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Abstract

Texture enhancement presents an ongoing challenge, in spite of the con-
siderable progress made in recent years. Whereas most of the effort has been
devoted so far to enhancement of regular textures, stochastic textures, which
exhibit fine details, are encountered in most natural images wherein they still
present an outstanding problem insofar as superresolution enhancement is con-
cerned. In this work, a texture model, based on fractional Brownian motion
(fBm), is proposed. The model is based on our observation that, contrary to
previous findings that images are not characterized by Gaussian distributions,
natural stochastic textures (NST) are Gaussian. The model is global and does
not entail using image patches. The fBm is a self-similar stochastic process.
The self-similarity is known to characterize a large class of natural textures.
The fBm-based model is evaluated and a single-image regularized superresolu-
tion algorithm is derived. The algorithm is useful for a wide range of textures.
Its performance is compared with state-of-the-art single-image superresolution
methods and its advantages are highlighted.

1 Introduction

Single-image superresolution (SR) has attracted considerable attention in recent
years and still considered to be one of the most outstanding problems in advanced
image processing [1–6]. This is a challenging task, since the original (source) image
has to be recovered using only the degraded, subsampled, image. While traditional
approaches to image enhancement in terms of denoising, deblurring and contour
emphasis result in sharper images, they often yield an unnatural cartoon-like im-
age, compromising on the quality of, and almost even eliminating, some textures.
This compromise in image fidelity highlights the observation that textures are an
important ingredient of image structure, that must be considered in the context of
image enhancement tasks.

Common methods for image enhancement may not work on stochastic textures,
and in many cases, other approaches are required for texture enhancements. Im-
age enhancement algorithms, used in deblurring and denoising methods, generally
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attempt to solve the following inverse problem:

X̂ = arg min
X∈X

‖X ∗ h− Y ‖22 + λg(X), (1.1)

for a degraded image, Y ∈ X , where X ⊆ RN×N , a solution X ∈ X and a blur kernel
h ∈ Rn×n. The parameter λ is a Lagrange coefficient and g(X) is a regularization
function. Since h is usually a low-pass type filter, and the measurement is noisy, the
problem is ill-posed, and a regularization function is needed.

In Wiener filtering, or other linear methods, the regularizing function, g(X),
is a quadratic function of the image gradient. In L1-based methods, such as total
variation (TV), g(X) is the L1 norm of the image gradient.

PDE-based approaches generally use g(X) = G(|∇X|2). A gradient descent
minimization then yields the following scheme:

Xt = h̃ ∗ (X ∗ h− Y )− λ∇(G′(|∇X|2)∇X)), (1.2)

where h̃(η1, η2) = h(−x,−y) and G′(|∇X|2) is the diffusivity or edge detection
function. This function is chosen so that high gradients are preserved and low
gradients are smoothed.

When these methods are applied to images that are comprised of stochastic
textures, they do not yield the desired results. This is due to the common assumption
that low gradient areas in an image are originated by noise or optimization artifacts
(such as ringing or aliasing) and not by a valuable texture. This is due to the
assumption that images reside in a bounded variation (BV) space, which often
lends itself to the wrong choice of the regularization function. This assumption has
been challenged in recent years [7] and deblurring schemes, developed under more
suitable spaces, have yielded more successful results [8].

1.1 Texture representation and enhancement

Some of the aforementioned methods can be adopted for texture preservation. In
[9], a potential function has been incorporated into the diffusion equation which
effectively prevents smoothing of specific texture details in an image. In sparseness-
based approaches (not discussed in this work; for a review see [10]), a separate
dictionary is used for handling textures.

Textures, in general, can be divided into two main types: Regular, or structured,
and stochastic [11, 12]. One can define the former as spatially-replicated instances
of a single or several repetitive patterns. An example of a regular texture is a
brick wall. To compare with, stochastic textures do not contain a specific pattern.
Instead, they are considered to be realizations of random processes. This type of
textures cannot be modelled in a similar manner to regular textures. It is important
to note that this division is by no means a dichotomy, as natural textures depict
the entire range between regular and stochastic. The texture spectrum, as defined
in [11], contains textures in varying complexity and regularity.
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As the two types of textures are visually and conceptually different, different
techniques are used in order to enhance them. Most of the effort in texture en-
hancement has been devoted, even inadvertently, to the regular textures. Inasmuch
as regular textures contain replicated versions of a single or a few basic patterns, in
varying amount of distortion, one can use enhancement methods based on a search
for similar shapes, in higher resolution, within the same image or in other images
bearing some similarity to the target image [1].

Numerous methods, not necessarily applied to textures but more so to on images
containing cartoon-type skeletons as well, are based on a machine learning approach.
These methods attempt to build up and exploit a database of natural images and/or
textures. This database is then used for training with sets of low and high resolution
image patches, and the final image is then obtained by predicting the high resolution
patch according to the training database [13]. It is important to note that regular
textures still obey, in general, the model of bounded variation, and can therefore be
enhanced using known approaches.

1.2 Stochastic textures

Unlike regular textures, stochastic textures are not characterized by repetitive pat-
terns. They are, instead, defined by their statistical properties. This type of tex-
tures exhibits statistical properties such as non-local [14], long-range dependencies
and self-similarity, as their pixel distribution remains the same across scales, up to
a scaling parameter [15–18]. Enhancement of such textures can hardly be achieved
by using example-based methods that have been demonstrated to be successful on
regular textures, as the stochastic textures do not contain basic patterns but are
rather governed by a latent random process.

Sparseness-based or GMM-based approaches perform enhancements locally (on
patches) [19], and the resulting dictionary usually appears similar to Fourier, DCT
or overcomplete Wavelet bases, with discontinuities to match edges in images as well.
However, these models assume that an image can be modelled locally, whereas in
stochastic textures, there is an advantage to a long-range or global model, exploiting
correlations between as many pixels as possible.

1.3 The Gaussian assumption

Extensive work has been done deriving a model for natural images [20, 21]. These
studies have substantiated the notion that the distribution of natural images is
highly kurtotic and non-Gaussian. Wainwright et al. have proposed using Gaussian
Scale Mixture (GSM) as a model for wavelet coefficients of natural images. Indeed,
when one inspects the histogram of coefficients in various scales and orientations, this
highly kurtotic model shows promising results. The same phenomenon is expressed
also in the 2D histograms of adjacent scales and orientations.
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However, for stochastic textures, the Gaussian assumption is in fact relevant.
This behaviour that might be overlooked when considering an ensemble of a natural
images, where the least of which are distinctly stochastic textures. An example
of this phenomenon is depicted in Fig. 1. While a common natural image (first
column) is characterized by non-Gaussian behaviour, in the case of a stochastic
texture (third column), the statistics match a Gaussian distribution. This is the
case for a large class of textures.

1.4 Processing of stochastic textures

While regular textures can be enhanced by using methods of edge enhancement
(considering, for example, the enhancement of the edges of a brick in a brick wall
texture), in the stochastic case such edges do not exist. Attempting to apply edge
enhancement to such a texture, may, in some cases, create a staircasing effect, while
smoothing out the fine details in the neighborhood of the newly-created edge.

A different approach for regular and stochastic texture enhancement is the tex-
ture synthesis, in which a sample-patch is used in order to create a newly formed
image of larger size and the same visual appearance as the original [11,12,22]. While
such methods show successful results in visual resemblance to the original, they are
less effective in deconvolution problems such as superresolution, in which a high
resolution estimate has to represent the input low resolution image. Additionally,
such synthesis, based on local dependencies, may fail to capture the global statistical
structure of the texture, in case of stochastic textures.

In this study, we present a model for stochastic textures. This model is based
on fractional Brownian motion (fBm); a Gaussian random process which exhibits
properties that characterize stochastic textures [16]. This process is used to regen-
erate a high frequency estimation from a given degraded image. Realizations of the
model are displayed, and an optimization scheme is derived, to perform single-image
superresolution.

The basic model is suitable for isotropic textures, as will be discussed later. In
order to be suitable for a broader class of textures, PDE-based regularization is
introduced. This is based on tensor diffusion - a known PDE-based image enhance-
ment method [23]. The tensor diffusion has yielded successful results in performing
deblurring tasks, due to the anisotropic structure, which is obtained by introducing
tensor diffusivity, D(∇X), in Eq. (1.2):

Xt = h̃ ∗ (X ∗ h− Y )− λ∇(D(∇X)∇X)). (1.3)

We present a modified diffusion scheme which recovers missing texture details and
preserves them under the diffusion.

We have previously reported [24] of an algorithm which performs fBm-based
deblurring. In this work, we use the principles of the fBm to yield an image model
and a true superresolution algorithm.
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Figure 1: Empirical first and second order distribution for wavelet coefficients of
natural images. Three images are presented: (a) A common natural image (Bar-
bara), (b) a 2D fractional Brownian motion realization (discussed on section 3) and
(c) a stochastic texture. First order empirical distributions are displayed on the
second row: (d) Distribution of Barbara (blue), which deviates significantly from
the Gaussian ML fit (red); (e) Distribution of the 2D fBm; (f) Distribution of a
stochastic texture, which almost perfectly fits the Gaussian distribution. The sec-
ond order log-distributions are displayed in the third row. While non-Gaussianity is
observed in the natural image, for the stochastic texture, Gaussianity is still valid.
This holds even in the case of the displayed texture, which is not strictly stochastic
but tends towards the near-regular.
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2 Problem statement

The following form of the superresolution problem is considered: A high-resolution
(HR) image is degraded by a blurring filter, representing, for example, the PSF of
an optical sensor. It is subsequently subsampled. Noise is then additively mixed
with the blurred and subsampled image to create the available low-resolution (LR)
image. Let X(η1, η2) and Y (η1, η2) denote the original (HR) image and observed
(LR) noisy image, respectively. The imaging model can be represented as follows:

Y (η1, η2) = D ((Y ∗ b)(η1, η2)) +N(η1, η2), (2.1)

where D is the subsampling operator, b(η1, η2) is a noninvertible blur kernel and
N(η1, η2) is an independent additive white Gaussian noise. In the case of SR, we
assume that the noise has low variance, unlike denoising problems where the noise
is substantial. The blur kernel is assumed to have limited spatial support, and
therefore the decimation operator introduces aliasing.

The superresolution (SR) problem is severely ill-posed due to the decimation
operator. For this reason, the effect of decimation is often ignored in SR studies.
The single-frame SR problem is a special case of the classical multi-frame SR problem
[25–27]. In the latter, several degraded images are available, each containing unique
details of the single original image, acquired by sub-pixel shifts. A high-resolution
reconstruction is obtained in this case by recovering complementary information
from all the measurements.

In contrast, in single-frame SR, known in the literature also as upscaling, only
a single measurement is available. The single-frame SR problem can be formally
stated as follows:

X̂(η1, η2) = arg min
X∈X

‖Y (η1, η2)−D ((X ∗ b)(η1, η2)) ‖2. (2.2)

The SR image, X̂(η1, η2), thus obtained is the best one in that it yields the smallest
L2 error relative to the original image (ground truth). The SR problem appears,
at first look, to be equivalent to a deconvolution problem, in which a SR image,
X̂(η1, η2), is to be recovered from the blurred and noisy image, Y (η1, η2). It is
important to emphasize that this is by no means the case. In the case of SR, the
decimation operator introduces aliasing artifacts due to the loss of details in the
subsampling.

Deblurring algorithms cannot be applied directly in the case of SR of textures
(Fig. 2). There are studies that first solve the deblurring problem, and then apply
interpolation to “inverse” the effect of the decimation operator. This approach
is applicable only when the blur filter acts as an anti-aliasing filter. Blur filters
considered in the present study, and in SR problems in general, have, however, a
small spatial support, and cannot be considered as anti-aliasing filters. Therefore,
our emphasis is on the model for images, based on which, the missing data can be
reconstructed, to yield a high fidelity estimate of the original image.
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(a) (b) (c) (d) (e)

Figure 2: Applying deblurring algorithms on blurred and decimated images. While
BM3D-deblurring [28] performs deblurring successfully on blurred images, when
decimation is introduced the results deteriorate. This is the case in natural images
(first row), and it is more pronounced in the case of textures (bottom row). (a) The
original image. (b) and (c) Blurred and BM3D-deblurrred image respectively. (d)
and (e) Blurred and subsampled image and BM3D-deblurrred image respectively.

3 Fractional Brownian motion

The fractional Brownian motion (fBm) is a Gaussian random process, which was
introduced by Mandelbrot and Van Ness as a model suitable for natural images [16].
This process generalizes the well-known Brownian motion in that the increments
are stationary but not independent. It is defined, in one dimension, as a Gaussian
process with zero mean and the following autocorrelation function:

E [BH(t)BH(s)] =
σ2

2

(
|t|2H + |s|2H − |t− s|2H

)
, (3.1)

where

σ2 =
σ2
W

2

cos(πH)

πH
Γ(1− 2H), (3.2)

σ2
W is a known variance, and the Hurst parameter, H ∈ (0, 1), controls the regularity

of the process. This is a non-stationary process with stationary increments - a
property to be exploited later in efficient synthesis. The first sample is usually
set to zero, B(0, 0) = 0, further indicating that it cannot be stationary (unless
it is zero everywhere). For Hurst parameter values of H ∈

(
0, 1

2

)
, this process

exhibits negative correlation between samples (anti-persistence), and for H ∈
(

1
2 , 1
)
,

it exhibits positive correlation and long range dependencies. A special case is H =
1
2 , for which this process becomes the well-known Brownian motion, or Wiener
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process. This process exhibits two important properties, known to characterize
images, in the context of Mandelbrot’s work on fractals [16]. The first one is long-
range dependencies between samples, where for H > 0.5 the sum of the correlation
of the increments diverges. The second property of the fBm, which is exploited in
this study, is the statistical self-similarity, defined as:

BH(at)
d
= |a|HBH(t), (3.3)

for a positive number a, where the superscript d stands for equality in distribution.
This equality indicates that the sample distribution across different scales is varied
only by a constant depending on the scale, a, and the Hurst parameter. These two
properties highlight the relevance of this process to natural textures, as the latter
often exhibit phenomena with such similarities between adjacent as well as distant
pixels [18].

3.1 Synthesis in two dimensions

Since the fBm process is a Gaussian process with known covariance function, one can
explicitly synthesize a realization in the discrete domain [29]. Recall the following
covariance property for multivariate random variables:

cov(LZ) = LΣZL
T , (3.4)

where Z is a random vector with autocorrelation matrix ΣZ , and L is a matrix. In
order to synthesize the fBm in this manner, one needs to first build the autocor-
relation matrix according to Eq. (3.1). Then, the Cholesky decomposition is used
to obtain a matrix, L, such that M = LLT , where M is the fBm autocorrelation
matrix. This decomposition is possible since it is positive-definite. Then, upon
multiplying the lower-triangular matrix L by a multivariate random vector Z with
a unity covariance matrix, the covariance of the resulting vector B = LZ fits fBm.

This simple algorithm can be extended to two dimensions, by representing (stack-
ing) a 2D image as a vector and constructing the autocorrelation matrix with the
respective 2D dependencies. At this stage it is also worth to note that this process is
isotropic in the statistical sense. Let p = (x1, y1)T and q = (x2, y2)T be two points.
Then, the autocorrelation of the fBm in 2D is defined as follows:

E [BH(p)BH(q)] =
σ2

2

(
‖p‖2H + ‖q‖2H − ‖p− q‖2H

)
. (3.5)

Let M be a rotation matrix, indicating |M | = 1 and M−1 = MT . It is straightfor-
ward to check that for an arbitrary point l = (x0, y0)T , ‖Ml‖ = ‖l‖ and therefore
E[BH(Mp)BH(Mq)] = E[BH(p)BH(q)]. This indicates the autocorrelation is in-
variant under rotations and the process is isotropic.

While the aforementioned method can produce the exact 2D fBm process, it is
very inefficient. This is due to the dimensional requirement of the covariance matrix,
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which dictates a size of N2×N2 for an image size of N ×N and time complexity of
O(N6) due to the Cholesky decomposition. The space and time complexity render
this method to become impractical even in application to moderately-sized images.

It is possible, however, to use more efficient methods of synthesizing nearly-
exact realizations of the 2D fBm. We adopt the method proposed by Kaplan and
Kuo [30], which implements Fourier synthesis, and yields accurate realizations with
time complexity of O(N2log2(N)) and space complexity of O(N2).

This method utilizes the stationary increments of the fBm and builds the realiza-
tion by first calculating the autocorrelations of the increments in the x, y, and (x, y)
directions, synthesizing the increments in the frequency domain, and then summing
them to produce the final result. Two realizations of the 2D fBm process, for two
typical values of H, are displayed in Fig. 3.

3.2 Synthesis of non-stationary fields with stationary increments

The fBm can be considered as a special case of a family of non-stationary processes
with stationary increments. As such, it is a simple case, as it is statistically isotropic
and is being governed by a single parameter, H. In [31], the 2D fBm synthesis
algorithm of Kaplan and Kuo is generalized for any such field. The synthesized
fields are derived with reference to an initial white noise image, W (η1, η2), and a
structure function, φ(η1, η2), which defines the autocorrelation of the fBm, F (η1, η2),
by the following equation:

E[F (η1, η2)F (η′1, η
′
2)] = −E[F (0, 0)2]+

+
1

2
(φ(η1, η2) + φ(η′1, η

′
2)− φ(η1 − η′1, η2 − η′2)),

(3.6)

where F (0, 0) is set to zero for the synthesis process. This structure function defines
the autocorrelation of the increments of the desired field. For the fBm case, we
obtain:

φ(x, y) = C(x2 + y2)H , H ∈ (0, 1), (3.7)

for a suitable normalizing constant, C, and a proper Hurst parameter, H. In this
manner, anisotropic fBm fields can be synthesized by choosing a different structure
function - one that depends on more than a single Hurst parameter. For the exact
synthesis algorithm, as well as other limitations of the structure function, see [31].
We take it one step further and propose an adaptive structure function to be used
in image enhancement of textured images.

3.3 Remarks

We assume that the details missing in degraded textures had, originally, dependen-
cies similar to those characteristic of an fBm. Therefore, using a single realization
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(a) (b)

Figure 3: 2D fBm realization for two values of H: (a) A value of H = 0.1, depicting
negative correlation between adjacent pixels. (b) A value of H = 0.6, depicting
high correlation between adjacent pixels. A low value of H is better fitted to high-
frequency content relevant to stochastic textures.

of a proper fBm as an initial image, we should be able to restore missing high-
resolution details by fitting such a realization onto a degraded image. Since we are
interested in high frequencies, the common values for the Hurst parameter should
be low in general, and usually H ≤ 0.2.

4 Phase of the frequency response

The importance of phase, and of “local phase”, in signal and image processing is
well-established [32, 33]. It has been shown that for natural images, the important
information of the image is, in fact, stored in the phase rather than in the magnitude
of the frequency domain representation of the image [33,34]. The magnitude contains
information about the frequencies present in the image, which are common to a
large class of natural images. The phase contains information about the spatial
relationship of these frequencies in a specific image. Let X(η1, η2) and Y (η1, η2) be
two images with respective Fourier transforms X̃(η̃1, η̃2) and Ỹ (η̃1, η̃2). The Fourier
transform, M̃(η̃1, η̃2), of a signal, M(η1, η2), can be decomposed into magnitude and
phase components:

M̃(η̃1, η̃2) = |M̃(η̃1, η̃2)| exp
(
j · ∠M̃(η̃1, η̃2)

)
. (4.1)

In this manner, one can define a frequency representation of an image, ˆ̃Y (η̃1, η̃2), as
follows:

ˆ̃Y (η̃1, η̃2) = |Ỹ (η̃1, η̃2)| exp
(
j · ∠X̃(η̃1, η̃2)

)
, (4.2)

thereby obtaining the magnitude of the original image, Y (η1, η2), and the phase from
the other, X(η1, η2). The resulting image, Ŷ (η1, η2), obtained by the inverse Fourier
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transform of ˆ̃Y (η̃1, η̃2), will contain the frequency components present in Y (η1, η2),
but the phase, and therefore the spatial shifts, will be according to X(η1, η2).

This simple property enables us to exploit a synthetic 2D fBm image for our
purposes. The synthetic fBm is inherently random, as it is generated by an iid
Multivariate normal matrix. However, by using the general notion expressed by
Eq. (4.2), one can benefit from the frequency spectrum characteristic of a 2D fBm
image, while fitting the phase relationships of a specific image. We thereby effectively
exploit the fBm correlations while imposing minor dependence on the initial white
noise.

5 A model for self-similar textures

We now present a model for self-similar textures. This model is based on the high
frequencies of the 2D fBm process and fits a variety of images corresponding to
the fBm statistics. The model can be used to generate such textures as well as be
used for image enhancement tasks, such as superresolution or denoising (although
denoising is not covered by this study).

The model is defined as follows. Let XLP (η1, η2) be a low frequency image. This
image can be generated using fBm models, ARMA models, or be based upon a
natural image. Let XHP (η1, η2) be a high-frequency image, obtained as follows:

XHP (η1, η2) = PH,W (η1,η2) (XLP ( η1, η2)), (5.1)

where PH,W (η1,η2) is an operator performing phase matching, as described earlier,
for a 2D-fBm image generated according to the Hurst parameter, H, from the white
noise image, W (η1, η2). The value of H will typically be low, H ≤ 0.2, to gener-
ate high frequencies. The texture image, X(η1, η2), is then constructed from the
superposition of both images as follows:

X(η1, η2) = XLP (η1, η2) + (XHP ∗ hHP )(η1, η2) + V (η1, η2), (5.2)

where hHP (η1, η2) is a high-pass filter and V (η1, η2) is residual noise compensating
for model inaccuracies.

We note that an fBm image can be derived as a special case of this model,
since XLP (η1, η2) can be the low-pass version of the fBm generated by PH,W (η1,η2).
Obviously, natural image textures cannot be represented by this model without
error. It is straightforward to check that given an image, I(η1, η2), the energy
content of the error, V (η1, η2), will reside in the high-frequency range. Therefore,
in order to assess the model in natural images, we have to consider the error in the
high-frequency range.

While a näıve measure norm, such as L2 norm, may be suggested for the eval-
uation of this error, we do not use it. This is due to the well-known shortcomings
associated with L2-based comparisons [35], which are especially emphasized in the

11



(a) (b) (c)

(d) (e) (f)

Figure 4: Representation of a texture according to the model outlined in section
5, with a natural texture image as XLP (η1, η2): (a) Low-pass image, XLP (η1, η2),
generated by blur and subsampling of a real image. (b) A 2D fBm realization
with H = 0.1. (c) XHP (η1, η2), a 2D fBm image obtained after phase matching for
XLP (η1, η2). (d) The artificial texture image, X(η1, η2). (e) The original image used
for generating XLP (η1, η2), for comparison. (f) The difference between the original
image and X(η1, η2). Note the similarity in details between the original and the
model representation, expressed also in the difference image.

case of stochastic textures. Instead, and with a lack of a better method, the re-
sults will be inspected both visually and by means of image statistics such as the
histogram.

An example of the model is depicted in Fig. 4. XLP (η1, η2) (Fig. 4a) is gener-
ated by blur and subsampling of a real image texture. While the resulting image
(Fig. 4d) is not identical to the original image (Fig. 4e), the high frequencies are
visually similar. This encourages us to use this model in our texture superresolution
algorithm.

Fig. 5 depicts two typical images, one suitable for the proposed model and the
other one is not. In the first row we have a stochastic texture. Two high-passed
versions are shown; Fig. 5b is the high-pass of the original texture (IHP (η1, η2)), and
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Fig. 5d is the high-pass of the texture according to the proposed model, XI(η1, η2).
These two high-pass images are then compared by their histograms (Fig. 5e). We
observe that the high-pass versions are both visually similar, and have similar his-
tograms. Additionally, we observe that the histogram is of a Gaussian shape. As
will be shown in subsection 5.2, a necessary condition for an fBm image is to have
a Gaussian-shaped 1D histogram, in the limit, as H → 0 and N →∞. Despite this
being only a necessary condition, we are encouraged to seek further indications of
the relevance of this model to textured images. We further substantiate in the next
subsection in the form of 2D histogram.

In contrast with the texture of 5a, Fig. 5f depicts a regular (structured) texture,
and its high-pass versions is shown in Fig. 5g. In this case, the two histograms (Fig.
5j) are distinctly different. We conclude that the model can not faithfully represent
regular textures. This is due to the fact that the fBm cannot represent such images.

5.1 2D histograms

The 1D histogram provides an empirical estimate for image first order distribution.
Consequently, it constitutes many-to-one mapping that is not sufficient for a suitable
assessment of the model. We therefore present a second indicator, in the form of
2D histograms of adjacent pixels in an image, in the x, y and diagonal orientations.
The latter provides an estimate of the image second order distribution. The 2D
histogram of an image X(η1, η2) with 2D bins {Sl1,l2}l1,l2 is defined as follows:

H(i, j) =
1

N

∑
(p1,p2)∈Q

1(X(p1),X(p2))∈Si,j , (5.3)

where the setQ contains the locations of all adjacent pixels in X(η1, η2), pi = (ηi1, η
i
2)

is a pixel location, and N = |Q|. This is a discrete surface with two coordinates,
representing the two gray levels of adjacent pixels, denoted by l1 and l2.

For smooth images, it is expected that |l1 − l2| < ε for a small ε. Most of the
energy of the histogram resides close to the line l1 = l2. This is the case in the
presence of edges as well, due to the relatively low number of edge pixel pairs with
respect to smooth pixel pairs in natural images.

In the case of stochastic textures, suitable for the fBm model, adjacent pixels
exhibit negative correlation. It is therefore expected that |l1 − l2| will be large. For
isotropic stochastic textures, the histogram shape is expected to approximate a 2D
normal distribution, whereas for anisotropic stochastic textures, negative correlation
is still exhibited, but the histogram shape deviates from the normal distribution.

Fig. 6 depicts three examples of characteristic images concerned with the pro-
posed model, along with their 2D histograms and cross-cuts along the main and
secondary diagonals. The first image (Fig. 6a) is clearly a non-stochastic texture.
In this and other structured natural images, there is significant correlation between
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adjacent pixels as they are mostly smooth. Therefore, the energy of the 2D his-
togram is concentrated near the diagonal, l1 = l2. The cross-cut graph shows a
non-Gaussian behaviour.

The second image (Fig. 6b) is of a stochastic texture, well fitting the proposed
fBm model. In this case, we distinctly see a 2D normal distribution. The third
image (Fig. 6c) is of a stochastic texture, which does not fit the model in its current
form. For this type of anisotropic textures we propose a regularization that takes
care of the anisotropy in the context of SR.

Anisotropic stochastic textures, while being similar to isotropic in large scales,
are composed of small oriented shapes, which are anisotropic and do not exhibit
self-similarity in arbitrarily small scales. The characteristic 2D histogram of such
textures deviates from a 2D multivariate normal, but it is still sufficiently close
enough to the Gaussian.

In Wavelet-based analysis of coefficients in adjacent scales or orientations, similar
to what was done in [20], the same properties can be observed, indicating that
stochastic textures indeed obey a Gaussian distribution. This was previously shown
in Fig. 1.

5.2 Histogram of an fBm image

In this subsection it will be shown that images which are fBm realizations have a
histogram shaped as a Gaussian density function. While the latter is not a sufficient
condition to fit the model, it nevertheless provides a justification for the usage of
this in the classification algorithm as a feature. The theorem will be proven for the
1D case.

Theorem 1. Let {BH (n)}Nn=0 be a 1D fBm process, sampled on a discrete grid, and
let hb (n) be its histogram. Then, in the limit of H → 0 and N →∞, the histogram
is of Gaussian shape; the ith bin, in the range (ti, ti + 1], is defined as follows:

hb(i) = N (Φ (ti+1)− Φ (ti)) , (5.4)

where Φ(x) is the cumulative distribution function of a standard Normal variable.

Proof. Let {BH (n)}Nn=0 be a 1D fBm process, sampled on a discrete grid. Let ĥb (n)

be a histogram, where b is the number of bins. Let {ti}bi=0 be a set of points, so that
t0 < t1 < ... < tb, and let Si = (ti, ti+1]. The ith histogram bin is defined as follows:

ĥb (i) =

N∑
k=0

1BH(k)∈Si . (5.5)
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Figure 5: Comparison of two natural textures, one suitable and one unsuitable for
the model described in section 5: (a) and (f) Original images of natural textures. (c)
and (h) 2D fBm versions of the respective images. (b) and (g) High-pass versions of
the original images respectively. (d) and (i) High-pass versions of the 2D fBm images,
respectively. (e) and (j) Histograms of the two high passed versions respectively. The
high pass version histogram of the original images is highlighted in red-dashed, and
the histogram of the high pass versions of the 2D fBm is highlighted in blue. In
(e), the histograms are similar, indicating the model is suitable for the image. In
(j), however, the two histograms are distinctly different, indicating a failure in the
attempt to represent the texture and the model.

Since BH (n) is a random process, we define its histogram bins as follows:

hb (i) = E
[
ĥb (i)

]
= E

[
N∑
k=0

1BH(k)∈Si

]

=
N∑
k=0

E
[
1BH(k)∈Si

]
=

N∑
k=0

P (BH (k) ∈ Si) . (5.6)

BH (k) is a multivariate Normal process with a positive definite autocorrelation
matrix. It therefore has a suitable density, fB (α1, ..., αN ). The inner term in Eq.
(5.6) can be calculated as follows:

P (BH (k) ∈ Si) =

∫
α∈Ωi

fB(α)dα1 · · · dαN ,

(5.7)
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Figure 6: 2D histogram of three characteristic textures: Original images (first row),
2D histograms (second row) and cross-cuts of the main and secondary diagonals of
the histograms (third row), depicted in blue and black-dashed, respectively. (a) Non-
stochastic texture: The 2D histogram energy data are clustered co-linearly along the
line l1 = l2 due to the high correlation between adjacent pixels, and the cross-cuts
show non-Gaussian behaviour. (b) Stochastic texture, suitable for the fBm model:
The 2D histogram depicts a shape of a normal distribution, also apparent in the
cross-cuts. (c) Anisotropic stochastic texture, which does not fit the current model:
In this case, one obtains a non-Gaussian distribution. In both the histogram and
the cross-cuts it is apparent that the shape is close to a Gaussian. These types of
images will be considered for the anisotropic model.

where this is an N -dimensional integral, and the domain, Ωi, is R for any αj , i 6= j,
and Si for αi.
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The autocorrelation of BH (n) is discrete and given by:

RB (t, s) = E [B (t)B (s)]

=
σ2

2

(
t2H + s2H − (t− s)2H

)
.

In the limit of H → 0, we obtain:

lim
H→0+

2RB (t, s)

σ2
=

lim
H→0+

{
t2H + s2H , t = s

t2H + s2H − (t− s)2H , t 6= s

=

{
2, t = s

1, t 6= s.
(5.8)

Therefore, in this case, BH (n) is a stationary process, and for any sample point of
the process, k, the following equation holds:

P (BH (k) ∈ Si) = P (BH (1) ∈ Si) .

Eq. (5.7) now simplifies to the following equation:

P (BH (k) ∈ Si) =

∫
α1∈Si

∫
α2∈R

· · ·
∫

αN∈R

fB(α)dα,

(5.9)

and the histogram can be represented as follows:

hb (n) = N · P (BH (1) ∈ Si) . (5.10)

Note that if BH (k) was an independent vector, then we would obtain that:

P (BH (k) ∈ Si) =

∫
α∈Si

fB1(α1)dα ·

·
∫

α∈Ω

fB′(α′)dα′

=

∫
α∈Si

fB1(α1)dα, (5.11)

where B′(n) is the process without the first sample, and α′ = (α2, . . . , αN ). However,
they are dependent, but stationary, with the following covariance matrix:

Λ =


2α α · · · α

α 2α
. . .

...

α
. . .

. . . α
α α α 2α

 , (5.12)
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for a suitable α, which depends on the variance, σ2. Without loss of generality, we
henceforth assume that α = 1. Using the lemma shown in appendix A, we obtain
the inverse of the covariance matrix:

Λ−1 , Σ = I − 1

N(N + 1)
11T , (5.13)

where 1 ∈ RN×1 is a vector with 1 in every entry. In the limit of H → 0, the
following can be observed:

dΣ (N) = ‖Σ− I‖ =

∥∥∥∥ 1

N (N + 1)
11T

∥∥∥∥
= N ·

∥∥∥∥ 1

N (N + 1)

∥∥∥∥ =
1

N + 1
. (5.14)

For a size of small images, for instance N = 1282 = 214, this difference is dΣ (N)
∼
=

6 · 10−5. Recalling the probability density of BH (t), fB (α1, ..., αN ), we obtain the
following:

fB (α) =
1

(2π |Λ|)N/2
exp

(
−1

2
αTΛ−1α

)
=

1

(2π |Λ|)N/2
exp

(
−1

2
αTΣα

)
=

1

(2π |Λ|)N/2
exp

(
−1

2
αT
(
I − 1

N (N + 1)
11T

)
α

)
= C exp

(
−1

2
αT Iα+

1

2

1

N (N + 1)
αT11Tα

)
,

where C , 1

(2π|Λ|)N/2 . Denote α′ as (α2, . . . , αN ), α† = (α′)T . Therefore:

fB (α) = C exp

(
−1

2
α2

1 +
α2

1 + 2α1
∑N

j=2 αj

2N (N + 1)

)
·

· exp

(
−1

2
α†Iα′ +

1

2

1

N (N + 1)
α†11Tα′

)
.

(5.15)

Denoting the second term as g (α′), we obtain:

g
(
α′
)

= exp

(
−1

2
α†Σ2α

′
)
,

where Σ2 = I − 1
N(N+1)11

T and I ∈ RN−1×N−1. This matrix is equal to Σ for

a vector dimension of N − 1. Therefore, g (α′) constitutes a multivariate Normal
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density (up to a scaling factor). Turning to the argument of the first term in Eq.
(5.15), we obtain:

−1

2
α2

1 +
1

2N (N + 1)

α2
1 + 2α1

N∑
j=2

αj


= −1

2
α2

1 +
α2

1

2N (N + 1)
+

α1

N (N + 1)

N∑
j=2

αj .

(5.16)

The last term in the equation above can be bounded as follows:

α1 · αmin

N + 1
≤ α1

N (N + 1)

N∑
j=2

αj ≤
α1 · αmax

N + 1
. (5.17)

Therefore, as N →∞, this term is negligible. The same applies for the second term
as well, and in the limit of N →∞ we, therefore, obtain:

fB (α) = N (α1; 0, 1) · N
(
α′; 0,Σ−1

2

)
,

where N (x;µ, S) is a multivariate Normal density function, for the vector x, with
mean vector µ and covariance matrix S.

The probability in Eq. (5.9) can, therefore, be calculated as follows:

P (BH (k) ∈ Si) =

∫
α1∈Si

N (α1; 0, 1) ·

·
∫
R

· · ·
∫
R

N
(
α′; 0,Σ−1

2

)
dα2 · · · dαN

=

∫
α1∈Si

N (α1; 0, 1) dα1

= Φ (ti+1)− Φ (ti) . (5.18)

The i’th bin in the histogram ofBH (t) will therefore have a value ofN ·(Φ (ti+1)− Φ (ti)),
implying a shape of a Gaussian distribution.

5.3 Hurst parameter under blur

Under the 2D fBm model, the effects of blur and decimation are of importance.

1. Estimation of the original Hurst parameter may not be achieved directly from
the degraded image, as the degraded image may not fit the fBm model, and
therefore may not generally possess such a parameter.
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2. The Hurst parameter controls the irregularity of the image, which translates
to high-frequency details, lost by degradation. Obtaining the original H of an
image can be used as a stopping criteria for the SR process.

3. Analysis of the imaging model effects can be used to properly identify the
details lost by degradation.

At this stage, the analysis is presented for 1D discrete fBm. Let x ∼ N (0,ΣX)
be a multivariate normal variable with covariance matrix ΣX of a discrete fBm
with a given H parameter. Let n ∼ N (0, σ2

nI) be white Gaussian noise. Let y =
DBx + n , Wx + n be the degraded version of x, where D and B are decimation
and blur matrices respectively. We further assume that the noise is negligible (for
the sake of simplicity) and there is no decimation. Future studies will include the
effects of decimation as well. The blur matrix performs Gaussian blur with given
variance σ2

B, and its support is approximately limited by NB pixels.
The autocorrelation of the fBm (Eq. (3.1)) can be divided to two parts:

RX,1(t, s) =
σ2

2
(|t|2H + |s|2H) (5.19)

RX,2(t, s) =
σ2

2
(−|t− s|2H), (5.20)

where RX(t, s) = RX,1 +RX,2. The first part, RX,1(t, s), is non-stationary, and the
second part is stationary. The covariance of x shall be the discrete, sampled, version
of this autocorrelation. Under the imaging model, the covariance of y shall be the
following:

ΣY = BΣXB
T = BΣX1B

T +BΣX2B
T . (5.21)

Lemma 1. Let b ∈ RNf be a blur filter and a ∈ RN be a vector with values ai = iα,
where α ∈ (0, 1). Let Sm be the following sum:

Sm = (b ∗ a)(m) =

Nf∑
i=0

biam−i, (5.22)

Then, |Sm − am| < ε for a small positive number ε.

Proof. The error for any m is defined as follows:

em =

∣∣∣∣∣∣mα −
Nf∑
i=0

fi · (m− i)α
∣∣∣∣∣∣

In the case of m > Nf , m > i. Using the generalized binomial theorem for (m− i)α
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and since α < 1,(
α

k

)
=

α (α− 1) (α− 2) · · · (α− k + 1)

k!

= (−1)k−1 α (1− α) (2− α) · · · (k − 1− α)

k!

, (−1)k−1A (α, k) ,

where A (α, k) > 0. Therefore,

em =

∣∣∣∣∣∣mα −mα

Nf∑
i=0

(
fi ·

∞∑
k=0

(
α

k

)
(−1)k

(
i

m

)k)∣∣∣∣∣∣
=

∣∣∣∣∣∣mα −mα

Nf∑
i=0

fi +

Nf∑
i=0

(
fi ·

∞∑
k=1

(
α

k

)
(−1)k

(
i

m

)k)∣∣∣∣∣∣
=

∣∣∣∣∣∣
Nf∑
i=0

(
fi ·

∞∑
k=1

(
α

k

)
(−1)k

(
i

m

)k)∣∣∣∣∣∣
=

∣∣∣∣∣∣−
Nf∑
i=0

(
fi ·

∞∑
k=1

A (α, k)

(
i

m

)k)∣∣∣∣∣∣
=

Nf∑
i=0

(
fi ·

∞∑
k=1

A (α, k)

(
i

m

)k)
.

Since A (α, k) = α(1−α)(2−α)···(k−1−α)
k! < α(k−1)!

k! = α
k ,

em < α

Nf∑
i=0

(
fi ·

∞∑
k=1

1

k

(
i

m

)k)

= α

Nf∑
i=0

(
fi · −

(
log

(
1− i

m

)))
= α log

Nf∏
i=0

(
m

m− i

)fi , ε.

Since i < Nf , m
m−i is close to 1, and the resulting term is negligible.

Corollary 1. A blur operator has no more than negligible effect on the non-stationary
part of the fBm autocorrelations.

Proof. Inspecting the right-hand side of Eq. (5.21), the non-stationary part after
blur is BΣX1B

T . This is composed of two terms, one varying in the horizontal
direction and one varying in the vertical direction. Let us inspect the effects of
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applying B on the left-hand side of ΣX1 . Denoting A = BΣX1 , each [A](i,j) is the
inner product of bi and v, where bi is a 1D blur filter with support Nf and centered
at pixel i, and v is a vector with values vi = |i|α. Using lemma 1 with α = 2H, we
therefore obtain that

∣∣∣[A](i,j) − [ΣX1 ](i,j)

∣∣∣ < α log

Nf∏
i=0

(
m

m− i

)fi (5.23)

To demonstrate the derived bound, we can use two common low-pass filters:
An averaging filter with Nf = 5 and a Gaussian filter, with σ = 1.5 and effective
support of Nf = 5. Direct calculation with H = 0.2 yields a bound of 0.028 for both
filters.

Regarding the stationary part in Eq. (5.21), BΣX2B
T , the resulting term is

obtained as 1D blurring of each column of the original matrix, ΣX2 . From the
same considerations as the above, this causes negligible change in points far from
the main diagonal. As for the main diagonal, let us observe a cross-section, given
by Eq. (5.20). In continuous setting, this is a unimodal, symmetric function with
a non-differentiable peak at t = s. Applying a blur filter on this function causes
the peak to be “smeared”, or truncated, while relatively unaffecting the rest of the
function.

We conclude this discussion by the following observation:

ΣY
∼
= ΣX − σbIb, (5.24)

where ΣY is the blurred signal covariance, ΣX is the original covariance, σb is a
parameter and Ib is a blurred identity matrix. This allows us to obtain an estimate
of the covariance matrix of the original signal, which can be exploited to obtain
the original value of H. It is important to note that this equation can assist in
restoring the covariance (or other statistical properties) of the original signal, but it
is insufficient for restoring the signal itself.

5.4 Simulation and H estimation

The phenomenon described by Eq. (5.24) can be observed via simulation, as well as
exploited to create an estimator for the Hurst parameter of the original signal under
blur. Depicted in Figs. 7 and 8 are the effects of two common blur filters (averaging
and Gaussian) applied on an fBm, on the autocorrelation of the signal. We see
(Figs. 7h and 8h) that the principle effect of the blur filter on RX,2 is equivalent to
a subtraction of an approximated scalar matrix. While blurring causes distortions
in RX,1 as well (Figs. 7f and 8f), it is less pronounced in the resulting image, since
these correlations are of a distant sample with the first few samples.
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Figure 7: Effects of an averaging blur (kernel size 5 pixels) on an fBm (N = 27) with
H = 0.1. (a) and (b) The horizontal term from RX,1 and its blurred counterpart
respectively (Eq. (5.20)). (c) and (d) RX,2 and its blurred counterpart respectively.
(e) A comparison of two cross-cuts from Figs. (a) and (b). (f) The difference
between the two cross-cuts. (g) A comparison of two cross-cuts from Figs. (c) and
(d). (h) The difference between the two cross-cuts. The main effect of the blur filter
is depicted in the latter; one can restore the original autocorrelation matrix from
a blurred (discrete) fBm signal via compensating for the blurred diagonal matrix
lost by the blur filter. In both this case and the Gaussian blur case (Fig. 8), the
diagonal matrix is approximately an identity matrix.

(a) (b) (c) (d)

1 5 10
0

1

2

(e)

1 5 10

0

(f)

56 64 72
−4

−3

−2

−1

0

(g)

56 64 72

0

1

(h)

Figure 8: Effects of a Gaussian blur (σ = 1.5) on an fBm (N = 27) with H = 0.1.
For details see Fig. 7.
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Estimation source Mean Standard deviation Error

Original image (H = 0.1) Ĥorig = 0.103 σorig = 5 · 10−3 3.5%

Blurred image Ĥblur = 0.84 σblur = 15 · 10−3 > 100%

Yr Ĥr = 0.095 σr = 6 · 10−3 5%

Figure 9: Estimating H from a corresponding image Yr, created by superposition
of a blurred image with a random image with autocorrelation compensating for the
degradation (for details see text). To test the validity of our estimator, we first use
it on the ground truth images (T = 50 images were used in the experiments). The
corresponding image yields a relatively accurate estimate of the Hurst parameter.

Given a blurred fBm image, we propose the following estimation scheme for the
original Hurst parameter: Given the blur filter properties, it is possible to calculate
the difference between the original autocorrelation matrix of a discrete fBm and
the autocorrelation of the blurred one. Then, using Eq. (5.24) (with the required
adaptations for a 2D image), we create a new image, Yr, which we denote the
corresponding image, as follows:

Yr(η1, η2) = Y (η1, η2) + Yh(η1, η2), (5.25)

where Yh(η1, η2) is a Gaussian random image with autocorrelation matrix σbIb.
Yr(η1, η2) will therefore posses the autocorrelation of the original image, X(η1, η2).
Then, we apply Hurst parameter estimation algorithms to estimate H.

This scheme was simulated as well. For the estimation of H we used a regression
scheme on the logarithm of the variance of the image increments. This method
yields both the parameter H and the variance of the fBm (which is dependent on
H). For T = 50 fBm images of size 28 × 28 with H = 0.1, we first estimated the
value of H from the original images, and then estimated H from the blurred and
corresponding images. The results are summarized in Table 9.

The results show that estimation of the Hurst parameter from the blurred image
does not yield good results. This high value of H (Ĥblur = 0.84) can be partially
justified by the resemblance of a blurred fBm to an fBm with a higher H (where the
higher correlation between pixels yields a smoother image), but this is not the case;
as shown previously, the autocorrelation of a blurred fBm image is no longer an fBm.
On the other hand, with an error of 5%, the estimation via the corresponding image
yields relatively accurate results, encouraging us to further explore this method in
order to estimate the original H from a given image.
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6 Superresolution algorithm

6.1 Anisotropic diffusion

A brief review of the anisotropic diffusion that will suffice for our application is pro-
vided. For a comprehensive exposition see, for example, [23, 36]. Using PDE-based
methods allows for adaptive filtering of an image, with low computational complex-
ity. The following PDE equation suitable for image processing was introduced in
this context by Perona and Malik [37]:

It = ∇ · (g(∇I)∇I), (6.1)

with the initial condition I|t=0 = I0, the diffusivity g(s) being a decreasing function
with the following properties: g(0) = 1, g(s) ≥ 0 and g(s)→ 0 as s→∞. The diffu-
sivity function is, in general, designed for the adaptive processing of images to allow
high diffusion in low gradient areas, assumed to be noisy, and low diffusion in high
gradient areas, indicating the presence of edges that should not be compromised.

Many choices have been suggested for this function. Perona and Malik (PM)
proposed g(s) = e−(s/K)2 and g(s) = 1

1+( s
K )

2 , which are commonly used with a

suitable constant, K. Also useful is the TV-based diffusivity, using the L1 norm:
g(s) = 1

|s| , or the regularized version, g(s) = 1√
ε2+s2

. Gilboa et al. have even

extended it to the negative regime [36].
This diffusion, although commonly referred to anisotropic, is in fact non-linear

but isotropic. This has been noted by Weickert, who introduced a truly anisotropic
diffusion process, commonly referred to as tensor diffusion:

It = ∇ · (D(∇I)∇I), (6.2)

where D ∈ R2×2 is a tensor that is represented, using an eigenvalue decomposition,
as follows:

D = (ω1, ω2)

(
λ1 0
0 λ2

)(
ω1

ω2

)
, (6.3)

where ω1 and ω2 are eigenvectors which satisfy:

ω1 ‖ ∇I, ω2 ⊥ ∇I, (6.4)

and λ1 and λ2 are the corresponding eigenvalues. This formulation allows for differ-
ent types of diffusion to be performed in different orientations within the image. In
edge enhancing diffusion, for instance, only the diffusion coefficient perpendicular to
the edge orientation will assume a significant value. This method further emphasizes
edges while smoothing noisy image areas. Instead of a single diffusivity function,
g(x), two functions are used - one for each eigenvalue.
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6.2 Texture-based tensor diffusion

The tensor, D, is a function of the gradient of the image, ∇I. Due to the fact that
textures contain small oriented elements, the tensor diffusion is a natural choice
for their enhancement. However, commonly used tensor diffusion schemes do not
yield a successful enhancement of textures; while the edges are emphasized, the
high frequency components of textural details are lost. This is due to their spectral
resemblance of noise. Further, when attempting to enhance a blurred image, much
of the high frequency details are in effect non-existing to begin with.

This has encouraged us to consider a different function, instead of ∇I, for the
calculation of the tensor. This function is required to represent the desired properties
of the texture, while still resembling the shape of the texture itself.

One cannot expect to represent a natural texture using a single parameter, H.
As discussed in section 3.2, it is possible to consider a structure function, φ(η1, η2),
to create a non-stationary field which better represents the desired image. Instead
of using a general function, we use a structure function generated from the degraded
image itself. This yields an image which contains the details of the degraded image,
along with correlations introduced according to the specific structure of the non-
stationary field. We refer to the structure function derived from the degraded image
as the empirical structure function (ESF).

The method to recover the ESF from a given, degraded, image is based on an
inverse procedure to the method of obtaining the image from the structure function,
devised in [31]. Let Y (η1, η2) be a degraded image. The increments in the x = η1

and y = η2 orientations are defined as:

Y∆η1(η1, η2) = Y (η1, η2)− Y (η1 −∆η1 , η2),

Y∆η2(η1, η2) = Y (η1, η2)− Y (η1, η2 −∆η2), (6.5)

respectively, where ∆η1 and ∆η2 are small increments set to 1 in discrete schemes.
The increments in the (x, y) = (η1, η2) coordinates are defined as:

Y∆η1,∆η2(η1, η2) = Y (η1, η2)− Y (η1 −∆η1 , η2)

−Y (η1, η2 −∆η1) + Y (η1 −∆η1 , η2 −∆η2). (6.6)

Let Rη1(η1, η2), Rη2(η1, η2) and Rη1,η2(η1, η2) be the autocorrelation functions of
the increments Y∆η1 , Y∆η2 and Y∆η1,∆η2 , respectively. The autocorrelation functions
for the 1D increments, Rη1(η1, η2) and Rη2(η1, η2), are derived from the structure
function, φ(η1, η2), as follows:

Rη1(η1, η2) =
1

2
(φ(η1 + ∆η1 , η2) + φ(η1 −∆η1 , η2)− 2φ(η1, η2)),

Rη2(η1, η2) =
1

2
(φ(η1, η2 + ∆η2) + φ(η1, η2 −∆η2)− 2φ(η1, η2)), (6.7)
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and the autocorrelation for the 2D increments, Rη1,η2(η1, η2), is accordingly derived
as:

Rη1,η2(η1, η2) = 2Rη1(η1, η2) + 2Rη2(η1, η2) (6.8)

− 1

2
(φ(η1 + ∆η1 , η2 + ∆η2) + φ(η1 −∆η1 , η2 + ∆η2)

+ φ(η1 + ∆η1 , η2 −∆η2) + φ(η1 −∆η1 , η2 −∆η2)). (6.9)

To obtain the empirical structure function, it is therefore required to invert the
equations, and produce φ(η1, η2), given the increment autocorrelation functions of
Y (η1, η2). Substituting ∆η1 = ∆η2 = 1 in Eq. 6.7, it follows that the 1D autocor-
relation functions can be represented using convolution equations with derivative
filters:

Rη1(η1, η2) = (φ ∗ fd)(η1, η2),

Rη2(η1, η2) = (φ ∗ fTd )(η1, η2), (6.10)

where fd = 1
2(1,−2, 1). The 2D autocorrelation can be represented in a similar

manner, using the following equation:

Rη1,η2(η1, η2) = (φ ∗ fd2)(η1, η2), (6.11)

where

fd2 =
1

2

−1 2 −1
2 −4 2
−1 2 −1

 . (6.12)

Obtaining the ESF from the degraded image, is therefore reduced to solving
Eqs. (6.10) and (6.11). This can be formulated as the following least-squares (LS)
problem (Appendix B):

φ = arg min
x
‖Dfx− r‖22, (6.13)

where φ is the column-stack representation of the ESF, φ(η1, η2), Df in a suitable
matrix representation of fd and fd2, and r is a suitable column-stack representation
of Rx(η1, η2), Ry(η1, η2) and Rx,y(η1, η2). This is an ill-posed problem, due to rank
deficiency of the derivative matrix, Df . It is similar to problems encountered in
gradient domain processing. This poses a challenge to a least-squares procedure
and we currently do not employ regularization techniques, although these may be
relevant in further studies. Additionally, unlike problems in which the vector, φ,
needs to be recovered exactly, in this case only the derivatives (in the manner of
the derivative filters, fd and fd2) of the ESF are required. The derivation of these
matrices and vectors is addressed in further details in appendix B.

An example is presented in Fig. 10, where two sets of images are shown. The
first (Fig. 10a and Fig. 10b) contains a 2D fBm image, with H = 0.1, and the
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(a) (b) (c) (d)

Figure 10: Comparison of 2D fBm using the empirical structure function (ESF). (a):
Original 2D fBm image. (b) Restored 2D fBm image, using ESF derived from Fig.
(a). High pass versions of (a) and (b) are shown in Fig. (c) and (d), respectively.

restored image derived by extracting the ESF from the 2D fBm image by the process
described earlier, and reconstructing the field by the algorithm presented in [31].
Due to the ill-posedness of the LS problem, the two images do not look alike. The
second set (Fig. 10c and Fig. 10d) depicts the respective images obtained from the
first set, after a high-pass filtering was performed by subtracting the result from a
Gaussian low-pass filter with σ = 15. Since only the high frequency range is lost
by degradation, this range is of more importance. Indeed, the high pass versions
of Figs. (10a) and (10b), depicted in Figs. (10c) and (10d) appear to be visually
similar.

Using the ESF, its a possible to obtain an image, Yφ(η1, η2), from the degraded
image, Y (η1, η2), by calculating the autocorrelation of the first- and second-order
increments, solving the LS problem in Eq. (6.13) to obtain a structure function
φ(η1, η2), and using the synthesis algorithm in [31]. The resulting image is referred
to as the empirical image.

6.3 Tensor diffusion

We now consider the modifications required to enable the tensor diffusion to perform
superresolution on natural textures. The tensor, D(∇I), introduced earlier, is set
instead to be D(∇(It + αYφ(η1, η2))), where Yφ(η1, η2) is the empirical image, and
α is a weight parameter. This allows for the introduction of missing texture details,
while still emphasizing the edges of a degraded texture image.

The superresolution algorithm is presented by considering the following energy
functional, in column-stacked image representation:

E(X) =

∫
Ω

(BX − Y )2 + (X̂HP −HHPX)2+

+ βΨ(|∇X + α∇Yφ|2)dxdy, (6.14)

where X is the SR image, Y is the degraded image, and B is a matrix performing
blur and decimation. The second term penalizes deviations of the solution, X, from
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the fBm model of the image (discussed in section 5), given by X̂. This is derived as
follows:

‖X − X̂‖2 = ‖XLP +XHP − X̂LP − X̂HP ‖2
∼
= ‖XHP − X̂HP ‖2

= ‖HHPX − X̂HP ‖2, (6.15)

where HHP is a Gaussian high-pass filter described earlier, and X̂HP is the high-
frequency component, given by X̂HP = PH,W (X̂LP ). XLP and X̂LP are assumed
to be sufficiently close so that their difference is approximately zero. This is a valid
assumption, as the imaging model does not degrade the low frequencies.

The solution for this equation satisfies the following Euler-Lagrange equation:

BT (BX − Y )− β∇ · (Ψ′(|∇(X + αYφ)|2)∇X)

−2αβ∇ · (Ψ′(|∇(X + αYφ)|2)∇Yφ) = 0. (6.16)

This derivation is further explained in appendix C. A gradient descent scheme for the
minimization of the energy functional, and the introduction of the tensor diffusion,
D(∇(X+Yφ)), instead of the scalar diffusivity, Ψ(|∇(X+Yφ)|2), yields the following
diffusion-reaction process:

Xt = 2BT (BX − Y )− 2HT
HP (X̂HP −HHPX)

−β∇ · (D(∇(X + αYφ))∇X)

−2αβ∇ · (D(∇(X + αYφ))∇Yφ). (6.17)

This equation differs from the usual deblurring tensor diffusion with regard to the
following:

1. As previously discussed, the tensor, D, is a function of two images. Based on
this formulation, an extra facet emerges in the optimization.

2. The estimated high-frequency image, XHP , is added, in order to recover the
missing details.

The eigenvalue parallel to the gradient, λ1, was set to a regularized L1 scalar diffu-
sivity function:

λ1(s) =
1√

ε2 + s2
, (6.18)

and the perpendicular eigenvalue, λ2, was set to 0.01.
Using PDE-based regularization inflicts high diffusion on fine details, charac-

terized by low gradients. Therefore, even if details are restored, the diffusion may
smooth them unless posed at high gradient areas. The two terms therefore work in
tandem; while recovered detail emerges from the texture model term, the modified
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tensor term preserves it rather than smooth it. Further, the modified tensor term
recovers lost image structure, according to the desired statistics. An example of this
is demonstrated in Fig. 11: The three figures on the first row depict the original
(Fig. 11a), degraded (Fig. 11b) and naive PDE-based deblurring (with bicubic
interpolation) (11c) result. The second row shows different configurations of the
modified diffusion. The result, using only the texture model term, is displayed in
11d; in comparison with Fig. 11c, it is possible to see new details, where these have
not been smoothed - in high gradient areas. The result, using only the modified ten-
sor term, is displayed in 11e; While no fine details are restored, the image structure
is closer to the original, using the empirical image. Finally, in Fig. 11f, we see the
combined effect of both terms. The new details are both restored and preserved.

6.4 Remarks

1. The empirical image, Yφ(η1, η2), is initially derived from the degraded image,
Y (η1, η2). However, as the diffusion advances and the image is refined, it
is beneficial to update Yφ(η1, η2) as well. Due to the time consuming LS it
entails, this is performed periodically after several iterations of the diffusion
process.

2. The parameters of this algorithm are H, α, β and the number of diffusion
iterations. Although H can be estimated from the degraded image itself, by
methods of fractal dimension estimation, we currently set it to be a constant,
H = 0.1. The other parameters have fixed values, invariant of the image in
question. In an ongoing work, we investigate the effects of blur and decimation
on the Hurst parameter and on an fBm in general, in order to estimate these
parameters adequately from a degraded image.

3. Given a statistical model, one can use MAP or MMSE estimation, with the
fBm as a prior. However, neither MAP nor MMSE produce good results in
the case of SR, due to the severe loss of details. This is a further indication
that an L2-based error criteria is not suitable for textured images. In the case
of denoising, however, substantial improvement was noted, which renders this
type of optimization useful.

7 Results

The proposed algorithm is implemented and used on stochastic textures. The deci-
mation operator in Eq. (2.1) performs ↓ 2 decimation in both dimensions, the blur
kernel is a Gaussian with σ = 1.5 and effective support of 5×5 pixels. A small noise
is added so that the BSNR is 40dB. The contrast in all the examples is normalized
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(a) (b) (c)

(d) (e) (f)

Figure 11: Visualizing the texture-based diffusion equation. (a) Original texture
image. (b) Degraded image. (c) Result using standard anisotropic diffusion: The
edges are emphasized and the image is less blurry with respect to the degraded
image, but texture details are not recovered. (d) Result using the fBm-based texture
model, without modified tensor: While the result is better than the previous one,
recovered fine details are not pronounced due to the diffusivity tensor. (e) Result
using the modified tensor, and without the fBm-based texture model: Contours
are better recovered with respect to the standard diffusion, but fine details are still
missing. (f) Result using the complete scheme: In this case, new details are recovered
via the fBm-based model, and are preserved by the modified diffusion tensor.
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after blurring1.
We present several types of textures from the texture “spectrum” (Figs. 12,

14,16,18 and zoomed Figs. 13, 15,17,19 respectively): isotropic stochastic (first
image), near-regular (second image) and anisotropic stochastic (third and fourth
images). We find the latter the most challenging. The degraded versions of these
images suffer from loss of high-frequency textural details, rather than edge and
contour degradation. The results are compared with bicubic interpolation, example-
based SR [38] and sparseness-based SR [39]. In all examples, the visual structure
of the image, enhanced by the proposed algorithm, resembles that of the original
(ground-truth). While the high frequency spectrum is not identical to the original,
the visually-appearing texture structure is restored.

We do not rely on PSNR or on other L2-based comparisons for the assessment
of the algorithm’s performance. A high PSNR value, in the range of 25dB and
above, indicates it is also a valid comparison method. This is the case in general im-
ages, containing sharp edges, but limited texture data. In the case of fully-textured
images, the PSNR values are, however, significantly lower after degradation, and
are confined to the range of 5 − 20dB. While other comparison methods, such as
the structural similarity index (SSIM) [40], have been suggested, there do not exist
widely-accepted criteria for performance evaluation, other than visual assessment
(geometrically-based natural metrics, potentially-suitable for performance evalua-
tion are under investigation) [35].

It is also important to note that in textured images, such as the ones considered
here, one needs to look for the highest fidelity in comparison with the original image.
This may be in contradiction to desired properties in other images. Sharp edges,
for example, are desired in many applications, but in this case, a sharp edge in the
SR image may in fact be undesired if the original image edges are not sharp.

The example-based SR results shown here depict the characteristic behaviour of
the example-based SR methods; while emphasizing edges, improving on the result of
the bicubic interpolation, it does not successfully restore missing fine details. This
is apparent in all types of textures presented.

1Additional examples can be found at http://vision.technion.ac.il/demos/texture-sr/

pde-based

http://vision.technion.ac.il/demos/texture-sr/pde-based
http://vision.technion.ac.il/demos/texture-sr/pde-based


(a)

(b)

(c) (d)

(e) (f)

Figure 12: Superresolution of textured images. The degraded images are obtained
by 2 ↓ 1 subsampling in both axes after a Gaussian blur with σ = 1.5. (a) Original
(ground-truth) images. (b) Low-resolution image. (c) Bicubic interpolation. (d)
Sparseness-based SR result [39]. (e) Example-based SR result [38]. (f) Proposed
algorithm SR result. While the example-based SR performs edge enhancement
relative to the cibubic interpolation result, it fails to recover missing textural details.
The proposed algorithm result bears more resemblance to the original image in terms
of both contours and textured details.



8 Discussion

The theoretical framework and algorithms presented in this study are concerned
with superresolution of fully textured images, wherein the texture incorporates both
stochastic and structured elements. The superresolution paradigm considered here
is the so-called single-image superresolution, where only one image is available as
an input. Considering first the more challenging aspect of the granularity and
non-stationarity of structures often encountered in natural textures, a stochastic
texture model has been developed, based on fBm. PDE-based regularization has
been introduced in order to capture anisotropic texture details and a diffusion-based
single-image superresolution scheme was derived.

As is the case in similar underdetermined problems, the emphasis is on side
information, inherent in the underlying image model that captures (represents) the
essence of natural stochastic texture. The results obtained in our study, encourage
the use of global fBm-based model (rather than patch-based) for natural textured
images, as a method for reconstruction of degraded textures.

The proposed model and concomitant algorithm are based on the empirical ob-
servation that stochastic textures are characterized by the property of self-similarity.
An appropriate random process is estimated with reference to the existing low-
resolution image. The initial restoration of missing details is based on an arbitrary
realization of an fBm image. One may, therefore, expect that the results will be
different for different evaluations. However, due to the phase matching and opti-
mization, results for different random seeds yield almost identical results. In our
on-going study, we attempt to remove the formal dependency on an initial arbitrary
image, and obtain a model which depends on the fBm statistics.

Our observation, depicted in Fig. 1, is that stochastic textures obey a Gaussian
distribution. This is in contast to general natural images, where the distribution has
been shown to be non-Gaussian and kurtotic. This further emphasizes the validity
of the fBm model, which is the only self-similar Gaussian process (in 1D). This
observation will be futher substantiated in future studies, looking into a broad class
of natural textures.

A comparison with state-of-the-art example-based, single-image, superresolution
algorithms highlights the main advantage inherent in the proposed algorithm: It
reconstructs high frequency textural details that are otherwise missing, while the
example-based algorithms emphasize, for the most part, edges but do not restore
other, textural, missing details.

Whereas the fBm has been widely used as a model of image structure, it is in fact
most suitable for modelling natural textures, as this study indicates, but it is not
congruous with image skeletal structures comprised of edges and contours. Further
research is nonetheless called for in an attempt to expand the model to better model
anisotropic textures as well, and to minimize thereby the need for regularization.
Such a model may yield other enhancement algorithms suitable for a broader class
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of stochastic textures.
Despite of the above goal, yet to be accomplished, the proposed PDE-based

regularization presents new terms which need to be investigated. The empirical
structure function is obtained via an ill-posed scheme, and better solutions for this
problem may result in better understanding of textures and yield thereby better
enhancement results.

The proposed model has been exploited for solving the SR problem. It can also
be used for other image enhancement problems, such as denoising or in-painting.
This is a challenge in the case of textures, due to the overlap in the frequency range
with that of the noise, and due to the lack of local, small-scale, smoothness. It should
be emphasized that existing denoising algorithms usually succeed in restoring edges
and smooth segments, but not in the recovery of fine details. Preliminary results
show that the fBm, used as a prior in MAP estimation, can effectively act as a
regularizer which performs denoising on fBm-based images.
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10 Appendices

A Proof of the lemma

Lemma 2. Let Λ ∈ RN×N be a matrix, whose cells are defined as follows:

(Λ)i,j =

{
2, i = j

1, i 6= j,
(A.1)

then Λ−1 , Σ is defined as follows:

Σ = I − 1

N (N + 1)
11T , (A.2)

where I ∈ RN×N is the identity matrix and 1 ∈ RN is a column vector, in which
every entry is equal to 1.

Proof. Λ is diagonalizable, as a real and symmetric. Let λ1, . . . , λN denote the
eigenvalues and {vi}Ni=1 denote the respective eigenvectors of Λ. Since we have that
the sum of every column j, s (j), is the following:

s (j) =

N∑
i=1

(Λ)i,j = 2 + (N − 1) = N + 1, (A.3)
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we conclude that λ1 = (N + 1) and v1 = (1, . . . , 1)T . It then follows from symmetry
that the rest of the eigenvalues are equal, λi , λ∀i ∈ {2, . . . , N}. The rest of the
eigenvalues calculated as follows:

N∑
i=1

λi = trace (Λ) ,

λ1 + (N − 1)λ = N · 2,
(N − 1)λ = − (N + 1) + 2N,

λ = 1. (A.4)

The suitable orthonormal eigenvectors can be derived, and form the eigenvalue ma-
trix, V , which satisfies V −1 = V T due to the orthonormality. The matrix, Λ, can
therefore be decomposed as Λ = V DV −1, where D is the eigenvalue diagonal matrix.
The inverse, Σ , Λ−1, is calculated as follows:

Σ = V D−1V −1. (A.5)

Since D−1 is a diagonal matrix, it can be decomposed as follows:

D−1 = I + IC , (A.6)

where IC = D−1 − I, and since N − 1 of the eigenvalues of Λ are equal to 1, this
matrix contains a single non-zero entry, (IC)N,N = λ−1

N − 1 , γ. The inverse matrix
can, therefore, be represented as follows:

Σ = V (I + IC)V −1

= V V −1 + V ICV
−1

= I + V ICV
T , (A.7)

where the second transition follows from the orthogonal eigenvector matrix V . Due
to the structure of IC , the above equation is simplified further:

Σ = I + VCV
T , (A.8)

where VC , V IC is a matrix which has non-zero entries only in the last column:

VC = V IC =

 | · · · |
v1 · · · vn
| · · · |




0 · · · 0 0
...

. . . 0 0
0 0 0 0
0 0 0 γ

 .

Recalling that the last eigenvector, vn, is a constant, we denote vin = β and therefore:

VC =


0 · · · 0 γβ
...

. . . 0 γβ
0 0 0 γβ
0 0 0 γβ

 = γ

 0 · · · 0 |
...

. . . 0 vn
0 · · · 0 |

 .
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Next, multiplied by V T , we obtain:

VCV
T = γ

 0 · · · 0 |
...

. . . 0 vn
0 · · · 0 |


 − v1 −

...
...

...
− vn −


= γβ2

 1 · · · 1
...

. . .
...

1 · · · 1

 , (A.9)

and the inverted matrix, Σ, is therefore:

Σ = I + γβ211T , (A.10)

where 1 ∈ RN×1 is a vector with 1 in every entry. The value of β can be derived from
the orthonormality of V . Since vn is constant, we thus obtain β = 1

N . Substituting
β and γ, we obtain the following matrix:

Σ = I +

(
1

N + 1
− 1

)
1

N2
11T ,

Σ = I − 1

N (N + 1)
11T . (A.11)

B The ESF LS problem

The LS problem, Eq. (6.13), can be considered as follows: Let the filters fd and
fd2, and the autocorrelation functions Rη1(η1, η2), Rη2(η1, η2) and Rη1,η2(η1, η2) be
as presented in subsection 6.2. The matrix, Df , in Eq. (6.13) is derived by three
vertically-stacked matrices, as follows:

Df =

Df,η1

Df,η2

Df2

 , (B.1)

where Df,η1 and Df,η2 are the matrix representation of the filters fd and fTd respec-
tively, and Df2 is the matrix representation of the filter fd2. The matrices perform
convolution with symmetric boundaries.

In a respective manner, the vector r in Eq. (6.13) is formed as follows:

r =

 rη1
rη2
rη1,η2

 , (B.2)
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where rη1 , rη2 and rη1,η2 are the column-stacked versions of the autocorrelation
matrices Rη1(η1, η2), Rη2(η1, η2) and Rη1,η2(η1, η2). The solution of the LS problem
yields φ, a column-stacked vector, which is then converted back to matrix form in
the size of the image.

C Derivation of the diffusion equation

Let E(X,∇X) = E(X,X ′) be defined as the energy functional presented in Eq.
6.14. The Euler-Lagrange equation for this functional is given by

∂E(X,X ′)

∂X
− d

dt

∂E(X,X ′)

∂X ′
= 0. (C.1)

Due to the time invariance, we obtain:

∂E(X,X ′)

∂X
= 0. (C.2)

Let Er(X) denote the reaction, and Ed(X) denote the diffusion term in E(X),
defined as follows:

E(X) =

∫
Ω
Er(X) + Ed(X)dxdy,

Er(X) = (BX − Y )2 + (X̂HP −HHPX)2,

Ed(X) = βΨ(|∇X + α∇Yφ|2). (C.3)

∂Er(X)
∂X is derived as follows:

∂Er(X)

∂X
= 2BT (BX − Y )− 2HT

HP (X̂HP −HHPX)

= 2BT (BX − Y )− 2HT
HP X̂HP + 2HT

HPHHPX. (C.4)

Since a Gaussian filter is used, HT
HP = HHP .

∂Ed(X)
∂X is derived as follows:

∂Ed(X)

∂X
=βΨ′(|∇X + α∇Yφ|2) · f ′(X), (C.5)

where f(X) = |∇X + α∇Yφ|2, is derived as follows:

f(X) = (∇X + α∇Yφ)T (∇X + α∇Yφ)

= (∇X)T (∇X + α∇Yφ) + α(∇Yφ)T (∇X + α∇Yφ)

f ′(X) = ∇ · (∇X) + α∇ · ∇Yφ + α∇ · (∇Yφ)T

= ∇ · (∇X) + 2α∇ · (∇Yφ). (C.6)
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Plugging f ′(X) back in the previous equation, we obtain:

∂Ed(X)

∂X
=β∇ · (Ψ′(|∇X + α∇Yφ|2)∇X)+

+ 2αβ∇ · (Ψ′(|∇X + α∇Yφ|2)∇Yφ). (C.7)

Finally, substituting the derivatives of Er(X) and Ed(X) we obtain the diffusion-
reaction equation in Eq. (6.16).
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Figure 13: Zoomed version of Fig. 12. (a) Original (ground-truth) images. (b) Low-
resolution image. (c) Bicubic interpolation. (d) Sparseness-based SR result [39]. (e)
Example-based SR result [38]. (f) Proposed algorithm SR result.
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Figure 14: Superresolution of textured images. (a) Original (ground-truth) images.
(b) Low-resolution image. (c) Bicubic interpolation. (d) Sparseness-based SR result
[39]. (e) Example-based SR result [38]. (f) Proposed algorithm SR result. For more
details see Fig. 16
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Figure 15: Zoomed version of Fig. 14. (a) Original (ground-truth) images. (b) Low-
resolution image. (c) Bicubic interpolation. (d) Sparseness-based SR result [39]. (e)
Example-based SR result [38]. (f) Proposed algorithm SR result.
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Figure 16: Superresolution of textured images. (a) Original (ground-truth) images.
(b) Low-resolution image. (c) Bicubic interpolation. (d) Sparseness-based SR result
[39]. (e) Example-based SR result [38]. (f) Proposed algorithm SR result. For more
details see Fig. 16
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Figure 17: Zoomed version of Fig. 16. (a) Original (ground-truth) images. (b) Low-
resolution image. (c) Bicubic interpolation. (d) Sparseness-based SR result [39]. (e)
Example-based SR result [38]. (f) Proposed algorithm SR result.
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Figure 18: Superresolution of textured images. (a) Original (ground-truth) images.
(b) Low-resolution image. (c) Bicubic interpolation. (d) Sparseness-based SR result
[39]. (e) Example-based SR result [38]. (f) Proposed algorithm SR result. For more
details see Fig. 16
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Figure 19: Zoomed version of Fig. 18. (a) Original (ground-truth) images. (b) Low-
resolution image. (c) Bicubic interpolation. (d) Sparseness-based SR result [39]. (e)
Example-based SR result [38]. (f) Proposed algorithm SR result.
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