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Abstract

The goal of voice conversion is to modify a source speaker’s speech to sound as
if spoken by a target speaker. Common conversion methods are based on Gaus-
sian Mixture Modeling (GMM), which require exhaustive training (typically lasting
hours), often leading to ill-conditioning, if the dataset used is too small. Addition-
ally, the training process is based on a one-to-one match between the source and
target vectors, requiring time alignment. We propose a new conversion method
that is trained in seconds, using either small or large scale datasets (50-200 sen-
tences). It requires a parallel dataset but without time alignment. The proposed
Grid-Based (GB) method is based on sequential Bayesian tracking, by which the
conversion process is expressed as a sequential estimation problem of tracking the
target spectrum based on the observed source spectrum. The converted MFCC
vectors are sequentially evaluated using a weighted sum of the target training set
used as grid-points.

To improve the perceived quality of the synthesized signals, we use a post-
processing block for enhancing the global variance. Objective and subjective eval-
uations show that the enhanced-GB method is comparable to classic GMM-based
methods in terms of quality and comparable to their enhanced versions in terms of
individuality.

1 Introduction

Voice conversion systems aim to modify the perceived identity of a source
speaker saying a sentence, to that of a given target speaker. This kind of
transformation is useful for personalization of Text-To-Speech (TTS) sys-
tems, voice restoration in case of vocal pathology, obtaining a false identity
when answering the phone (for safety reasons, for example), and also for
entertainment purposes such as online role-playing games.

The identity of a speaker is associated with the spectral envelope of the
speech signal, and with its prosody attributes: pitch, duration, and energy.
Most voice conversion methods aim to transform the spectral envelope of
the source speaker to the spectral envelope of the target speaker. The pitch
contour is commonly converted by a linear transformation based on the
global mean and standard deviation values of the pitch frequency.

1

lesley
Text Box
CCIT Report #843    November 2013



1 Introduction 2

In order to estimate a conversion function from a source speaker to a
target speaker, voice conversion methods use training sets of both speak-
ers. Most training algorithms require parallel data sets, that is, prerecorded
sentences of the source and target speakers saying the same text. In such a
setup, evaluation of a conversion function is based on coupled feature vec-
tors - source and target. However, since the two speakers generally do not
pronounce the text at the exact same rate, matching an analysis frame of
the source speaker to one of the analysis frames of the target speaker is
not straightforward. A time alignment is usually carried out using Dynamic
Time Warping (DTW), constrained by starting and ending of speech utter-
ances [12]. These time stamps are commonly obtained by phonetic labeling,
representing the beginning and ending of each phoneme. When phonetic
labeling is unavailable, Voice Activity Detection (VAD) is applied so the
time stamps generated by the VAD represent the beginning and ending of
each word. Since the source and target training sentences are not spoken in
exactly the same rate, DTW often replicates or omits feature vectors, arti-
ficially producing a match. The importance of correct time alignment was
recently demonstrated as having a large influence on the quality of the syn-
thesized converted speech [15]. A different approach was suggested by [24],
where a statistical model for an eigen-voice was trained using several paral-
lel data-sets. The conversion function is trained using the eigen-voice model
and speech sentences related to a target speaker (not necessarily parallel to
the source data-sets).

One of the earlier approaches for spectral conversion uses a codebook
representation of the spectral features obtained from a parallel training set
[2]. Due to the limited codebook size, the converted spectral envelope is defi-
ciently represented which leads to poor quality synthesized speech. Later, a
more flexible approach for spectral conversion, based on a Gaussian Mixture
Model (GMM), was proposed [21] and is the most commonly used method
to date. The source training data is used to train a GMM, and the lin-
ear conversion function is evaluated by Least Squares (LS) using a parallel
and time-aligned training set. Alternatively, these conversion parameters
may be evaluated using a joint source-target GMM training [16]. These
linear conversion methods produce over-smoothed spectral envelopes lead-
ing to muffled synthesized speech ([22],[25]). Several modifications of the
GMM-based conversion have been proposed since, among these: GMM with
Dynamic Frequency Warping (DFW) [25], GMM and codebook selection
[17] and a combined pitch and spectral envelope GMM-based conversion [9].
Still, these GMM-based conversion methods have been reported to produce
muffled output signals, probably due to excessive smoothing of the temporal
evolution of the spectral envelope. Recently, a different approach aiming to
capture the temporal evolution of the spectral envelope was presented [23].
A GMM is trained using concatenated sequences of the source and target
spectral features, and the conversion function is evaluated using Maximum
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Likelihood (ML) estimation. To reduce the muffling effect, the Global Vari-
ance (GV) of the spectral features was considered in the trained statistical
model. A GV enhancement method was also proposed in the framework of
the classical GMM-based conversion, where the GV of the converted fea-
tures is constrained to match the GV of the features related to the target
speaker [5]. These two conversion schemes (with integrated GV enhance-
ment) improve the quality of the converted signals, at the expense of some
increase in the spectral distance between the converted and target signals.

In this paper we propose a new method for spectral conversion based on
a Grid-Based (GB) approximation [4]. We express the spectral conversion
process as a sequential Bayesian estimation problem of tracking the target
spectrum using observed samples from the source spectrum. We propose
models for evaluation of the evidence and likelihood probabilities needed for
the GB formulation. Using these approximated probabilities the algorithm
sequentially evaluates the converted spectrum as a weighted sum of the
target training vectors.

As opposed to previously proposed methods that use parallel and time
aligned training sets, the GB conversion approach does not require a one-
to-one correspondence between the source and target training vectors. The
training process uses parallel sentences but is based on soft correspondence
between the source and target vectors, obtained by phonetic labeling of the
training sentences without frame alignment, thus eliminating the need for
DTW.

GMM-based conversion methods are mostly trained using an iterative
algorithm called Expectation Maximization [8], which often results in over-
fitting [20]. These methods cannot be trained properly using small data
sets, and their training stage may last hours or even days (depending on
the amount of training data and computing platform), until convergence is
achieved. Our GB method, however, is easily trained within seconds, using
data sets of all sizes since its training stage is non iterative and involves
simple computations based on the Euclidean distance between the training
vectors.

The GB conversion proposed here provides various working points in
terms of spectral distortion and GV. When tuned to minimal spectral dis-
tortion, GB achieves comparable performance to the classical GMM-based
methods ([21], [16]), in terms of spectral distortion and GV. When tuned
to maximal GV, GB produces higher values of GV (0.8 of its natural value
for the target speaker), at the expense of increased spectral distortion. In-
formal listening tests showed that higher synthesis quality is obtained when
GB is tuned to minimal spectral distortion. To further improve the quality
we applied a GV enhancement post-processing block. We recently proposed
this GV enhancement approach and examined its effect on signals converted
by a classical GMM conversion method [6]. In this paper we present an
overall scheme, Enhanced-GB (En-GB), consisting of GB conversion (tuned
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for minimal spectral distortion), followed by GV enhancement. We used
objective measures and also performed extensive subjective evaluations, to
compare the proposed En-GB conversion method to several GMM-based
conversion methods, with and without enhancement. Objectively, En-GB
achieves similar spectral distortion and GV values as the classical GMM-
based methods do (without enhancement). Listening tests show that in
terms of quality, En-GB is comparable to the classical GMM-based conver-
sion methods (without enhancement). Furthermore, in terms of similarity
to the target speaker, the En-GB scheme is comparable to the enhanced ver-
sions of the classical GMM-based methods. Thus, the main advantages of
the proposed approach are in the short training, ability to work with small
data sets, and the avoidance of time alignment of frames in parallel data.

This paper is organized as follows. In Sec. 2, a brief description of GB
approximation is presented. The new GB conversion method is described
in Sec. 3. Experimental results, demonstrating the performance of the pro-
posed conversion method and the effect of GV enhancement on its converted
output signals, in comparison to several other examined methods, are pre-
sented in Sec. 4. Conclusions and further research suggestions are given in
Sec. 5.

2 Grid-Based Formulation

A brief formulation of sequential estimation using Bayesian tracking is pre-
sented in Sec. 2.1. In many practical cases, applying this formulation yields
a high computational load, which is sometimes unfeasible. The GB method
provides a discrete approximation for Bayesian tracking with much less com-
putational complexity, as described in Sec. 2.2.

2.1 Bayesian Tracking

Denote by yt a hidden state vector, following a first order Markov dynamics:

yt = ft (yt−1,ut) , (1)

where ft is a function (not necessarily linear) of yt−1 and of an i.i.d. noise
sequence ut. The observed signal, xt, depends on the hidden state and on
an i.i.d. measurement noise,vt:

xt = ht (yt,vt) , (2)

where ht (·) may also be non-linear.
Denote by x1:t as t vectors sequentially sampled from the observed pro-

cess - x1:t , {x1, ...,xt}. Assuming that the initial probability of the state
vector, p (y0), is known and equal to the prior probability p (y0) = p (y0|x0),
the posterior probability p (yt|x1:t) can be obtained recursively in two stages:
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1. Prediction - obtain the prior probability:

p (yt|x1:t−1) =

∫

p (yt|yt−1) p (yt−1|x1:t−1) dyt−1. (3)

2. Update - use the current observation xt to update the posterior prob-
ability:

p (yt|x1:t) =
p (xt|yt) p (yt|x1:t−1)

p (xt|x1:t−1)
, (4)

where,

p (xt|x1:t−1) =

∫

p (xt|yt) p (yt|x1:t−1) dyt. (5)

The likelihood function p (xt|yt) is determined according to the measure-
ment model (eqn. (2)) and the statistics of the measurement noise vt. The
Bayesian optimal estimate for the state vector yt in terms of mean squared
error is obtained by1:

ŷt = E [yt|x1:t] =

∫

p (yt|x1:t)ytdyt. (6)

When the noise signals ut and vt are Gaussian, and the functions ft (·)
and ht (·) are linear and time invariant (meaning that ft (·) ≡ f (·) and
ht (·) ≡ h (·)), this recursion can be computed analytically, leading to Kalman
filtering [3]. Yet, in most practical cases where these conditions are not sus-
tained, this derivation is hard and often performed using approximation
methods such as GB approximation or particle filtering [4]. These methods
sequentially evaluate the posterior probability as a discrete weighted sum
using a given set of samples in case of GB, or a randomly drawn set in case
of Particle Filtering.

In this paper, we express the spectral conversion process as a sequential
estimation problem tracking the target spectrum, using observed samples
from the source spectrum. We propose models for the evidence and likeli-
hood probabilities needed for the GB formulation. Using these approximated
probabilities the algorithm sequentially evaluates the converted spectrum as
a weighted sum of the target training vectors. It is well known that the
performance of particle filtering crucially depends on successful statistical
modeling of the state-space temporal evolution. The performance of GB, on
the other hand, depends on dense modeling of the state-space by a set of
predetermined grid-points. Since a diverse training set is usually available
in most conversion setups, we apply the GB approximation method, using
the target training vectors as grid-points, as described below.

1 In general, any arbitrary integrable function of the state vector yt can be evaluated
[4].
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2.2 Grid-Based Approximation

The main principle of GB approximation is to provide a Bayesian sequential
estimation framework while avoiding the integral computations in (3) and
(5) by using a discrete evaluation of the posterior probability.

Let
{

yk
t

}Ny

k=1
be a set of predetermined grid-points taken from the state-

space
{

yt

}

. We divide the state space into cells, so that each cell has a grid

point yk
t as its center. Thus, the posterior probability can be approximated

by2:

p (yt|x1:t) ≈
Ny
∑

k=1

wk
t|tδ
(

yt − yk
t

)

. (7)

where the posterior weights
{

wk
t|t

}Ny

k=1
denote the conditional probabilities:

wk
t|t = p

(

yt = yk
t |x1:t

)

. (8)

Using this discrete approximation, the prior probability is also approximated
as a discrete sum:

p (yt|x1:t−1) ≈
Ny
∑

k=1

wk
t|t−1δ

(

yt − yk
t

)

. (9)

The prior weights can be estimated sequentially [4]:

wk
t|t−1 ≈

Ny
∑

l=1

wl
t−1|t−1p

(

yk
t |yl

t−1

)

, (10)

where p
(

yk
t |yl

t−1

)

, called the evidence probability, is derived from the state

space dynamics (eqn. (1)). The posterior weights {wk
t|t}

Ny

k=1 are evaluated
by:

wk
t|t ≈

wk
t|t−1p

(

xt|yk
t

)

∑Ny

l=1w
l
t|t−1p

(

xt|yl
t

)
, (11)

where, as stated above, the likelihood probability p
(

xt|yk
t

)

is derived from
the measurement model (eqn. (2)).

Finally, the hidden state vector yt is approximated using the posterior
weights:

ŷt = E [yt|x1:t] ≈
Ny
∑

k=1

wk
t|ty

k
t . (12)

2 If the state space is indeed discrete and finite, and the grid-points consist of all its
states, this evaluation becomes exact.
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Note that equations (10), (11) and (12) are discrete evaluations of equations
(3)-(6), correspondingly. It is known [4] that the estimated terms in (7) and
in (12) are biased for any finite Ny. Still, as more grid points are taken the
bias gets smaller and the approximation improves, since the state space is
more densely represented.

The sequential estimation process is initialized using the initial proba-
bility of the state vector p

(

yk
0

)

, which as stated above, is assumed to be
known:

wk
0|0 = p

(

yk
0

)

. (13)

Table 1 summarizes the main stages of sequential Bayesian estimation using
GB approximation.

Tab. 1: Bayesian Estimation Using Grid-Based Approximation.

Input: a sequence of states sampled from the observed process - x1:T

Initialization: set the initial weights, {wk
0|0}

Ny

k=1
, using eqn. (13)

Main Iteration: for t = 1, ...T , perform the following steps:

1. Evaluate the prior weights, {wk
t|t−1

}Ny

k=1
, using eqn. (10).

2. Evaluate the posterior weights, {wk
t|t}

Ny

k=1
, using eqn. (11).

3. Evaluate the hidden state, ŷt, using eqn. (12).

Output: a sequence of the estimated hidden states - ŷ1:T

3 Voice Conversion Using Grid-Based Approximation

We now use the GB approximation method described above as a framework
for spectral voice conversion. We express the conversion as a sequential esti-
mation problem, where the observed process is the source spectrum, and the
tracked state-space is the target spectrum. We propose models for both like-
lihood and evidence densities, required for the sequential estimation process,
as described in equations (10)-(12). The GB conversion method proposed
here uses a parallel training set, but does not require time alignment be-
tween the source and target training vectors since it is trained using soft
correspondence between them, rather than matched pairs. The training
and conversion stages of the proposed GB conversion method are presented
below in Secs. 3.1 and 3.2, respectively.

3.1 Training Stage

The training process described here includes pre-computation of the evidence
and discrete likelihood probabilities, and is performed separately for every
phoneme j, where j = 1, ..., J , and J is the overall number of phonemes.
The source and target training sentences are assumed to be parallel and pho-
netically labeled. The spectral features of the two speakers are extracted
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from the voiced frames, but, as stated above, no time alignment is per-
formed. Instead, a matching process of the source and target utterances
is performed as follows. Each utterance r of a certain phoneme j at the
source, is matched to its corresponding utterance at the target, according to
the phonetic labeling. We avoid the transient nature of the beginning and
ending of each utterance by using one third of the training vectors included
in each utterance, extracted from the middle part. Based on these matched
mid-utterances, we model the discrete likelihood probability of a matched
mid utterance r of phoneme j, used in eqn. (11), as:

p
(

xt = xm|yt = yk; j
)

=

{

1

cjr
xm,yk belong to the same mid-utterance r

0 otherwise,

(14)

where {xm; j}N
j
x

m=1 and {yk; j}N
j
y

k=1 are source and target training vectors,

respectively, belonging to phoneme j, and cjr is the number of vectors related
to utterance r at the target (i.e.

∑

r c
j
r = N j

y ). This definition ensures that
the obtained discrete likelihood probability is normalized, i.e.:

Nj
x

∑

m=1

p
(

xt = xm|yt = yk; j
)

= 1, ∀k = 1, ..., N j
y , j = 1, ..., J. (15)

The discrete likelihood probability defines a relaxed correspondence between
source and target training vectors, as opposed to a one-to-one match defined
in other parallel methods, for which p

(

xt = xm|yt = yk; j
)

= δm,k.
The evidence probability, as mentioned before, expresses the transition

probability from state yl to state yk. In natural speech, spectral feature
vectors related to consecutive time frames are typically similar, but not
identical. Motivated by this behavior, we model the transition probability
as having the same value for all the states inside a ball, centered at yk with a
radius Ry. The probability of transitions to farther states, however, is taken
as a simple Gaussian distribution, centered at yk. Altogether, we model the
discrete evidence probability, used in eqn. (10), as:

p
(

yt = yk|yt−1 = yl; j
)

=
1

Ck,j
evid

e−
M2

k,l

2

Ck,j
evid ,

Nj
y

∑

k=1

e−
M2

k,l

2 , (16)

where j is the phoneme index; k, l = 1, ..., N j
y , and where the exponential

term in eqn. (16) is the maximum between the Mel Cepstral Distortion
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(MCD) of the two states yl and yk normalized by a parameter Ry, and 1:

Mk,l = max

(

MCD
(

yk,yl
)

Ry
, 1

)

, (17)

MCD
(

yk,yl
)

=
10
√
2

ln 10

√

√

√

√

P
∑

p=1

(yk (p)− yl (p))
2
, (18)

where yp (p) and yl (p) are the p-th elements of yk and yl, respectively.
An alternative approach would be to take the exponential term, defined in
eqn. (17), as a normalized distance. For example, Mk,l = MCD

(

yk,yl
)

/Ry,
where Ry is a parameter selected by the user. However, in case of a sparse
training set the most substantial probability would be for staying in the same
state. Since the training set is fixed, the likelihood and evidence densities
are in fact time invariant.

3.2 Conversion Stage

The likelihood probability modeled above in eqn. (14) is defined only for a
discrete set consisting of the source training vector. In this section we extend
(14) to model any input vector xt ∈ R

P , as required by the GB formulation.
We model the continuous likelihood probability p

(

xt|yt = yk; j
)

as a

sum of the discrete likelihood probabilities p
(

xm|yt = yk; j
)

, m = 1, ..., N j
x ,

(defined in (14) and (15)), each weighted by a Gaussian kernel, centered at
xm:

p
(

xt|yt = yk; j
)

=
1

Ct,j
LL

Nj
x

∑

m=1

p
(

xm|yt = yk; j
)

e−MCD2(xt,xm)/2R2
x

Ct,j
LL ,

Nj
y

∑

k=1

p
(

xt|yt = yk; j
)

, (19)

where Rx is a parameter determined by the user. The Gaussian term
e−MCD2(xt,xm)/2R2

x can be viewed as an interpolation factor from the dis-
crete space represented by the source training vectors to the continuous
space of the test source vectors.

Define wj,k
t|t as the posterior weights corresponding to the training vectors

{yk; j}N
j
y

k=1, related to phoneme j:

wj,k
t|t , p (yt|x1:t; j) . (20)

During conversion, the posterior weights are sequentially evaluated, using
the corresponding evidence and likelihood probabilities defined in (16) and
(19), according to equations (10) and (11). The posterior weights are used
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to obtain the converted outcome as a discrete Bayesian approximation (as
defined in (12)):

F{xj
t} = E [yt|x1:t; j] ≈

Nj
y

∑

k=1

wj,k
t|t y

k
t . (21)

where x
j
t belongs to a sequence of spectral features related to a certain test

utterance of phoneme j.
As mentioned above, the training set of each phoneme is composed of

feature vectors extracted from the middle part of each utterance. Neverthe-
less, during conversion, all vectors in each utterance xj

1:T are converted using
these mid-utterance vectors as grid-points. Due to the sequential update
of the posterior weights, the converted spectral outputs evolve smoothly in
time, within each utterance of a specific phoneme.

Inter-Phoneme Evolution:

In order to maintain a smooth evolution also during the transition be-
tween consecutive phonemes, we evaluate the initial condition for each ut-
terance of a certain phoneme according to the preceding phoneme. Denote
by xi

1:T ′ and x
j
1:T two consecutive sequences of source feature vectors rep-

resenting an utterance of phoneme i followed by an utterance of phoneme
j, respectively. If the preceding utterance is unvoiced or silence (i.e., not
related to a voiced phoneme), a uniform initial condition is taken for the

conversion of the current utterance: wj,k
0|0 = 1/N j

y for k = 1, ..., N j
y . If the

preceding utterance is a voiced phoneme, its feature vectors are converted

using its corresponding set of grid-points {yk; i}N
i
y

k=1. The current utterance,
however, is converted according to the grid-points related to the phoneme

j, {yk; j}N
j
y

k=1. Therefore, the weights of the current utterance cannot be
directly initialized using the weights of the preceding utterance. To resolve
this problem, we re-evaluate the weights of the last vector of the preceding
utterance, xi

T ′ , as if it was converted using the grid-points of the current
phoneme j. The initial weights for converting the first vector of the current
utterance, xj

1, are taken as the posterior probabilities of the vector xi
T ′ , as

if it was converted using the phoneme j:

wj,k
0|0 = p

(

yT ′ = yk|xi
T ′ ; j

)

, k = 1, ..., N j
y , (22)

where these probabilities are evaluated using uniform weights as an initial
condition:

wj,k
−1|−1 , p

(

yT ′−1 = yk|xi
T ′−1; j

)

=
1

N j
y

. (23)

Figure 1 demonstrates the obtained time evolution of the first and third
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Fig. 1: Temporal evolution of the 1st and 3rd coefficients of the words con-
verted by: LS-GMM - blue thin line; JGMM - green; GB - red thick
line.

MFCCs using GB conversion, compared to the classical GMM-based conver-
sions: LS-GMM [21] and JGMM [16]. The classical GMM-based conversions
are applied frame by frame which may lead to discontinuities. The proposed
GB, however, is based on a sequential update leading to a smoother time
evolution of the cepstral elements, as seen in Fig. 1.

To conclude, the main stages of converting a sequence of source vectors
that belongs to phoneme j are summarized in Table 2.

Tab. 2: Voice Conversion Using GB Approximation.

Input: a sequence of feature vectors related to the current phoneme and the last source

vector related to the preceding phoneme, correspondingly: xj
1:T ,x

i
T ′

Initialization: set the initial weights, {wk
0|0}

Nj
y

k=1
, according to (22) and (23).

Main Iteration: for t = 1, ...T , perform the following steps:

1. Evaluate the prior weights, {wj,k

t|t−1
}N

j
y

k=1
, using equations (10) and (16).

2. Evaluate the posterior weights, {wj,k

t|t }
Nj

y

k=1
, using equations (11) and (14).

3. Evaluate ỹt = F{xj
t}, using (21).

Output: a sequence of converted vectors - ỹ1:T

4 Experimental Results

4.1 Experimental Conditions

In our experiments we used speech sentences of four U.S. English speakers
taken from the CMU ARCTIC database [18]: two males (bdl, rms) and
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two females (clb, slt). Three different sizes of training sets: 50, 100 and 200
parallel sentences were used to demonstrate the performance of the examined
methods as a function of training set size. The testing set consisted of 50
additional parallel sentences. All sentences were sampled at 16kHz and were
phonetically labeled.

Analysis and synthesis were both carried out using an available vocoder
[10]. This vocoder uses a two-band harmonic/noise parametrization, sepa-
rated by a maximal voicing frequency for representing each spectral envelope
[13]. 25 Mel Frequency Cepstrum Coefficients (MFCCs) were extracted from
the harmonic parameters [7]: the zero-th coefficients, related to the energy,
were not converted. The other 24 coefficients were used as spectral feature
vectors during training and conversion.

The spectral features of unvoiced frames were not converted but sim-
ply copied to the converted sentence, since they do not capture much of
the speaker’s individuality [19] and their conversion often leads to quality
degradation [11]. The maximal voicing frequency was also not converted but
re-estimated from the converted parameters by the vocoder. The sequences
of the training data set used for GB conversion were matched (without align-
ment), as described in Sec. 3.1. The training set used for the other examined
methods, and the testing set, were each time aligned using a DTW algorithm
based on phonetic labeling [12].

Pitch was converted by a simple linear function using the mean and
standard deviation values of the source and target speakers,

f̂
(y),t
0 = µ(y) +

(

σ(y)/σ(x)
)(

f
(x),t
0 − µ(x)

)

, (24)

where f
(x),t
0 and f̂

(y),t
0 are the pitch values of the source and converted signals

at the t-th frame, respectively. The parameters µ(x) and µ(y) are the mean
pitch values, and σ(x) and σ(y) are the standard deviations of the source and
target pitch values, respectively. In this case the mean and standard devia-
tion of the converted pitch contour match the mean and standard deviation
of the pitch values of the target speaker.

Four conversion methods were examined: classical GMM-based conver-
sion using joint training [16] (JGMM), classical GMM-based conversion us-
ing LS [21] (LS-GMM), Constrained GMM (CGMM) [5] and the GB con-
version method proposed here.

4.2 Objective Evaluations

We evaluated the performance of the examined conversion methods by two
objective measures: Normalized Distortion (ND) and Normalized GV (NGV),
as defined below.

To obtain a fair comparison between different source-target pairs we
normalized the mean spectral distortion between the converted and target



4 Experimental Results 13

signals by the mean spectral distortion between the source and target signals
[26]:

ND
(

Ỹ1:T ,Y1:T

)

=

∑T
t=1 MCD(ỹt,yt)

∑T
t=1 MCD(xt,yt)

, (25)

where MCD is the distance between two cepstral vectors (defined in Sec.
3, eqn. (18)) and Ỹ1:T , (ỹ1, ỹ2, . . . , ỹT )

>, Y1:T , (y1,y2, . . . , yT )
> and

X1:T , (x1,x2, . . . , xT )
> are time aligned sequences of cepstral vectors,

related to the converted, target, and source utterances, respectively.
The Global Variance (GV) of the p-th elements of a sequence, Ỹ1:T ,

representing a converted speech utterance, is:

σ2
Ỹ1:T

(p) =
1

T

T
∑

t=1

(

ỹt (p)−
1

T

T
∑

τ=1

ỹτ (p)

)2

, (26)

In this paper we use a Normalized Global Variance (NGV) to measure the
variability of a sequence of converted vectors:

NGV
{

Ỹ1:T

}

,
1

P

P
∑

p=1

σ2
Ỹ1:T

(p)

σ2
Y
(p)

, (27)

where σ2
Y
(p) is the empirical GV of the p-th elements of the target speaker,

obtained from the target training vectors:

σ2
Y (p) =

1

Ny

Ny
∑

k=1



yk (p)− 1

Ny

Ny
∑

n=1

yn (p)





2

. (28)

Note that the target GV defined in eqn. (28) is evaluated by averaging over
the entire training corpus. This evaluation of GV is different from a recently
proposed approach [23] for spectral conversion and GV enhancement, where
the GV of each utterance of the target is modeled as a random variable
drawn from a Gaussian distribution.

The desired values for these measures are ND → 0 and NGV → 1,
indicating that the converted outcome is close to the target signal in terms
of spectral similarity and global variance.

The GMM-based methods (LS-GMM, JGMM and CGMM) were trained
using diagonal covariance matrices and 8, 16, 32, 64, 128, 256, 512 Gaussian
mixtures. The number of mixtures was selected for each method and training
set so that a minimal ND was attained.

Figure 2 presents the ND vs. NGV values obtained for LS-GMM, JGMM,
CGMM and the proposed GB, all trained using 100 sentences, for a male-to-
male conversion. The classical GMM-based conversion methods, LS-GMM
and JGMM, produce relatively low ND, but suffer from very low NGV. The
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proposed GB conversion method provides a range of possible ND and NGV
combinations: as the parameters Rx and Ry get smaller, less grid-points
are considered in the weighted sum, so the NGV increases, but the ND also
increases. In terms of the examined objective measures, CGMM outperforms
all the examined methods since it produces higher NGV and lower ND at
the same time.

The ND and NGV values attained by the examined methods, as a func-
tion of the size of the training set, are presented in Table 3. Training
CGMM, as previously presented [5], involves a high computational load
due to a generalized SVD operation required in the optimization process.
Consequently, results for this methods are presented here only for 50 and
100 training sentences. The performance of the proposed GB conversion
method is demonstrated using two extremal working points: one is maximal
NGV (GB Max-NGV, attained for Rx = 1dB, Ry = 2dB) and the other is
minimal ND (GB Min-ND, attained for Rx = 4dB, Ry = 6dB). Informal
listening tests showed that the proposed GB method achieves higher quality
when tuned to minimal spectral distortion than to maximal GV. Although
the actual ND and NGV values achieved by each method, as indicated in
Table 3 are very similar, still several trends can be observed: adding more
training sentences improves the mean spectral similarity to the target for all
the examined methods; the most significant improvement is achieved by the
proposed GB. In terms of NGV, using over 100 training sentences slightly
increases the NGV for CGMM and GB Max-NGV, yet for LS-GMM and
JGMM the NGV decreases.
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Fig. 2: ND vs. NGV using 100 training sentences for a male-to-male con-
version: right triangle - JGMM [16]; left triangle - LS-GMM [21];
plus sign - CGMM [5]; asterisk, square, diamond and star - the pro-
posed GB conversion using Rx = (1, 2, 4, 6) [dB], correspondingly, for
Ry = (1, 2, 4, 6)[dB].
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To further improve the quality of the synthesized speech, we applied a
post-processing method for GV enhancement [6]. This method maximizes
the GV of an input sequence, under a spectral distortion constraint. The
GV of each enhanced sequence is increased up to the level where the MCD
between the converted sequence and its enhanced version reaches a preset
threshold value, denoted as θMCD. We recently showed [6] that this method
leads to significant improvement in the perceived quality of signals converted
by LS-GMM. In this work we applied this GV enhancement method to LS-
GMM, JGMM and to our proposed GB (tuned to minimal ND) conversion
outcomes. The output signals of CGMM were not enhanced since NGV
is already constrained to 1, in the training stage of this method. Table

Tab. 3: Objective performance: ND and NGV for male-to-male conversion

using 50, 100 and 200 training sentences.

ND NGV
No. of Training Sentences 50 100 200 50 100 200

JGMM [16] 0.65 0.63 0.62 0.37 0.38 0.38
LS-GMM [21] 0.64 0.62 0.62 0.32 0.33 0.31
CGMM [5] 0.69 0.68 - 0.82 0.84 -
GB Min-ND 0.69 0.67 0.64 0.3 0.27 0.25
GB Max-NGV 0.82 0.80 0.78 0.66 0.65 0.69

4 summarizes the main ND and NGV values achieved by the examined
conversion methods, averaged over all four gender conversions: male-to-
male (M2M), male-to-female (M2F), female-to-male (F2M) and female-to-
female (F2F). The GB conversion, tuned to minimal ND and followed by
GV enhancement with θMCD = 1dB (En-GB), produces similar NGV values
to those attained by LS-GMM and JGMM (without enhancement), with
slightly higher ND.

Tab. 4: Objective performance: ND and NGV values using 100 training

sentences, averaged over all four gender conversions.

Conversion Method ND NGV

JGMM [16] 0.63 0.47
Enhanced JGMM 0.65 0.6

LS-GMM [21] 0.63 0.41
Enhanced LS-GMM 0.64 0.52

CGMM [5] 0.65 1.0

GB Min-ND 0.67 0.35
Enhanced GB Min-ND En-GB 0.69 0.44

The average training and conversion times of the examined methods,
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using 50,100 and 200 sentences, are presented in Table 5 (using Matlab R©

software running on a Unix server with 48GB memory size and 2.5GHZ clock
time). GMM-based methods are trained (128 mixtures) using an iterative
method - Expectation Maximization [8] (EM) - which lasts several hours till
convergence is achieved. Note that in addition to EM, CGMM training
also involves a significant computational cost due to a generalized SVD
operation, required in the optimization process. The simplicity of GB’s
training stage, compared to the GMM-based methods, is well demonstrated
as it lasts just seconds.The conversion times of all the examined methods, as
well as the GV enhancement process, are very fast and last 23 msecs or less
for a single sentence. Altogether, considering both training and conversion
times, the proposed En-GB scheme is considerably faster than any of the
other examined methods.

Tab. 5: Average training times for 50, 100 and 200 training sentences, and

conversion times per frame, using MatlabR© software running on a

Unix server.

Method Training time
Conversion time per frame

No. of Training Sentences 50 100 200

JGMM [16] 3 h. 7 h. 8 h. 11 msec
LS-GMM [21] 2.5 h. 8.5 h. 10.5 h. 11 msec
CGMM [5] 3.5 h. 11 h. - 11 msec
GB 2 sec 10 sec 20 sec 10 msec
GV enhancement [6] none in training 23 msec

To conclude the objective examination, in terms of ND vs. NGV, the
CGMM conversion method outperforms all the examined methods since it
produces a higher NGV together with a lower ND at the same time. Nev-
ertheless, we note that the proposed En-GB scheme achieves comparable
objective performance to the classical GMM methods, while its training
time is significantly shorter.

In the next section we present subjective evaluation results comparing
the proposed En-GB conversion scheme to the classical GMM-based conver-
sion methods (with and without enhancement) and to CGMM, in terms of
perceived quality and similarity to the target speaker.

4.3 Subjective Evaluations

Listening tests were carried out to subjectively assess the performance of the
examined methods (all trained by 100 sentences). The same four speakers
(two males and two females) that were used for the objective evaluations,
were used for the subjective evaluations. The number of mixtures for the
GMM-based methods, selected from among 8, 16, 32, 64, 128, 256, 512, was
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set to 128 - for which the lowest ND was achieved. The proposed GB method
was also tuned to minimal spectral distortion (GB Min-ND). For simplic-
ity of notation, GB will refer to this condition from this point on, unless
otherwise stated. We used informal listening tests to select the threshold
value for GV enhancement from θMCD = 0.5, 1, 2, 4dB. The best perceived
quality was obtained with θMCD = 1dB, for all the examined methods. All
four gender conversions were performed using the same parameters values
as described above.

We conducted subjective quality evaluations in a format similar to Multi
Stimulus test with Hidden Reference and Anchor (MUSHRA) [1]. The lis-
teners were presented with eight test signals: (a) a hidden reference - the
target speaker; (b) JGMM; (c) Enhanced JMM; (d) LS-GMM; (e) Enhanced
LS-GMM; (f) CGMM; (g) GB conversion; (h) Enhanced GB (En-GB). The
test signals were randomly ordered, and the listeners were not informed
about the hidden reference signals being included in the test set. During
evaluation, the listeners were asked to compare the test signals to the ref-
erence signal (the target speaker) and rate their quality between 0 to 100,
where at least one of the test signals (the hidden reference) must be rated
100. As expected, all the listeners rated the hidden reference as 100. The
mean scores of the examined methods for M2M, M2F, F2M and F2F conver-
sions, and also their scores averaged over all four conversions are presented
in Figures 3 and 4, respectively. All subjective results are presented with
their 95% confidence intervals.
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Fig. 3: Subjective quality test, comparing: JGMM [16], Enhanced JGMM
(En-J), LS-GMM [21], Enhanced LS-GMM (En-LS), CGMM [5], GB
and Enhanced GB (En-GB).

Without enhancement, LS-GMM and JGMM achieved higher quality
scores than the proposed GB. Applying GV enhancement as a post process-
ing block improved the score of all methods by 8%, on average. Still, CGMM
was rated as having the best quality. Our overall conversion scheme, En-
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Fig. 4: Subjective quality test averaged over all four gender conversions com-
paring: JGMM [16], Enhanced JGMM (En-J), LS-GMM [21], En-
hanced LS-GMM (En-LS), CGMM [5], GB and Enhanced GB (En-
GB).

hanced GB, was rated as comparable to the classical GMM methods (with-
out enhancement).

We evaluated the individuality performance using, again, a similar for-
mat to MUSHRA, as conducted by Godony et. al. [14]. The listeners were
presented with the same test signals (including the hidden reference) and
were asked to rate their similarity to the reference signal, in terms of the
speaker’s identity, while ignoring their perceived quality. The mean indi-
viduality scores of the examined methods for M2M, M2F, F2M and F2F
conversions, and also their scores, averaged over all four conversions, are
presented in Figures 5 and 6, respectively.

Without enhancement, the classical GMM conversions achieved similar
scores, 5% higher than the proposed GB conversion. Applying GV enhance-
ment improved the individuality performance of JGMM and LS-GMM by
7.5% and the performance of GB by 11%. Altogether, the proposed En-GB
method was marked as comparable to CGMM and to the enhanced versions
of the classical GMM conversions.

To conclude, applying GV enhancement significantly improves both qual-
ity and individuality of all the examined methods. Our proposed En-GB
leads to comparable quality to the classical GMM-based conversion methods
(without enhancement), and to comparable individuality to their enhanced
versions.

5 Conclusion

We propose here a new method for spectral conversion, based on sequen-
tial Bayesian tracking, using a Grid-Based (GB) formulation. The target



5 Conclusion 19

JGMM En−J LS−GMM En−LS CGMM GB En−GB
0

10

20

30

40

50

60

70

M
us

hr
a 

In
di

vi
du

al
ity

 S
co

re

 

 

M2M
M2F
F2M
F2F

Fig. 5: Subjective individuality test, comparing: JGMM [16], Enhanced
JGMM (En-J), LS-GMM [21], Enhanced LS-GMM (En-LS), CGMM
[5], GB and Enhanced GB (En-GB).
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Fig. 6: Subjective individuality test averaged over all four gender conver-
sions, comparing: JGMM [16], Enhanced JGMM (En-J), LS-GMM
[21], Enhanced LS-GMM (En-LS), CGMM [5], GB and Enhanced
GB (En-GB).

spectral evolution is modeled as a hidden Markov process, tracked by us-
ing the source spectrum, modeled as the observed process. As opposed to
GMM-based methods, which are typically trained for hours or days (using
Matlab), training GB is very simple and lasts just seconds; it does not re-
quire convergence of an iterative computation, and it is easily performed for
both small and large scale databases. Additionally, although GB is trained
using a parallel set, time alignment is not needed.

During training, the evidence and likelihood probabilities needed for the
GB formulation are approximated as discrete densities. During conversion,
the converted spectrum is obtained as a weighted sum of the training target
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vectors, used as grid-points. The weights are sequentially evaluated so that
a smooth temporal evolution of the converted spectra is produced.

The GB conversion method enables the user to attain different NGV
values by varying its two parameters (Rx, Ry). When tuned to minimal
spectral distortion, GB achieves comparable objective performance to the
classical GMM-based conversion methods. To further improve the quality of
the synthesized speech, we increased the variability of the converted vectors
by applying GV enhancement as a post-processing block.

We compared the proposed Enhanced GB (En-GB) scheme to CGMM
and to classical GMM-based conversions, with and without GV enhance-
ment, using listening tests. This comparison showed that En-GB achieves
comparable quality to the classical GMM-based methods (without enhance-
ment), and comparable individuality to their enhanced versions.

The proposed GB conversion, as most other methods, simply replaces
the spectral envelopes extracted from the source signal with the converted
outcome. As a result, the synthesized output has the same speaking rate as
the source speaker. Further improvement can be obtained by modifying the
duration of each converted utterance to match, on average, its corresponding
value for the target speaker.

way for evaluating conversion systems. These objective measures may
express significant trends and phenomena, but as shown here, they do not
always agree with subjective evaluation results.

better correspondence to subjective results. In the mean time, subjective
listening tests are imperative to properly evaluate and compare conversion
methods.

The proposed GB conversion method, as presented here, is based on soft
correspondence between the source and target vectors, obtained by using a
parallel training set. Further research is needed to evaluate this correspon-
dence for a non-parallel setup.
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