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Abstract

The problem of joint detection and lossless source coding is considered. We derive asymptotically
optimal decision rules for deciding whether or not a sequence of observations has emerged from a
desired information source, and to compress it if has. In particular, our decision rules asymptoti-
cally minimize the cost of compression in the case that the data has been classified as ‘desirable’,
subject to given constraints on the two kinds of the probability of error. In another version of this
performance criterion, the constraint on the false alarm probability is replaced by the a constraint
on the cost of compression in the false alarm event. We then analyze the asymptotic performance
of these decision rules and demonstrate that they may exhibit certain phase transitions. We also
derive universal decision rules for the case where the underlying sources (under either hypothesis or
both) are unknown, and training sequences from each source may or may not be available. Finally,
we discuss how our framework can be extended in several directions.

Index Terms: Error exponent, hypothesis testing, false alarm, misdetection, source coding, uni-
versal schemes.
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1 Introduction

Classical hypothesis testing theory, based on the Neyman–Pearson theorem (see, e.g., [2, Sect.

11.7]), provides the optimal rule for deciding between two hypotheses concerning the distribution

or density of a given observation or sequence of observations. It tells us that best trade-off between

the two kinds of probability of error is achieved by the likelihood ratio test.

In certain situations, however, this decision between the two hypotheses might be only one of the

tasks to be carried out. For example, consider a scenario where under hypothesis H0, the sequence

of observations that we receive is just pure noise, which contains no useful information that may

interest us, whereas under hypothesis H1, the data that we have at hand has emerged from a

desirable information source, and in this case, further processing is called for, such as lossless or

lossy data compression, parameter estimation [9], [10], channel decoding [7], [11], [12], encryption,

further classification, etc.

The straightforward approach to this problem would be to first apply Neyman–Pearson hypoth-

esis testing, and then, if hypothesis H1 is accepted, perform the corresponding task using the best

strategy available. This approach separates between optimal decision and the optimality of the

subsequent task. A more sophisticated approach, however, is to solve the two problems jointly,

namely, to devise a decision rule that takes into account also the cost of the subsequent task (in

case it is to be carried out), and on the other hand, optimize the strategy of the following task,

taking into account that the data belongs to the decision region of H1.

For the case where the second task is Bayesian parameter estimation, Moustakides [9] and Mous-

takides et al. [10] have derived an optimal solution for the combined problem. In particular, in these

articles, the problem of joint detection and estimation was posed and solved under the criterion of

minimizing the conditional expected cost of the estimation error, given that the data is classified

into H1 subject to certain constraints on the false alarm (FA) and misdetection (MD) probabilities

(or related constraints). The optimal decision rule, under this criterion, is interesting, but it turns

out to be rather complicated and non–trivial in three respects: (i) the proof of optimality is quite

long and not easy, (ii) the insight behind this decision rule is not obvious, and (iii) it may be

difficult to implement.
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In this paper, we propose a modified criterion,1 which is asymptotically equivalent for a large

number of observations, at least in the relevant regime, where the MD probability is constrained

to tend to zero. The point of this modification in the criterion is that it allows us to use a slightly

extended version of the Neyman–Pearson lemma in order to derive the optimal decision rule in

a fairly simple and easy manner. It is also rather easy to implement, or at least to approximate

by an easily implementable decision rule. Finally, the intuition behind this decision rule is easier

to grasp. We focus, in this paper, on memoryless sources and on the case where the second task

to be performed, after the detection, is lossless data compression, but this should be considered

only as an example, as the methodology proposed is applicable for a wide variety of tasks, as

will be discussed. In fact, the same methodology has already been used in [7], where under H1,

the observed data is the output of a noisy channel fed by a codeword, and the second task after

detection is channel decoding, with application to (slotted) asynchronous communication (see also

[11] and [12] for earlier work).

In addition to the derivation of the optimal decision rule under our modified criterion, we also

analyze its performance in terms of asymptotic exponents. One of our findings is that these asymp-

totic exponents may exhibit “phase transitions” in the sense of having discontinuous derivatives as

functions of the parameters of the problem. Such phase transitions do not occur in the ordinary

Neyman–Pearson decision rule. Finally, we derive universal versions of our decision rule that are

suitable for scenarios where at least one of the probability distributions (under H0 and/or H1)

is unknown (yet they are still known to be memoryless), and we might have access to a training

sequence from one of the sources or both. We also discuss, as mentioned earlier, how our method

applies to tasks other than lossless source coding as well as more general classes of sources.

The outline of the remaining part of this paper is as follows. In Section 2, we establish notation

conventions and define the problem in several different versions. In Section 3, we present the

above–mentioned extension of the Neyman–Pearson lemma. In Section 4, we apply this lemma to

the solution of one version of the joint detection and compression problem, and in Section 5 we

analyze its performance and discuss it. In Section 6, we show how to apply Lemma 1 to a number

of other variants of the problem. Section 7 is devoted to universal decision rules, and finally, in

Section 8 we conclude.

1Details will follow in the sequel.
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2 Notation Conventions and Problem Formulation

Throughout the paper, random variables will be denoted by capital letters, specific values they may

take will be denoted by the corresponding lower case letters, and their alphabets will be denoted by

calligraphic letters. Random vectors and their realizations will be denoted, respectively, by capital

letters and the corresponding lower case letters, both in the bold face font. Their alphabets will

be superscripted by their dimensions. For example, the random vector X = (X1, . . . , Xn), (n –

positive integer) may take a specific vector value x = (x1, . . . , xn) in X n, the n–th order Cartesian

power of X , which is the alphabet of each component of this vector. In this paper, X emerges

from either one of two sources, P0 or P1. The probability of an event E under Pi will be denoted

by Pi(E) and the expectation operator w.r.t. Pi will be denoted by Ei{·}, i = 0, 1. The entropy of

a generic distribution Q on X will be denoted by H(Q). The notation H(Pi) will be shortened to

Hi, i = 0, 1. For two positive sequences an and bn, the notation an
·
= bn will stand for equality in

the exponential scale, that is, limn→∞
1
n log an

bn
= 0. The indicator function of an event E will be

denoted by I{E}. The empirical distribution of a sequence x ∈ X n, which will be denoted by P̂x,

is the vector of relative frequencies P̂x(x) of each symbol x ∈ X in x. The type class of x ∈ X n,

denoted Tx, is the set of all vectors x
′ with P̂x′ = P̂x. When we wish to emphasize the dependence

of the type class on the empirical distribution P̂ , we denote it by T (P̂ ).

Let X = (X1, . . . , Xn) be a sequence of random variables drawn from a finite alphabet memo-

ryless source. There are two hypotheses concerning the probability distribution of the underlying

source: Under hypothesis H0, the source is P0 = {P0(x), x ∈ X}, whereas under hypothesis H1, the

source is P1 = {P1(x), x ∈ X}. The source P0 designates unwanted data (e.g., pure noise, spam,

meaningless or unimportant data), while the source P1 represents useful, desirable information,

which we would like to keep for further processing. In this paper, this further processing is lossless

data compression (source coding).

A decision rule is a partition of X n, the space of source vectors of length n, into two complemen-

tary regions Ω ⊆ X n and Ωc = X n \Ω, where Ω is the region where we accept X as having emerged

from P1, and Ωc is the region where we classify it as having been generated by P0. Thus, only

source vectors that fall in Ω are to be compressed. Since the decision rule is fully defined by the

choice of the subset Ω, we will sometimes use expressions like “the decision rule Ω” as shorthand
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for “the decision rule associated with Ω,” with a slight abuse of formal preciseness.

Our aim is to find a decision rule and a compression strategy that jointly optimize the compression

performance within Ω subject to constraints on the error probabilities of the two kinds: P0(Ω) – the

probability of false alarm (FA), and P1(Ω
c) – the probability of misdetection (MD). In particular,

let L : X n → {0, 1, 2, . . .} be a length function of a lossless fixed–to–variable length code that

satisfies Kraft’s inequality
∑

x∈Xn

2−L(x) ≤ 1. (1)

A seemingly natural goal (in the spirit of [10]) would be to solve the problem:

minimize E1{L(X)|X ∈ Ω} (2)

subject to P0(Ω) ≤ ǫFA

P1(Ω
c) ≤ ǫMD

where the minimization is over the length function L(·) and the choice of Ω, and where ǫFA and ǫMD

are prescribed numbers designating the maximum tolerable FA and MD probabilities, respectively.

Of course, ǫFA and ǫMD should not be chosen both too small, otherwise, the two constraints may

become contradictory (the minimum achievable ǫMD for a given ǫFA is achieved by the performance

of the ordinary likelihood ratio test).

Now, it makes sense to let ǫMD and ǫFA decay exponentially with n. We let then ǫMD =

exp(−nEMD) and ǫFA = exp(−nEFA), where EMD and EFA are positive constants, independent

of n. In this regime, P1(Ω) ≥ 1 − exp(−nEMD) tends to unity, and so, the conditioning on

X ∈ Ω, that appears in the objective function of (2) has an asymptotically vanishing effect, as

P1(x|x ∈ Ω) = P1(x)/P1(Ω) ≈ P1(x) for all x ∈ Ω. This means that the best achievable compres-

sion performance in the sense of (2) is roughly the entropy of X under P1, essentially independently

of the choice of Ω, whenever EMD > 0, which makes (2) somewhat less interesting than it might

seem at first glance.

It is therefore more interesting to examine objective functions with stronger sensitivity to the

choice of Ω. This would be the case with a large deviations criterion, like P1{L(X) ≥ nR|X ∈ Ω},

or the related criterion of the exponential moment, E1[exp{θL(X)}|X ∈ Ω], where θ > 0 is a given

parameter. These objective functions are not new and they are interesting on their own right (see,
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e.g., [6, Introduction] for a discussion on the motivation). In another version of our problem, we

will replace the FA constraint P0(Ω) ≤ exp(−nEFA), by a constraint on the cost of compression

in the FA event, namely, a constraint on P0{L(X) ≥ nR|X ∈ Ω} or E0[exp{θL(X)}|X ∈ Ω]. In

this paper, we focus on these performance criteria, as well as on issues of universality, that is, how

to confront uncertainty in P0 and/or P1. When dealing with these universality issues, we will find

it more convenient to switch the roles between the objective function and one of the constraints,

for example, minimize P1(Ω
c) subject to constraints on P0(Ω) and P1{L(X) ≥ nR|X ∈ Ω} or on

E1[exp{θL(X)}|X ∈ Ω].

3 Preliminaries: A Simple Extension of the Neyman–Pearson Lemma

The following lemma will turn out to be useful for our purposes (see also [7] for a similar lemma).

Lemma 1 Let f , g and h be any three functions from X n to IR and let

Ω⋆ = {x : f(x) + a · g(x) ≤ b · h(x)}, (3)

where a ≥ 0 and b ≥ 0 are fixed numbers. Let Ω be any other subset of X n. If

∑

x∈Ω

g(x) ≤
∑

x∈Ω⋆

g(x) (4)

and
∑

x∈Ωc

h(x) ≤
∑

x∈Ωc
⋆

h(x) (5)

then
∑

x∈Ω⋆

f(x) ≤
∑

x∈Ω

f(x). (6)

The lemma tells us that the decision rule defined by Ω⋆ is optimal in the sense that no other

competing rule Ω gives strictly smaller values of all three quantities,
∑

x∈Ω g(x),
∑

x∈Ωc h(x),

and
∑

x∈Ω f(x). The paramaters a and b can be thought of as Lagrange multipliers that control

the magnitudes of
∑

x∈Ω⋆
g(x) and

∑

x∈Ωc
⋆
h(x). Note that Lemma 1 (similarly as the classical

Neyman–Pearson lemma) does not require f , g and h to be probability distributions. These can

be any functions from X n to IR, in fact, not necessarily even positive functions.
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Proof. Let Ω⋆ be defined as in Theorem 1 and let Ω be any competing decision rule. First,

observe that for every x ∈ X n

[I{x ∈ Ω⋆} − I{x ∈ Ω}] · [b · h(x) − a · g(x) − f(x)] ≥ 0. (7)

This is true because, by definition of Ω⋆, the two factors of the product at the left–hand side (l.h.s.)

are either both non–positive or both non–negative. Thus, taking the summation over all x ∈ X n,

we have:

b ·

[

∑

x∈Ω⋆

h(x) −
∑

x∈Ω

h(x)

]

− a ·

[

∑

x∈Ω⋆

g(x) −
∑

x∈Ω

g(x)

]

−

[

∑

x∈Ω⋆

f(x) −
∑

x∈Ω

f(x)

]

≥ 0 (8)

or, equivalently,

∑

x∈Ω⋆

f(x) −
∑

x∈Ω

f(x) ≤ a ·

[

∑

x∈Ω

g(x) −
∑

x∈Ω⋆

g(x)

]

+ b ·





∑

x∈Ωc

h(x) −
∑

x∈Ωc
⋆

h(x)



 . (9)

Since a ≥ 0 and b ≥ 0, then
∑

x∈Ω

g(x) −
∑

x∈Ω⋆

g(x) ≤ 0 (10)

and
∑

x∈Ωc

h(x) −
∑

x∈Ωc
⋆

h(x) ≤ 0 (11)

imply
∑

x∈Ω⋆

f(x) −
∑

x∈Ω

f(x) ≤ 0, (12)

which completes the proof of Lemma 1.

4 Applying Lemma 1 to Joint Detection and Compression

Lemma 1 is almost applicable for solving one version of the problem defined in Section 2. A simple

modification will make it completely applicable. First, concerning the constraints, it is clear that

the assignments should be g(x) = P0(x) and h(x) = P1(x), for the case of a constraint on P0(Ω).

Regarding the objective function, for a given choice of Ω, the minimization of E1{exp[θL(X)|X ∈

Ω} over all uniquely decodable length functions, L(·), gives (ignoring integer length constraints):

L∗(x) = − log

[

[P1(x)]1/(1+θ)

∑

x′∈Ω[P1(x′)]1/(1+θ)

]

, x ∈ Ω (13)
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which yields

E1{exp[θL∗(X)]|X ∈ Ω} =

(

∑

x∈Ω

[

P1(x)

P1(Ω)

]1/(1+θ)
)1+θ

. (14)

Thus, the minimization of E1{exp[θL∗(X)]|X ∈ Ω} over Ω is equivalent to the minimization of

∑

x∈Ω

[

P1(x)

P1(Ω)

]1/(1+θ)

.

It is tempting now to use Lemma 1 with the additional assignment

f(x) =

[

P1(x)

P1(Ω)

]1/(1+θ)

, (15)

but this is not quite a legitimate choice for using Lemma 1, since this function depends on Ω.

Nonetheless, as observed in Section 2, in the regime where P1(Ω
c) ≥ 1 − exp(−nEMD) → 1, the

factor P1(Ω) has an asymptotically negligible effect, and we can uniformly approximate by choosing

f(x) = [P1(x)]1/(1+θ). (16)

Also, in order for the coefficients a and b to influence the asymptotic exponents of the objective

function and the constraints, we let them be exponential functions of n, i.e., a = enα and b = enβ,

where α and β are fixed real numbers, independent of n, which are dictated by EFA and EMD. The

asymptotically optimal decision rule now reads

Ω⋆ = {x : [P1(x)]1/(1+θ) + enαP0(x) ≤ enβP1(x)}. (17)

5 Discussion and Analysis of the Decision Rule

Let us now examine the decision rule Ω⋆, defined in eq. (17). Since

max
{

[P1(x)]1/(1+θ), enαP0(x)
}

≤ [P1(x)]1/(1+θ) + enαP0(x) (18)

≤ 2 · max
{

[P1(x)]1/(1+θ), enαP0(x)
}

, (19)

the performance of Ω⋆ is asymptotically equivalent (in terms of asymptotic exponents of the objec-

tive function, the FA probability and the MD probability) to that of

Ω̂
∆
=

{

x : max{[P1(x)]1/(1+θ), enαP0(x)} ≤ enβP1(x)
}
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= {x : [P1(x)]1/(1+θ) ≤ enβP1(x), enαP0(x) ≤ enβP1(x)}

=

{

x : − lnP1(x) ≤ nβ

(

1 +
1

θ

)

, ln

[

P1(x)

P0(x)

]

≥ n(α − β)

}

(20)

The form of Ω̂ is more convenient than that of Ω⋆, both for understanding the behavior, and for

implementation (since it allows passage to the logarithmic domain as is shown in the last line of

eq. (20)). The test Ω̂ can be thought of as a combination of two tests: (i) the test − lnP1(x) ≤

nβ(1 + 1/θ), which guarantees that the code–length associated with x is small enough, and (ii)

the test ln[P1(x)/P0(x)] ≥ n(α − β), which is the ordinary likelihood ratio test that distinguishes

between P0 and P1. The test Ω̂ also lends itself more conveniently to standard asymptotic exponent

analysis using the method of types [3]. The results are as follows.

Consider the MD probability first.

P1(Ω
c
⋆)

·
= P1(Ω̂

c)
·
= exp{−neMD} (21)

where

eMD = min
Q

{D(Q‖P1) : EQ lnP1(X) ≤ −β(1 + 1/θ) or EQ ln[P1(X)/P0(X)] ≤ α − β} (22)

= min{e1(β), e2(α − β)} (23)

with

e1(β) = min
Q

{D(Q‖P1) : EQ lnP1(X) ≤ −β(1 + 1/θ)} (24)

and

e2(α − β) = min
Q

{D(Q‖P1) : EQ ln[P1(X)/P0(X)] ≤ α − β}. (25)

Here EQ{·} denotes the expectation operator w.r.t. a generic probability distribution Q on X and

D(Q‖P ) is the Kullback–Leibler divergence between Q and P . Both e1(β) and e2(α − β) must be

no smaller than EMD. Both minimization problems can easily be solved using Lagrange multipliers.

The minimizing Q for e1 is of the form

Q1(x) =
[P1(x)]λ

∑

x′∈X
[P1(x′)]λ

, λ ≤ 1 (26)

where λ is chosen to satisfy the constraint EQ lnP1(X) ≤ −β(1 + 1/θ). Clearly, e1(β) is a

monotonically increasing function, and due to its convexity, strictly so in the range where it is
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non–zero and finite, which is θH1/(1 + θ) < β ≤ −θ[lnminx P1(x)]/(1 + θ), H1 being the entropy

of P1. Thus, we must choose β ≥ e−1
1 (EMD). Similarly, the minimzing Q for e2 is of the form

Q2(x) =
[P0(x)]ν [P1(x)]1−ν

Z(ν)
(27)

where ν ≥ 0 is chosen to satisfy the constraint EQ ln[P1(X)/P0(X)] ≤ α − β and Z(ν) is a

normalization constant. The convex function e2 is strictly decreasing in α − β in the range where

it is positive and finite, minx ln[P1(x)/P0(x)] ≤ α− β < D(P1‖P0). Thus, we must choose α− β ≤

e−1
2 (EMD). Clearly, once we have selected some β ≥ e−1

1 (EMD), the best choice of α (that would

maximally shrink Ω⋆, or Ω̂) would be the maximum allowed value, α = β + e−1
2 (EMD). The choice

of β will then be dictated by the FA constraint. This simple observation reduces the original space

of trade-offs with two degrees of freedom (α and β) to one degree of freedom (β only).

Concerning the FA probability, we have

P0(Ω⋆)
·
= P0(Ω̂)

·
= exp{−neFA} (28)

where

eFA = min
Q

{D(Q‖P0) : −EQ lnP1(X) ≤ β(1 + 1/θ),EQ ln[P0(X)/P1(X)] ≤ β − α}

= min
Q

{D(Q‖P0) : −EQ lnP1(X) ≤ β(1 + 1/θ),EQ ln[P0(X)/P1(X)] ≤ −e−1
2 (EMD)}.

Similarly as before, the minimizing Q, denoted Q∗, is of the form

Q∗(x) =
[P0(x)]1−η[P1(x)]η+ξ

Z(η, ξ)
, (29)

where Z(η, ξ) is a normalization constant, and where η ≥ 0 and ξ ≥ 0 are chosen to satisfy the

constraints, −EQ lnP1(X) ≤ β(1 + 1/θ) and EQ ln[P0(X)/P1(X)] ≤ −e−1
2 (EMD). Here, eFA is a

decreasing function of β, and so, the constraint eFA(β) ≥ EFA dictates the choice β ≤ e−1
FA

(EFA),

which is feasible (in view of the earlier MD exponent analysis) provided that e−1
FA

(EFA) ≥ e−1
1 (EMD).

Under this condition, it is possible to assign

α = e−1
FA

(EFA) + e−1
2 (EMD) (30)

and

β = e−1
FA

(EFA). (31)
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Finally, using the method of types once again, the exponent associated with the objective function

is given by

E1[exp{θL∗(X)}|X ∈ Ω⋆] =





∑

x∈Ω̂

[P1(x)]1/(1+θ)





1+θ

·
= exp{nec}, (32)

where

ec = max
Q

{θH(Q)−D(Q‖P1) : EQ lnP1(X) ≥ −β(1 + 1/θ), EQ ln[P1(X)/P0(X)] ≥ α−β}, (33)

with α and β as in eqs. (30) and (31), and with H(Q) being the entropy associated with a dis-

tribution Q on X . Once again, this is a convex programming problem that can be solved using

Lagrange multipliers. This completes the analysis of asymptotic exponents associated with Ω⋆.

As α, β and θ vary, it is expected that these exponents may exhibit certain phase transitions,

because of possible abrupt passages between regions where one of the constraints is active to regions

where the other one becomes active (or both). The following is a simple example that demonstrates

this point.

Example. Let X = {0, 1}, define P0 to be the binary symmetric source (BSS) and let P1 be defined

by P1(1) = 1 − P1(0) = 3/4. In this case, it is straightforward to verify that Ω̂ is the set of all

source vectors {x} for which the relative frequency of 1’s is at least as large as

qα,β =
max{ln 4 − β(1 + 1/θ), ln 2 + α − β}

ln 3
. (34)

As long as qα,β ∈ (1/2, 3/4), the error exponents are simply

eFA = D

(

qα,β‖
1

2

)

, eMD = D

(

qα,β‖
3

4

)

, (35)

where for s, t ∈ [0, 1], D(s‖t) denotes the binary divergence, i.e., D(s‖t) = s ln(s/t)+ (1− s) ln[(1−

s)/(1 − t)]. It is assumed, of course, that EFA and EMD are small enough such that there exist α

and β with D(qα,β‖
1
2) ≥ EFA and D(qα,β‖

3
4) ≥ EMD. The derivatives of the exponents eFA and eMD,

as functions of α, β and θ, are discontinuous at the points where

ln 4 − β

(

1 +
1

θ

)

= ln 2 + α − β, (36)

because at these points, the achiever of the maximum on the r.h.s. of (34) switches between the

two arguments of the max operator. These are therefore points of phase transitions.
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6 Other Variants of the Problem

As mentioned in Section 2, it makes sense to replace the FA constraint by a constraint that quantifies

the true cost of the FA error, namely, superfluous data compression. This suggests to replace

g(x) = P0(x) by g(x) = P0(x)eθL∗(x), where L∗(x) is still defined as above because when x ∈ Ω,

we believe that the underlying source is P1. This amounts to

g(x) = P0(x)[P1(x)]−θ/(1+θ)

(

∑

x′∈Ω

[P1(x
′)]1/(1+θ)

)θ

. (37)

The problem is that now, similarly as in (15), Lemma 1 is not directly applicable since g depends

on Ω and in a non–trivial manner.

There is, however, a way to circumvent this difficulty, that both improves performance and allows

to use Lemma 1. Let us replace L∗(x) by the length function of a universal encoder, which will be

nearly optimal no matter whether P0 or P1 (or any other memoryless source) is the true underlying

source. The best we can do is use a universal code whose length function, LU (x), is essentially

as small as nĤx(X) (up to a sub-linear additional term), where Ĥx(X) stands for the empirical

entropy of x, namely, the entropy associated with the empirical distribution of x.2 Such a code

is known to be asymptotically optimal, not only in the sense of the expected code–length, but

also for a very wide class of additional criteria (see [13]), including E1 exp{θL(X)|X ∈ Ω} and

P1{L(X) ≥ n|X ∈ Ω}.3 We can now apply Lemma 1 with the choice

g(x) = P0(x) exp{nθĤx(X)}. (38)

By the same token, the choice of f can also be changed to

f(x) = P1(x) exp{nθĤx(X)}. (39)

More generally, one can use, of course, two different values of θ, say, θ0 and θ1 in eqs. (38) and

(39), respectively, and finally, re–define Ω⋆ accordingly to read

Ω⋆ =
{

x : P1(x) exp{nθ1Ĥx(X)} + enαP0(x) exp{nθ0Ĥx(X)} ≤ enβP1(x)
}

. (40)

2For example, consider a two–part code that first describes the index of the type class and then the location of x

within the type class.
3The fact that LU (x) asymptotically achieves the minimum of E1 exp{θL(x)|X ∈ Ω}, which is approximated by

[
P

x∈Ω[P1(x)]1/(1+θ)]1+θ, can easily be verified using the method of types. Concerning the criterion P1{L(X) ≥
nR|X ∈ Ω}, it achieves an error exponent of min{D(Q‖P1) : H(Q) ≥ R, T (Q) ⊆ Ω}, which is the best possible,
as can easily be shown by a straightforward modification of the converse part of [4, Theorem 1].
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Similarly, we can now address directly the excess code–length criterion by choosing

g(x) = P0(x) · I{x : Ĥx(X) ≥ R}, (41)

f(x) = P1(x) · I{x : Ĥx(X) ≥ R}, (42)

and again, define Ω⋆ accordingly. It should be emphasized that this passage from L∗(x) to nĤx(X)

is not accompanied by loss in performance in terms of asymptotic exponents.

In the case of lossy source coding, Ĥx(X), throughout this discussion, should be replaced by

the empirical rate–distortion function, namely, the rate-distortion function associated with the

empirical distribution induced by x, or the empirical distortion–rate function, depending on the

assumed regime, fixed–distortion and minimum rate or vice versa (see [1]). In all these variants,

the asymptotic exponential performance can easily be assessed using the method types, similarly

as before.

7 Universal Decision Rules

In the previous section, we discussed the use of universal lossless source coding, which facilitates

the use of Lemma 1, and at the same time, makes sense even if P0 and P1 are known, because

when x ∈ Ω, there is never full certainty that it has really emerged from P1. But what happens if

P0 and P1 are not both known (except for being memoryless)? The latest proposed version of Ω⋆

(eq. (40)) still depends on P0 and P1, and hence not implementable in this case. We next turn to

handle universality issues associated with the choice of the decision rule. The methodology here is

similar to that of a few earlier papers on universal hypothesis testing (see, e.g., [5], [8], [14], [15],

[16]). Lemma 1 is no longer used explicitly.

As a starting point, it will be more convenient to consider the problem

minimize P1(Ω
c)

subject to P0(Ω) ≤ e−nEFA

∑

x∈Ω

P1(x) exp{nθ1Ĥx(X)} ≤ eλ1n, (43)

which is equivalent to one of the versions of the earlier problem, except that the objective function

and one of the constraints have interchanged their roles.

13



We begin with the case where P0 is known but P1 is not. Since P1 is unknown, the second

constraint must be imposed for every memoryless source P1, that is,

max
P1

∑

x∈Ω

P1(x) exp{nθ1Ĥx(X)} ≤ eλ1n. (44)

First, observe that without loss of asymptotic optimality, every type class of source vectors, Tx,

can be assumed to belong in its entirety to either Ω or Ωc.4 Accordingly, let Tx ⊆ Ω. Then,

eλ1n ≥ max
P1

∑

x∈Ω

P1(x) exp{nθ1Ĥx(X)} (45)

≥ max
P1

∑

x′∈Tx

P1(x
′) exp{nθ1Ĥx′(X)} (46)

= max
P1

|Tx| · P1(x) exp{nθ1Ĥx(X)} (47)

= exp{nθ1Ĥx(X) − O(log n)}. (48)

The conclusion is then that Tx ⊆ Ω implies Tx ⊆ {x : Ĥx(X) ≤ λ1/θ1 +O(log n/n}, which means

Ω ⊆ {x : Ĥx(X) ≤ λ1/θ1 + O(log n/n)}. (49)

From the first constraint of (43), we similarly have:

Ω ⊆ {x : D(P̂x‖P0) ≥ EFA − O(log n/n)}, (50)

where P̂x is the empirical distribution associated with x. Combining the last two equations, we

get:

Ω ⊆ Ωu
∆
= {x : Ĥx(X) ≤ λ1/θ1 + O(log n/n), D(P̂x‖P0) ≥ EFA − O(log n/n)}. (51)

We now propose Ωu as our universal decision rule. First, observe that it asymptotically satisfies

the constraints, as

P0(Ωu) ≤ P0{x : D(P̂x‖P0) ≥ EFA − O(log n/n)}
·
= exp{−n[EFA − O(log n/n)}, (52)

and

∑

x∈Ωu

P1(x) exp{nθ1Ĥx(X)} ≤ max
P1

∑

x∈Ωu

P1(x) exp{nθ1Ĥx(X)}

4If this is not the case, then at least half of the members of the type class belong to either Ω or Ωc. By transferring
the smaller part of each type class to the other decision region, to join the majority therein, one at most doubles
the probability of that region, while reducing the probability of the other region. This has no negative impact on
the asymptotic exponents.

14



≤
∑

x∈Ωu

max
P1

P1(x) exp{nθ1Ĥx(X)}

≤
∑

x∈Ωu

exp{−nĤx(X)} · exp{nθ1Ĥx(X)}

=
∑

Tx⊂Ωu

|Tx| · exp{−nĤx(X)} · exp{nθ1Ĥx(X)}

·
= max

Tx⊂Ωu

exp{nθ1Ĥx(X)}

·
= eλ1n. (53)

On the other hand, since Ωu is a super-set of any competing decision rule Ω that satisfies the

constraints (see eq. (51)), then it follows that Ωc
u ⊆ Ωc, and so, P1(Ω

c
u) ≤ P1(Ω

c), for every P1.

This means that Ωu minimizes the MD probability uniformly for every memoryless source P1 and

hence establishes the optimality of Ωu.

The idea here is that Ωu is essentially the largest subset of X n that still satisfies the constraints,

and hence its complement is the smallest possible. Once again, we see that membership in Ωu

consists of two requirements: the requirement on the empirical entropy, which limits the code

length, and a requirement on the divergence, which means that x is far enough from being typical

to P0, in order to reject unwanted data that stems from P0.

Universal counterparts of other variants of the problem, discussed in the previous section, can

be derived in a similar manner. For example, if the constraint P0(Ω) ≤ e−nEFA is replaced by

compression cost constraint

∑

x∈Ω

P0(x) exp{nθ0Ĥx(X)} ≤ eλ0n (54)

then the set {x : D(P̂x‖P0) ≥ EFA−O(log n/n)}, in eq. (50), should be replaced by {x : θ0Ĥx(X)−

D(P̂x‖P0) ≤ λ0} and Ωu should, of course, be modified accordingly. If, in addition, P0 is unknown

as well, and this constraint is imposed for every memoryless source P0 on X , then this becomes

{x : θ0Ĥx(X) ≤ λ0}. Thus, overall Ωu would be redefined as

Ωu = {x : Ĥx(X) ≤ min{λ0/θ0, λ1/θ1}}. (55)

Suppose next that both P0 and P1 are unknown but there are training sequences available from

each one of these sources. In other words, in addition to the vector x ∈ X n as before, we also have
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a training sequence, x0 ∈ Xm from P0, and a training sequence, x1 ∈ Xm from P1. A natural

approach would be the plug–in approach: First estimate each source from its corresponding training

data and then use each estimate in place of the corresponding unknown, true source. This is a

sub-optimal approach because it is based on separation and it does not use x for estimating either

source. The best approach is to combine the training and the decision into a single step, which

means that our decision rule classifies triples {(x,x0,x1)} rather than single vectors {x} as before.

The compression cost constraints will now read

∑

x,x0,x1∈Ω

P0(x0)P1(x1)P0(x) exp{nθ0Ĥx(X)} ≤ exp(λ0n) (56)

and
∑

x,x0,x1∈Ω

P0(x0)P1(x1)P1(x) exp{nθ1Ĥx(X)} ≤ exp(λ1n), (57)

both imposed for every two memoryless sources P0 and P1. Here, we assume, again without loss of

asymptotic optimality, that Ω is a union of Cartesian products of type classes Tx ×Tx0 ×Tx1 . As

for the first constraint, we have

eλ0n ≥ max
P0,P1

∑

x,x0,x1∈Ω

P0(x0)P1(x1)P0(x) exp{nθ0Ĥx(X)} (58)

≥ exp{nθ0Ĥx(X) − nD(P̂x‖P̂xx0) − mD(P̂x0‖P̂xx0) − O(log n)}, (59)

where P̂xxi denotes the empirical distribution associated with the concatenation of x and xi,

i = 0, 1. Similarly, for the other constraint

eλ1n ≥ max
P0,P1

∑

x,x0,x1∈Ω

P0(x0)P1(x1)P1(x) exp{nθ1Ĥx(X)} (60)

≥ exp{nθ1Ĥx(X) − nD(P̂x‖P̂xx1) − mD(P̂x1‖P̂xx1) − O(log n)} (61)

and then Ωu is defined as

Ωu = {x : θ0Ĥx(X) −D(P̂x‖P̂xx0) −
m

n
D(P̂x0‖P̂xx0) − O(log n/n) ≤ λ0,

θ1Ĥx(X) −D(P̂x‖P̂xx1) −
m

n
D(P̂x1‖P̂xx1) − O(log n/n) ≤ λ1}. (62)

The terms D(P̂x‖P̂xxi) + m
n D(P̂x1‖P̂xxi) measure the ‘distance’ between P̂x and P̂xi , i = 0, 1.

If they are close, these terms are small and we compare the code length to a threshold. If they are

far apart, we can afford to be more tolerant concerning the length since this is a rare event anyway.
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The empirical distributions P̂xx0 and P̂xx1 stand for the fact that, in some sense, x participates

in the estimation of the two sources, unlike the ‘plug-in’ approach describe above.

8 Conclusion

We have addressed the problem of joint detection and lossless data compression in several variants,

including the universal regime, where at least one of the sources is unknown, with and without

training sequences from each source. The method of our derivations can also be carried out in

several more general situations.

First, it is not difficult to extend our results from memoryless sources to Markov sources, or

even more generally, to unifilar finite–state sources. This is possible because the method of types

extends to these classes of sources as well. Moreover, in the universal setting, it is more interesting

to consider the case where the Markov order is unknown (or in the case of unifilar finite–state

sources, the state–transition diagram and the number of states are unknown). In this case, it

is expected that the length function of the Lempel–Ziv algorithm can be invoked instead of the

empirical entropy, similarly as was done in earlier work (see, e.g., [5], [8]).

Secondly, as mentioned already in the Abstract and the Introduction, one may consider tasks

other than lossless data compression. One of them is lossy data compression, and we have already

mentioned, at the end of Section 6, how to modify our decision rule to account for this case. Channel

decoding is another important task that has already been addressed in [7]. Additional tasks may be

quantization, estimation, encryption, and so on. The general guideline is always to try to present

(or approximate) the objective function (pertaining to the optimal strategy of the task within Ω)

as (a monotonic function of) the summation or integral of some function f(x) over Ω, and then

use this f in the decision rule Ω⋆ of eq. (3). The function f should be independent of Ω.
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