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Jonathan Scarlett, Li Peng, Neri Merhav, Alfonso Martinez and Albert Guillén i Fàbregas

Abstract

This paper studies expurgated random-coding bounds and exponents with a given (possibly suboptimal) decoding

rule. Variations of Gallager’s analysis are presented, yielding new asymptotic and non-asymptotic bounds on the error

probability for an arbitrary codeword distribution. A simple non-asymptotic bound is shown to attain an exponent which

coincides with that of Csiszár and Körner for discrete alphabets, while also remaining valid for continuous alphabets.

The method of type class enumeration is studied for both discrete and continuous alphabets, and it is shown that this

approach yields improved exponents for some codeword distributions. A refined analysis of expurgated i.i.d. random

coding is given which yields an exponent with a O
(

1
√

n

)

prefactor, thus improving on Gallager’s O(1) prefactor.

I. INTRODUCTION

Achievable performance bounds for channel coding are typically obtained by analyzing the average error probability

of an ensemble of codebooks with independently generated codewords. For memoryless channels, random codes with

independent and identically distributed (i.i.d.) symbols achieve the channel capacity [1], characterize the error exponent

of the best code at sufficiently high rates [2, Ch. 5], and provide tight bounds on the finite-length performance [3].

At low rates, the error probability of the best code in the random-coding ensemble can be significantly smaller than

the average. In such cases, better performance bounds are obtained by considering an ensemble in which a subset of

the randomly generated codewords are expurgated from the codebook. In particular, the error exponents resulting from

such techniques are generally higher than the random-coding error exponent at low rates. Existing works exploring such

techniques include those of Gallager [2, Sec. 5.7], Csiszár-Körner-Marton [4], [5, Ex. 10.18] and Csiszár-Körner [6].

The advantages of Gallager’s approach include its simplicity and the fact that the analysis is not restricted to discrete
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alphabets. On the other hand, the exponents of [4]–[6] can be applied to channels with cost constraints. Furthermore,

as we will see in Section III, these exponents can improve on that of Gallager for a given input distribution or decoding

rule.

In this paper, we provide techniques that attain the best of each of the above approaches. Using variations of

Gallager’s analysis, we obtain a number of asymptotic and non-asymptotic bounds on the error probability, including

exponents for channels with continuous alphabets, cost constraints, and mismatched decoders [7]–[10]. Furthermore,

we explore the method of type class enumerators (e.g. see [11]–[13]) for both discrete and continuous channels, and

discuss its extension to channels with memory.

A. System Setup

The input and output alphabets are denoted by X and Y respectively. The channel is assumed to be memoryless,

and the associated conditional distribution is denoted by W (y|x). In the case that both X and Y are finite, the channel

is a discrete memoryless channel (DMC), but we do not assume this to be true in general. We consider block coding,

in which a codebook C = {x(1), . . . ,x(M)} is known at both the encoder and decoder. The encoder takes as input a

message m, uniformly distributed on the set {1, . . . ,M}, and transmits the corresponding codeword x(m) of length n.

The decoder receives the vector y at the output of the channel, and forms the estimate

m̂ = argmax
j∈{1,...,M}

n∏

i=1

q(x
(j)
i , yi), (1)

where n is the length of each codeword, x
(j)
i is the i-th entry of x(j) (similarly for yi), and q(x, y) is a non-negative

function called the decoding metric. An error is said to have occurred if m̂ 6= m. We assume that ties are broken as

errors. We define qn(x,y)
△
=
∏n

i=1 q(xi, yi) and Wn(y|x) △
=
∏n

i=1W (yi|xi).
When q(x, y) = W (y|x), (1) is the optimal maximum-likelihood (ML) decoding rule. For other decoding metrics,

this setting is that of mismatched decoding [7]–[10], which is relevant when ML decoding is not feasible, e.g. due to

channel uncertainty or implementation constraints.

Throughout the paper, we consider channels with both constrained and unconstrained inputs. In the former setting,

each codeword x must satisfy a constraint of the form

1

n

n∑

i=1

c(xi) ≤ Γ, (2)

where c(·) is referred to as a cost function, and Γ is a constant. Unless stated otherwise, it will be assumed that the

input is unconstrained, which corresponds to Γ = ∞.

For a given rate R, an error exponent E(R) is said to be achievable if there exists a sequence of codebooks Cn of

length n and rate R whose error probability pe(Cn) satisfies

lim inf
n→∞

− 1

n
log pe(Cn) ≥ E(R). (3)

We focus on the maximal error probability rather than the average error probability, but the two are equivalent for the

purposes of studying error exponents.
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B. Previous Work

The first study of expurgated exponents (for ML decoding) was by Gallager [2, Ch. 5], who considered an ensemble

in which 2M − 1 codewords are generated at random, and a subset of M codewords forms the codebook. Roughly

speaking, the codewords which are kept are those which have the lowest error probability among the original codewords.

A different approach was taken by Csiszár, Körner and Marton [4] (see also [5, Ex. 10.18]), who began by proving

the existence of a collection of constant-composition codewords such that any two codewords have a joint empirical

distribution satisfying certain properties. By analyzing this collection of codewords using the method of types, an error

exponent was obtained which coincides with Gallager’s after the optimization of the input distribution. An exponent

for mismatched decoding was derived by Csiszár and Körner [6], and was shown to coincide with that of [4] under

ML decoding.

As stated in the introduction, the exponents in [4], [6] have the advantage of being applicable to channels with cost

constraints. In Section III, we will see that the exponents of [4], [6] can in fact improve on that of Gallager for a given

input distribution. However, the proofs are based on the method of types and rely heavily on the packing lemma [5,

Ch. 10], and are thus valid only when the input and output alphabets are finite.

In general, relatively little is known about the optimization of the above-mentioned expurgated exponents over the

input distribution. Furthermore, better exponents can be obtained by considering higher-order products of the channel,

e.g. W (2)((y1, y2)|(x1, x2)) =W (y1|x1)W (y2|x2), for which the optimal input distribution is not necessarily a product

of single-letter distributions. Sufficient conditions for the single-letter exponent equal its multi-letter counterparts were

given by Jelinek [14] and Blahut [15]. As the rate approaches zero, Gallager’s single-letter exponent is known to be

tight, due to the matching converse by Shannon, Gallager and Berlekamp [16]. Omura [17] presented connections

between expurgated exponents and distortion-rate functions, with the distortion measure given by the Bhattacharyya

distance.

Overviews of the mismatched decoding problem can be found in [7]–[10]. Most of the literature has focused on

achievable rates, whereas this paper is concerned with the performance at low rates. The mismatched decoding paper

most relevant to this one is [10], which studies non-expurgated random-coding error exponents for various ensembles.

C. Contributions

The main contributions of this paper are as follows:

• In Section II, we present a number of variations of Gallager’s analysis which yield new asymptotic and non-

asymptotic bounds on the error probability.

• In Section III, we present an overview of the expurgated exponents. Using the method of Lagrange duality [18], we

relate the exponents given in [2], [4], [6]. Generalizations of the exponents in [2], [4] to the setting of mismatched

decoding are given.

• In Section IV, we present two derivations of the exponent in [6] using constant-composition random coding.

The first applies well-known properties of types to a non-asymptotic bound, thus providing a simple and concise

proof. The second uses the method of type class enumeration (e.g. see [11]–[13]), inspired by statistical-mechanical
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methods. This approach guarantees exponential tightness starting from an earlier step than the former approach,

and leads to better exponents for some codeword distributions.

• In Section V, we consider cost-constrained random coding [2, Sec. 7.3] [19], and present two derivations of an

exponent which coincides with that of [6] in the discrete case, while also remaining valid for continuous alphabets.

The first uses simple bounding techniques similar to those of Gallager, while the second extends the type class

enumerator approach. We discuss the application of the latter method to channels with memory.

• In Section VI, we present a refined derivation of Gallager’s exponent for i.i.d. random coding (and its general-

ization to mismatched decoding) with a O
(

1√
n

)
prefactor, thus improving on the original O(1) prefactor. Similar

improvements for the non-expurgated random-coding error exponent have recently been obtained by Altug and

Wagner [20]. The analysis in [20] can be considered a refinement of that of Fano [21, Ch. 9], whereas our analysis

can be considered a refinement of that of Gallager [2, Ch. 5].

D. Notation

We use bold symbols for vectors (e.g. x), and denote the corresponding i-th entry using a subscript (e.g. xi).

The set of all probability distributions on an alphabet, say X , is denoted by P(X ), and the set of all empirical

distributions on a vector in Xn (i.e. types [5, Ch. 2]) is denoted by Pn(X ). For a given type Q ∈ Pn(X ), the type

class Tn(Q) is defined to be the set of all sequences in Xn with type Q.

The probability of an event is denoted by P[·], and the symbol ∼ means “distributed as”. The marginals of a joint

distribution PXY (x, y) are denoted by PX(x) and PY (y). We write PX = P̃X to denote element-wise equality between

two probability distributions on the same alphabet. Expectation with respect to a joint distribution PXY (x, y) is denoted

by EP [·], or simply E[·] when the associated probability distribution is understood from the context. Similarly, the mutual

information with respect to PXY is written as IP (X;Y ), or simply I(X;Y ) when the distribution is understood from

the context. Given a distribution Q(x) and conditional distribution W (y|x), we write Q × W to denote the joint

distribution defined by Q(x)W (y|x).
For two positive sequences fn and gn, we write fn

.
= gn if limn→∞

1
n log fn

gn
= 0, and we write fn ≤̇ gn if

lim supn→∞
1
n log fn

gn
≤ 0 and analogously for ≥̇. We write fn = O(gn) if |fn| ≤ c|gn| for some c and sufficiently

large n, and fn = o(gn) if limn→∞
fn
gn

= 0. All logarithms have base e, and all rates are in units of nats except in the

examples, where bits are used. We define [c]+ = max{0, c}, and denote the indicator function by 11{·}, and the floor

function by ⌊·⌋.

II. EXPURGATED BOUNDS

In this section, we provide a number of variations of Gallager’s bounds and techniques which will provide the starting

point of the derivations of the exponents in Sections IV–VI. We let PX denote a codeword distribution, and we define

the random variables (X,Y ,X) distributed according to

(X,Y ,X) ∼ PX(x)Wn(y|x)PX(x). (4)

In the case that a cost constraint of the form (2) is present, we assume that PX is chosen such that X satisfies the

constraint with probability one.
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We let C = {X(1), · · · ,X(M ′)} be a random codebook of size M ′ with each codeword independently generated

according to PX . The symbol C is used to denote an expurgated codebook containing M < M ′ codewords. We let

pe,m(·) be the error probability induced by a codebook given that message m was sent. The maximal error probability

is denoted by pe(·) = maxm pe,m(·).
We begin with the following straightforward generalization of [2, Lemma, p. 151].

Lemma 1. Fix a function f : [0, 1] → R and a codeword distribution PX such that f(pe,m(C)) is non-negative for

all m with probability one. For any η > 0 there exists a codebook C of size M > M ′ η
1+η such that

f
(
pe,m(C)

)
≤ (1 + η)E

[
f(pe,m(C))

]
(5)

for m = 1, · · · ,M .

Proof: The proof is identical to [2, Lemma, p. 151], with the assumption of f(pe,m(C)) being non-negative

ensuring the validity of Markov’s inequality.

While Lemma 1 is valid for any function f(·), it is primarily of interest when f(·) is monotonically increasing, so

that (5) can be inverted in order to obtain an upper bound on pe,m(C). Gallager [2] presented the lemma with the

choices η = 1 and f(·) = (·)1/ρ, where ρ > 0. This function is non-negative, and thus satisfies the assumption of the

lemma for any codeword distribution. It follows that there exists a codebook C of size M such that

pe(C) ≤
(
2E
[
pe,m(C)1/ρ

])ρ
, (6)

where C contains M ′ = 2M − 1 codewords. In the following theorem, we provide non-asymptotic bounds on the error

probability which follow in a straightforward fashion from (6). The proof alters Gallager’s arguments for the purpose

of better characterizing the non-asymptotic performance, and also for dealing with suboptimal decoding rules.

Theorem 1. For any pair (n,M), codeword distribution PX and parameters ρ ≥ 1 and s ≥ 0, there exists a codebook

Cn with M codewords of length n whose maximal error probability satisfies

pe(Cn) ≤ rcuxρ(n,M) ≤ rcuxρ,s(n,M) (7)

where

rcuxρ(n,M)
△
=

(
4(M − 1)E

[
P

[
qn(X,Y ) ≥ qn(X,Y )

∣∣∣X,X
]1/ρ])ρ

(8)

rcuxρ,s(n,M)
△
=

(
4(M − 1)E

[
E

[(
qn(X,Y )

qn(X,Y )

)s
∣∣∣∣∣X,X

]1/ρ])ρ

. (9)

Proof: We obtain (8) from (6) by weakening the expectation as follows:

E
[
pe,m(C)1/ρ

]
≤ E

[( ∑

m 6=m

P

[
qn(X(m),Y ) ≥ qn(X(m),Y )

∣∣∣X(m),X(m)
])1/ρ]

(10)

≤ E

[
2(M − 1)P

[
qn(X,Y ) ≥ qn(X,Y )

∣∣∣X,X
]1/ρ]

, (11)

where (10) follows from the union bound, and (11) follows using M ′ = 2M − 1 along with the inequality

(∑

i

ai

)1/ρ
≤
∑

i

a
1/ρ
i , (12)

July 24, 2013 DRAFT
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which holds for any ρ ≥ 1. We obtain (9) by an application of Markov’s inequality.

Following the terminology of Polyanskiy et al. [3], we refer to the bounds in (8)–(9) as expurgated random-coding

union (RCUX) bounds. These will be used as a starting point for derivations in Sections IV–VI. Furthermore, these

bounds are computable, at least for sufficiently symmetric channels and metrics, and are thus of independent interest

for characterizing the finite-length performance [3]. It should be noted that both rcuxρ and rcuxρ,s extend immediately

to channels with memory and general decoding rules (not necessarily single-letter).

The bound rcuxρ,s was presented by Gallager [2] under ML decoding with s = 1
2 . For the random-coding ensembles

we consider, it will be seen that this choice of s is optimal for ML decoding, at least in terms of the error exponent

obtained. However, for mismatched decoding it is important to allow for an arbitrary s ≥ 0.

The following theorem gives an asymptotic bound which follows by using Lemma 1 with a choice of f(·) which

differs from that of Gallager.

Theorem 2. Consider a sequence of codebooks Cn containing M ′
n = ⌊exp(nR)⌋ codewords which are generated

independently according to PX . Suppose that there exists a non-negative sequence E(n) growing subexponentially in

n (i.e. E(n)
.
= 1) such that

P
[
qn(x,Y ) ≥ qn(x,Y )

∣∣X = x
]
≥ exp(−E(n)) (13)

for all (x,x) with PX(x)PX(x) > 0. Then there exists a sequence of codebooks Cn with Mn codewords such that

lim
n→∞

1

n
logMn = R (14)

and

pe(Cn) ≤̇ exp
(
E[log pe,m(Cn)]

)
(15)

≤ exp
(
ρE
[
logE

[
pe,m(Cn)

1/ρ
∣∣X(m)

]])
, (16)

where (16) holds for any ρ > 0.

Proof: The error probability associated with the transmitted codeword x is lower bounded by the left-hand side

of (13), where x is any incorrect codeword. The assumption in (13) thus implies that the function f(pe,m(C)) =

E(n) + log pe,m(C) is non-negative for m = 1, · · · ,M . Applying Lemma 1, we obtain that for each n there exists a

codebook Cn such that

E(n) + log pe(Cn) ≤ (1 + ηn)
(
E(n) + E[log pe,m(Cn)]

)
(17)

for any ηn > 0. Since logα ≤ 0 for α ∈ (0, 1], it follows that

log pe(Cn) ≤ ηnE(n) + E[log pe,m(Cn)]. (18)

Choosing ηn = 1
E(n) , we obtain (15). Furthermore, we have from Lemma 1 that Mn = enR ηn

1+ηn
, which yields (14)

since ηn = 1
E(n) decays subexponentially in n. We obtain (16) by writing logα = ρ log(α1/ρ), conditioning on the

transmitted codeword, and applying Jensen’s inequality.

The assumption of Theorem 2 is mild, allowing ensembles for which the error probability associated with any

two permissible codewords decays nearly double-exponentially fast. However, it is a multi-letter condition, and hence

July 24, 2013 DRAFT



7

may be difficult to verify directly. A single-letter sufficient condition depending only on the channel, metric and cost

constraint (2) is that

lim
γ→∞

1

γ
log log

1

π(γ)
= 0, (19)

where

π(γ)
△
= min

(x,x) : c(x)≤γ,c(x)≤γ
P[Yx ∈ E(x, x)] (20)

E(x, x) △
=
{
y : q(x, y) ≥ q(x, y)

}
, (21)

where in (20) we define Yx ∼W (·|x). Under this assumption, the probability in (13) is lower bounded by the probability

that Yi ∈ E(Xi, Xi) for i = 1, · · · , n, which in turn is lower bounded by π(nΓ)n. Since n times a subexponential

sequence is also subexponential, the condition of Theorem 2 follows from (19). Further discussion is given in Appendix

A, along with some examples.

From (15), we can see the advantage of the expurgated ensemble over the non-expurgated one. The former yields

the exponent corresponding to − 1
nE[log pe,m(Cn)], which is higher in general than that of − 1

n logE[pe,m(Cn)] due to

Jensen’s inequality.

Using L’Hôpital’s rule, it is easily shown that limρ→∞ ρ logE[Z1/ρ] = E[logZ] for any random variable Z. It

follows that the inequality in (16) is actually an equality in the limit as ρ → ∞. At first glance, it may appear that a

similar argument can be used to show that (6) yields the same exponent as (15). However, there is an issue with the

order of the limits of n and ρ. If we take ρ→ ∞ in (6), the factor 2ρ makes the right-hand side equal ∞. We cannot

resolve this issue by letting ρ grow slowly with n, since the random variable pe,m(C) also varies with n.

While we do not have an example where Theorem 2 yields a strictly higher exponent than (6), we will see that the

former is useful in simplifying the analysis.

III. EXPURGATED ENSEMBLES AND EXPONENTS

In this section, we present an overview of expurgated exponents, some of which appear here for the first time.

A. Expurgated Random-Coding Ensembles

Throughout the paper, we study three expurgated ensembles, each of which depends on an input distribution Q ∈
P(X ):

1) The i.i.d. ensemble is characterized by

PX(x) =

n∏

i=1

Q(xi). (22)

This codeword distribution is valid for both discrete and continuous alphabets, but it is not suitable for channels

with cost constraints, since in all non-trivial cases there is a non-zero probability of violating the constraint.

2) The constant-composition ensemble is characterized by

PX(x) =
1

|Tn(Qn)|
11
{
x ∈ Tn(Qn)

}
, (23)

where Qn is a type with the same support as Q such that |Qn(x) − Q(x)| = O
(
1
n

)
for all x. This codeword

distribution relies on |X | being finite. It is directly applicable to channels with cost constraints, since each
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codeword satisfies (2) with probability one provided that EQn
[c(X)] ≤ Γ, which in turn can be achieved provided

that EQ[c(X)] ≤ Γ.

3) The cost-constrained ensemble is characterized by

PX(x) =
1

µn

n∏

i=1

Q(xi)11
{
x ∈ Dn

}
, (24)

where

Dn
△
=

{
x :

1

n

n∑

i=1

c(xi) ≤ Γ,

∣∣∣∣
1

n

n∑

i=1

al(xi)− φl

∣∣∣∣ ≤
δ

n
, l = 1, . . . , L

}
, (25)

and where δ is a positive constant (independent of n), {al(·)}Ll=1 are functions with means φl
△
= EQ[al(X)], and

µn is a normalizing constant. This codeword distribution is valid for both discrete and continuous alphabets, and

ensures that each codeword satisfies (2) with probability one. Both c(x) and {al(·)} can be thought of as cost

functions, and we will distinguish between the two by referring to them as the system cost and auxiliary costs

respectively. In contrast to the system cost, the auxiliary costs are functions which can be optimized. That is,

while the system cost is given as part of the problem statement, the auxiliary costs are introduced to improve

the performance of the random-coding ensemble itself [9], [10], [19].

B. Expurgated Exponents

Here we state and compare the exponents obtained by the above ensembles. Unless stated otherwise, we assume that

the channel is a DMC with unconstrained inputs.

Substituting the i.i.d. distribution (22) into (9), we immediately obtain the exponent

Eiid
ex (Q,R)

△
= sup

ρ≥1
Eiid

x (Q, ρ)− ρR, (26)

where

Eiid
x (Q, ρ)

△
= sup

s≥0
−ρ log

∑

x,x

Q(x)Q(x)

(
∑

y

W (y|x)
(
q(x, y)

q(x, y)

)s
)1/ρ

, (27)

The objective in (27) is concave in s, and under ML decoding (i.e. q(x, y) = W (y|x)), it is also unchanged when s

is replaced by 1− s. From these properties, it follows that s = 1
2 is optimal for ML decoding, and thus the exponent

is the same as that of Gallager [2].

Csiszár and Körner [6] make use of the constant-composition codeword distribution in (23). The analysis is signifi-

cantly different to that of Gallager, and yields an exponent in a different form, namely1

Ecc
ex(Q,R)

△
= min

PXXY ∈T cc(Q)

IP (X;X)≤R

D(PXXY ‖Q×Q×W )−R, (28)

where

T cc(Q)
△
=
{
PXXY ∈ P(X × X × Y) : PX = Q,PX = Q,EP [log q(X,Y )] ≥ EP [log q(X,Y )]

}
. (29)

The objective in (28) follows from [6, Eq. (32)] and the identity

D(PXXY ‖Q×Q×W ) = D(PXXY ‖PXX ×W ) + IP (X;X), (30)

1The notation Q×Q×W denotes the distribution Q(x)Q(x)W (y|x).
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which holds for any PXXY such that PX = PX = Q. Defining PY (y)
△
=
∑

xQ(x)W (y|x), it is easily seen that Ecc
ex

is positive for sufficiently small R provided that EQ×W [log q(X,Y )] > EQ×PY
[log q(X,Y )]. It was shown in [8] that

the mismatched capacity is in fact zero unless this condition holds for some Q.

The following theorem provides the means for comparing the above two exponents, as well as that of Csiszár, Körner

and Marton [4].

Theorem 3. For any input distribution Q and rate R, we have

Ecc
ex(Q,R) = sup

s≥0
min

PXX :PX=Q,PX=Q,

IP (X;X)≤R

EP [ds(X,X)] + IP (X;X)−R (31)

= sup
ρ≥1

Ecc
x (Q, ρ)− ρR, (32)

where

ds(x, x)
△
= − log

∑

y

W (y|x)
(
q(x, y)

q(x, y)

)s

(33)

Ecc
x (Q, ρ)

△
= sup

s≥0,a(·)
−ρ
∑

x

Q(x) log
∑

x

Q(x)
ea(x)

ea(x)

(
∑

y

W (y|x)
(
q(x, y)

q(x, y)

)s
)1/ρ

. (34)

Proof: See Appendix B.

The expressions (32) and (34) strongly resemble (26)–(27). The expression in (31) is a generalization of the exponent

in [4], which is recovered by setting q(x, y) = W (y|x) and s = 1
2 . Using the same argument as the one following

(27), we see that the latter choice is optimal. From the proof of Theorem 3, this implies the optimality of s = 1
2 in

(34) under ML decoding, though the optimal choice of a(·) is unclear in general. To our knowledge, the expression in

(34) has not appeared previously even for ML decoding.

As noted in [6], [17], we can write (31) in the language of rate-distortion theory [22, Ch. 10]. Fix any s ≥ 0 and

define

Ds(Q,R)
△
= min

PXX :PX=Q,PX=Q,

IP (X;X)≤R

EP [ds(X,X)]. (35)

This can be interpreted as the distortion-rate function of a source X with a reproduction variable X , subject to the

additional constraint that each reproduction codeword x has empirical distribution Q. For any s ≥ 0, the constraint on

the mutual information in (31) is active for sufficiently small R. The supremum of all such rates is given by

Rs(Q)
△
= IP∗(X;X), (36)

where

P ∗
XX

△
= argmin

PXX :PX=Q,PX=Q
EP [ds(X,X)] + IP (X;X). (37)

For R ≤ Rs we have IP (X;X) = R under the minimizing PXXY , whereas for R ≥ Rs the minimum in (31) decreases

linearly with R for any fixed s. It follows that

Ecc
ex(Q,R) = sup

s≥0
Ecc

ex(Q,R, s), (38)
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where

Ecc
ex(Q,R, s)

△
=





Ds(Q,R) R ≤ Rs(Q)

Ds(Q,Rs) +Rs(Q)−R R > Rs(Q).

(39)

By applying Jensen’s inequality to (34) and setting a(x) = 0, we immediately obtain

Ecc
ex(Q,R) ≥ Eiid

ex (Q,R). (40)

It was shown in [5, Ex. 10.18] that (40) holds with equality under ML decoding with an optimized input distribution

Q. However, when either the decoding rule or input distribution is fixed, the inequality in (40) can be strict (see Section

III-C for an example).

In Section IV, we show that (31) remains valid in the case of continuous outputs when the summation over y in

(33) is replaced by an integral. In Section V, we take this result one step further and show that (32) remains valid in

the case of continuous input and output alphabets, with the summations in (34) replaced by integrals. This is proved

using the cost-constrained ensemble in (24).

We conclude this discussion with the following theorem, which generalizes Gallager’s expression for the expurgated

exponent as R→ 0+ for channels whose zero-error capacity [23] is zero, and shows that the inequality in (40) becomes

an equality in the limit.

Theorem 4. Fix any input distribution Q such that all pairs (x, x) with Q(x)Q(x) > 0 share a common output, i.e.

W (y|x)W (y|x) > 0 for some y. Then

lim
R→0+

Ecc
ex(Q,R) = lim

R→0+
Eiid

ex (Q,R) = sup
s≥0

E[ds(X,X)], (41)

where ds is defined in (33), and the expectation is taken with respect to Q(x)Q(x).

Proof: See Appendix C.

C. Numerical Example

In this subsection, we provide numerical results in the setting of Bit-Interleaved Coded Modulation (BICM), which

was studied from a mismatched decoding perspective in [24]. We briefly state the setup here, and refer the reader to

[24] for further details and discussion.

We assume that |X | = 2t for some integer t. The codebook C containing codewords in Xn is obtained from a

binary codebook containing codewords in {0, 1}nt. A given codeword x = (x1, · · · , xn) is obtained by passing the

corresponding binary codeword b = (b1, · · · , bnt) through a length-nt interleaver, and then applying a binary labeling

function ψ : {0, 1}t → X in blocks of t bits. As noted in [24], the interleaver can be ignored in the random coding

setting, and we can thus write xi = ψ(bt(i−1)+1, . . . , bti), i = 1, · · · , n.

We denote the inverse labeling function by bj : X → {0, 1}, so that bj(x) is the j-th bit in the binary label of x

for j = 1, · · · , t. We consider uniform input distributions on the bits and symbols, yielding Q(x) = 1
|X | for all x. The

classical BICM decoder [24], [25] treats each of the t bits in a received symbol as being independent. This leads to a
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Figure 1. Expurgated exponents for BICM over the additive Gaussian noise channel with 8-PAM and the natural binary code labeling.

symbol decoding metric q(x, y) which is equal to the product of bit metrics, namely [24]

q(x, y) =

t∏

j=1

qj(bj(x), y), (42)

where

qj(b, y)
△
=

∑

x′ : bj(x′)=b

W (y|x′). (43)

As an example of the BICM setup, we consider the additive Gaussian noise channel Y = X + Z, where Z is

normally distributed. We consider Pulse Amplitude Modulation (PAM) with |X | = 8 and hence t = 3. We set the

signal-to-noise ratio (SNR) to 5dB, and we let the binary labeler ψ(·) be the natural binary code, i.e. the 8 symbols

are labeled in increasing order of their numerical x-value as (0, 0, 0), (0, 0, 1), · · · , (1, 1, 1).
Figure 1 plots the expurgated exponents for the i.i.d. and constant-composition ensembles, i.e. Eiid

ex in (26) and

Ecc
ex in (32). The constant-composition exponent yields a significant improvement over the i.i.d. one. Consistent with

Theorem 4, the exponents approach the same value as R→ 0.

As stated above, the gap between the two exponents vanishes under ML decoding with an optimally chosen input

distribution Q. However, it should be noted that the gap remains present under ML decoding with a suboptimal Q,

and also under mismatched decoding with an optimal Q.

IV. DERIVATIONS FOR DISCRETE ALPHABETS

In this section, we provide techniques for deriving the exponent Ecc
ex in the forms given in (28) and (31), making

use of the constant-composition ensemble in (23). Unless stated otherwise, we assume that the channel is a DMC.
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We define the sets

Scc(Q)
△
=
{
P̃XX ∈ P(X × X ) : P̃X = Q, P̃X = Q

}
(44)

T cc(P̃XX)
△
=
{
PXXY ∈ P(X × X × Y) : PXX = P̃XX ,EP [log q(X,Y )] ≥ EP [log q(X,Y )]

}
(45)

Scc
n (Q)

△
= Scc(Q) ∩ Pn(X × X ) (46)

T cc
n (P̃XX)

△
= T cc(P̃XX) ∩ Pn(X × X × Y), (47)

where we overload the symbol T cc (see (29)). It follows from these definitions that PXXY ∈ T cc(Q) if and only if

PXXY ∈ T cc(P̃XX) for some P̃XX ∈ Scc(Q). Furthermore, we have the following properties of types (e.g. see [5,

Ch. 2]):

1) For any P̃XX ∈ Scc
n (Qn),

P
[
(X,X) ∈ Tn(P̃XX)

] .
= exp

(
− nIP̃ (X;X)

)
. (48)

2) If (x,x) ∈ Tn(P̃XX), then for any PXXY ∈ T cc
n (P̃XX),

P
[
(x,x,Y ) ∈ Tn(PXXY )

∣∣X = x
] .
= exp

(
− nD(PXXY ‖P̃XX ×W )

)
. (49)

A. Derivation Using Theorem 1

Using the codeword distribution in (23) and expanding (8) in terms of types, we obtain

rcuxρ(n,M)1/ρ

= 4(M − 1)
∑

P̃XX∈Scc
n (Qn)

P

[
(X,X) ∈ Tn(PXX)

] ∑

PXXY ∈T cc
n (P̃XX)

P

[
(x,x,Y ) ∈ Tn(PXXY )

∣∣∣X = x
]1/ρ

(50)

.
=M max

P̃XX∈Scc
n (Qn)

max
PXXY ∈T cc

n (P̃XX)
exp

(
− nIP̃ (X;X)

)
exp

(
− n · 1

ρ
D
(
PXXY ‖P̃XX ×W

))
(51)

.
=M max

PXXY ∈T cc(Q)
exp

(
− n

(1
ρ
D
(
PXXY ‖PXX ×W

)
+ IP (X;X)

))
, (52)

where in (50) we define (x,x) to be an arbitrary pair with joint type P̃XX , (51) follows from the properties of types

in (48)–(49) and the fact that the number of joint types is polynomial in n, and (52) follows from the definitions of

Scc
n , T cc

n and T cc. We thus obtain the exponent

sup
ρ≥1

min
PXXY ∈T cc(Q)

D(PXXY ‖PXX ×W ) + ρ
(
IP (X;X)−R

)
(53)

= min
PXXY ∈T cc(Q)

sup
ρ≥1

D(PXXY ‖PXX ×W ) + ρ
(
IP (X;X)−R

)
, (54)

where (54) follows from Fan’s minimax theorem [26], the conditions of which are satisfied here since the objective is

linear in ρ and convex in PXXY . Using

sup
ρ≥1

ρα =





∞ α > 0

α α ≤ 0

(55)

and the identity in (30), it follows that (54) coincides with (28).

July 24, 2013 DRAFT



13

If we start with rcuxρ,s in (9) in place of rcuxρ in (8), then a nearly identical analysis yields the exponent Ecc
ex in

the form given in (31). Unlike the above derivation or those of [4], [6], this approach allows for continuous output

alphabets, though the input alphabet must remain finite.

B. Derivation Using Type Class Enumerators

Here we provide an alternative derivation of (28) and (31) using the method of type class enumerators (e.g. see

[11]–[13]). This approach guarantees exponential tightness starting from an earlier step, and provides further insight

into the expurgated coding bounds, including connections with statistical mechanics (see Section VII). While the focus

in this section is on discrete alphabets, the analysis has a natural extension to continuous alphabets (see Section V-B).

Substituting (10) into (6) and defining

dq(x,x)
△
= − logP

[
qn(x,Y ) ≥ qn(x,Y )

∣∣∣X = x
]
, (56)

we obtain the bound

pe(C) ≤ 2ρE

[( ∑

m 6=m

e−dq(X
(m),X(m))

)1/ρ
]ρ

(57)

△
= 2ρAn(R, ρ). (58)

Since we have not made use of the inequality in (12), (57) is valid for all ρ > 0 (see (6)), rather than just ρ ≥ 1.

For m = 1, · · · ,M and each joint type P̃XX , we define the random variable

Nm(P̃XX)
△
=
∑

m 6=m

11
{
(X(m),X(m)) ∈ Tn(P̃XX)

}
. (59)

Under the random-coding distribution in (23), we have Nm(P̃XX) = 0 with probability one if P̃XX /∈ Scc
n (Qn). That

is, the marginal of each codeword must agree with Q. Since dq depends only on the joint type of its arguments, we

define dq(P̃XX)
△
= 1

ndq(x,x), where (x,x) ∈ Tn(P̃XX).

Making repeated use of the fact that the number of joint types is polynomial in n, we have the following:

An(R, ρ)
1/ρ = E

[( ∑

P̃XX

Nm(P̃XX)e−ndq(P̃XX)

)1/ρ
]

(60)

.
= E

[(
max
P̃XX

Nm(P̃XX)e−ndq(P̃XX)

)1/ρ
]

(61)

= E

[
max
P̃XX

Nm(P̃XX)1/ρe−ndq(P̃XX)/ρ

]
(62)

.
= E

[ ∑

P̃XX

Nm(P̃XX)1/ρe−ndq(P̃XX)/ρ

]
(63)

=
∑

P̃XX

E

[
Nm(P̃XX)1/ρ

]
e−ndq(P̃XX)/ρ (64)

.
= max

P̃XX

E

[
Nm(P̃XX)1/ρ

]
e−ndq(P̃XX)/ρ. (65)
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It follows that

2ρAn(R, ρ)
.
= max

P̃XX

(
E

[
Nm(P̃XX)1/ρ

])ρ

e−ndq(P̃XX). (66)

Now, similarly to [11, Eq. (34)], we have for all P̃XX ∈ Scc
n (Qn) that

E

[
Nm(P̃XX)1/ρ

]
.
=





exp
(
n
(
R− IP̃ (X;X)

))
R < IP̃ (X;X)

exp
(
n
(
R− IP̃ (X;X)

)
/ρ
)

R ≥ IP̃ (X;X).
(67)

This result follows from the fact that given X(m) = x, Nm(P̃XX) is the sum of enR − 1 binary independent random

variables,

Um
△
= 11

{
(x,X(m)) ∈ Tn(P̃XX)

}
, (68)

whose expectations are of the exponential order of exp
(
− nIP̃ (X;X)

)
. Furthermore, similarly to (51), we have

e−ndq(P̃XX) .= exp

(
− n min

PXXY ∈T cc(P̃XX)
D
(
PXXY ‖P̃XX ×W

))
(69)

△
= e−nDq(P̃XX). (70)

Upon taking into account all the possible empirical distributions {P̃XX}, we readily obtain

2ρAn(R, ρ)
.
= e−nmin{E1(R,ρ),E2(R)}, (71)

where

E1(R, ρ)
△
= min

P̃XX∈Scc(Q)

I
P̃
(X;X)≥R

Dq(P̃XX) + ρ
(
IP̃ (X;X)−R

)
(72)

and

E2(R) = min
P̃XX∈Scc(Q)

I
P̃
(X;X)≤R

Dq(P̃XX) + IP̃ (X;X)−R. (73)

Combining (30), (70) and (73), we see that E2(R) coincides with Ecc
ex in the form given in (28). It remains to show

that E1(R, ρ), for the optimum choice of ρ, is never smaller than E2(R). This can be seen by noting that since (72)

contains the constraint IP̃ (X;X) ≥ R, the term multiplying ρ in (72) is non-negative. Thus, the best choice of ρ is to

take the limit as ρ→ ∞, and hence the minimum in (72) is achieved by some P̃XX satisfying IP̃ (X;X) = R. Since

this joint distribution also satisfies the constraints in (73), we conclude that E1 ≥ E2, thus completing the derivation.

If we apply Markov’s inequality to the probability in (56), we obtain a weaker bound in (57) with the Chernoff

distance

dns (x,x)
△
=

n∑

i=1

ds(xi, xi) (74)

replacing dq , where ds is defined in (33). Applying a nearly identical analysis to the one above, this leads to the

equivalent form of Ecc
ex given in (31). This approach allows for continuous output alphabets, and will also prove to

be important for handling continuous input alphabets (see Section V-B). While dq is more complex than ds and does

not admit a single-letter form, we have chosen to focus on dq in this section for the sake of proving the exponential

tightness of the analysis starting from the earliest step possible.
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C. Comparison of Techniques

For the constant-composition codeword distribution considered in this section, the approaches of Sections IV-A and

IV-B led to the same exponent, namely Ecc
ex. It should be noted, however, that the approach of Section IV-B can yield a

strictly higher exponent than that of Section IV-A for some codeword distributions. Here we discuss the simple example

of the i.i.d. distribution in (22).

Following the steps of Section IV-A, it is easily verified that the exponent of the quantity rcuxρ in Theorem 1 is

given by

min
PXXY :D(PXX‖Q×Q)≤R,

EP [log q(X,Y )]≥EP [log q(X,Y )]

D(PXXY ‖Q×Q×W )−R. (75)

On the other hand, the analysis of Section IV-B yields an exponent of the same form as (75) with an additional

constraint PX = Q in the minimization. To see why this is true, we note that the quantity Nm(P̃XX) defined in (59)

satisfies

E

[
Nm(P̃XX)1/ρ

]
= P

[
X(m) ∈ Tn(P̃X)

]
E

[
Nm(P̃XX)1/ρ

∣∣∣X(m) ∈ Tn(P̃X)
]

(76)

.
=





exp
(
− nD(P̃X‖Q)

)
· exp

(
n
(
R−D(P̃XX‖P̃X ×Q)

))
R < IP̃ (X;X)

exp
(
− nD(P̃X‖Q)

)
· exp

(
n
(
R−D(P̃XX‖P̃X ×Q)

)
/ρ
)

R ≥ IP̃ (X;X).
(77)

The additional factor exp
(
− nD(P̃X‖Q)

)
leads to an additive ρD(P̃X‖Q) term in the exponent E2 in (73). The

optimal choice of ρ is again in the limit as ρ→ ∞, and under this choice the minimizing P̃XX must satisfy P̃X = Q

so that the divergence is forced to zero.

Since both derivations are exponentially tight from the step at which they start, we conclude that the weakness of the

first derivation is in the inequality in (11), or more precisely the use of (12). While this step is useful for simplifying

the derivations, the above example shows that it is not exponentially tight in general.

Another approach to recovering the constraint P̃X = Q in the above example is to follow the steps of Theorem 1

and Section IV-A starting with Theorem 2. Since the expectation of the transmitted codeword is outside the logarithm

in (16), it is straightforward to obtain the constraint P̃X = Q in the final minimization using the fact that the empirical

distribution of X is close to Q with high probability.

Stated differently, the inequality (12) is exponentially tight for the i.i.d. ensemble when we start with (16), but it

is not tight when we start with (6). In the latter case, the exponentially tight analysis of Section IV-B is required to

obtain the improved exponent.

More generally, we believe that the approach of Section IV-B and its generalization to continuous channels (see

Section V-B) could prove useful in obtaining strictly higher exponents than those attained by Theorem 1 for channels

with memory and more general decoding metrics. An analogous observation was shown to be true in [11] in the setting

of erasure and list decoding.

V. DERIVATIONS FOR CONTINUOUS ALPHABETS

In this section, we derive the following generalization of (32):

Ecc
ex(Q,R) = sup

ρ≥1
Ecc

x (Q, ρ)− ρR, (78)
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where

Ecost
x (Q, ρ) = sup

s≥0,a(·)
−ρ
∫
dxQ(x) log

∫
dxQ(x)

ea(x)

ea(x)

(∫
dyW (y|x)

(
q(x, y)

q(x, y)

)s
)1/ρ

. (79)

We show that, subject to mild technical conditions, this exponent is achievable for continuous cost-constrained channels

(see (2)) provided that EQ[c(X)] ≤ Γ. For clarity of exposition, we focus on the case that the input and output alphabets

are a subset of the real line R, but our analysis applies more generally (e.g. to R
k with k > 1).

We consider the cost-constrained ensemble in (24). Before proceeding, we present a number of preliminary results

regarding the ensemble. A key property which will prove useful in the derivations is

x ∈ Dn =⇒ er
(∑n

i=1 a(xi)−nφa

)
e|r|δ ≥ 1, (80)

which holds for any real number r, and follows immediately from the definition of Dn in (25). Furthermore, we have

the following.

Proposition 1. [10, Prop. 1] Fix any input distribution Q and set of cost functions {al}Ll=1 such that EQ[c(X)] ≤ Γ,

EQ[c(X)2] <∞ and EQ[al(X)2] <∞ for l = 1, · · · , L. Then the normalizing constant µn in (24) satisfies

lim
n→∞

1

n
logµn = 0. (81)

Proposition 2. Fix any input distribution Q and set of cost functions {al}Ll=1 satisfying the assumptions of Proposition

1. For any function f(x), we have

lim
n→∞

E

[
1

n

n∑

i=1

f(Xi)

]
= EQ[f(X)]. (82)

Proof: See Appendix D.

Throughout the section, we present the analysis for a given input distribution Q. We assume that this distribution

and the auxiliary costs in (25) are chosen such that the conditions of Proposition 1 are satisfied.

A. Derivation Using Theorem 1

We begin by presenting an achievable error exponent for the cost-constrained ensemble with fixed auxiliary costs.

Theorem 5. For any input distribution Q and set of functions {al} satisfying the assumptions of Proposition 1, the

cost-constrained ensemble in (24)–(25) achieves the expurgated exponent

Ecost
ex (Q,R, {al}) △

= sup
ρ≥1

Ecost
x (Q, ρ, {al})− ρR, (83)

where

Ecost
x (Q,R, {al}) △

= sup
s≥0,{rl},{rl}

−ρ log
∫∫

dxdxQ(x)Q(x)
e
∑L

l=1 rl(al(x)−φl)

e
∑

L
l=1 rl(al(x)−φl)

(∫
dyW (y|x)

(
q(x, y)

q(x, y)

)s
)1/ρ

.

(84)

Proof: Throughout the proof, we define anl (x)
△
=
∑n

i=1 al(xi) and Qn(x)
△
=
∏n

i=1Q(xi). We start with (9), and
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write

rcuxρ,s(n,M)1/ρ = 4(M − 1)

∫∫
dxdxPX(x)PX(x)

(∫
dyWn(y|x)

(
qn(x,y)

qn(x,y)

)s
)1/ρ

(85)

≤̇M

∫∫
dxdxPX(x)PX(x)

e
∑L

l=1 rl(a
n
l (x)−nφl)

e
∑

L
l=1 rl(an

l
(x)−nφl)

(∫
dyWn(y|x)

(
qn(x,y)

qn(x,y)

)s
)1/ρ

(86)

≤̇M

∫∫
dxdxQn(x)Qn(x)

e
∑L

l=1 rl(a
n
l (x)−nφl)

e
∑

L
l=1 rl(an

l
(x)−nφl)

(∫
dyWn(y|x)

(
qn(x,y)

qn(x,y)

)s
)1/ρ

, (87)

where (86) holds for any {rl} and {rl} from (80),2 and (87) follows from (24) and (81). The proof is concluded by

expanding each term in (87) as a product from 1 to n and taking the supremum over ρ, s, {rl} and {rl}.

In order to obtain the exponent Ecc
ex from Ecost

ex , we set L = 2 and choose r1 = r2 = 1 and r2 = r1 = 0. Upon

optimizing the auxiliary costs a1(·) and a2(·), we obtain

Ecost
x (Q, ρ) = sup

s≥0,a1(·),a2(·)
−ρ log

∫∫
dxdxQ(x)Q(x)

ea1(x)−φ1

ea2(x)−φ2

(∫
dyW (y|x)

(
q(x, y)

q(x, y)

)s
)1/ρ

(88)

≤ sup
s≥0,a1(·),a2(·)

−ρ
∫
dxQ(x) log

∫
dxQ(x)

ea1(x)−φ1

ea2(x)−φ2

(∫
dyW (y|x)

(
q(x, y)

q(x, y)

)s
)1/ρ

(89)

where (89) follows from Jensen’s inequality.

For any s and a1(·), there exists a choice of a2(·) which makes Jensen’s inequality hold with equality in (89), and

hence the same is true after taking the supremum over each. Hence, and by writing

−
∫
dxQ(x) log

e−φ1

ea2(x)−φ2
= −

∫
dxQ(x) log e−a1(x) = φ1, (90)

we obtain that the a2(·) achieving the supremum in (88) is the one yielding equality in (89). Renaming a1(·) as a(·)
and using the first equality in (90), we obtain (79).

It should be noted that, in accordance with Proposition 1, the supremum over s and a(·) in (79) is restricted to

choices such that EQ[a(X)2] < ∞, and such that EQ[a2(X)2] < ∞ for the choice of a2(·) which makes Jensen’s

inequality hold with equality in (89) (expressed in terms of s and a(·)).
While the parameters {rl} and {rl} are not necessary in the derivation of (79), they improve the exponent for

a given set of auxiliary costs [10]. That is, the more general exponent of Theorem 5 serves as an indicator of the

performance when the auxiliary costs are chosen suboptimally (e.g. due to the codebook designer having imperfect

channel knowledge). Using a similar argument to that of (88)–(90), it is easily shown that Ecost
ex never improves on

Ecc
ex, and hence one cannot improve on the exponent obtained using L = 2 optimally chosen auxiliary costs.

B. Derivation Using Distance Enumerators

In this subsection, we extend the type enumerator analysis of Section IV-B to channels with continuous alphabets.

We assume that the technical condition of Theorem 2 is satisfied (see Appendix A for discussion), and make use of

2We could introduce c(x) into the bound similarly, but there is no real loss of generality in omitting this inclusion, since one can always choose

al(·) = c(·) for some l. Under such a choice, the one-sided constraint on c(·) in (25) can be removed provided that EQ[c(X)] < Γ, though it must

remain present in the case that EQ[c(X)] = Γ.

July 24, 2013 DRAFT



18

(16). For clarity of exposition, we present the key steps and ideas here, and give the remaining details in Appendix E.

Unlike Section IV-B, we do not attempt to prove the exponential tightness of each step.

We fix s ≥ 0 and define the Chernoff distance

ds(x, x)
△
= − log

∫
dyW (y|x)

(
q(x, y)

q(x, y)

)s

(91)

and its multi-letter extension

dns (x,x)
△
=

n∑

i=1

ds(xi, xi). (92)

Applying the union bound and Markov’s inequality to (16), we conclude that analogously to (57), there exists a

codebook C of rate R such that

pe(C) ≤̇ exp
(
E
[
logAn(R, ρ,X

(m))
])
, (93)

where

An(R, ρ,X
(m))

△
= E

[( ∑

m 6=m

e−dn
s (X

(m),X(m))

)1/ρ ∣∣∣∣X
(m)

]ρ
. (94)

For a fixed transmitted codeword X(m) = x, we analyze An(R, ρ,x) using distance enumerators:

∑

m 6=m

e−dn
s (x,X

(m)) ≤
∞∑

k=0

e−nkδNm(k,x), (95)

where δ > 0 is arbitrary, and

Nm(k,x)
△
=
∑

m 6=m

11
{
nkδ ≤ dns (x,X

(m)) < n(k + 1)δ
}
. (96)

Using Markov’s inequality, we can upper-bound the left-hand side of (13) by e−dn
s (x,x). It follows from the assumption

of Theorem 2 that the highest value of k,

kmax(n)
△
= max

x :PX(x)>0
max

{
k : P

[
Nm(k,x) > 0

]
6= 0
}
, (97)

grows subexponentially in n for all s ≥ 0. Thus, analogously to (66), the quantity An(R, ρ,x) defined in (93) satisfies

An(R, ρ,x) ≤̇ max
k≥0

(
E
[
Nm(k,x)1/ρ

])ρ
e−nkδ. (98)

We can further upper bound this expression by removing the lower inequality in the indicator function in (96). The

key issue is now to assess the exponential rate of decay of the binary random variable

Um(x)
△
= 11

{
dns (x,X

(m)) < n(k + 1)δ
}

(99)

for a given transmitted codeword x, i.e. to find the exponent of F (D,x)
△
= P

[
dns (x,X) < D]. This can be done

using standard large deviations techniques such as the Chernoff bound. Letting R(D,x) be any function such that

F (D,x) ≤̇ e−nR(D,x) uniformly in x, we have similarly to (71) that

An(R, ρ,x) ≤̇ e−nmin{E1(R,ρ,δ,x),E2(R,δ,x)}, (100)

where

E1(R, ρ, δ,x)
△
= min

k :R((k+1)δ,x)≥R
kδ + ρ

(
R((k + 1)δ,x)−R

)
(101)

E2(R, δ,x)
△
= min

k :R((k+1)δ,x)≤R
kδ +R((k + 1)δ,x)−R. (102)
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Upon taking the limit δ → 0, these become

E1(R, ρ,x)
△
= inf

D :R(D,x)≥R
D + ρ

(
R(D,x)−R

)
(103)

E2(R,x)
△
= inf

D :R(D,x)≤R
D +R(D,x)−R. (104)

Analogously to Section IV-B, the optimal choice of ρ is in the limit as ρ→ ∞, and we obtain E2 ≤ E1, and hence

An(R, ρ,x) ≤̇ e−nE2(R,ρ,x). (105)

Substituting (105) into (93), we obtain

lim inf
n→∞

− 1

n
log pe(C) ≥ E

[
E2(R, ρ,X)

]
(106)

= E

[
inf

D :R(D,X)≤R
D +R(D,X)−R

]
. (107)

Thus far, we have not made use of the specific choice of PX , and hence (107) can be applied fairly generally. In fact,

after a suitable modification of the definition of dns (x,x), (107) extends immediately to more general channels and

metrics (e.g. channels with memory). The ability to simplify the exponent (e.g. to a single-letter expression) depends

on the form of R(D,x), which in turn depends strongly on the codeword distribution PX . In some cases, PX can be

chosen in such a way that R(D,x) is the same for all x with PX(x) > 0, thus greatly simplifying (107).

In Appendix E, we give the remaining details for the cost-constrained ensemble with a single auxiliary cost a1(x) =

a(x), and show that after optimizing a(·), (107) yields the exponent Ecc
ex(Q,R) in (78). We only require one auxiliary

cost a(·) to have a finite second moment, as opposed to a1(·) and a2(·) used in Section V-A. However, this comes at

the price of requiring the assumption of Theorem 2 to hold true.

C. Comparison of Techniques

A notable difference between the above derivations is the method for ensuring that the average over x is outside

the logarithm in (79), which is desirable due to Jensen’s inequality. In Theorem 5, the expectation is in fact inside the

logarithm, but the desired result is obtained by choosing a2(x) to make Jensen’s inequality hold with equality. On the

other hand, in Section V-B (and Appendix E) the expectation naturally arises outside the logarithm without the need

for the second cost function.

Provided that the assumption of Theorem 2 is met, we can combine the two approaches and apply the techniques

of Theorem 1 and Section V-A to (16), in which case Ecost
x in (84) is improved to

Ecost∗

x (Q,R, {al}) △
= sup

s≥0,{rl}
−ρ
∫
dxQ(x) log

∫
dxQ(x)e

∑L
l=1 rl(al(x)−φl)

(∫
dyW (y|x)

(
q(x, y)

q(x, y)

)s
)1/ρ

, (108)

where the outer-most integral arises using Proposition 2. This exponent can also be derived by extending the analysis

of Appendix E to include multiple auxiliary costs.

In the case that L = 0 (i.e. i.i.d. coding), the above discussion is analogous to that of Section IV-C. In the absence

of auxiliary costs, the exponent of Theorem 5 coincides with Eiid
ex in (26), and the variation in (108) yields a (possibly

strict) improvement due to Jensen’s inequality. In the discrete memoryless setting, the former exponent is identical to
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(75), whereas the latter exponent is equivalent to the improved version of (75) with the additional constraint PX = Q.

These equivalences are proved in a nearly identical fashion to Theorem 3.

Finally, while the analysis of Section V-A is very specific to the memoryless setting with a single-letter decoding

metric, the analysis of Section V-B yields the expression in (107) which holds in much greater generality.

VI. SUBEXPONENTIAL PREFACTOR

For any achievable error exponent E(R), we have for some sequence of codebooks Cn of rate R that

pe(Cn) ≤ α(n,R) exp(−nE(R)), (109)

where α(n,R) is a subexponential prefactor. In particular, the analysis of Gallager [2, Ch. 5] yields α(n,R) = O(1)

for both the random-coding exponent and the expurgated exponent. Early works on improving the O(1) term for non-

expurgated random coding include those of Elias [27], Dobrushin [28] and Gallager [29]. These results were recently

generalized by Altug and Wagner [20], [30], who obtained prefactors for the random-coding bound at all rates below

capacity, as well as converse results above the critical rate. To our knowledge, no such improvement to Gallager’s O(1)

prefactor for the expurgated exponent has been reported previously. In this section, we obtain a O
(

1√
n

)
prefactor for

the expurgated i.i.d. ensemble defined in (22). Throughout the section, we assume that the channel is a DMC with

unconstrained inputs.

In [31], we have applied similar techniques in the setting of non-expurgated random coding in order to provide an

alternative proof of [20, Thm. 1], as well as generalizing the result to the setting of mismatched decoding. The analysis

of [20] can be considered a refinement of that of Fano [21], whereas our analysis can be considered a refinement of

that of Gallager [2].

A. Technical Assumptions

We define the sets

Y1(x, x)
△
=
{
y : W (y|x)W (y|x) > 0

}
(110)

A(Q)
△
=

{
(x, x) : Q(x)Q(x) > 0,

q(x, y)

q(x, y)
6= q(x, y′)

q(x, y′)
for some y, y′ ∈ Y1(x, x)

}
(111)

and make the following technical assumptions:

q(x, y) = 0 ⇐⇒ W (y|x) = 0 (112)

A(Q) 6= ∅. (113)

In the case of ML decoding, (112) is trivial, and (113) reduces to

W (y|x) 6=W (y|x) for some (x, x, y) such that Q(x)Q(x)W (y|x)W (y|x) > 0, (114)

which is the feasibility decoding is suboptimal assumption of [20, Def. 1]. A notable example of a channel which fails

this condition is the binary erasure channel. In general, however, the assumptions in (112)–(113) are are fairly mild,

and are satisfied for most channels, decoding metrics and input distributions.
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B. Statement of the Result

Theorem 6. Fix any DMC W (y|x), decoding metric q(x, y) and input distribution Q(x) satisfying (112)–(113). For

all n and R > 0, there exists a codebook Cn with M ≥ exp(nR) codewords whose maximal error probability satisfies

pe(Cn) ≤
K√
n
exp

(
− nEiid

ex (Q,R)
)

(115)

for sufficiently large n, where K is a constant depending only on W , q, Q and R.

Proof: We introduce a number of preliminary lemmas in Section VI-C, and prove the theorem in Section VI-D.

It is interesting to note that under ML coding and any rate where the expurgated exponent and random-coding

exponent coincide, Theorem 6 gives the same prefactor growth rate as that of [29], which studies the random-coding

error probability below the critical rate. Of course, Theorem 6 is primarily of interest at low rates, where the expurgated

exponent exceeds the random-coding exponent.

C. Preliminary Lemmas

The key tool in our analysis is the following lemma by Polyanskiy, Poor and Verdú [3].

Lemma 2. [3, Lemma 47] Let Z1, ..., Zn be independent random variables with σ2 △
=
∑n

i=1 Var[Zi] > 0 and

T
△
=
∑n

i=1 E[|Zi − E[Zi]|3] <∞. Then for any real number t,

E

[
exp

(
−
∑

i

Zi

)
11
{∑

i

Zi > t
}]

≤ 2

(
log 2√
2π

+
12T

σ2

)
1

σ
exp

(
− t
)
. (116)

In general, it is possible that the supremum over s > 0 in (27) is only achieved in the limit as s→ ∞. The following

lemma shows that the assumptions in (112)–(113) rule out this possibility.

Lemma 3. For any ρ ≥ 1 and (W, q,Q) satisfying (112)–(113), the objective in (27) tends to −∞ as s→ ∞.

Proof: Let (x, x) be an arbitrary pair in A(Q), the existence of which is asserted in (113). Of the pair (y, y′)

given in (111), at least one must satisfy
q(x,·)
q(x,·) 6= 1; assume without loss of generality that this is y ∈ Y1(x, x). In the

case that
q(x,y)
q(x,y) > 1, we upper bound the objective in (27) by

−ρ logQ(x)Q(x)W (y|x)
(
q(x, y)

q(x, y)

)s

(117)

which tends to −∞ as s → ∞, since W (y|x) > 0 due to the fact that y ∈ Y1(x, x). In the case that
q(x,y)
q(x,y) < 1, a

similar argument applies with the roles of x and x reversed.

The following lemma is somewhat more technical, and ensures the existence of a sufficiently high probability set in
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which Lemma 2 can be applied with a value of σ which has
√
n growth. We define the quantities

Vs(y|x, x) △
=

W (y|x)
(

q(x,y)
q(x,y)

)s

∑
y′ W (y′|x)

(
q(x,y′)
q(x,y′)

)s (118)

V n
s (y|x,x) △

=

n∏

i=1

Vs(yi|xi, xi) (119)

js(x, x, y)
△
= log

Vs(y|x, x)
W (y|x) (120)

jns (x,x,y)
△
=

n∑

i=1

js(xi, xi, yi). (121)

Furthermore, we let P̂xx(x, x) denote the joint empirical distribution (i.e. type) of (x,x).

Lemma 4. For any R > 0 and (W, q,Q) satisfying (112)–(113), the sequence of sets

Fδ,n
△
=
{
(x,x) :

∑

(x,x)∈A(Q)

P̂xx(x, x) > δ
}

(122)

satisfies the following properties:

1) For any δ > 0 and (x,x) ∈ Fδ,n, the random variable Y s ∼ V n
s (·|x,x) satisfies

Var[jns (x,x,Y s)] ≥ nδvs, (123)

where

vs
△
= min

(x,x)∈A(Q)
VarYs∼Vs(·|x,x)[js(x, x, Ys)]. (124)

Furthermore, vs > 0 for all s > 0.

2) For any ρ ≥ 1 and s ≥ 0, there exists a choice of δ > 0 such that

∑

(x,x)/∈Fδ,n

PX(x)PX(x)

(∑

y

Wn(y|x)
(
q(x,y)

q(x,y)

)s)1/ρ

(125)

has a strictly larger exponential rate of decay than

∑

x,x

PX(x)PX(x)

(∑

y

Wn(y|x)
(
q(x,y)

q(x,y)

)s)1/ρ

. (126)

Proof: We obtain (123) by expanding the variance as

Var[jns (x,x,Y s)] =

n∑

i=1

Var[js(xi, xi, Ys,i)] (127)

≥
∑

(x,x)∈A(Q)

nP̂xx(x, x)Var[js(x, x, Ys)] (128)

and substituting the bound in the definition of Fδ,n in (122). To prove that vs > 0, we note that the variance of a

random variable is zero if and only if the variable is deterministic, and hence under Ys ∼ Vs(·|x, x) we have

Var[js(x, x, Ys)] = 0 ⇐⇒ js(x, x, y) is independent of y wherever Vs(y|x, x) > 0 (129)

⇐⇒ q(x, y)

q(x, y)
is independent of y wherever W (y|x)q(x, y) > 0 (130)

⇐⇒ (x, x) /∈ A(Q), (131)
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where (130) follows from the definitions of js and Vs, and (131) follows from the assumption in (112) and the definition

of A(Q).

To prove the second property, we note that a nearly identical argument to Section IV-A (e.g. see (50)–(51)) yields

that the exponent of (126) is equal to

min
PXX

D(PXX‖Q×Q) +
1

ρ
EP [ds(X,X)], (132)

where ds is defined in (33). Similarly, the exponent of (125) is given by

min
PXX :

∑
(x,x)∈A(Q) PXX(x,x)≤δ

D(PXX‖Q×Q) +
1

ρ
EP [ds(X,X)]. (133)

By a straightforward analysis of the Karush-Kuhn-Tucker (KKT) conditions [18, Sec. 5.5.3], we obtain that (132) is

uniquely minimized by

P ∗
XX

(x, x) =
Q(x)Q(x)

(∑
yW (y|x)

(
q(x,y)
q(x,y)

)s)1/ρ

∑
x′,x′ Q(x′)Q(x′)

(∑
y′ W (y′|x′)

(
q(x′,y′)
q(x′,y′)

)s)1/ρ . (134)

From the assumptions in (112)–(113), we can find a pair (x∗, x∗) ∈ A(Q) such that P ∗
XX

(x∗, x∗) > 0. By choosing

δ < P ∗
XX

(x∗, x∗), we conclude that P ∗
XX

does not satisfy the constraint in (133), and thus (133) is strictly higher than

(132).

D. Proof of Theorem 6

Due to the subtraction of ρR in (26), the case ρ → ∞ is only relevant as R → 0, or in the case that the exponent

is infinity and the error probability is zero [2]. The former case is not considered in the theorem statement, and in the

latter case the prefactor is irrelevant. We therefore assume that the supremum in (26) is achieved by a finite value of

ρ. From Lemma 3, we can assume the same of s in (27). Throughout the proof, (ρ, s) are assumed to achieve these

suprema at the given rate R.

Using the bound rcuxρ in Theorem 1 with the i.i.d. codeword distribution in (22), we have

1

M
rcuxρ(n,M)1/ρ =

∑

x,x

Qn(x)Qn(x)P
[
qn(x,Y ) ≥ qn(x,Y )

]1/ρ
(135)

=
∑

(x,x)∈Fδ,n

Qn(x)Qn(x)P
[
qn(x,Y ) ≥ qn(x,Y )

]1/ρ

+
∑

(x,x)/∈Fδ,n

Qn(x)Qn(x)P
[
qn(x,Y ) ≥ qn(x,Y )

]1/ρ
, (136)

where Qn(x)
△
=
∏n

i=1Q(xi), and each probability is implicitly conditioned on X = x. The constant δ is assumed to

be chosen to be sufficiently small so that the second part of Lemma 4 holds under (ρ, s).

We first analyze the summation over Fδ,n in (136). In order to make the inner probability more amenable to an
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application of Lemma 2, we write it as

P

[
qn(x,Y ) ≥ qn(x,Y )

]
= P

[(
qn(x,Y )

qn(x,Y )

)s

≥ 1

]
(137)

= P




(
qn(x,Y )
qn(x,Y )

)s

∑
yW

n(y|x)
(

qn(x,y)
qn(x,y)

)s ≥ 1
∑

yW
n(y|x)

(
qn(x,y)
qn(x,y)

)s


 (138)

= P

[
jns (x,x,Y ) ≥ − log

∑

y

Wn(y|x)
(
q(x,y)

q(x,y)

)s
]
, (139)

where jns is defined in (121). Next, following [32, Sec. 3.4.5], we write

Wn(y|x) =Wn(y|x)V
n
s (y|x,x)
V n
s (y|x,x) (140)

= V n
s (y|x,x) exp

(
− njs(x,x,y)

)
. (141)

Summing (141) over all y such that js(x,x,y) ≥ t, we obtain

P
[
jns (x,x,Y ) ≥ t

]
= E

[
exp

(
− njns (x,x,Y s)

)
11
{
jns (x,x,Y s) ≥ t

}]
, (142)

where Y s ∼ V n
s (·|x,x). For any (x,x) ∈ Fδ,n, Lemma 2 and the first part of Lemma 4 thus imply

P
[
jns (x,x,Y ) ≥ t

]
≤ K1√

n
e−t (143)

for some constant K1. Substituting (143) into (139), we obtain

P

[
qn(x,Y ) ≥ qn(x,Y )

]
≤ K1√

n

∑

y

Wn(y|x)
(
q(x,y)

q(x,y)

)s

, (144)

and hence

∑

(x,x)∈Fδ,n

Qn(x)Qn(x)P
[
qn(x,Y ) ≥ qn(x,Y )

]1/ρ

≤
∑

x,x

Qn(x)Qn(x)

(
K1√
n

∑

y

Wn(y|x)
(
q(x,y)

q(x,y)

)s)1/ρ

. (145)

We observe that the right-hand side of (145) has the same exponent as (126). Using Markov’s inequality, the summation

over Fc
δ,n in (136) can be upper bounded by (125), and hence the second part of Lemma 4 implies

1

M
rcuxρ,s(n,M)1/ρ ≤

(
1 + o(1)

)∑

x,x

Qn(x)Qn(x)

(
K1√
n

∑

y

Wn(y|x)
(
q(x,y)

q(x,y)

)s)1/ρ

, (146)

and hence

rcuxρ,s(n,M) ≤ K1

(
1 + o(1)

)
√
n

Mρ

(
∑

x,x

Qn(x)Qn(x)

(∑

y

Wn(y|x)
(
q(x,y)

q(x,y)

)s)1/ρ
)ρ

(147)

=
K1

(
1 + o(1)

)
√
n

exp
(
− nEiid

ex (Q,R)
)
, (148)

where (148) follows by expanding each term as a product from 1 to n and using the assumption that ρ and s achieve

the exponent Eiid
ex at rate R. This concludes the proof.
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VII. DISCUSSION AND CONCLUSION

We have presented several asymptotic and non-asymptotic expurgated bounds for channels with a given decoding

rule. Derivations have been given for both the exponent of Csiszár and Körner [6] and its generalization to continuous

alphabets. The type class enumerator approach has been shown to provide better exponents for some codeword

distributions, better guarantees of exponential tightness, and the opportunity for deriving expurgated exponents for

channels with memory.

The O
(

1√
n

)
prefactor to the exponent for i.i.d. coding is perhaps most meaningful for ML decoding with an optimal

input distribution, since otherwise one would expect to improve the exponent via constant-composition coding or cost-

constrained coding. Obtaining improved prefactors for these ensembles appears to be a more difficult task, since their

proofs generally involve a change of measure to the i.i.d. distribution, thus introducing a polynomial prefactor (e.g.

(n+ 1)|X |−1 for the constant-composition ensemble).

Connections with Statistical Mechanics

It is instructive to look at the analysis of Sections IV-B and V-B from the statistical-mechanical perspective. Let us

take another look at the expression

Z(x) =
∑

m 6=m

e−d(x,X(m)), (149)

where d can represent either dq in (56) or dns in (74) (see also (92)). From the viewpoint of statistical physics, Z can

be interpreted as the partition function of a physical system, where for a fixed x(m) = x, the various configurations

(microstates) are {x(m)}m 6=m and the energy function (Hamiltonian) is given by d(x,x). The various “configurational

energies” {d(x,X(m))} are independent random variables, since the codewords are generated independently. As

explained in [33, Ch. 5-6] (see also [13, Ch. 6-7] and references therein), this setting is analogous to the random energy

model (REM) in the literature of statistical physics of magnetic materials. The REM was invented by Derrida [34]–[36],

as a model of extremely disordered spin glasses. This model is exactly solvable and exhibits a phase transition: Below

a certain critical temperature, the partition function becomes dominated by a subexponential number of configurations

in the ground-state energy, which means that the system freezes and its entropy vanishes in the thermodynamic limit.

This combination of freezing and disorder resembles the behavior of a glass, so this low temperature phase of zero

entropy is called the glassy phase. Above the critical temperature, the partition function is dominated by an exponential

number of configurations, so its entropy is positive. This high temperature phase is called the paramagnetic phase.

In the case that d(·, ·) represents the Chernoff distance dns , we can link these phases to the exponent Ecc
ex in the form

given in (39). The graph of Ecc
ex(Q,R, s) is curved at rates below Rs (see (36)), and is a straight line at rates above Rs.

The curved part corresponds to the glassy phase of the REM associated with (149), because the dominant contribution

to E[Z1/ρ] (see (149)) is due to a subexponential number of codewords whose “distance” from x (i.e. their “energy”)

is roughly nDs(Q,R). The straight-line part, on the other hand, corresponds to the paramagnetic phase, where roughly

en(R−Rs) incorrect codewords at distance nDs(Q,Rs) dominate the behavior. Thus, the passage between the curved

part and the straight-line part at R = Rs can be interpreted as a glassy phase transition. A similar discussion applies
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for the multi-letter distance dq used in Section IV-B, with Ds(Q,R) replaced by

Dq(Q,R)
△
= min

P̃XX∈Scc(Q) : I
P̃
(X;X)≤R

Dq(P̃XX), (150)

where Dq(P̃XX) is defined in (70).

APPENDIX

A. Technical Condition of Theorem 2

We begin by providing an example of a class of continuous channels and metrics satisfying the single-letter condition

given in (19). Consider an additive noise channel Y = X+Z, and let q(x, y) be any decreasing function of |y−x|.3 If the

cost constraint is of the form c(x) = |x|β for some constant β, then c(x) ≤ γ if and only if |x| ≤ γ1/β . Thus, any two

permissible points are separated by a distance of at least 2γ1/β , and the single-letter condition is satisfied if the additive

noise satisfies P[Z > 2γ1/β ] ≥ e−E′(γ) and P[Z < −2γ1/β ] ≥ e−E′(γ) for some E′(γ) growing subexponentially in γ.

In particular, this holds for additive noise distributions with exponential tails, such as the Gaussian distribution. On the

other hand, if the cost function is logarithmic, say c(x) = log(1 + |x|), then (19) fails for additive noise distributions

with exponential tails, since in this case the limit on the left-hand side of (19) equals a positive constant.

For any DMC whose zero-error capacity [23] is zero, the condition of Theorem 2 is satisfied under ML decoding,

since the error probability can only decay exponentially [37]. On the other hand, the condition could fail for sufficiently

“bad” metrics (e.g. one for which there exists a pair (x, x) such that q(x, y) > q(x, y) for all y). Furthermore, the

condition fails under ML decoding whenever the zero-error capacity is positive and Q has a support which includes

two inputs not sharing a common output.

Finally, we remark that even if the above single-letter condition fails, we can still choose PX to ensure that the

multi-letter condition of Theorem 2 is satisfied. For example, this can be done using the notion of auxiliary costs

introduced in Section II.

B. Proof of Theorem 3

We write (28) as

Êcc
ex(Q,R) = min

P̃XX∈Scc(Q)

I
P̃
(X;X)≤R

min
PXXY ∈T cc(P̃XX)

D(PXXY ‖P̃XX ×W ) + IP̃ (X;X)−R, (151)

where the objective follows from (30). We will study (151) one minimization at a time.

Step 1: For a given P̃XX ∈ Scc(Q), the quantity IP̃ (X;X)−R is constant, and hence we consider the optimization

problem

min
PXXY ∈T cc(P̃XX)

D(PXXY ‖P̃XX ×W ). (152)

3Not all such metrics are equivalent, e.g. minimizing
∏n

i=1 |yi − xi| may give significantly different behavior to minimizing
∏n

i=1 e
(yi−xi)

2
.
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The Lagrangian [18, Sec. 5.1.1] is given by

L1 =
∑

x,x,y

PXXY (x, x, y) log
PXXY (x, x, y)

P̃XX(x, x)W (y|x)

+ s

(∑

x,y

PXY (x, y) log q(x, y)−
∑

x,y

PXY (x, y) log q(x, y)

)
+
∑

x,x

µ(x, x)
(
P̃XX(x, x)− PXX(x, x)

)
, (153)

where s ≥ 0 and µ(·, ·) are Lagrange multipliers. The optimization problem is convex with affine constraints, and thus

the optimal value is equal to L1 for some choice of PXXY and the Lagrange multipliers satisfying the Karush-Kuhn-

Tucker (KKT) conditions [18, Sec. 5.5.3].

The simplification of (153) using the KKT conditions is similar to [10, Appendix B], so we omit the details. Setting

∂L1

∂PXXY (x,x,y) = 0, using the constraint PXX = P̃XX to solve for µ(·, ·), and substituting the resulting expressions

back into (153), we obtain

L1 = −
∑

x,x

P̃XX(x, x) log
∑

y

W (y|x)
(
q(x, y)

q(x, y)

)s

. (154)

Renaming P̃XX as PXX , taking the supremum over s ≥ 0, and adding IP (X;X) − R (see (151)–(152)), we obtain

the right-hand side of (31) with the minimum and supremum in the opposite order. Using Fan’s minimax theorem [26],

we can safely interchange the two.

Since we have taken the supremum over s ≥ 0 rather than choosing it to satisfy the KKT conditions, we have only

proved that (31) holds with the equality replaced by an inequality (≤). To prove that the opposite inequality holds, we

make use of the log-sum inequality [22, Thm. 2.7.1] similarly to [7, Appendix A]. We have for any PXXY ∈ T cc(P̃XX)

and s ≥ 0 that

D(PXXY ‖P̃XX ×W ) ≥ D(PXXY ‖P̃XX ×W )− s
∑

x,x,y

PXXY (x, x, y) log
q(x, y)

q(x, y)
(155)

=
∑

x,x,y

PXXY (x, x, y) log
PXXY (x, x, y)

P̃XX(x, x)W (y|x)
(

q(x,y)
q(x,y)

)s (156)

≥
∑

x,x

PXX(x, x) log
1

∑
yW (y|x)

(
q(x,y)
q(x,y)

)s , (157)

where (155) follows from the constraint EP [log q(X,Y )] ≥ EP [log q(X,Y )] in (29), (156) follows from the definition

of divergence, and (157) follows using the log-sum inequality [22, Thm. 2.7.1] and the constraint PXX = P̃XX .

Equation (157) coincides with (154), thus completing the proof of (31).

Step 2: We now turn to the proof of (32). For any fixed s ≥ 0, the Lagrangian corresponding to (31) is given by

L2 = −
∑

x,x

PXX(x, x) log
∑

y

W (y|x)
(
q(x, y)

q(x, y)

)s

+ (1 + λ)
∑

x,x

PXX(x, x) log
PXX(x, x)

Q(x)Q(x)
− (1 + λ)R

+
∑

x

ν1(x)
(
Q(x)− PX(x)

)
+
∑

x

ν2(x)
(
Q(x)− PX(x)

)
, (158)

where λ ≥ 0, ν1(·) and ν2(·) are Lagrange multipliers. Setting ∂L2

∂PXX(x,x) = 0, using the constraint PX = Q to solve

for ν1(·), and substituting the resulting expressions back into (158), we obtain

L2 = −(1 + λ)
∑

x

Q(x) log
∑

x

Q(x)

(∑

y

W (y|x)
(
q(x, y)

q(x, y)

)s) 1
1+λ

e
1

1+λ
(ν2(x)−ν2(x)) − (1 + λ)R. (159)
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Taking the supremum over all ν2(·), s ≥ 0 and λ ≥ 0, we obtain the right-hand side of (32) after suitable renaming.

Once again, we have only proved that (32) holds with an inequality (≤) in place of the equality, and we obtain a

matching lower bound similarly to (155)–(157). For any ρ ≥ 1 and PXX ∈ Scc(Q) with IP̃ (X;X) ≤ R, we can lower

bound the objective in (31) as follows:

−
∑

x,x

PXX(x, x) log
∑

y

W (y|x)
(
q(x, y)

q(x, y)

)s

+ IP (X;X)−R

≥ −
∑

x,x

PXX(x, x) log
∑

y

W (y|x)
(
q(x, y)

q(x, y)

)s

+ ρ
(
IP (X;X)−R

)
(160)

= −ρ
∑

x,x

PXX(x, x) log

Q(x)Q(x)

(∑
yW (y|x)

(
q(x,y)
q(x,y)

)s)1/ρ

PXX(x, x)
− ρR (161)

= −ρ
∑

x,x

PXX(x, x) log

Q(x)Q(x)

(∑
yW (y|x)

(
q(x,y)
q(x,y)

)s)1/ρ

ea(x)−φa

PXX(x, x)
− ρR (162)

≥ −ρ
∑

x

Q(x) log
∑

x

Q(x)

(∑

y

W (y|x)
(q(x, y)
q(x, y)

)s)1/ρ

ea(x)−φa − ρR, (163)

= −ρ
∑

x

Q(x) log
∑

x

Q(x)

(∑

y

W (y|x)
(q(x, y)
q(x, y)

)s)1/ρ
ea(x)

ea(x)
− ρR, (164)

where (160) follows from the constraint IP̃ (X;X) ≤ R, (161) follows from the definition of mutual information and

simple manipulations, (162) holds for any function a(x) with mean φa = EQ[a(X)] by expanding the logarithm, (163)

follows from the log-sum inequality [22, Thm. 2.7.1], and (164) follows by again expanding the logarithm and using

the definition of φa. We thus have a matching lower bound to (159), and the proof is complete.

C. Proof of Theorem 4

Let Eiid
x (Q, ρ, s) be the function Eiid

x in (27), with a fixed value of s rather than a supremum. We claim that

lim
R→0+

sup
ρ≥1,s≥0

Eiid
x (Q, ρ, s)− ρR = sup

ρ≥1,s≥0
Eiid

x (Q, ρ, s). (165)

It is easily seen that the left-hand side of (165) cannot exceed the right-hand side, since ρR is positive for any sequence

of R values approaching zero from above. It remains to prove the converse. We have for all R that

sup
ρ≥1,s≥0

Eiid
x (Q, ρ, s)− ρR ≥ Eiid

x (Q, ρ, s)− ρR. (166)

Taking R→ 0 and then taking the supremum over s ≥ 0 and ρ ≥ 1 yields

lim
R→0

sup
ρ≥1,s≥0

Eiid
x (Q, ρ, s)− ρR ≥ sup

ρ≥1,s≥0
Eiid

x (Q, ρ, s), (167)

which proves (165). Using an identical argument, we have

lim
R→0+

sup
ρ≥1,s≥0,a1(·),a2(·)

Ecost
x (Q, ρ, s, a1, a2)− ρR = sup

ρ≥1,s≥0,a1(·),a2(·)
Ecost

x (Q, ρ, s, a1, a2), (168)

where Ecost
x (Q, ρ, s, a1, a2) denotes the right-hand side of (88) with fixed values of s, a1(·) and a2(·) in place of the

supremum.

July 24, 2013 DRAFT



29

From (32), (168) and the identity sups,a1(·),a2(·)E
cost
x (Q, ρ, s, a1, a2) = Ecc

x (Q, ρ) (see Section V-A), we have

lim
R→0+

Ecc
ex(Q,R) = sup

ρ≥1,s≥0,a1(·),a2(·)
−ρ log

∑

x,x

Q(x)Q(x)
ea1(x)−φ1

ea2(x)−φ2

(
∑

y

W (y|x)
(
q(x, y)

q(x, y)

)s
) 1

ρ

(169)

= sup
ρ≥1,s≥0,a′

1(·),a′
2(·)

−ρ log
∑

x,x

Q(x)Q(x)

(
ea

′
1(x)−φ′

1

ea
′
2(x)−φ′

2

∑

y

W (y|x)
(
q(x, y)

q(x, y)

)s
) 1

ρ

, (170)

where (170) is obtained by letting a′l(·) = al(·)ρ for l = 1, 2. Similarly to [2, Appendix 5B], we can show that the

objective of (170) is a non-decreasing concave function of ρ > 0 for any fixed s, a′1(·) and a′2(·). Hence, the supremum

over ρ ≥ 1 is achieved as ρ → ∞. The assumption on Q in the theorem statement ensures that the error probability

is non-zero, and that the resulting limit is finite. Evaluating the limit using L’Hôpital’s rule, we have

lim
R→0+

sup
L,{al}

Ecost
ex (Q,R, {al}) = sup

s≥0,a′
1(·),a′

2(·)
−
∑

x,x

Q(x)Q(x) log

(
ea

′
1(x)−φ′

1

ea
′
2(x)−φ′

2

∑

y

W (y|x)
(
q(x, y)

q(x, y)

)s
)

(171)

= sup
s≥0

−
∑

x,x

Q(x)Q(x) log
∑

y

W (y|x)
(
q(x, y)

q(x, y)

)s

. (172)

From the last step, we see that the functions a′1(·) and a′2(·) do not affect the exponent as R→ 0, and thus the same

expression is obtained for limR→0+ E
iid
ex (Q,R).

D. Proof of Proposition 2

We first present the proof in the case that there is L = 1 auxiliary cost a(·) (with mean φa) and no system

cost constraint, and then discuss the changes required to handle the general case. Throughout the proof, we define

an(x)
△
=
∑n

i=1 a(xi) and fn(x)
△
=
∑n

i=1 f(xi).

Let X be the random cost-constrained codeword, and let X ′ be an i.i.d. codeword with distribution Qn(x′). From

(24), we have

E
[
fn(X)

]
=

1

µn
E

[
fn(X ′)11

{
|an(X ′)− nφa| ≤ δ

}]
. (173)

By a direct differentiation, this is equal to d
dλ

(
1
n logZ(λ)

)
evaluated at λ = 0, where

Z(λ)
△
= E

[
eλf

n(X′)
11
{
|an(X ′)− nφa| ≤ δ

}]
. (174)

Expanding the expectation and using the inverse Laplace transform relation

11{z ≥ 0} =
1

2πj

∫ u+j∞

u−j∞
dt
etz

t
(175)

for u > 0, we have the following:

Z(λ) =

∫
dx′Qn(x′)eλf

n(x′)
(

11{an(x′) ≤ nφa + δ} − 11{an(x′) ≤ nφa − δ}
)

(176)

=
1

2πj

∫
dx′Qn(x′)eλf

n(x′)

∫ u+j∞

u−j∞
dt et(nφa−an(x′)) e

tδ − e−tδ

t
(177)

=
1

2πj

∫ u+j∞

u−j∞
dt
etδ − e−tδ

t
enφat

(∫
dx′Q(x′)e−ta(x′)+λf(x′)

)n

. (178)
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Denoting the derivative of Z(·) by Z ′(·), we have

Z ′(0) =
n

2πj

∫ u+j∞

u−j∞
dt
etδ − e−tδ

t
enφat

(∫
dx′Q(x′)e−ta(x′)

)n−1 ∫
dx′Q(x′)f(x′)e−ta(x′) (179)

=
n

2πj

∫ u+j∞

u−j∞
dt
etδ − e−tδ

t
enφat

(∫
dx′Q(x′)e−ta(x′)

)n ∫
dx′Q(x′)f(x′)e−ta(x′)

∫
dx′Q(x′)e−ta(x′)

. (180)

Finally, using the assumption that EQ[a(X)2] < ∞ and applying the saddlepoint method [38, Ch. 4-5] (see also [13,

Sec. 4.2-4.3]), we obtain

d

dλ

( 1
n
logZ(λ)

)∣∣∣
λ=0

=
Z ′(0)

Z(0)
→
∫
dx′Q(x′)f(x′)e−t0a(x

′)

∫
dx′Q(x′)e−t0a(x′)

, (181)

where t0 is the zero of the derivative (saddlepoint) of the function h(t) = φat+logEQ[e
−ta(X)]. Since φa = EQ[a(X)]

by definition, it is easily verified that t0 = 0, and thus the right-hand side of (181) equals EQ[f(X)], as desired.

In the case of multiple auxiliary costs, the argument is similar, but with ta(·) replaced by
∑

l tlal(·). The system

cost c(x) in (25) can be handled similarly provided that EQ[c(X)] ≤ Γ, which is an assumption of the proposition.

E. Derivation of Ecc
ex Using Distance Enumerators

In this section, we present the remaining details which, together with the analysis in Section V-B, yield the exponent

Ecc
ex in (78).

Using similar arguments to Section V-A, we can evaluate the lower tail probability of dns (x,X) as follows:
∫
dxPX(x)11

{
dns (x,x) ≤ nD

}
≤
∫
dxPX(x)et(nD−dn

s (x,x)) (182)

≤̇
∫
dxQn(x)et(nD−dn

s (x,x))er(a(x)−nφa) (183)

= en(tD−rφa)
n∏

i=1

∫
dxQ(x)era(x)−tds(xi,x), (184)

where (182) holds or any t ≥ 0 by upper bounding the indicator function, and (183) holds for any r using (80) and

(81). We thus have

R(D,x) ≥ sup
t≥0,r

rφa − tD − 1

n

n∑

i=1

θ(xi, r, t), (185)

where

θ(x, r, t)
△
= logEQ

[
era(X)−tds(xi,X)

]
. (186)

We can now simplify the exponent in (107) as follows:

E

[
inf

D :R(D,X)≤R
D +R(D,X)−R

]
(187)

= E

[
inf
D

sup
ρ≥1

D + ρ
(
R(D,X)−R

)]
(188)

≥ sup
ρ≥1

E

[
inf
D
D + ρ

(
R(D,X)−R

)]
(189)

≥ sup
ρ≥1

E

[
inf
D

sup
t≥0,r

D(1− ρt)− ρ
(
− rφa +

1

n

n∑

i=1

θ(Xi, r, t) +R
)]

(190)

≥ sup
ρ≥1

E

[
sup
t≥0,r

inf
D
D(1− ρt)− ρ

(
− rφa +

1

n

n∑

i=1

θ(Xi, r, t) +R
)]

(191)
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= sup
ρ≥1

E

[
sup

t∈[0,1/ρ],r

−ρ
(
− rφa +

1

n

n∑

i=1

θ(Xi, r, t) +R
)]

(192)

≥ sup
ρ≥1

sup
r

−ρ
(
− rφa + E

[ 1
n

n∑

i=1

θ(Xi, r, 1/ρ)
]
+R

)
(193)

→ sup
ρ≥1

sup
r
ρ
(
rφa − EQ[θ(X, r, 1/ρ)]−R

)]
, (194)

where (188) follows from (55), (190) follows from (185), (192) follows since the infimum over D in (191) yields an

objective of −∞ unless t ∈ [0, 1/ρ], (193) follows by setting t = 1/ρ, and (194) follows from Proposition 2.

Substituting (186) into (194) and performing simple rearrangements, we obtain (78)–(79) with ra(x) in place of

a(x), and with a supremum over r in place of the supremum over a(·). The derivation is concluded by setting r = 1

and optimizing a(·).
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