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Abstract The recently-proposed family of Forward-and-

Backward (FAB) Telegraph-Diffusion (TeD) equations [9] 

is analyzed in the context of image enhancement. Stability 

of such schemes in terms of energy convergence is 

investigated. An approximated version of the enhancement 

operator that offers an increased stability is proposed and 

examined. This scheme is implemented in both stable and 

unstable regimes of the original FAB-TeD operator and 

shown to yield similar results to those obtained by the 

latter, without losing stability. The theoretical conclusions 

regarding stability of the approximated FAB-TeD are 

reinforced by simulations, exhibiting enhanced images with 
sharpened edges and yet very limited compromise on the 

quality of other image details. 

Keywords Diffusion equations, FAB Telegraph-Diffusion, 

Stable image enhancement, Image restoration, Wave 

equations  

1 Introduction 

One of the most difficult, yet important, tasks in image 

processing is image enhancement, i.e. improving the 

visibility of some features in an image that has been 

affected by blurring and/or contaminated by noise. The 

difficulties in such enhancement are twofold. Firstly, 

enhancing meaningful features usually generates additional 

noise. Secondly, sharpening processes are often unstable 

and difficult to control, resulting, even in noiseless images, 

in spurious artifacts.  

Recently proposed processing schemes, based on 

spatially-varying Partial Differential Equations (PDEs), 
offer an elegant solution to one of these problems. By 

locally varying the equation coefficients, these methods 

achieve image-dependent, anisotropic behavior, which 

allows differential treatments of meaningful features/details 

and noisy areas [8].  

However, enhancement techniques based on PDE-based 

processing, such as the Forward-and-Backward (FAB) 

methods ([3], [9]), still remain ill-posed in the continuous 

settings. The most difficult problem encountered in such 

processing is that in some cases the energy of the solution 

drastically increases after arbitrarily short time (here, and 
in the rest of this paper, unless otherwise specified, 'time' 

means the independent variable of the evolution of the 

dynamic process).  

This problem was addressed in the discrete space in 

[13]. There the authors proposed a spatial discretization 

scheme of the FAB equation that satisfies the minimum-

maximum principle, thus preventing explosion of the 

solution. 

Here we adopt a different approach. We do not aim to 

find a well-posed formulation of the enhancement problem. 

Instead, we consider a different enhancement problem 

which is still ill posed, and, as such, the energy of its 

solution still may explode after long time. However, in this 

case we require that the solution energy will remain 

bounded during finite time. This allows achieving 

enhancement of an image, without introducing artifacts that 

are characteristic of the unstable regime. 

This paper expands the preliminary report presented by 

the authors in [10], providing more theoretical and 

experimental results.  

2 Enhancement Methods  

2.1 Background 
The basic image enhancement problem is concerned with 

finding the signal u given the following smoothed noisy 

input: 

( ) ˆu S u n= + , 

where S is some smoothing kernel which may result, for 

example, from optical problems, light dispersion or low 

resolution imaging constraints. The noise n̂  is usually 

assumed to be zero-mean iid Gaussian noise.  

The above problem requires a model of an "ideal"  

image in order to derive the enhancement strategy and to 

evaluate the result. Several such models have been 

proposed over the years. This paper is concerned mainly 

with the piecewise-smooth model, where the "ideal" target 

image consists of smooth areas separated by edges. We 
first demonstrate this model on a simpler example of image 

denoising.  

Most denoising problems assume S(u) = u, therefore, 

one of the solutions is anisotropic smoothing. There has 

been some confusion about the use of the term "anisotropic 

smoothing" in image processing. When the term was 

introduced in [8], it was meant to describe spatially-varying 

(but similar in all directions) smoothing, i.e. strong 

smoothing of flat areas and weak smoothing of edges. The 

more meaningful "anisotropic" was redefined and used 

later in [14], where it accounted for directional smoothing. 
In this paper we focus on the former, historical meaning, 

applied to image processing by PDEs. 

Smoothing properties of PDEs have been used in image 

processing for the purposes of denoising ([13], [3], [4], 

[11]) since the introduction of the Perona-Malik (PM) 

diffusion in [8]. Several variants of these schemes resulted 

from mathematical analysis of the Total-Variation 

minimization  [11],   whereas   others   were   inspired   by  
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Fig. 1: The elasticity function, k (blue curve), of forward TeD (1) and the 

inverse smoothing component (5), µ (red curve). 

 

physical processes [4]. However, the basic underlying 

diffusion equation remained the same. 

The damped wave or Telegraph-Diffusion equation 

(TeD), 

( )( )( ) 0
tt t

u k u u cu−∇⋅ ∇ ∇ + = , (1) 

was introduced in the context of image processing by 

Ratner and Zeevi [9]. Inspired by the properties of the 
physical process of damped elastic deformation, its 

characteristic behavior of smoothing has been exploited in 

the processing of an input function (e.g. grayscale image) 

u. The TeD equation is considered under the following 

initial conditions: 
 

( )
( ) 1

0

0 ,
t

u t u

u t u

= =

= =




 (2) 

along with zero Neumann boundary conditions, where u  is 

an initial, noisy image, 
1u  is usually equal to zero, and the 

damping c is a positive constant. The elasticity coefficient k 

is a monotonic decreasing function which locally controls 

the degree of smoothing, similarly to the Perona-Malik 

coefficients ([8]): 
 

( ) ( ) 1
1 ; 0 constantk s s κ κ−= + < = . (3) 

The usual choice for s is the absolute value of the gradient 

of u, as in (1). The function k guarantees, in this case, a 

decrease of elasticity near edges. This diminishes the effect 

of the smoothing process near regions containing important 
image structural information. 

The advantages in processing that come along with the 

use of TeD, similarly to other PDE-based methods, are due 

to the feasibility to locally control the degree of smoothing 

by adjusting the elasticity coefficient. The benefits of using 

the TeD over the previously proposed diffusion-based 

methods ([8], [3]) were addressed in [9]. These include, in 

short, better edge preservation and faster convergence rate 

of the explicit discretization scheme.  

The above method denoises an image while preserving 

meaningful features such as edges. It has been shown to 

minimize the total-variation ([9]), similarly to the 
diffusion-based methods. In the context of image 

enhancement, which is the main goal of the present study, 

the same framework that allowed content-dependent 

denoising also supports adaptive enhancement. 
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(b) 

Fig. 2: Normalized frequency decompositions of different components ui, 

showing that higher frequencies increase with i for both implementation 

methods. (a) – Theoretical nonlinear RHS; (b) – Heuristic nonlinear RHS. 

 

2.2 Forward-and-Backward (FAB) Wave Equation 
Let us assume a piecewise-smooth image model, i.e. that an 

image is a collection of smooth areas separated by edges. 
One possible way to enhance such an image that was 

degraded by blurring is to increase higher gradients, and 

thereby sharpen the edges. This can be achieved by 

allowing the elasticity coefficients to locally become 

negative ([9]), by introducing a backward component µ   

as follows: 

( ) ( )( )( ) 0
tt t

u k u u u cuεµ−∇⋅ ∇ + ∇ ∇ + = , (4) 

where ε  is a small positive constant andµ is a non-

positive function  that is zero everywhere except in a small 

area: 

( ) ( )( )( ) 18

1 ; 0 ,
f f

s s w wµ κ κ
−

= − + − < , (5) 

where 
f

κ  defines the median value of the gradients to be 

enhanced, and w determines the size of its neighborhood . 
The time parameter, t, is usually bounded by some positive 

value T (0<t<T), since, in practice, we are interested in 

short-time evolution of the processed signal. 

Backward TeD is similar to TeD that moves backwards 

in time. Both sharpen the image (an analogy addressed in 

[9]); a behavior achieved by reversing the time. However, 

as is the case in some other inverse problems, the backward 

TeD is ill-posed. For example, linear backward TeD (i.e. 

TeD with constant negative elasticity) is equivalent to a 

high-frequency enhancing filter ([9]), or an inverse of a 

low-pass filter problem, which is a prototype of an ill-

posed problem.  

u∇

k  
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Figure 3: Empirical results of normalized energy functions of various 

components of the expansion, ui (see text). As expected, the rate of 

increment of the energy increases with the index i. 

 

We attempt to solve this trade-off between 

enhancement and well-posedness by proposing a 

processing scheme that both remains stable (in terms of 
bounded energy) for a desirable long enough time, and 

achieves (during this time) enhancement of the input 

image. 

2.3 Force Term 
Another way to enhance an image using the wave equation 

is inspired by an approach presented by Honigman and 

Zeevi in [4]. The authors proposed using an anisotropic 

inhomogeneous diffusion equation by incorporating the 

Schrödinger's  potential. In case of elastic deformation, it is 

equivalent to applying a spatially-varying external force, g, 

to the system: 
 

( )( )( ) ( ), ,
tt t

u k u u cu g u x t−∇⋅ ∇ ∇ + = , (6) 

 

with k defined by (3) and c being positive. There are many 

possible choices for g, depending on the features to be 

enhanced. One is a wavelet shrinkage of u (as was 

proposed in [4]), which can be used to enhance textures. 

Here we examine an edge enhancing force term similar to 

FAB-TeD, derived in the next section. Other feature/detail-

specific forces will also be discussed. 

3 Mathematical Considerations 

In this section we take a closer look at the equations 

governing the methods described above, (4) and (6), 

wherein, for convenience, we limit our discussion to one 

spatial dimension. 

3.1 The Relation Between FAB-TeD and Forward TeD 

Incorporating Force 
Let us examine the FAB-TeD equation (4). It models a 

process of damped elastic deformation with varying 

elasticity that can become negative. There are no natural 

physical phenomena, that we are aware of, which exhibit 

negative elasticity. Further, in most cases of nonzero ε , 

the solution explodes after a very short time. This we must 

avoid in image processing.  

In this section we attempt to represent the FAB-TeD 

problem in terms of the more intuitive forced damped 

deformation (6), using perturbation methods ([15]). We 

show, in fact, that a FAB-TeD equation with a linear 

µ term (backward component) is equivalent to a system of 

PM-type  TeD  equations (with  no  backward components) 

 

(a) 

 

(b) 

 

(c) 

Fig. 4: Explosion of FAB-TeD vs. convergence of finite sum 

approximation under aggressive sharpening. (a) input image, (b) 

enhancement result obtained with fifth-order FAB-TeD approximation, (c) 

result of processing with exact FAB-TeD. The edges of the approximation 

result are strongly sharpened, as expected, and yet the image still 

resembles the input. FAB-TeD enhancement, on the other hand, causes 

severe deterioration of the image. 

 

incorporating forcing terms. We then proceed to 

extrapolate the result to nonlinear µ . 

Let us first define the terminology. To this end let v(t,x) 

be a solution of (1), and ( ), ,u x t ε  a solution of (4). Since 

the solution u depends on ε (small or zero), it can be 

expanded into Taylor series (around 0ε = ) as follows: 
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approximation 'kingfisher' 'sand' 'calibration' 

1st order 32.3 28.3 24.9 

2nd order 39.4 34 37.5 

3rd order 41.2 36.6 43.2 

5th order 41.3 36.7 44.0 

7th order 41.3 36.7 44.0 
Table 1: Differences between several orders of FAB-TeD approximation 

and FAB-TeD assessed by a similarity measure SM (see definition in the 

text, (17)). The SM is summarized for the three test images illustrated in 

Fig.10. The approximations yield maximal SM after 5
th

 order. 
 

 

( ) ( )

( ) ( )

( ) ( )

0

0

, , ,

, ,

ˆ , , , ,

m

m

m

n
m

m n

m

n n

u x t u x t

u x t R x t

u x t R x t

ε ε

ε

ε

∞

=

=

≡ =

= + ≡

≡ +

∑

∑ , (7) 

 

where Rn is the residue of the series, containing higher 

than n powers of ε , and ˆ
n

u  is an approximation of u up to 

n
th power of ε  (n-th order approximation). Since 

( ) ( )0, ,0 ,u x t u x t=  solves an equation with no backward 

component (zero ε ), it is clear that ( ) ( )0 , ,u x t v x t= . 

We make the following assumption about Rn: 

Assumption 1: There exists 0
MAX
ε > , such that for every 

0
MAX

ε ε≤ <  the energy of Rn (as defined in (7)) decreases 

as n grows, i.e. the convergence radius of ε  is non-zero 

(we will see later that experimental results support this 

assumption). 

Alternatively, we can assume that the n-th order 

approximation captures the leading behavior of u, even for 

small n. In the case of image enhancement, the leading 

behavior is feature-dependent sharpening-denoising. This 

means that even small-order approximation should solve 

the enhancement problem. We will return to this point 

later. 

Let us also assume, at first, that ( ),k k x t≡  and 

( ),x tµ µ≡  are independent of u, and, therefore, do not 

depend on ε . Substituting (7) into (4) yields: 
 

( ) ( ) ( )( )
( ) 0 .

i i

i itt

i

i t

u k u

c u

ε εµ ε

ε

−∇⋅ + ∇ +

+ =

∑ ∑
∑

 (8) 

Since (8) is valid for all values of ε  (within the 

convergence radius), the coefficients of every power of ε  

must also be zero. This yields the following system of 

equations: 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

0 0 0

1

0

, 1

tt t

i i i itt t

u k u c u

u k u c u u iµ −

−∇⋅ ∇ + =

−∇⋅ ∇ + = ∇⋅ ∇ ≥
. (9) 

Further, it may be possible to relax the linearity constraint 

on k. Allowing k, for example, to depend only on u0 renders 

the first equation of (9) to become nonlinear, while the 

other equations remain linear. We can, in fact, claim that it 

is equivalent to using fully nonlinear u-dependent k (e.g. 

PM-version): 

( ) ( )0

0

1 1

1 1

k u k u
u u

κ κ

≡ ≈ ≡
∇ ∇

+ +

,  

since u and u0 differ from each other only around edges, i.e. 

in areas of large gradients. We know that k is a decreasing 

function of the absolute gradient, which should, ideally, 

drop to zero around edges. Perturbations of u0 around edges 

have, therefore, little or no effect on k(u), as they change 

the gradient of u in the flat area of k (Fig. 1). This results in 

an effectively nonlinear k which can, however, be treated 

as linear (though time- and space-variant) in the 

inhomogeneous case.  

The motivation behind the linearization of k for the 

inhomogeneous part of the system, while keeping it, in fact, 

non-linear is twofold: On the one hand, using nonlinear k in 
the homogeneous equation of u0 allows us to apply the 

results of Nakao [7], which state that the energy of u0 

vanishes with time, providing useful bounds. On the other 

hand, inhomogeneous equations with linear k are much 

easier to analyze than their nonlinear counterparts, as will 

be shown in the next section.  

It is interesting to note that the same process and 

reasoning may be applied to the FAB diffusion equation 

[3]: 

( )( )( ) 0
t

u k u u−∇⋅ ∇ ∇ = , (10) 

to yield the following system of equations: 

( ) ( )( )
( ) ( )( ) ( )

0 0

1

0

, 1 .

t

i i it

u k u

u k u u iµ −

−∇⋅ ∇ =

−∇⋅ ∇ = ∇⋅ ∇ ≥
 (11) 

This establishes an important link between FAB-diffusion 

[3] and diffusion with Schrödinger's potential [4].  

Another point of interest arises from the fact that the 

functions { }iu  do not depend on ε . This means that a 

single numerical calculation of { }iu  yields approximations 

of solutions of (4) for any value of ε (by substitution into 

(7)), which acts as an enhancement strength parameter. 
This is in contrast to direct solution of (4) which produces 

the result for a single value of ε . 

Computations show that for higher indices i, the 

functions  ui contain higher spatial frequencies (Fig. 2). 

This agrees with the theory, since image enhancement 
should increase the bandwidth of the input. Since higher 

orders of approximation achieve better enhancement, 

higher frequencies are to be expected in higher indices of 

ui. This also explains why better enhancement is achieved 

by increasing the weight of higher indices of ui by using 

higher values of ε . 

3.2 Energy behavior – linear case 
 We now proceed to explore the behavior of the 

inhomogeneous TeD equation with linear coefficients and a 

force term (i.e. independent of u, but time- and space-
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varying). To this end we define the energy of a function u 

as follows: 
 

 An energy increase over time usually entails explosion 

of u. To avoid that, we wish to find such a scheme that 

would keep the resulting energy bounded for a period of 

time long enough to achieve image enhancement. 

The convergence of energy of u0 (the solution of the 

homogeneous equation (1)) to zero (faster than ( ) 1
1 t

−+ ) 

can be proven under certain assumptions on the smoothness 

of the derivatives of u0, similarly to the proof presented in 

[7]: 
Theorem 1: Let N be any positive integer and assume 

( )k ⋅ as defined in (3). Then, there exists 0δ >  such that if 

( ) ( ) ( )( ) 4 3

0 00 , 0
t

u t u t H H= = ∈ ×  satisfies the 

appropriate compatibility condition and 
3I δ<  (the 

smallness condition), the TeD equation (1) – (2) admits a 

unique solution u(t), with the following bounds ([7], 

Appendix 1): 

( ) ( ) ( )
2 12

0 32
1

x
u t CI t

−≤ +  

( ) ( ) ( )
2 12

0 02
1

t
u t CI t

−≤ +  , 

where 

2

m

k

kH
k m

u
u

x≤

∂
≡

∂∑ , 

( ) ( ) ( )10 00 0
m mm tH H

I u t u t+≡ = + = , 

and C is a positive constant. Note that C is used in various 

equations as a generic constant to simplify the notation, 

instead of denoting the various constants by C1, C2, etc.  

Remark 1.1: The continuous function ( )0 0u t =  is 

determined by the initial value of an image under 

consideration, which is discrete. Therefore, by choosing an 

appropriate interpolation, we can assure the smoothness of 

any order of its spatial derivatives. In particular, we can 

assume that the L2 norms of up to 4th spatial derivative of 

( )0 0u t =  are finite (and small enough), i.e.: 

( ) 40 0
H

u t δ= < . 

Since ( ) ( )0 0 0
t

u t = ≡ , the smallness condition is 

fulfilled. 

Remark 1.2: Compatibility conditions for PDEs are a set 

of relations between the initial conditions, the PDE, and the 

boundary conditions which are necessary and sufficient for 

the solution to be sufficiently differentiable everywhere in 

the domain including its boundaries. We assume that the 

appropriate compatibility condition is satisfied since the 

actual boundary conditions play a minor role in the image 

processing task and can therefore be adjusted to fulfill any 

requirement. The initial conditions should be smooth 
enough, since they are derived from an interpolated 

discrete function (Appendix 1). 

We use this result to estimate the energy of the 

inhomogeneous equations of ui, for i>0. In order to 

proceed, we recall Duhamel's principle ([15]). This 

principle states that given an inhomogeneous equation with 

linear coefficients, 

( ) ( ) ( )( ) ( ) ( ), ,
i i i itt t x

u k u c u p x t−∇⋅ ∇ + =  

its solution, ui, can be expressed as follows: 

( ) ( )
0

, , ;

t

i i
u x t w x t dτ τ= ∫ , 

where ( ), ;
i

w x t τ  is the solution of the system (13): 

i.e. ( ), ;
i

w x t τ  is a homogeneous elastic deformation 

process starting at time τ , with initial conditions defined 

by 
1i

u − . Therefore, its energy decays according to theorem 

1: 

 
( )( ) ( )( )

( )( ) ( )( )

2 12

3,
2

2 12

0,
2

, ; 1

, ; 1 ,

i ix

i it

w x t CI t

w x t CI t

τ τ τ

τ τ τ

−

−

≤ + −

≤ + −

 

where C is some positive constant and  

( ) ( )

( ) ( ) ( )( )

1

,

0 02 2

1

1

1
0 0

2 2

,
.

kkj j
ii t

i j k k
k k

kkj j
ii xx

k k
k k

ww
I

x x

u xp

x x

τ

µ τ

+

= =

+
−

+
= =

∂∂
= + =

∂ ∂

∂∂
=

∂ ∂

∑ ∑

∑ ∑

 

We can express the derivatives of ui in terms of wi:  

( ) ( )

( )

,

, ;

i t

i

u x t

w x t t

=

( ) ( )

( ) ( )

0

0

0

, ;

, ;

t

i t

t

i t

w x t d

w x t d

τ τ

τ τ

+ =∫

∫

 

( ) ( ) ( ) ( )
0

, , ; .

t

i ix x
u x t w x t dτ τ= ∫  

The energy of  ui is therefore given by: 

 

 

 

 

 

( )
[ )( )

2 2 2 2

2 2
( )

: 0, R .

u t t
E t u u dxdy u u

u

Ω

= + ∇ = + ∇

Ω× ∞ →

∫∫  (12) 

( ) ( )( )( )
( )

( ) ( ) ( ) ( ) ( )( )1

, 0

, ; 0,

, ; , ,  

0 ,

i i itt x x

i

i i it x x x

w k x t w cw

w x

w x p x u

τ τ

τ τ τ µ

τ
−

− + =

=

= ≡

≥

 
(13) 
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epsilon 0.04, Heuristic approximation

epsilon 0.04, Exact approximation

 

Fig. 6: Instability artifacts induced by the theoretical approximation 

(lower), compared with the artifact-free heuristic approximation (upper). 

As indicated in text, areas containing high-order derivatives (such as 

edges) are prone to instabilities when using the theoretical approximation. 

 

 

( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

2 2

0 02 2

( )

, ; , ; .

i i it x

t t

i ix t

E t u u

w x t d w x t dτ τ τ τ

= + =

+∫ ∫
 

(14) 

Applying Minkowski's integral inequality we can reach the 

following bound on the energy function: 

( )
( ) ( )

( ) ( )

2

2
0

2

2
0

( ) , ;

, ; .

tMinkowski

i i x

t

i t

E t w x t d

w x t d

τ τ

τ τ

 
≤ + 

 

 
+  
 

∫

∫

 

Since wi is the solution of a homogeneous equation with 

initial conditions given at time τ , Theorem 1 applies: 

( )
( ) ( )( )

( ) ( )( )

2
.1

1 2

,3

0

2

1 2

,0

0

( ) 1

1 .

tThrm

i i

t

i

E t CI t dt

CI t dt

τ τ

τ τ

−

−

 
≤ + − + 

 

 
+ + − 
 

∫

∫

 
(15) 

For a given index i, the energy Ei+1 contains norms of 

(also) higher derivatives of ui than those in Ei. This means 

that the energies increase more steeply for higher indices i 

(for images that contain sufficient high-frequency 

components). This claim is supported by empirical data 

(Fig. 3), by means of which we can also see that although 

the energy functions increase more steeply for higher 

indices, they remain bounded for a finite time. This means 

that the overall energy of the approximation is bounded as 

well, which cannot be said for the energy of u. 

Conclusion 1: The energy of u obtained from the solution 

of FAB TeD (7) increases at least at the rate of the fastest-

increasing Ei (with i tending to infinity), and, therefore, 

cannot be bounded at any finite time. 

Conclusion 2: The rate of explosion of the energy of the 

solution of FAB-TeD depends also on ε , since it is the 

variable Taylor expansion, and, as such, determines the 
influence of higher-order energy components on the overall 

energy. Consequently, if the energies Ei do not begin to 

decline after some value of i, the total energy may climb 

uncontrollably even for small values of ε . Experiments 

show that in some cases (for example in Fig. 4, for values 

as low as 0.2) this behavior prohibits image enhancement. 
Conclusion 3: The rate of explosion of the energy of finite 

(up to nth power of ε ) approximations of FAB-TeD, ˆ
n

u (7), 

does not depend on ε  as much as that of exact FAB, since, 

in this case, the steepest increasing Ei (i is small) is 

bounded for any given time period. 

Based on the above, ˆ
n

u (7) can be seen as a (more) stable 

approximation of FAB-TeD, in the sense that its energy 

does not explode over finite time. For n=0 we get a fully 

stable forward (PM-type) TeD, for any t (Appendix 1). 

Higher orders of approximation result in schemes that are 

closer to FAB (Table 1), but may not exhibit energy 

convergence for large t (Fig. 3). The stability of these 

schemes for finite time t<T does not depend, however, on 

the enhancement rate (Fig. 4), unlike that of FAB-TeD. 

Duhamel's principle can also be applied to the system 

of inhomogeneous equations resulting from FAB-diffusion. 
This should provide further insights into FAB-diffusion 

stability, based on stability properties of the homogeneous 

diffusion equation ([12], [6]), and on the work of Welk, 

Gilboa and Weickert [13].  

3.3 Nonlinear case 
In the previous sections we have explored the behavior of a 

system of inhomogeneous equations which approximated 

the FAB-TeD equation with linear negative elasticity 

component term. We now apply similar reasoning in 

generalizing the results to nonlinear µ . 

We consider two approaches to dealing with nonlinear 

µ . The heuristic approach, is simply to substitute the 

nonlinear function into the system (9) that results from 

calculations that assume linear µ . The theoretic approach 

is to expand µ  into a Taylor series, 

( ) ( )
0

, , , ,m

m

m

x t x tµ ε µ ε
∞

=

=∑  (16) 

and follow the calculations of section 3.1. We begin with 

the latter. 

Substituting (16) and (7) into (4) and comparing to zero, 

in a way similar to that used in section 3.1, we can derive 

the following system of inhomogeneous equations: 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

0 0 0

1
, 0

0

; 0 .

tt t

i i i j ltt t
j l i
j l

u k u c u

u k u c u u iµ
+ = −
≥

−∇⋅ ∇ + =

−∇⋅ ∇ + = ∇⋅ ∇ >∑
 

Using the same arguments as in section 3.2 we can show, 

for a smooth bounded µ , that the energy of each of the 

equations  converges  to zero.  The Taylor  coefficients  
j

µ   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 8: Processing results obtained with various orders of approximation 

of FAB-TeD. (a) – 1
st
 order (forward TeD); (b) – 2

nd
 order; (c) – 5

th
 order; 

(d) – FAB-TeD. While all the results appear sharper than regular 

(forward) TeD (a), the difference between FAB-TeD and its higher-order 

approximations is barely visible, although, as indicated by Fig. 9, it exists. 
 

can be expressed in terms of { }i i j
u

<
 for any given µ by 

differentiating it byε . Let us take, for example, the 

coefficient defined in (5) for one-dimensional signal, and 

calculate the first three terms 
0µ and 

1µ : 

( )( )( )
( ) ( )

18

1
8

0

1

1 ,

x f

m

m fx
m

u w

u x t w

µ κ

ε κ

−

−
∞

=

= − + − =

    − + −       
∑

  

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
20

30

40

50

60
S (dept )

 

 heuristic

exact

 

Fig. 7: Similarity measure (SM) of the Heuristic and the Theoretical 

(exact) approximations (see text) of FAB-TeD applied to the 'calibration', 

image. The SM results are presented as a function of the approximation 

order. As expected, higher orders of the theoretic approximation perform 

poorly when compared with the heuristic version. Experiments on other 

images exhibit similar behavior.  

 

( )( )( )

( )( )( ) ( )( ) ( )( )( )

1
8

0 00

1

0

27 8
8 8

0 1 0 0

1

8 .

fx

f fx x x x

u w

w sign u u u w u

ε

ε

µ µ κ

µµ
ε

κ κ

−

=

=

−

 = = − + − 
 

∂
= =
∂

− + −

 

The resulting system of equations does not depend on ε , 

which means that after performing a single calculation of 

{ }iµ and { }iu , one may immediately find the result, u, for 

any given value of ε . A disadvantage of this system is that 

high powers of ( )( )0 fx
u κ− in the higher-order derivatives 

of µ (7 in 
1µ , 14 in 

2µ ) render the system to become 

numerically unstable. This instability introduces artifacts 

(Fig. 6) and reduces the quality of the processed image 

(Fig. 7). Calculation of { }iµ  also increases significantly 

the computational load (using unoptimized, straightforward 

implementations of the algorithms, the theoretical version 

can take up to 6 times more processor time than the 

heuristic version which, in turn, takes up to 3 times more 

time than FAB-TeD). 

The heuristic version doesn't suffer from computational 
inaccuracies and is more efficient than its theoretical 

counterpart. However, in the heuristic case, we can no 

longer claim that a single simulation provides the results 

for all values of  ε , since here the functions { }iu  depend 

on µ  which, in turn, depends on u and therefore onε .  

In practice, the heuristic version achieves a good 

approximation of FAB-TeD, and a calculation of the signal 

components { }iu  for some value of  ε  yields reasonably 

good results for other values as well. Thus, we have 
obtained an approximation of FAB-TeD, the energy of 

which converges with time. This has an immediate 

application in image processing, since it allows edge 

enhancement on the one hand and ensures a well-behaved 

system on the other.  

It remains, however, to show how good the 

approximation is. In the beginning of this exposition, we 

have assumed that the convergence radius of the Taylor 

series in (7) is non-zero, i.e. that we can use positive ε and 

get a residue Rn that diminishes as n increases. While the 

analysis   of   the   nonlinear   system   is   challenging,   the  
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order 5

order 3

order 2

full FAB

input

order 1

input

FAB

order 1

order 2

 

Fig. 9: Results of different orders of approximation of FAB-TeD of a 1D 

image cross-cut (a horizontal sample of the 'calibration' image). The 

orders presented are 1
st
 (forward TeD), 2

nd
, 3

rd
 and 5

th
. They are compared 

with the input (solid black line) and full FAB-TeD (dash-dot black line). 

The approximation clearly improves with an increase of the order, with 5
th

 

order being virtually identical to the FAB-TeD result. Significant 

sharpening is already achieved for 2
nd

 order approximation. 

 

experimental results show that this assumption is justified. 

Fig. 8 presents the results of approximations with several 

values of n, all of which achieve results similar to FAB-

TeD. This is even more pronounced in Figs. 9 and 11, 

where the enhancement schemes were applied to a 1D 

function.  

 

4 Experiments 

We have conducted two types of experiments. One was 

performed in the stable regime of FAB-TeD, and tested the 

performance of the heuristic and the theoretical 

approximations of FAB-TeD (see section 3.3). The other 

was performed in the unstable regime (i.e. when the FAB 

solution energy fails to converge in finite time). The 

experiment demonstrated the stability of the proposed 
approximation. 

In the stable regime we've tested Assumption 1 by 

comparing the results of FAB-TeD obtained with several 

orders (values of n in (7)) of the heuristic approximation. 

The quality of the results was assessed by means of visual 

inspection and by implementing a quantitative similarity 

measure (SM) defined as follows: 

 

( ) ( )2

10

1

1
, 20log

m

j j

j

SM a b a b
m =

 
= − − 

 
∑ , (17) 

 

where a and b represent two compared images of identical 

size, and m is the number of pixels in the images. 

We've used the test images of kingfisher, sand and 

calibration (Fig. 10). The parameters used for all the 

images were 0.03, 0.3, 0.12
b

k wε = = =  (for image 

values between 0 and 1). In these and other images, the 

results   of  heuristic  approximation  closely  resemble  the  

 

                       (a)                                                (b) 

 

(c) 

Fig. 10: Test images used in this work: (a) – kingfisher; (b) – sand; (c) – 

calibration. 

 

FAB-TeD output, both visually (Figs. 8, 11) and according  

to the similarity measure (Table 1, Fig. 7). 

We also performed similar tests to compare the heuristic 

and the theoretical approximations. The SM results of 

different orders of both approximations are depicted in Fig. 

7. The theoretical approach achieves worse results in 

practice. Although it is theoretically more precise, its 

higher orders of approximation contain increasingly higher 

powers of the first order spatial derivative of the signal. 

This greatly increases the sensitivity to noise, introducing 

artifacts in the resulting images (Fig. 6). 
In the unstable regime of FAB-TeD, we've tested the 

hypothesis of section 3.2, namely, that for short time finite-

order approximation of FAB-TeD has bounded energy, 

unlike FAB-TeD itself. We used a relatively large value of 

ε  (0.2) to ensure energy dispersion of the FAB-TeD 

solution. All the parameters used in simulating the FAB-

TeD and its approximation were identical (including 

timestep and number of iterations). Indeed, instability 

artifacts are clearly visible on the FAB-TeD processing 

result in Fig. 4. Despite that, the results of FAB-TeD 

approximations remain stable, while achieving strong 

enhancement of the image. Even stronger sharpening 

(ε =2, 3), resulting in complete deterioration of FAB-TeD-

processed images, causes only some ringing effects in the 

approximation. 

5 Conclusions 

The proposed inhomogeneous methods permit the 
development of powerful and stable image enhancement 

schemes. The theoretical approach outlined concisely in 

this paper provides further insight into the fundamental 

issue of stability regimes of FAB-TeD image enhancement 

and processing schemes. Whereas we focused on its 

application to the FAB-TeD, it can also be applied to 

existing diffusion-based methods. 
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(a) 

 
(b) 

 
(c) 

Fig. 11: Comparison of the evolution of a 1D image cross-cut under 

the FAB and the approximated FAB enhancement, in the unstable regime 

of FAB ( 0.3ε = ). The initial (input) and the resulting signals are shown 

in (a). Approximation evolution is depicted as a function of a number of 

iterations (Z-axis) in (b). The same is shown for the FAB in (c).  Note that 

the approximated operator quickly eliminates noise, while preserving 

sharp edges, whereas the unstable FAB enhances most of the existing 

noise peaks. 

 

In practice, the proposed scheme follows closely the 

results of other PDE-based methods that lack stability (in 

their stable regime). The proposed scheme has also the 

advantage of simultaneously yielding a wide range of 

magnitudes of enhancement in a single simulation at a 

small computational cost.  

There still remains to be done a more rigorous analysis 

of energy convergence of finite-order approximations, as 
well as that of full FAB-TeD. Such analysis should 

facilitate the identification of stable parameter sets. This 

should yield a stable FAB-TeD enhancement, thus 

eliminating the need to use approximations. 
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Appendix 1: Existence and Convergence of 

Denoising-TeD Solution 
 

Notations 
NΩ⊆  - domain of the image 

Ω - completion of Ω (contains the limits of all its Cauchy 

sequences) 

( ) ( )0 0,C C
∞ ∞Ω Ω - sets of infinitely many times 

differentiable functions over Ω and Ω . 

( ) ( ), ,

0,m p m p
W WΩ Ω - completions of ( )0 ,C

∞ Ω  

( )0C
∞ Ω  with respect to the norm  ,

p
m

D u
α

α ≤
∑ with 

multi index 

( )1 2 1 2, ,..., , ...
N N

α α α α α α α α= = + + +  

and differentiation operator  

1

1

1

...
N

N

N

D u u
x x

αα
α

αα

∂ ∂
=
∂ ∂

 
(all real-valued functions on Ωwhose first m weak 

derivatives are functions in 
p

L ). 
 

What this means in terms of image processing: 

Completion of a metric space A: the metric space A' or A  
which contains A and all the points to which Cauchy series 

in A converge. 

The norm 
p

m

D u
α

α ≤
∑ : 

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1 1

...

...

...

...

...

N

N

N

N

N

N

N

N

p
m m N p

p p

m N

p pNp
p

i i

p p
N N

j i i j

D u u
x x

D u u
x x

u d
x x

u d u d
x

u d
x x

αα
α

αα

αα
α

αα
α α

αα

αα
α

α α α

ω

ω ω

ω

≤ ≤

≤ Ω

=Ω Ω

= = Ω

∂ ∂
=
∂ ∂

= + +

∂ ∂
= =

∂ ∂

 ∂ ∂  =
 ∂ ∂ 

   ∂ + +   ∂   

 ∂ ∂ + +
 ∂ ∂
 

∑ ∑

∑ ∫

∑∫ ∫

∑∑ ∫

 

in our case p=2, so the norm is an L2 norm of u (if m is 

zero), a sum of L2 norms of u and all its partial derivatives 

up to m. 

( ),m p
W Ω - completion of ( )0C

∞ Ω  w.r.t. the norm 

p
m

D u
α

α =
∑ . Here the norm is a sum of Lp norms of u's 

mth derivatives. 

( ) ( ) ( ) ( )
( ) ( )

,2 ,2

0 0

,2

, ,m m m m

m m

W H W H

W H

Ω Ω Ω Ω

Ω Ω

 
 

 

[ ) ( )( ) [ ) ( )( )
2 1

2 2 2

0

0, ; 0, ;
M

i M i M

M

i

X C H C L
−

−

=

≡ ∞ Ω ∩ ∞ Ω
 

[ ) ( ) ( )( ) [ ) ( )( )1 1 1 2

0

0

0, ; 0, ;

T

m

m
i m i m

i

m m

X

C T H H C T L

X X

+ − +

=

∞

≡

Ω ∩ Ω ∩ Ω

≡



 

[ ) ( )( )20, ;C L∞ Ω - set of ( )2
L Ω valued continuous 

functions on [ )0,∞  

{ }N

L
B x x L= ∈ ≤  

( ) ( )2 21

2 L t
loc t

B
E t u u dx

ε

ε

+Ω∩
≡ + ∇∫  

( )
0

0

if 0

if  

r L

r L
r L

r

ε
φ ε

≤ ≤
= 

≥

Lipshitz continuous function 

on R+, for 
0 , Lε positive constants appearing in Hyp. 2' 

below.  

 
 

Existence and Convergence of Denoising-TeD Solution 
This part deals with a system of the form: 

( )( ) ( )

[ )

2
0 

in 0, ,

tt t
u u u c x uσ−∇⋅ ∇ ∇ + =

Ω× ∞
 (2) 

with the following initial and boundary conditions: 

( ) ( )
( ) ( )1

,0 ,

,0 and 0 .
t

u x u x

u x u x u
∂Ω

=

= =




 (3) 

It is based mainly on the work of Nakao ([7]) that proves 

convergence of the system and provides bounds on the 

energy of the solution. 

We'll start by defining the assumptions made in [7] on the 
coefficients of (2) and on the conditions (3). We'll also test 

these assumptions on the denoising-TeD equation. 

 

Hypothesis 1: 

( )k ⋅ is a differentiable function on [ ]0,+ = ∞ and 

satisfies the conditions: 

( ) ( ) ( )2 2 2 2

0 00 and 2 ' 0,  if k v k k v k v v k v L≥ > − ≥ > ≤
 

where L>0 is an arbitrarily fixed constant and 
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( )0 0k k L≡ is a positive constant. 

Implications for TeD denoising: 

( ) ( )
( )

( )

( ) ( )
( )

( ) ( ) ( )

2

2

2 2

2 2 2 2

2 2
2

2 2 0.5

2 2 2
2 2 2

1
, '

1

1 1
0 

1 1

1
2 ' 2

1

2
0

f

f

f

f

f f

f

f

f

k v L
f f f f

f f f

k
k v k v

v k v
k

k v v L
v L

k k

k
k v k v v v

v k v
k

k v k v k k

k v k v k L

<< ≤

−
= =

++

= ≥ > ∀ ≤
+ +

−
− = − =

++

+ −
= ≥ ≥ >

+ + +
 

Remark: We can assume that k is small (smaller than 0.5), 

otherwise the change in u∇  (i.e proximity to edges) will 

have little effect on the smoothing process. It is also 

possible to use ( ) 1

1
f

k v
v

k

=
+

, which achieves 

similar behavior (and is closer to the TV model), and is an 

example of a valid ( )k  , as given in [7]. 

Conclusion: In the case of TeD, the function ( )k   fulfils 

the requirements of Hyp. 1. 

 

Hypothesis 2 

( ) ( )0 c L
∞≤ ∈ Ω  (c is nonnegative on Ω , belonging to 

( )L
∞ Ω ), and there exists a relatively open set ω  in Ω  

and 
0

N
x ∈ , such that 

( )0x ωΓ ⊂ and ( ) 0 0 c x ε≥ > on ω  for some 
0ε , 

where ( )0xΓ  is defined as a part of the boundary ∂Ω : 

( ) ( ) ( ){ }0 0 00 , N
x x x x x xνΓ = ∈∂Ω − > ∈  , 

where ( )xν is the outward normal at x∈∂Ω . Among 

rest, this means that if /N Ω  is star-shaped (i.e. 

( )0xΓ =∅ ), then ( ) 0c x ≡  is allowed. 

Implications to TeD denoising: 

In the case of TeD denoising ( ) . 0c x const≡ > on all 

Ω  and its boundary, therefore Hyp. 2 is fulfilled with no 

restrictions on the shape of the domain Ω . 

 

Hypothesis 2': 

 (1) There exists 
0

N
x ∈  and a relatively open set 

ω ⊂ Ω  such that 

( ) ( )0 0and 0 for x c x xω ε ωΓ ⊂ ≥ > ∈
  

with some 
0ε . 

(2) There exists L > 0 such that 

( ) 0 0 for xc x Lε≥ > ≥  

Again, as with the previous hypothesis, constant damping, 

as used in TeD, fulfils these conditions. 

 

 

Compatibility condition of order m-1 [7]: 

The initial conditions ( )1 1,
m m

u u H H −∈ ×   satisfy the 

compatibility condition of m-1th order if 
0

1i
u H∈  and 

1
1on    for  0 1i

i

u
u i m

v
α−∂

= − Γ ≤ ≤ −
∂

, 

where 

0 1 1,u u u u≡ ≡   

( )2 1m m m
u u c x u− −≡ ∆ −  

( ) ( ){ }
0

0 1

1 0H u H u
Γ

Ω = ∈ Ω =  

0Γ is the part of the boundary of Ω  on which u is zero. 

1Γ is the part of the boundary of Ω  on which u is non-

zero and 
u

v

∂
∂

 is some function of ut (non-zero), so that 

0 1 φΓ ∩Γ =
. 

( )xν  is the outward normal to a point x on the boundary. 

The case of interest in the context of TeD denoising is 

m=3. Therefore: 

 

( )
( )

( ) ( )
( ) ( )

0

1

2 0 1 0 0

3 1 2 0 0

0

0 0

.

t

xx yy

xx yy

u u t

u u t

u u cu u u

u u cu c u c u

= =

= = ≡

= ∆ − = +

= ∆ − = − −

 

A general image does not fulfill the compatibility condition 

of order 3. However, one may take any image and pad it 

with zeroes (frame it in black). Thus, we obtain another, 

legitimate image, for which the boundary condition 

0u
∂Ω
=  holds and also 

0Γ = ∂Ω  (therefore 
1 φΓ = ). 

This does not affect the denoising task, and leaves us only 

with smoothness conditions on the input image - 

continuous spatial derivative up to 3rd degree. We assume 

that the input is smooth enough to fulfill this requirement. 

 

Theorem 2: 

Let 1N ≥  be any integer and assume that 

( ) ( )1m
k C

+ +⋅ ∈   and ( ) ( )1m
c C

+⋅ ∈ Ω  with an integer 

[ ]2 1m N> + . Then, under Hyp. 2' and Hyp. 1, there 
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exists 0δ > such that if ( ) 1

1, m m
u u H H

+∈ ×  satisfy the 

compatibility condition of the mth order and smallness 

condition 1 1m mm H H
I u u δ+≡ + <  , the problem (2)-(3) 

admits a unique solution ( )u t in the class 
m

X : 

[ ) ( )
( )

[ ) ( )( )
1

1 2

1
0 0

0, ;
0, ;

T

m

m im
i m

i

m m

X

T H
C C T L

H

X X

+ −
+

=

∞

≡

 Ω ∩
∩ Ω  Ω 

≡



 

Further, the following estimates hold: 

( ) ( ) ( )2 2 11 2 1

for 0

m l m l

ll l

t t mH H
D u t D u t CI t

l m

− −

− −+ + ∇ ≤ +

≤ ≤
 

and 

( ) ( )2 12 1 for 0
m mH

u t CI t l m
−∇ ≤ + ≤ ≤  

 

Implications to TeD denoising: 

In our case N is 2, i.e. m>2 

( ) ( )3
k C

+⋅ ∈  : - fulfilled, in both cases as 

( )1

1

C
v

κ

∞ +∈
+

  

( ) ( )1m
c C

+⋅ ∈ Ω : is also always true for constant c. 

( ) 1

1, m m
u u H H

+∈ ×  : Since in our case u  and 
1u  are 

m+1 differentiable, with derivatives in L2, they belong to 

H
m+1 and Hm respectively. 

1 1 12 2
1

m mm H H
m m

I u u D u D u
α α

α α

δ+

≤ + ≤

≡ + = + <∑ ∑   

 

3 22 1 12 2
3 2

H H
I u u D u D u

α α

α α

δ
≤ ≤

≡ + = + <∑ ∑   
 

1u  is zero, therefore 
1 0m

H
u ≡   

u  is bounded, at least m+1 times differentiable (with all 

derivatives bounded) and has finite support, therefore 

1mm H
I u +≡ < ∞  . 

( ) ( ) ( )2 2 11 2 1

for 0

m k m k

kk k

t t mH H
D u t D u t CI t

k m

− −

− −+ + ∇ ≤ +

≤ ≤
if 

we take k=0 we get: 

( ) ( ) ( )

( )

1

1

1

1

2 2 12

2
1

2 2

1

2
1

2 2
12

1

1 for 0

...

... 1

for 0 .

m k m k

N

N

N

N

t mH H

t

m N

m

m N

u t u t CI t k m

u dx
x x

u dx CI t
x x

k m

αα

αα
α

αα

αα
α

− −

−

≤ Ω

−

≤ Ω

+ ∇ ≤ + ≤ ≤
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Since all members of the sum are positive, we can say that: 
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i.e. the total variation decreases with t. 

Additionally, the solution u belongs to X
m, which means 

that 

( )
( )1

1

0 0

sup
m k

m
k

t H
t T k

D u t + −

+

Ω≤ < =

< ∞∑  

i.e. all partial derivatives (spatial and temporal) of u up to 

order m+1 belong to L2. 

Therefore, all the conditions to Theorem 2 are fulfilled by 

the denoising-TeD problem. 
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