by the following factors:
- using of P-channel devices (needs N well)
- number of transistors ‘
- number of incident lines
- number of contacts

4. Power consumption. Due to extremely high parallelism of operation, power
dissipation of a single APE is most important design constraint, For every
CAM operation, power consumption of the APE should be minimal, Full
CMOS design of the APE allows avoiding static power consumption, The
AC power consumption (charging and discharging of capacitors) depends
mostly on Bit line, Inverse Bit line and Match line capacitance. Anyway,
the APE should have as a low capacitance as possible.

5. Simple and reliable control, The APE operations should be independent (or
least dependent) on order of operations, signal overlap, clock skew and so
on,

6. Yield consideratﬁons. There are some design techniques that are not claimed
as necessary design rules, but using them provides better final yield. These
techniques include polysilicon and metal-2 superposition rules, via and
diffusion (active area) superposition rules, distance between wide metal line
to a regular width metal line and etc..

The CAM cell design goals are summarized in Table 2.3:

Table 2.3.: The CAM cell design goals

«  Static store
e  Minimal area on silicon

»  Lowest power consumption
Reliable execution
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« Least parasite capacitance on signal propagation lines
«  Simplest control
Yield considerations affecting the CAM layout design

2.5.2 Static CAM cell design
There are three issues identifying a CAM cell, as follows:

1. Store type
2. Match logic
3. Write logic

The static CAM cell is based on a static memory element. The main
disadvantages of static store are a high number of transistors (four) and the
necessity of both p-channel and n-channel devices, that increases the silicon
area. The static. memory element is implemented by two cross-coupled
inverters.

The Match logic is dedicated to support compare operation. The
function of the Match logic is to corhpare the contents of the cell against the
value on bit lines and to return 1 if they match and 0 otherwise. The Match
logic has to provide the operation independent on result of comparison in other
CAM cells. Since result of compare operation is logic AND of match results
returned by active cells, the Match logic should not affect the whole result
while the cell is masked (not active). There were two types of Match logic
found.

The first type is Dynamic restoring XOR (see Figure 2.19.a), It is the
full pull-down tree implementing XOR of the cell contents and values on Bit
line and Inverse Bit line. During compare operation, both Bit line and Inverse
Bit line are forced to zero and Match line is precharged to logic 'l". Then, the
inverted match pattern is forwarded to bit lines of active cells. Both Bit line
and Inverse Bit line of inactive cells stay low. If there is at least one cell that
the pattern does not match the contents, then the Match line is discharged
trough this cell. According to Figure 2.19.a, the storage device output is
connected to gate of nearest to Match line transmission gate. This configuration
avoids charge sharing during the second stage of the compare operation, while
either Bit line or Inverse Bit line is forced to '1'.
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The second type of Match logic is Dynamic steering XOR (see Figure
2.19.b). In this scheme, the XOR function is implemented by two n-channel
devices. The enhancement device operates as isolator. During compare
operation, both Bit line and Inverse Bit line are forced to '1' and Match line is
precharged to 'l'. Then, the match pattern is forwarded to bit lines of active
cells. Both Bit line and Inverse Bit line of inactive cells stay high. The
disadvantage of the second type is that Match line can not be driven to zero (the
lower bound is threshold voltage). Obviously, both Match logic types need
precharge mechanism and sense amplifier in every CAM line. The common
disadvantage of dynamic Match logic that decreases the design reliability is that
Maitch line is floating until the end of compare cycle.

| ML
MC - MC
BL [~ BL
<
2) MC=Memory Cell

b)

Figure 2.19: Match logic types
NHNNN 1923 Y 2,19 1Y

The Write logic is dedicated to support write operation. Three different types of
Write Iogic are depicted in Figure 2.20.a,b,c. In scheme a, the Write line is
forced to '1' and then Bit line value is written into the cell, Scheme « is the
simplest Write logic, but it does not support masked write operation. This
problem is solved in scheme b. In this scheme, the Bit (Inverse Bit) line value is
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written into the cell if both Write line and Inverse Bit (Bit) line are high. This
means that one of the memory element nodes is always floating during write
operation, while the opposite one is forced to '0’. The masked write operation is
carried out while both Bit line and Inverse Bit line are kept low. The
disadvantage of this scheme is that parasitic dynamic store created at node A
(see figure 2.20.b) may be dangerous during masked write. The Write logic that
was implemented in the ASP100 design is the scheme ¢. The disadvantages of
this scheme are introduction of a special Mask line and relatively high
resistance on write/read path. In regular write operation, both Write line and
Mask line are forced to 'l', and Bit line value is written into the cell. Both
nodes of the memory elements are driven (no floating nodes). In masked write,
the Mask line stays low. During read operation, both Bit line and Inverse Bit
line are precharged to '1' and then both Mask line and Write line are forced to
‘1'. If the CAM cell stores '1' (0" then Bit line (Inverse Bit line) stays high
while Inverse Bit line (Bit line) is discharged trough the cell. The Read sense
amplifier responds once the difference of Bit line and Inverse Bit line voltages
achieves its sensitivity level.

WL BL A BL

BL 1 MC % A

WL '
a) A MC
b)
WL Mask
BL — — ' MC
c)

Figure 2,.20: Write logic types
NN 13NN MNY 2,20 MY

The ASP100 CAM cell is depicted in Figure 2.4.
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2.5.3 Non-static CAM cells

The ASP100 APE employs the static information storage. Actually, there are
two other design options:

1. Self-refreshing or pseudo-static. Here data storage occurs trough making use
of the capacitance on the transistor gates. This charge will decay in time,
but by asserting a control signals the cell can be configured to behave as a
static storage device and restore the data, although at the expense of
increased power consumption.

2. Dynamic. Similar to the one transistor RAM cell, this design is compact,
but relies on external logic to sense and refresh the data signals.

As mentioned before, the static data storage is the most rugged (in the silicon
area sense) circuit option. In opposite, the pseudo-static is smaller, but requires
the data to be regularly refreshed. However, its self-refreshing capability means
that all the cells can be refreshed simultaneously. The dynamic cell structure
offers the potential for highest packing density. However, the need to regularly
refresh the cell individually involves more complex support logic and a
significant time penalty. More important, since both direct and inverse data
should be held in each cell to support the Match logic, two dynamic storage
circuits per CAM cell would be needed. This means there is probably no big
difference between density of pseudo-static and dynamic CAM.

Pseudo-static CAM cell is depicted in Figure 2.21. [18]. During the write
operation, WL is forced to '1' and then nodes L and R get value of BL and
Inverse BL respectively. In masked write operation, both BL and Inverse BL
are forced to 'l'. Thus, the refresh operation occurs. During read, both BIL. and
Inverse BL are precharged to ‘1" and then WL is forced to 1. To sense the BL
and Inverse BL voltage difference, an external sense amplifier is needed. The
compare operation is similar to that of static CAM cell. The advantage of
pseudo-static storage over static one is decreasing of the number of transistors
(two instead of four) and that the transistors both are of n-type (it means N-well
is eliminated). The great disadvantage of such pseudo-static cell is large power
consumption. In an associative vision machine, about 85% of the CAM cells
are masked during write operation, while write instruction appears with

_ 851 _



probability ~0.45 [19]. This means that 85% of the CAM cells will consume
static power during half a running time.

BL BL
A N— ML

Figure 2.21: The pseudo-static CAM cell
FISING 10D 15T YU YDV ITINDD NN 2.21 A9y

BL BL

S

N
NS

Figure 2.22: Dynamic CAM cell
MAING 131 11191 DY NI RN 2.22 2wy
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Dynamic CAM (7] cell is depicted in Figure 2.22. In this cell, the information
storage is implemented by floating gate n-type CMOS transistors (See Figure
2.22, M1 and M2). Note, that dynamic steering XOR scheme was implemented
for Match logic, while M1 and M2 both used for information storage and for
matching. The great advantage of this cell is small number of transistors (five
only, in opposite to eight of pseudo-static CAM cell and ten to twelve of static
CAM). The basic operations (write, read and compare) are carried out in the |
same way as in already described CAM cells. An important difference is that
the dynamic CAM cell does not support masked write, '

2.5.4 CAM cell comparative analysis

The following tables contain results of comparative analysis of four static CAM
cells composed employing different Write and Match logic schemes, and the
pseudo-static CAM cell described above.

Table 2.4 The CAM cell description
(according to Figures 2.19, 2.20)

Cell name Write logic Maich logic
Static Cell 1 C a

Static Cell 2 c b

Static Cell 3 b b

Static Cell 4 b a

Pseudo Static a a

Table 2.5 The comparative analysis of CAM cells

Cellname Celll [Cell2 |Cell3 |Cell4 | Pseudo
size, A 71%73 [ 70%73 | 75%74 | 75%76 | 61*58
area, ” 829 820 885 910 565
gate account 12 11 11 12 8
number of interconnection | 3*2 3%2 2% 2%2 2%2
lines '
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For static cells, the cell 2 (write scheme ¢, match scheme b) based CAM has the
minimal physical size, while the cell 1 (write scheme ¢, match scheme a) based
CAM has better timing and power consumption parameters. As we also can
see, the pseudo static cell based CAM has the best area parameters, while
power consumption during write operation is extremely high. The ASP100 chip

total Bit Line resistance, | 355 345 390 390 287
Ohm
total ML (WL resistance. t 190) 190 105 205 145
Ohm
total Bit Line capacitance, | 7.3 7.2 7.7 7.7 6.4
pF '
total ML capacitance, pF | 2 2 2.1 2.2 1.6
total WL capacitance, pFF | 1.9 1.8 2 2 1.4
CAM array size, | 9.5%9 ] 9.3x9 [ 10x9.5 | 10x9.7 | 8x7
P X i
BL buffer peak power, W | 0.98 0.97 0.64 0.64 0.7
BL buffer average power, | 0.034 | 0.033 [0.02 0.02 0.024
W -
Total average power| 0.55 0.55 0.39 0.39 5.1
write, W
total average  power | 0.46 0.56 0.56 0.46 0.42
compare single, W

| total  average  power | 0.51 0.72 0.72 0.51 0.51
compare all, W
write time, nsec 9 12 20 14 12
precharge time, nsec 14 5.4 6.4 8.1 6.5
discharge time, nsec 28 33 33 30 28

exploits the cell T based CAM array.

2.5.5 Peripheral circuitry design

Three peripheral circuits were implemented in the ASP100 full-custom design.

They are:

1.

Match line sense amplifier and precharge circuit
2. RSP (some/none responder) circuit
3. Read sense amplifier
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The Match line sense amplifier is depicted in Figure 2.11. The reason to
implementation of some sense circuit is acceleration of compare. The 'critical
path' of compare operation is discharge of Match line that is carried out trough
a single cell in the worst case. Obviously, the Match line discharge time is
limited by Match line capacitance and pull down transistor size. The estimated
worst-case Match line discharge time is 30 to 40 ns, that obviously slows down
the operation of the 25MHz vision machine. The main limitation of Match line
sense amplifier is power consumption, The reasons to this are number of Match
line sense amplifiers (1024 per chip !) and their activity (according to operation
statistics, the COMPARE instruction appears with probability of 0.4-0.45 [19]).
This requires the Match line sense amplifier to consume no static power and
minimal dynamic power. The Match line sense amplifier is implemented by
unbalanced inverter with high trip-point (about 3.5V instead of usual 2.5V).
The amplifier returns zero once the Match line value decreases to 3.5V (it takes
about 12-16 ns). The lower bound of trip-point is determined by timing
requirements, while the upper one is limited by noise margin. To reduce power
consumption, the Match line sense amplifier is connected to VSS supply line
(enabled) only for two clock phases (half a period) of the compare cycle, Match
line precharge circuit is implemented by pull-up device connecting match line
to VDD supply line during precharge phase. The size of precharge device is
determined by timing requirecments (less or equal to a single clock phase) and is
restricted in order to reduce power consumption during precharge.

The RSP (some/none responder) circuit is shown in Figure 2.23. The RSP
circuit is implemented as wired NOR. Before responding, the RSP line is
precharged to '1'. Then, every bit of TAG register is connected to appropriate
pull-down device of the RSP circuit. If at least one TAG bit is high, the RSP
line is discharged. Otherwise, it stays high. To accelerate the response, a sense
amplifier (similar to Match line sense amplifier) is employed. The RSP
precharge device is implemented by pull-up transistor controlled by the
ASP100 internal control unit.
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 Figure 2.23: The RSP circuit
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The Read sense amplifier consists of differential pair, level shifters and some
output logic (see Figure 2.14). The transistor sizes were selected to sense 0.6-
0.8 V difference between Bit line and Inverse Bit line values. This level is
determined by noise margin consideration. To reduce power consumption, the
Read sense amplifier is connected to VSS supply line (enabled) for two clock
phases of a read cycle.

2.6 ASP100 simulation

Simulation is the main tool for functional (logic) and timing verification of the
design. Since the ASP100 has been designed using both full-custom and cell
based design, two different simulation levels were used. First is circuit
simulation, applied for full-custom unit verification. Second is logic simulation,
dedicated for verification of cell based blocks. To complete the system
simulation, results of circuit simulation should be interpreted in logic
simulation in some manner. For this purpose, a behavioral model of the CAM
array was created and included in logic simulation. The physical parameters
used by the model were obtained from circuit simulation. For both types of
logic simulation (VHDL and gate-level), the input stimuli were generated by
software simulator/compiler [19].

2.6.1 VHDL simulation

The VHDL simulation is the high level logic simulation. The simulator input is
a set of behavioral models of the standard cells, automatically generated from
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the netlist, and behavioral model of the CAM array. The purpose of VHDL
simulation is functional validation. In order to simplify the debugging process,
unit time delay approach was used. It means that time delay of every standard
cell is a single time unit. Obviously, this method does not verify timing.
Nevertheless, it clarifies the internal processes and logic dependencies. It also
aids in finding out some problems, that gate-level simulator would smooth as
result of RC modeling (like glitch generators). The VHDL simulation was |
performed by the ASP corp. using the VHDL format netlist of the ASP100
standard cell part, supplied by us.

2.6.2 Gate level simulation

The main tool for complete system verification is gate level simulator, Unlike
the VHDL simulator, there is no behavioral modeling (except the CAM array
model). The gate level simulator uses a structural modeling, i.e., every design
unit is simulated at its gate structure level. There are some issues that are
verified during gate level simulation:

1. Timing. The gate level simulator exploits RC models of standard cells. Both
RC modeling and prediction of interconnection capacitance make possible
timing verification even before Place and Route, Obviously, the final timing
results can be obtaining from post-route gate level simulation (simulation of
extracted netlist).

2. Ramp (slope) delay. Ramp delay is a signal latency period due to
transaction. Using the gate level simulation, it is possible to verify a ramp
delay at every chip node. Detection of nodes with long ramp delay is very
important: First, long ramp delay may cause some timing problems (like
creation of false critical paths). Second, it obviously increases power
consumption by keeping the CMOS gates at some mid voltage value
(between '0' and '1") for a relatively long duration.

3. Fault coverage. The ASP100 does not contain standard cells that have an
automatic test generation facility. Nevertheless, we were able to generate
high fault covering tests using toggle feedback. The toggle feedback reports
about nodes that were not driven high and/or low. It actually gives the
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designer an immediate report about fault coverage of the test and thus
simplifies test generation.

2.6.3 Circuit simulation

The main tool for circuit simulation is SPICE. The circuit simulation was
carried out within two stages. In the first stage, the logic transistor level circuits
were simulated. The second stage was simulation of extracted layout. Actually,
the most important extracted information is the inter-node and inter-layer
~ capacitance. The COMPASS Circuit Extractor extracts no resistance neither
parasitic devices. The following approaches were implemented during circuit
simulation: '

1. Functional simulation. We simulate the actual CAM array operations
(compare, read, write, FIFO write and read) rather than some complicated
events on different circuits. We believe this technique aids in better
integration and reliability of simulation,

2. Simulation accuracy. An appropriate simulation accuracy can be achieved
by correct circuit modeling and making right assumptions, According to our
short experience in this area, we tried to make as fewer assumptions as
possible, and simulate the circuits without simplification. Obviously, there
is no possibility to run SPICE simulation of circuit containing about
300,000 devices (number of columns X number of rows X number of
transistors per APE), Nevertheless, using the ELDO circuit simulator, we
simulated groups of the CAM array rows and columns (up to 10,000
transistors). The entire CAM array row was simulated using SPICE (about
1,000 transistors). For the last case, simulation time is about half an hour
per clock period running on SUN 10-31 workstation.

3. Worst case simulation. For every simulation, we used the worst case
parameters that were relevant for the simulation. Timing simulations were
carried out at highest temperature (120°C), lowest voltage (4.6V) and Slow
N, Slow P model parameters. Power simulations were carried out at lowest
temperature (0°C), highest voltage (5.5V) and Fast N, Fast P model
parameters. Moreover, some extreme operation assumptions were usually
made. An example is Match line precharge simulation. The regular time
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period for this operation is 10ns (one clock phase). We assumed the worst
case of clk to dclk skew and signal delay and then simulated the precharge
operation within 6ns period.

3. Image processing and computer vision applications

According to operation statistics, the maximal performance of the associative
processor can be achieved implementing low-level vision applications. The
reason is that the associative processor machine has very high activity while
.executing arithmetic-logical operations (they are carried out in massively word-
parallel manner). Unfortunately, the activity decreases dramatically performing
data communication operations, except neighborhood operations while all
image data are transmitted in exactly the same way. Actually, the CAM array is
never activated during communication operations. Nevertheless, still the
associative vision machine can successfully perform some mid-level image
processing and computer vision tasks. As we will see, the 'bottle neck’ of these
applications is data communication rather than arithmetic-logical operations.
An efficient way to face with the problem is further development of the SIMD
machine communication networks issue. To exhibit and analyze the ARTVM
performance, we consider implementation of some low and mid-level image
processing and computer vision tasks. The operating frequency, the instruction
length, the shift network parameters and other estimation tools were taken from
the actual VLSI design and simulation. The image is assumed to be arranged
linearly in the CAM array, line by line according to video scan. The Long Shift
is of 16 position length. The operating frequency is 20MHz. The instruction
lengths are derived from the Table 2.2.

The following low-level image processing algorithms were estimated:

1. Histogram

The associative nature of the ARTVM and its relatively fast response counter
mechanism make histogram evaluation very suitable. It consists of short loop

repeated for every gray level. The COMPARE instruction tags all pixels of the
level and then COUNTAG instruction counts them up. There is no data
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communication in this algorithm (except of course the image 1/O that is carried
out in parallel with processing). The CAM array is active for about 7% of
running time, while the response count circuit is active during 92% of the
running time. For 8-bit pixel image, the histogram evaluation takes about
350usec.

2. Convolution

In this algorithm, the image data of wordlength M are initially placed in a data
field. The filter vector of length P and coefficient wordlength K is applied as
operand from the external controller, one element at a time. The result is
accumulated in a partial result field. After ever'y'multiplication, the data field is
shifted by one word position (for convolution in line direction, it is shift by 1,
while for column direction, it is shift by N, where N is an image length). For
2D non-separable kernel, an optimal shift strategy is P(P—1) short shifts and
(P—1)long shifts. The width of the partial result field is obviously larger than
the data field width, therefore every addition has to be followed by carry
propagation to the end of the partial result field. The string recoding

multiplication algorithm provides an average multiplication time of one-

bit additions [8,9]. According to this, the convolution time for PxP kernel is as
follows:

T, ~p2. (MK

+M+K+log2P)-rm+(P~1)--%-M+P-(P-—1)-M *

where ., is one bit addition time (usually 8 cycles). The first component of the
equation is due to arithmetic operations, while the second and the third ones are
due to communication operations. According to (*), the convolution time for 3x
3 kernel, for 8 bit precision pixels and coefficients and for image size 512x512
is about 100 LLsec. '

In convolution evaluation, the data communication occupies about 33% of the
running time, while arithmetic operations take about 66% . This ratio is almost
independent on kernel size. The component of arithmetic calculation increases
with increasing of data precision.

3. Canny edge detection

This algorithm [10] has three stages:
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1. Convolution with directional derivatives of Gaussian filter J___—Se
2nc

2. Non-maximum suppression
3. Threshold with hysteresis

The second stage selects as edge candidates the pixels-in which the gradient
magnitude is maximal. The test can be carried out in 8 directions (using 3x3
neighborhood). To determine if maximal, the gradient value at each pixel is
compared with those on either side of it. Thresholding with hysteresis
eliminates weak edges that may be due to noise but continues the strong edges
as they become weak. In order to differ these edges, two threshold values (low
and high) are used. Candidates with value between low and high are considered
as edges if they can be connected to a pixel above high trough a chain of pixels
above low. This process is iterative and involves curve propagation. The
iteration break condition is returned by the RSP mechanism. For 100 iterations
of curve propagation and 3x3 convolution kernel, the Canny edge detection
takes about 300 usec. The ratio between data communication and arithmetic-
logical operation is quite similar to that of convolution.

4. Optical flow

Optical flow assigns to every pixel of an image a velocity vector that describes
its motion across the visual field. The Horn & Schunk [11] algorithm for optical
flow computation is an iterative process, estimating new velocity vector at each
iteration as sum of the old average velocity and some innovation value. This
innovation is estimated as linear combination of weighted pixel values in 3x3
neighborhood. Thus, this algorithm is very suitable for the ARTVM. An
associative implementation of this algorithm contains two steps, initial and
iterative. In the initial step, the constant parameters used in the iterative step are
computed. The data communication occupies about 10-15% of the running
time, while arithmetic and look-up table operations take about 85-88%. For 32
iterations using 8-bit data precision, the optical flow computation takes about
10 msec.

5. Contour tracing and labeling

This algorithm is carried out in two steps. The preparation step labels each
contour point (cbviously, a previous edge detection is needed) with its x-y
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coordinates. The main process is iterative and operates on a 3x3 neighborhood.
Every contour point checks each of 8 neighbors and adopts its coordinate label
if it is smaller then its own. This process is iterative and it continues until all
labels remain unchanged leaving each contour identified by its lowest
coordinate. The point of lowest coordinates in each contour is the only one
retaining its original label. These points can be counted to obtain the number of
contours in an image. The data communication and arithmetic operations
occupy both about half a running time. For 100 iterations and 8 bit data
precision, the contour labeling time is about 1.5 msec.

6. Hough Transform

The Hough transform can detect a curve whose shape is described by
parametric equations, like a straight line or a circle section, even if there are
gaps in the curve. To implement the transform, each pixel in an image is
transformed to a locus in the parameter space. After splitting the parameters
into suitable ranges (quantization), a histogram is generated giving the
distributions of locus points in the parameter space. Occurrence of an object
curve is signed by a distinct peak in the histogram. Matching straight lines in an
image (using 64-point histogram evaluation) takes about 5 msec. Matching
circles takes a little bit more due to more complex parameter space
transformation.
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