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Abstract

Compressed sensing is a signal processing technique in which data is acquired directly in a

compressed form. There are two modeling approaches that canbe considered: the worst-case (Hamming)

approach and a statistical mechanism, in which the signals are modeled as random processes rather than

as individual sequences. In this paper, the second approachis studied. Accordingly, we consider a model

of the formY = HX + W , where each comportment ofX is given byXi = SiUi, where{Ui}

are i.i.d. Gaussian random variables, and{Si} are binary random variables independent of{Ui}, and

not necessarily independent and identically distributed (i.i.d.), H ∈ R
k×n is a random matrix with

i.i.d. entries, andW is white Gaussian noise. Using a direct relationship between optimum estimation

and certain partition functions, and by invoking methods from statistical mechanics and from random

matrix theory (RMT), we derive an asymptotic formula for theminimum mean-square error (MMSE) of

estimating the input vectorX givenY andH, ask, n → ∞, keeping the measurement rate,R = k/n,

fixed. In contrast to previous derivations, which are based on the replica method, the analysis carried in

this paper is rigorous.

Index Terms

Compressed Sensing (CS), minimum mean-square error (MMSE), partition function, statistical-

mechanics, replica method, conditional mean estimation, phase transitions, threshold effect, random

matrix.
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I. I NTRODUCTION

Compressed sensing [1, 2] is a signal processing technique that compresses analog vectors by means

of a linear transformation. Using some prior knowledge on the signalsparsity, and by designing efficient

“encoders” and “decoders”, the goal is to achieve effectivecompression in the sense of taking a much

smaller number of measurements than the dimension of the original signal.

A general setup of compressed sensing is shown in Fig. 1. The mechanism is as follows: A real

vectorX ∈ Rn is mapped intoV ∈ Rk by an encoder (or compressor)f : Rn → Rk. The decoder

(decompressor)g : Rk → Rn receivesY , which is a noisy version ofV , and outputsX̂ as the estimation

of X. The measurement rate, or compression ratio, is defined as

R
△
=
k

n
. (1)

Generally, there are two approaches to the choice of the encoder. The first approach is to constrain the

encoder to be alinear mapping, denoted by a matrixH ∈ Rk×n, usually called thesensing matrix

or measurement matrix. Under this encoding linearity constraint, it is reasonable to consider optimal

deterministic and random sensing matrices. The other approach is to considernon-linear encoders. In

this paper, we will focus on random linear encoders;H is assumed to be a random matrix with i.i.d. entries

of zero mean and variance1/n. On the decoder side, most of the compressed sensing literature focuses

on low-complexity decoding algorithms which are robust with respect to observation noise, for example,

decoders based on convex optimization, greedy algorithms,etc. (see, for example [3-6]). In this paper,

on the other hand, the decoder is assumed to be optimal, namely, it is given by the minimum mean-

square error (MMSE) estimator. The input vectorX is assumed to be random distributing according

some measure that is modeling/capturing sparsity. Note that this statistical assumption (or, Bayesian

formulation) is incompatible to “usual” compressive sensing models, in which the underlying signal is

assumed to be deterministic and the performance is measuredon a worst-case basis with respect to

X (Hamming theory). This statistical approach has been previously adopted in the literature (see, for

example, [5-12]). Finally, the noise is assumed to additive white and Gaussian.

The main goal of this paper is to analyze rigorously the asymptotic behavior of the MMSE, namely,

to find the MMSE fork, n→ ∞ with a fixed ratioR. Using the asymptotic MMSE, one can investigate

the fundamental tradeoff between optimal reconstruction errors and measurement rates, as a function of

the signal and noise statistics. For example, it will be seenthat there exists a phase transition threshold

of the measurement rate (which only depends on the input statistics). Above the threshold, the noise

sensitivity (defined as the ratio between that MMSE and the noise variance) is bounded for all noise
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Encoder
fn : Rn → Rk

Decoder
gn : Rk → Rn

X̂Y

W

VX

Fig. 1. Noisy compressed sensing setup.

variances. Below the threshold, the noise sensitivity goesto infinity as the noise variance tends to zero.

A. Known results and new contributions

There are several previously reported results that are related (directly or indirectly) to this work. Some

of these results were derived rigorously and some of them were not, since they were based on the

powerful, but non-rigorous,replica method. In the following, we briefly state some of these results. In

[12], using the replica method, a decoupling principle of the posterior distribution was claimed, namely,

the outcome of inferring about any fixed collection of signal elements becomes independent conditioned

on the measurements. Also, it was shown that each signal-element-posterior becomes asymptotically

identical to the posterior resulting from inferring the same element in scalar Gaussian noise. Accordingly,

this principle allows us to calculate the MMSE of estimating the signal input given the observations. In

[11], among other results, it was shown rigorously that for i.i.d. input processes, distributing according

to any discrete-continuous mixture measure, the phase transition threshold for optimal encoding is

given by the input information dimension. This result servesas a rigorous verification of the replica

calculations in [12]. In [10], using the replica method and the decoupling principle, the authors extend

the scope of conventional noisy compressive sampling wherethe sensing matrix is assumed to have

i.i.d. entries to allow it to satisfy a certain freeness condition (encompassing Haar matrices and other

unitarily invariant matrices). In [13, 14], the authors designed structured sensing matrices (not necessarily

i.i.d.), and a corresponding reconstruction procedure, that allows compressed sensing to be performed

at acquisition rates approaching to the theoretical optimal limits. A wide variety of previous works are

concerning low-complexity decoders, which are robust withrespect to the noise, e.g., decoders based

on convex optimizations (such asℓ1-minimization andℓ1-penalized least-squares) [3, 4], graph-based

iterative decoders such as linear MMSE estimation and approximate message passing (AMP) [5], etc.

For example, in [6], the linear MMSE and LASSO estimators were studied for the case of i.i.d. sensing

matrices as special cases of the AMP algorithm, the performance of which was rigorously characterized
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for Gaussian sensing matrices [15], and generalized for a broad class of sensing matrices in [9]. Another,

somewhat related, subject is the recovery of the sparsity pattern with vanishing and non-vanishing error

probability, which was studied in a number of recent works, e.g., [6, 16-22].

In this paper, under the previously mentioned model assumptions, we rigorously derive the asymptotic

MMSE in a single-letter form. The key idea in our analysis is thefact that by using some direct relationship

between optimum estimation and certain partition functions [23], the MMSE can be represented in some

mathematically “convenient” form which (due to the previously mentioned input and noise Gaussian

statistics assumptions) consists of functions of theStieltjesand Shannontransforms. This observation

allows us to use some powerful results from random matrix theory (RMT), concerning the asymptotic

behavior (a.k.a. deterministic equivalents) of the Stieltjes and Shannon transforms (see e.g., [24, 25] and

many references therein). Our asymptotic MMSE formula seemsto appear different than the one that is

obtained from the replica method [12]. Nevertheless, numerical calculations suggest that the results are

equivalent. Thus, similarly to other known cases in statistical mechanics, for which the replica predictions

were proved to be correct, our results support the replica method predictions. In the same breath, we

believe that our formula is more insightful compared to the replica method results. Also, in contrast

to previous works in which only memoryless sources were considered (an indispensable assumption in

the analysis), we consider a more general model which allowsa certain structured dependency among

the various components of the source. Finally, we mention that in a previous related paper [26], the

authors have used similar methodologies to obtain the asymptotic mismatched MSE of a codeword (from

a randomly selected code), corrupted by a Gaussian vector channel.

B. Organization

The remaining part of this paper is organized as follows. In Section II, the model is presented and the

problem is formulated. In Section III, the main results are stated and discussed along with a numerical

example that demonstrates the theoretical result. In Section IV, the main result is proved, and finally, our

conclusions appear in Section V.

II. N OTATION CONVENTIONS AND PROBLEM FORMULATION

A. Notation Conventions

Throughout this paper, scalar random variables (RV’s) will be denoted by capital letters, their sample

values will be denoted by the respective lower case letters and their alphabets will be denoted by the

respective calligraphic letters. A similar convention will apply to random vectors and matrices and their
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sample values, which will be denoted with same symbols in thebold face font. Probability measures will

be denoted generically by the letterP. In particular,P (X,Y ) is the joint density of the random vectors

X andY . Accordingly,P (X) will denote the marginal ofX, P (Y | X) will denote the conditional

density ofY givenX, and so on.

The expectation operator of a measurable functionf (X,Y ) with respect to (w.r.t.)P (X,Y ) will be

denoted byE {f (X,Y )}. The conditional expectation of the same function given a realization y of Y ,

will be denoted byE {f (X,Y ) | Y = y}. When using vectors and matrices in a linear-algebraic format,

n-dimensional vectors, likex, will be understood as column vectors, the operators(·)T and (·)H will

denote vector or matrix transposition and vector or matrix conjugate transposition, respectively, and so,

XT would be a row vector. For two positive sequences{an} and{bn}, the notationsan
·
= bn andan ≈ bn

mean equivalence in the exponential order, i.e.,limn→∞
1
n ln (an/bn) = 0, and limn→∞ (an/bn) = 1,

respectively. For two sequences{an} and{bn}, the notationan ≍ bn means thatlimn→∞ (an − bn) = 0.

Finally, the indicator function of an eventA will be denoted by1A.

B. Model and Problem Formulation

As was mentioned earlier, we consider sparse signals, supported on a subspace with dimension smaller

thann. In the literature, it is often assumed that the input process X has i.i.d. components. In this work,

however, we generalize this assumption by considering the following stochastic model: Each component,

Xi, 1 ≤ i ≤ n, of X, is given byXi = SiUi where{Ui} are i.i.d. Gaussian random variables with zero

mean and varianceσ2, and{Si} are binary random variables taking values in{0, 1}, independently of

{Ui}. Now, instead of assuming that thepattern sequenceS = (S1, . . . , Sn) is i.i.d., we will assume a

more general distribution but we keep certain symmetry properties among the various possible sequences

{S}. In particular, we postulate that all sequences{S} with the same number of1’s are equally likely,

namely, all configurations with the same “magnetization”1

ms =
1

n

n
∑

i=1

Si (2)

have the same probability. This literally means that the measure P (S) depends onS only via ms.

Consider then the following form

P (S) = Cn · exp {nf (ms)} (3)

1The term “magnetization” is borrowed from the field of statistical mechanicsof spin array systems, in whichSi is taking

values in{−1, 1}. Nevertheless, for the sake of convince, we will use this term also in our problem.
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wheref (·) is a certain function independent ofn andCn is a normalization constant. Note that for the

popular i.i.d. assumption,f is a linear function. By using the method of types [27], we obtain

Cn =





∑

s∈{0,1}n

exp {nf (ms)}





−1

=





∑

m∈[0,1]

Ω (m) exp {nf (m)}





−1

·
= exp

{

−n ·max
m

{h2 (m) + f (m)}
}

= exp {−n [h2 (ma) + f (ma)]} (4)

whereΩ (m) designates the number of binaryn-vectors with magnetizationm, h2 (·) designates the

binary entropy function, andma is the maximizer ofh2 (m) + f (m) over [0, 1]. In other words,ma is

the a-priori magnetization, namely, the magnetization thatdominatesthe measureP (S).

Remark 1While the Gaussian assumption onUi’s is mandatory in our analysis, the assumption thatSi

is taking values in{0, 1}, can be generalized to any discrete probability measure. Such a generalization

has some practical motivations [28]. Also, as was reported in [29], statistical dependency in the pattern

sequence may lead to the appearance of phase transitions caused by the source, in addition to the phase

transition caused by the channel.

Remark 2In the i.i.d. case, eachXi is distributed according to following mixture distribution (a.k.a.

Bernoulli-Gaussian measure)

P (x) = (1− p) · δ (x) + p · PG (x) (5)

where δ (x) is the Dirac function,PG (x) is a Gaussian density function and0 ≤ p ≤ 1. Consider a

random vectorX in which each component isindependentlydrawn fromP (x). Then, by the law of large

numbers (LLN),1n ‖X‖0
P→ p, where‖X‖0 designates the number of non-zero elements of a vectorX.

Thus, it is clear that the weightp parametrizes the signal sparsity andPG is the prior distribution of the

non-zero entries.

Finally, we consider the following observation model

Y = HX +W , (6)
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whereH is ak×n random matrix, a.k.a. thesensing matrix, with i.i.d. entries of zero mean and variance

1/n. The components of the noiseW are i.i.d. Gaussian random variables with zero mean and variance

1/β. We denote byR
△
= k/n the measurement rate.

The MMSE ofX givenY andH is defined as follows

mmse(X | Y ,H)
△
= E ‖X − E {X | Y ,H}‖2 (7)

whereE {X | Y ,H} is the conditional expectation w.r.t. the measureP (· | Y ,H). Accordingly, we

define theasymptotic MMSEas

D (R, β)
△
= lim sup

n→∞

1

n
mmse(X | Y ,H) . (8)

As was mentioned earlier, our main goal is to rigorously derive computable, single-letter expression for

D (R, β).

III. M AIN RESULT

In this section, our main result is first presented and discussed. Then, we provide a numerical example

in order to illustrate the obtained theoretical results. Theproof of the main theorem is provided in Section

IV.

Before we state our main result, we define some auxiliary functions of a generic variablex ∈ [0, 1]:

b (x)
△
=

−
[

1 + βσ2 (R− x)
]

+

√

[1 + βσ2 (R− x)]2 + 4βσ2x

2βσ2x
, (9)

g (x)
△
= 1 + βσ2xb (x) , (10)

Ī (x)
△
=
R

x
ln g (x)− ln b (x)− βσ2Rb (x)

g (x)
, (11)

V (x)
△
=
β3σ4b2 (x)x2

2g2 (x)
, (12)

L (x)
△
=
β2σ2b (x)

2g2 (x)
, (13)

and

t (x)
△
= f (x)− x

2
Ī (x) + V (x)

[

maRσ
2 +

R

β

]

. (14)

Next, for x, y ∈ [0, 1] define the functions

ν1 (x, y)
△
=

βR

g (x)
− β2Rσ2b (x) y

g2 (x)
+

1

σ2
, (15)

ν2 (x)
△
=

βR

g (x)
+

1

σ2
, (16)
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and

α (x, y)
△
=

1

ν1 (x, y) ν2 (x)
. (17)

The asymptotic MMSE is given in the following theorem.

Theorem 1 (Asymptotic MMSE)Let Q be a random variable distributed according to

PQ (q) =
1−ma
√

2πPy

exp

(

− q2

2Py

)

+
ma

√

2π (Py +R2σ2)
exp

(

− q2

2 (Py +R2σ2)

)

(18)

wherema is defined as in (4) andPy
△
= maσ

2R+R/β. Let us define

K (Q,α1, α2)
△
=

1

2

[

1 + tanh

(

L (α1)Q
2 − α2

2

)]

(19)

whereα1 ∈ [0, 1] andα2 ∈ R. Let m◦ andγ◦ be solutions of the system of equations

γ◦
△
= −E

{

K (Q,m◦, γ◦)Q2 dL (m)

dm

∣

∣

∣

∣

m=m◦

}

− dt (m)

dm

∣

∣

∣

∣

m=m◦

, (20a)

m◦ △
= E {K (Q,m◦, γ◦)} (20b)

where in case of more than one solution,(m◦, γ◦) is the pair with the largest value of

t (m◦) +

(

m◦ − 1

2

)

γ◦ + E

{

1

2
L (m◦)Q2 + ln 2 cosh

(

L (m◦)Q2 − γ◦

2

)}

. (21)

Finally, define

ρ◦1
△
= E

{

K (Q,m◦, γ◦)Q2
}

, (22)

ρ◦2
△
= E

{

K2 (Q,m◦, γ◦)
}

, (23)

ρ◦3
△
= E

{

K2 (Q,m◦, γ◦)Q2
}

. (24)

Then, the limit supremum in (8) is, in fact, an ordinary limit,and the asymptotic MMSE is given by

D (R, β) = σ2m◦b (m◦) +
2b (m◦)

r3 (m◦)
β3σ2 [Py − ρ◦1] [m

◦α (m◦,m◦)− ρ◦2α (m◦, ρ◦2)]

+
β2

r2 (m◦)
[α (m◦,m◦) ρ◦1 − α (m◦, ρ◦2) ρ

◦
3] . (25)

In the following, we explain the above result qualitatively, and in particular, the various quantities that

have been defined in Theorem 1. The first important quantity ism◦, which is obtained as the solution

of the system of equations in (20), and which we will refer to as theposterior magnetization. We use

the term “posterior” in order to distinguish it from the a-priori magnetizationma; while ma is the

magnetization that dominates the probability distribution function of the source, before observingY , the
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posterior magnetization is the one that dominates the posterior distribution, namely, after observing the

measurements. It is instructive to look at another representation ofm◦, which appears in the analysis,

and is given as follows

m◦ =
1

n

n
∑

i=1

1

2

[

1 + tanh

(

L (m◦)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

(26)

wherehi is the ith column ofH. Note that the summand of the above sum is bounded between zero

and one, and hence, so ism◦, which makes sense. Intuitively speaking, the first term in argument of

the hyperbolic tangent can be interpreted as a projection ofthe measurements on the sensing matrix

columns, andγ◦ serves as a correction/alignment term so that the overall summation gives the “correct”

magnetization (depending on the SNR and the measurement rate). The role of the hyperbolic tangent

becomes clearer when considering the low noise case. For large SNR, the hyperbolic tangent behaves

very sharply; it converges to the sign function. When the sign function value equals one, the summand in

(26) also equals one, which means thatSi = 1. On the other hand, when the sign function value equals

−1, the summand equals zero, which means thatSi = 0. So, for large SNR the posterior magnetization

simply equals to the a-priori magnetization. Regarding theMMSE itself, it can be seen that in this case

K (·) = K2 (·), and thusρ◦1 = ρ◦3 andρ◦2 = m◦. Therefore, according to (25), we see that we are only

left with the first term on the right hand side, which for largeβ behaves, forR > m◦, like

σ2mab (ma) ≈
σ2ma

β (R−ma)
. (27)

This result was already noticed in [11]2 for i.i.d. sources under whichma = p.

Corollary 1 (“Infinite” SNR) In the low noise regime,β → ∞, the asymptotic MMSE is given by

lim
β→∞

[β ·D (R, β)] = σ2
ma

R−ma
, (28)

for R > ma.

The solution to (21) is known as acritical point, beyond which the solution to (20) ceases to be the

dominant posterior magnetization, and accordingly, it must jump elsewhere. Furthermore, as we vary one

of the other parameters of our model (including the source model), it might happen that the dominant

magnetization jumps from one value to another.

2In [10, 30], it was stated that (27) is proved rigorously in [11] for i.i.d. sources. However, we suspect that this claim is

not true, due to the fact that in [11] the authors use the replica symmetry assumption in order to obtain this result.
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It is interesting to note that there are essentially two origins for possible phase transitions in our model:

The first one is the channelH that induces “long-range interactions”3. The second is the source, which

may have possible dependency (or interaction) between its various components (see (3)). Accordingly,

in [29, Example E] the problem of estimation of sparse signals,assuming thatH = I, was considered.

It was shown that, despite the fact that there are no long-range interactions induced by the channel, still

there are phase transitions if the source is not i.i.d. Indeed, in the i.i.d. case, the problem is analogous

to a system of non-interacting particles, where of course, no phase transitions can exist.

In the following, we consider the special case wheref (m) is quadratic4, i.e., f (m) = am+ bm2/2,

and demonstrate that the dominant posterior magnetizationmight jump from one value to another. Note

that this example was also considered in [29, Example E]. For simplicity of the demonstration, assume

that σ2 and β are so small such that the random fluctuation in (19) are negligible. Accordingly, using

(20), we may write

m◦ ≈ 1

2

[

1 + tanh

(

1

2

dt (m)

dm

∣

∣

∣

∣

m=m◦

)]

(29)

≈ 1

2

[

1 + tanh

(

bm◦ + a

2

)]

, (30)

which can be regarded as the same equation of thespin-magnetization (namely, after transformingSi’s

into spins,µi ∈ {−1, 1}, using the transformationµi = 1 − 2Si) as in the Curie-Weiss model of spin

arrays (see e.g., [31, Sect. 4.2]). For example, fora = 0 and b > 1, this equation has two symmetric

non-zero solutions±m0, which both dominate the partition function. If0 < a ≪ 1, it is evident that

the symmetry is broken, and there is only one dominant solution which is aboutm0sgn(m0). Further

discussion on the behavior of the above saddle point equation, and various interesting approximations of

the dominant magnetization can be found in [29, 31, 32].

It is tempting to compare Theorem 1 with the prediction of the replica method [12]. Unfortunately,

we were unable to show analytically that the two results are in agreement, despite the fact that there

are some similarities. Nevertheless, numerical calculations suggest that this is the case. Fig. 2 shows the

asymptotic MMSE obtained using Theorem 1 and using the replicamethod, as a function ofβ, assuming

an i.i.d. source with sparsity ratep = 0.1, and measurement rateR = 0.3. It can be seen that both results

3In the considered settings, the posterior, is proportional toexp
{

−β ‖y −HX‖2 /2
}

, and after expansion of the norm,

the exponent includes an “external-field term”, proportional toyTHx, and a “pairwise spin-spin interaction term”, proportional

to ‖HX‖2. These terms contain linear subset of components (or “particles”) ofX, which are known as long-range interactions.

4As was noted in [29], quadratic model (similar to therandom-field Curie-Weiss modelof spin systems (see e.g., [31, Sect.

4.2])) can be thought of as consisting of the first two terms of the Taylorseries expansion of a smooth function.
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Fig. 2. Comparison of the asymptotic MMSE using Theorem 1 and the replicamethod as a function ofβ, for sparsity rate

p = 0.1, and measurement rateR = 0.3.

give the same MMSE. Table I shows the relative error, defined as|mmseour − mmsereplica| /mmseour, as

a function ofβ. More enlightening numerical examples can be found in [10, 30, 13, 14].

IV. PROOF

A. Proof Outline

In this subsection, before getting deep into the proof of Theorem 1, we discuss the techniques and the

main steps which will be used in the proof. The analysis is essentially composed of three main steps. The

first step is finding a generic expression of the MMSE. This is done byusing a direct relationship between

the MMSE and some partition function, which can be found in Lemma 1. This expression contains terms

that can be asymptotically assessed using the well-known Stieltjes and Shannon transforms. In the second

step (appearing in Appendix B), we derive the asymptotic behavior of these functions (which are extremely
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TABLE I

COMPARISONBETWEEN THEOREM 1 AND THE REPLICA METHOD

10 log β Relative Error

0 5.11 · 10−3

10 8.09 · 10−3

15 6.12 · 10−3

20 6.51 · 10−3

25 6.03 · 10−3

30 4.65 · 10−3

35 4.49 · 10−3

40 4.59 · 10−3

complex to analyze for finiten). In other words, we show that these functions converge, with probability

tending to one, asn → ∞, to some random functions that are much easier to work with. This is done

by invoking recent powerful methods from RMT, such as, the Bai-Silverstein method [33]. The resulting

functions are, in general, random, due to the fact that they depend on the observationsy and the sensing

matrix H. Accordingly, we show that for the calculation of the asymptotic MMSE, it is sufficient to

take into account “only” combinations of typical vectors{y} and matrices{H}, where “typicality” is

defined in accordance to the above-mentioned asymptotic results. Therefore, at the end of the second

step, we obtain an approximation (which is exact asn → ∞) for the MMSE. Finally, in the last step,

using this approximation and large deviations theory, we obtain the result stated in Theorem 1 (this step

can be found in Appendix C).

B. Definitions

An important function, which will be pivotal to our derivation, is thepartition function, which is

defined as follows.

Definition 1 (Partition Function)Let X andY be random vectors with joint density functionP (X,Y ).

Let λ = (λ1, . . . , λn)
T be a deterministic column vector ofn real-valued parameters. The partition

function w.r.t.P (X,Y ), denoted byZ (Y ;λ), is defined as

Z (Y ;λ)
△
=

∫

Xn

dx P (x,Y ) exp
{

λTx
}

, (31)

December 10, 2013 DRAFT



13

where it is assumed that the integral converges uniformly atleast in some neighborhood ofλ = 0 5.

The motivation of the above definition is the following simple result [23].

Lemma 1 (MMSE-partition function relation)Let Z (Y ;λ) be defined as in (31). Then, the following

relation betweenZ (Y ;λ) and the MMSE ofX givenY , holds true

mmse(X | Y )
△
=

n
∑

i=1

E

{

(Xi − E {Xi | Y })2
}

=

n
∑

i=1

[

E
{

X2
i

}

− E

{

[

∂ lnZ (Y ;λ)

∂λi

]2
∣

∣

∣

∣

∣

λ=0

}]

(32)

=

n
∑

i=1

E

{

∂2 lnZ (Y ;λ)

∂λ2i

∣

∣

∣

∣

λ=0

}

. (33)

Proof: Readily follows by taking the gradient of (31) w.r.t.λ, and evaluating the results atλ = 0.

Our analysis will rely heavily on methods and results from RMT. Two efficient tools which are

commonly being used in RMT are theStieltjesandShannontransforms, which are defined as follows.

Definition 2 (Stieltjes Transform)Let µ be a finite nonnegative measure with support supp(µ) ⊂ R, i.e.,

µ (R) <∞. The Stieltjes transformSµ (z) of µ is defined forz ∈ C− supp(µ) as

Sµ (z) =

∫

R

dµ (λ)

λ− z
.

Let FA (·) be the empirical spectral distribution (ESD) of the eigenvalues ofA ∈ RN×N , namely,

FA (x)
△
=

1

N
{# of eigenvalues ofA ≤ x} . (34)

The Stieltjes transform ofFA (x) is defined as

SA (z) =

∫

R+

dFA (x)

x− z
=

1

N
tr (A− zI)−1 (35)

for z ∈ C \ R+.

The last equality readily follows by using the spectral decomposition ofA, and the fact that the trace

of a matrix equals to the sum of its eigenvalues. For brevity,we will refer to SA (z) as the Stieltjes

transform ofA, rather than the Stieltjes transform ofFA (x).

5In case that this assumption does not hold, one can instead, parametrizeeach componentλi of λ as a purely imaginary

numberλi = jωi wherei =
√
−1, similarly to the definition of the characteristics function.
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Definition 3 (Shannon Transform)The Shannon of transform of a non-negative definite matrixA ∈
CN×N is defined as

νA (z) =
1

N
ln det

(

1

z
A+ I

)

, (36)

for z > 0.

The relation between our partition function and the Stieltjesand Shannon transforms will become clear

in the sequel. Finally, we define the notion of deterministic equivalence.

Definition 4 (Deterministic Equivalence)Let (Ω,F , P ) be a probability space and let{fn} be a series

of measurable complex-valued functions,fn : Ω × C → C. Let {gn} be a series of complex-valued

functions,gn : C → C. Then,{gn} is said to be a deterministic equivalent of{fn} on D ⊂ C, if there

exists a setA ⊂ Ω with P (A) = 1, such that

fn (ω, z)− gn (z) → 0 (37)

asn→ ∞ for all ω ∈ A and for allz ∈ D.

Loosely speaking,{gn} is a deterministic equivalent of a sequence of random variables {fn} if gn (z)

approximatesfn (ω, z) arbitrarily closely asn grows, for everyz ∈ D and almost everyω ∈ A.

C. Auxiliary Results

In our derivations, the following asymptotic results will be used.

Lemma 2Let (Ω,F , P ) be a probability space, and consider a sequence of random variables
{

X
(n)
i

}n

i=1
.

Assume that

max
1≤i≤n

{

E

∣

∣

∣
X

(n)
i

∣

∣

∣

p}

≤ C

n1+ν
(38)

whereC, ν > 0, andp ≥ 1 are some fixed constants. Then,

lim
n→∞

P

({

ω ∈ Ω : sup
m≥n

1

m

m
∑

i=1

∣

∣

∣
X

(m)
i (ω)

∣

∣

∣
≥ ǫ

})

= 0 (39)

for all ǫ > 0, namely,
(

1
n

∑n
i=1

∣

∣

∣
X

(n)
i

∣

∣

∣

)

converges to zero almost sure (a.s.) asn→ ∞.

Proof: Using Chebyshev’s inequality and then Jensen’s inequality, for a givenδ > 0, we have that

P

{

1

n

n
∑

i=1

∣

∣

∣
X

(n)
i

∣

∣

∣
> δ

}

≤ 1

δp
E

{(

1

n

n
∑

i=1

∣

∣

∣
X

(n)
i

∣

∣

∣

)p}

(40)
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≤ 1

nδp

n
∑

i=1

E

∣

∣

∣
X

(n)
i

∣

∣

∣

p
(41)

≤ 1

δp
max
1≤i≤n

{

E

∣

∣

∣
X

(n)
i

∣

∣

∣

p}

(42)

≤ C

δpn1+ν
(43)

where the last inequality follows by (38). With (43), the desired result follows from common arguments

that rely on the Borel-Cantelli lemma. As this argument willbe used repeatedly in our analysis, for

completeness we explicitly present it here. Indeed, as the right-hand side (r.h.s.) of (43) is summable, by

the Borel-Cantelli lemma, we have that

P

({

ω ∈ Ω :
1

n

n
∑

i=1

∣

∣

∣
X

(n)
i (ω)

∣

∣

∣
≥ δ infinitely often

})

= 0. (44)

But sinceδ > 0 is arbitrary, the above holds for all rationalδ > 0. Since any countable union of sets of

zero probability is still a set of zero probability, we conclude that

P





⋃

q∈N

{

ω ∈ Ω :
1

n

n
∑

i=1

∣

∣

∣
X

(n)
i (ω)

∣

∣

∣
≥ 1

q
infinitely often

}



 = 0. (45)

Remark 3Note that the random variables
{

X
(n)
i

}n

i=1
may depend on each other, and the result will be

still true.

The following lemmas deal with the asymptotic behavior of scalar functions of random matrices, in

the form of Stieltjes and Shannon transforms, defined earlier. The proofs of the following results are

based on a powerful approach by Bai and Silverstein [33], a.k.a. the Stieltjes transform method in the

spectral analysis of large-dimensional random matrices.

Lemma 3 ([34]) Let Xm ∈ Cm×l be a sequence of random matrices with i.i.d. entries,

E |Xi,j − EXi,j |2 = 1/l, and letGl = diag (g1, . . . , gl) ∈ Rl×l be a sequence of deterministic matrices,

satisfyinggj ≥ 0 for all 1 ≤ j ≤ l and supj gj <∞. DenoteBm = XmGlX
H
m and letl,m→ ∞ with

fixed 0 < c
△
= m/l <∞. Then, for everyγ > 0

1

m
ln det

(

1

γ
Bm + Im

)

− η (γ) → 0, a.s. (46)

where

η (γ)
△
=

1

m

l
∑

j=1

ln
(

1 + cgjS̄ (−γ)
)

− ln
(

γS̄ (−γ)
)

− 1

l

l
∑

j=1

gjS̄ (−γ)
1 + cgjS̄ (−γ) (47)
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and S̄ (z) is defined by the unique positive solution of the equation

S̄ (z) =





1

l

l
∑

j=1

gj
1 + cgjS̄ (z)

− z





−1

. (48)

The next lemma deals with the asymptotic behavior of the Stieltjes transform.

Lemma 4 ([35]) Let Xm, Gl, andBm be defined as in Lemma 3. LetΘm ∈ Cm×m be a deterministic

sequence of matrices having uniformly bounded spectral norms (with respect tom)6. Then, asm, l → ∞
we a.s. have that

1

m
tr
(

Θm (Bm − zIm)−1
)

− 1

m
tr (Θm) S̄ (z) → 0, for all z ∈ C \ R+. (49)

Remark 4In [36], the authors propose a somewhat more restrictive (but useful) version of Lemma 4.

Assuming thatΘm has a uniformly bounded Frobenius norm (for allm), they show similarly that

∣

∣

∣
tr
(

Θm (Bm − zIm)−1
)

− tr (Θm) S̄ (z)
∣

∣

∣
→ 0, for z ∈ C \ R+. (50)

a.s. asm, l → ∞.

In order to apply the above results in our analysis, a somewhat more general version will be needed.

First, the matrixΘm in the Lemma 4 is assumed to be deterministic and bounded (in the spectral or

Frobenius senses). In our case, however, we will need to deal with a random matrixΘm which is

independent of the other random variables. The following proposition accounts for this problem. The

proof is relegated to Appendix A.

Proposition 1 The assertion of Lemma 4 holds true also for a randomΘm ∈ Cm×m, which is independent

of Xm, and has a uniformly bounded spectral norm (with respect tom) in the a.s. sense.

Remark 5In Proposition 1, it is assumed thatΘm has uniformly bounded spectral norm (uniformly in

m) in the a.s. sense, namely,

lim sup
m→∞

‖Θm‖ <∞ (51)

with probability one. In other words, for everyǫ > 0, there exists some positiveM0 such that for all

m > M0 we have that‖Θm‖ < D + ǫ for some finite constantD.

6Actually we only need to demand the distributionFΘm to be tight, namely, for allǫ > 0 there existsM > 0 such that

FΘm (M) > 1− ǫ for all m.
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The second issue is regarding the assumption that the ratioc = m/l, in the previous lemmas, tends

to a strictly positive limit. In our case, however, this limit may be zero. Fortunately, it turns out that

the previous results still hold true also in this case, namely, a continuity property w.r.t.c. Technically

speaking, this fact can be shown by repeating the original proofs of the above results and noticing that

the positivity assumption is superfluous. In case thatm is fixed while l goes to infinity (and thenc

vanishes), using the strong law of large numbers (SLLN), it is easy to see that the previous lemmas

indeed hold true. Also, ifm≪
√
l, then a simple approach is to show that the diagonal elementsof the

matrix XmXT
m concentrate around a fixed value, and that the row sum of off-diagonal terms converges

to zero. Then using Gershgorin’s circle theorem [37] one obtains the deterministic equivalent.

In the following subsection, we prove Theorem 1. The proof contains several tedious calculations and

lemmas, which will relegated to appendices for the sake of convenience.

D. Main Steps in the Derivation of Theorem 1

Let s andr be two binary sequences of lengthn, and letS △
= spt(s) andR △

= spt(r) designate their

respectivegeneralized supports, defined as spt(s)
△
= {i ∈ N : Si 6= 0}, and similarly forr. Also, define

Qs∩r
△
=

∑

j∈S∩R

ems
j
ẽTmr

j
(52)

whereems
j

and ẽmr
j

denote unit vectors of size|S| × 17 and |R| × 1, having “1” at the indexesms
j

△
=

∑j
l=1 sl andmr

j
△
=
∑j

l=1 rl, respectively.

Example 1Let n = 6, and considers = (1, 1, 0, 0, 1, 1) andr = (0, 1, 1, 0, 0, 1). Then,S = {1, 2, 5, 6},

R = {2, 3, 6}, and thusS ∩ R = {2, 6}. Whencems
2 = 2, mr

2 = 1, m6
1 = 4, andmr

6 = 3. Accordingly,

the matrixQs∩r is given by

QT
s∩r =

(

e2ẽ
T
1 + e4ẽ

T
3

)T
=













0 1 0 0

0 0 0 0

0 0 0 1













.

For a vectorv and a matrixV , we definevs
△
= v|S andV s

△
= V |S , which is the restriction of the

entries ofv and the columns ofV on the supportS, respectively. Finally, for brevity, we define the

7For a setA, we use|A| to designate its cardinality.
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following quantities

Hs △
=

(

βHT
sHs +

1

σ2
Is

)−1

, (53)

Hs
i

△
=

(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

, (54)

Hs
i,j

△
=

(

β
[

HT
sHs

]

i,j
+

1

σ2
Is

)−1

, (55)

where
[

HT
sHs

]

i

△
= HT

sHs − ziz
T
i , and

[

HT
sHs

]

i,j

△
=
[

HT
sHs

]

i
− zjz

T
j , in which zi is the ith row

of theHs.

In the following, we first derive a generic expression for the MMSE. Under the model described in

Section II, one have that

P (y | H,x) =
1

(2π/β)k/2
exp

(

−β
2
‖y −Hx‖2

)

(56)

and that

P (x | s) =
∑

s∈{0,1}n

P (s)
∏

i: si=0

δ (xi)
∏

i: si=1

1√
2πσ2

e−
1

2σ2 x
2
i . (57)

Therefore, the partition function (31) is given by

Z (y,H;λ) =
∑

s∈{0,1}n

P (s)

∫

Rn

exp
(

−β ‖y −Hx‖2 /2 + λTx
)

(2π/β)k/2

∏

i: si=0

δ (xi)
∏

i: si=1

1√
2πσ2

e−
1

2σ2 x
2
idx.

Now, note that

‖y −Hx‖2
∏

si=0

δ (xi) =



‖y‖2 − 2
∑

i∈S

hT
i yxi +

∑

i,j∈S

xixjh
T
i hj





∏

si=0

δ (xi) (58)

=
[

‖y‖2 − 2xT
sH

T
sy + xT

sH
T
sHsxs

]

∏

si=0

δ (xi) (59)

wherehi denotes theith column ofH, and similarly,

λTx
∏

si=0

δ (xi) =

(

∑

i∈S

xiλi

)

∏

si=0

δ (xi) (60)

= λT
sxs

∏

si=0

δ (xi) (61)

Using the fact thatδ (·) is a measure onR, one may conclude that

Z (y,H;λ) =
∑

s∈{0,1}n

P (s)
1

(2π/β)k/2
1

(√
2πσ2

)|S|
exp

(

−β
2
‖y‖2

)
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×
∫

R|S|

exp

(

−xT
s

(

β

2
HT

sHs +
1

2σ2
Is

)

xs + xT
s

(

λs + βHT
sy
)

)

dxs (62)

=
∑

s∈{0,1}n

P (s) exp
(

−β
2 ‖y‖

2
)

(2π/β)k/2
(√

2πσ2
)|S|

det1/2
[

1
2π

(

βHT
sHs +

1
σ2 Is

)]

× exp

{

1

2

(

βHT
sy + λs

)T
(

βHT
sHs +

1

σ2
Is

)−1
(

βHT
sy + λs

)

}

(63)

= C ·
∑

s∈{0,1}n

P (s)
exp

{

1
2

(

βHT
sy + λs

)T
Hs

(

βHT
sy + λs

)

}

√

det
(

βσ2HT
sHs + Is

)

(64)

whereC is independent ofλ, but depends onβ andy. We are now in a position to find a preliminary

expression of the MMSE, using Lemma 1. Let

ξ (y,Hs,λs)
△
=exp

{

1

2

(

βHT
sy + λs

)T
Hs

(

βHT
sy + λs

)

− 1

2
ln det

(

βσ2HT
sHs + Is

)

}

, (65)

and therefore

Z (y,H;λ) = C ·
∑

s∈{0,1}n

P (s) ξ (y,Hs,λs) . (66)

Now,

∂

∂λi

{

1

2

(

βHT
sy + λs

)T
Hs

(

βHT
sy + λs

)

}

= eTi H
s
(

βHT
sy + λs

)

1i∈S , (67)

and thus

∂

∂λi
ξ (y,Hs,λs) = eTi H

s
(

βHT
sy + λs

)

1i∈Sξ (y,Hs,λs) . (68)

Recall that for a positive, twice differential functionf ,

d

dx
ln f (x) =

1

f (x)

(

d

dx
f (x)

)

(69)

d2

dx2
ln f (x) =

1

f (x)

(

d2

dx2
f (x)

)

− 1

[f (x)]2

(

d

dx
f (x)

)2

. (70)

Thus, using (66) and (68), we have that (for1 ≤ i ≤ n),

∂

∂λi
lnZ (y,H;λ) =

∑

s∈{0,1}n P (s) eTi H
s
(

βHT
sy + λs

)

1i∈Sξ (y,Hs,λs)

Z (y,H;λ)
. (71)

Let us calculate the second derivative. First, using (70) we may write

∂2

∂λ2i
lnZ (y,H;λ) =

∂
∂λi

(

∑

s∈{0,1}n P (s) eTi H
s
(

βHT
sy + λs

)

1i∈Sξ (y,Hs,λs)
)

Z (y,H;λ)

−

(

∑

s∈{0,1}n P (s) eTi H
s
(

βHT
sy + λs

)

1i∈Sξ (y,Hs,λs)
)2

[Z (y,H;λ)]2
. (72)
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We have that

∂

∂λi

{

eTi H
s
(

βHT
sy + λs

)

1i∈Sξ (y,Hs,λs)
}

= eTi H
sei1i∈Sξ (y,Hs,λs)

+ eTi H
s
(

βHT
sy + λs

)

eTi H
s
(

βHT
sy + λs

)

1i∈Sξ (y,Hs,λs) (73)

= eTi H
sei1i∈Sξ (y,Hs,λs) + eTi H

s
(

βHT
sy + λs

) (

βHT
sy + λs

)T
Hsei1i∈Sξ (y,Hs,λs) .

(74)

Let ξ (y,Hs)
△
= ξ (y,Hs,0). Hence,

∂

∂λi

{

eTi H
s
(

βHT
sy + λs

)

1i∈Sξ (y,Hs,λs)
}

∣

∣

∣

∣

λ=0

= eTi H
sei1i∈Sξ (y,Hs)

+ eTi H
sβ2HT

syy
THsH

sei1i∈Sξ (y,Hs) . (75)

Thus, substituting the last result in (72), evaluated atλ = 0, we obtain

∂2

∂λ2i
lnZ (y,H;λ)

∣

∣

∣

∣

λ=0

=

∑

s∈{0,1}n P (s) eTi H
sei1i∈Sξ (y,Hs)

∑

s∈{0,1}n P (s) ξ (y,Hs)

+

∑

s∈{0,1}n P (s) eTi H
sβ2HT

syy
THsH

sei1i∈Sξ (y,Hs)
∑

s∈{0,1}n P (s) ξ (y,Hs)

−

[

∑

s∈{0,1}n P (s) eTi H
sβHT

sy1i∈Sξ (y,Hs)
]2

[

∑

s∈{0,1}n P (s) ξ (y,Hs)
]2 . (76)

By Lemma 1, in order to obtain the MMSE, we need to sum the above equations over1 ≤ i ≤ n. Recall

that for ann× n matrix A, the trace operator can be represented astr (A) =
∑n

i=1 ê
T
i Aêi whereêi is

the ith column of then× n identity matrix. Thus, we have that

n
∑

i=1

eTi H
sei1i∈S = trHs (77)

n
∑

i=1

eTi H
sβ2HT

syy
THsH

sei1i∈S =

n
∑

i=1

tr
(

eTi H
sβ2HT

syy
THsH

sei1i∈S

)

(78)

= tr

(

Hsβ2HT
syy

THsH
s

n
∑

i=1

eie
T
i 1i∈S

)

(79)

= β2yTHsH
sHsHT

sy. (80)

Accordingly, let us define

J1 (y,Hs)
△
=

1

n
trHs +

β2

n
yTHsH

sHsHT
sy. (81)
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Now, the summation (normalized byn) over the first two terms in the r.h.s. of (76) gives

1
∑

s∈{0,1}n P (s) ξ (y,Hs)

∑

s∈{0,1}n

P (s) J1 (y,Hs) ξ (y,Hs) . (82)

Regarding the last term in the r.h.s. of (76), we have




∑

s∈{0,1}n

P (s) eTi H
sβHT

sy1i∈Sξ (y,Hs)





2

=
∑

s∈{0,1}n

∑

r∈{0,1}n

P (s)P (r) eTi H
sβ2HT

syy
THrH

rẽi1i∈S∩Rξ (y,Hs) ξ (y,Hr) . (83)

Note thats andr may not have the same support, and in particular, they may nothave even the same

support size. This explains the appearance ofẽi which is of size|R| × 1. Now, we have that
n
∑

i=1

eTi H
sβ2HT

syy
THrH

rẽi1i∈S∩R =

n
∑

i=1

tr
(

eTi H
sβ2HT

syy
THrH

rẽi1i∈S∩R

)

(84)

= tr

(

Hsβ2HT
syy

THrH
r

n
∑

i=1

ẽie
T
i 1i∈S∩R

)

(85)

= β2yTHsH
sQs∩rH

rHT
ry (86)

where we have used the fact that

QT
s∩r =

n
∑

i=1

ẽie
T
i 1i∈S∩R. (87)

Let us define

J2 (y,Hs,Hr)
△
=
β2

n
yTHsH

sQs∩rH
rHT

ry. (88)

Therefore, the summation (normalized byn) of the third term over1 ≤ i ≤ n reads

1
(

∑

s∈{0,1}n P (s) ξ (y,Hs)
)2

∑

s∈{0,1}n

∑

r∈{0,1}n

P (s)P (r) J2 (y,Hs,Hr) ξ (y,Hs) ξ (y,Hr) . (89)

Finally, the difference between (82) and (89) gives the normalized MMSE, which can be represented as

mmse(X | Y ,H)

n
= E

{

Eµs
[J1 (Y ,Hs)]− Eµs×r

[J2 (Y ,Hs,Hr)]
}

(90)

whereEµs
denotes the expectation taken w.r.t. the discrete measure

µ (s | Y ,H)
△
=

P (s) ξ (Y ,Hs)
∑

u∈{0,1}n P (u) ξ (Y ,Hu)
, (91)

andEµs×r
denotes the expectation taken w.r.t. the discrete product measure

µ (s | Y ,H) · µ (r | Y ,H)
△
=

P (s)P (r) ξ (Y ,Hs) ξ (Y ,Hr)
[

∑

u∈{0,1}n P (u) ξ (Y ,Hu)
]2 . (92)
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At this stage, the relation to the Stieltjes and Shannon transforms is clear: The structure of the various

terms inξ, J1, J2 suggest an application of an extended version of the Stieltjes and Shannon transforms

of the matrixHT
sHs.

The following proposition is essentially the core of our analysis; it provides approximations (which are

asymptotically exact in the a.s. sense) ofξ, J1, J2. Before stating the proposition, we define the following

terms. Letms
△
= 1

n

∑n
i=1 si, mr

△
= 1

n

∑n
i=1 ri, andms,r

△
= 1

n

∑n
i=1 siri, and recall the auxiliary variables

defined in (9)-(17). The following results are proved in Appendix B.

Proposition 2 (Asymptotic approximations)Under the assumptions and definition presented earlier, the

following relations hold in the a.s. sense:

lim
n→∞

1

n
tr

(

βHT
sHs +

1

σ2
Is

)−1

= σ2msb (ms) , (93)

lim
n→∞

1

n
ln det

(

βσ2HT
sHs + Is

)

= msĪ (ms) , (94)

lim
n→∞

1

n
yTHsH

sHT
sy − fn = 0, (95)

and

lim
n→∞

1

n
yTHsH

sQs∩rH
rHT

ry − qn = 0, (96)

where

fn
△
= β

σ4b2 (ms)m
2
s

g2 (ms)

‖y‖2
n

+
σ2b (ms)

g2 (ms)

∥

∥HT
sy
∥

∥

2

n
, (97)

and (with some abuse of notationsα = α (ms,mr,ms,r))

qn
△
=

α

g (ms) g (mr)

yTHsQs∩rH
T
ry

n

− α

g (ms) g (mr)
βσ2ms,r

(

b (mr)

g (mr)

∥

∥HT
ry
∥

∥

2

n
+
b (ms)

g (ms)

∥

∥HT
sy
∥

∥

2

n

)

+
α

g (ms) g (mr)
βσ2ms,r

(

b (mr)

g (mr)
mr +

b (ms)

g (ms)
ms

) ‖y‖2
n

. (98)

The next step is to apply Proposition 2 to the obtained MMSE. The main observation here is as follows:

Let ǫ > 0 and define

T s,r
ǫ

△
=

{

y ∈ R
k×1,H ∈ R

k×n :

∣

∣

∣

∣

1

n
trHs − σ2msb (ms)

∣

∣

∣

∣

< ǫ,

∣

∣

∣

∣

1

n
yTHsH

sHT
sy − fn

∣

∣

∣

∣

< ǫ,

∣

∣

∣

∣

1

n
yTHsH

sQs∩rH
rHT

ry − qn

∣

∣

∣

∣

< ǫ,

∣

∣

∣

∣

1

n
ln det

(

βσ2HT
sHs + Is

)

−msĪ (ms)

∣

∣

∣

∣

< ǫ

}

(99)
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and

Tǫ △
=

⋃

s,r∈{0,1}n×{0,1}n

T s,r
ǫ . (100)

By Proposition 2, this set has probability tending to one ask, n → ∞. Accordingly, Tǫ is the set of

“typical” {y,H}-pairs of observation vectors and sensing matrices. The mainpurpose is to calculate the

following quantity

E

{

1

n

n
∑

i=1

{

X2
i − (E {Xi | y,H})2

}

}

=E

{

1

n

n
∑

i=1

{

X2
i − (E {Xi | y,H})2

}

1Tǫ

}

+ E

{

1

n

n
∑

i=1

{

X2
i − (E {Xi | y,H})2

}

1T c
ǫ

}

(101)

where T c
ǫ is the complementary (w.r.t.Rk × Rk×n) of Tǫ. However, by using the Cauchy-Schwartz

inequality we have that
∣

∣

∣

∣

∣

E

{

1

n

n
∑

i=1

{

X2
i − (E {Xi | y,H})2

}

1T c
ǫ

}∣

∣

∣

∣

∣

2

≤
∣

∣

∣

∣

E

{

1

n
‖X‖2 1T c

ǫ

}∣

∣

∣

∣

2

(102)

≤ P {T c
ǫ }E

{

1

n2
‖X‖4

}

, (103)

but, sinceE
{

1
n2 ‖X‖4

}

is bounded (for anyn), andP {T c
ǫ } → 0 asn → ∞, it follows that the last

expectation asymptotically vanishes. Thus, for the asymptotic calculation of the MMSE, only the first

term at the r.h.s. of (101) prevails.

Note that

yTHsQs∩rH
T
ry =

n
∑

i=1

∣

∣hT
i y
∣

∣

2
siri, (104)

∥

∥HT
sy
∥

∥

2
=

n
∑

i=1

∣

∣hT
i y
∣

∣

2
si, (105)

and

∥

∥HT
ry
∥

∥

2
=

n
∑

i=1

∣

∣hT
i y
∣

∣

2
ri. (106)

Using Proposition 2 (along with the previous typicality considerations), and large deviations theory, the

asymptotic MMSE given in Theorem 1 is derived in Appendix C.

V. CONCLUSION

In this paper, we considered the calculation of the asymptotic MMSE calculation under sparse

representation modeling. As opposed to the popular worst-case approach, we adopt a statistical framework
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for compressed sensing by modeling the input signal as a random process rather than as an individual

sequence. In contrast to previous derivations, which were based on the (non-rigorous) replica method, the

analysis carried out in this paper is rigorous. The derivation builds upon a simple relation between the

MMSE and a certain function, which can be viewed as a partitionfunction, and hence can be analyzed

using methods of statistical mechanics. It was shown that the MMSE can be represented in a special form

that contains functions of the Stieltjes and Shannon transforms. This observation allowed us to invoke

some powerful results from RMT concerning the asymptotic behavior of these transforms. Although our

asymptotic MMSE formula seems to be different from the one that is obtained by the replica method,

numerical calculations suggest that they are actually the same. This supports the results of the replica

method.

Finally, we believe that the tools developed in this paper, for handling the MMSE, can be used in

order to obtain the MMSE estimator itself. An example for suchcalculation can be found in a recent

paper [26], where the MMSE (or, more generally, the mismatched MSE), along with the estimator itself,

were derived for a model of a codeword (from a randomly selected code), corrupted by a Gaussian

vector channel. Also, we believe that our results, can be generalized to the case of mismatch, namely,

mismatched compressed sensing. An example for an interesting mismatch model could be a channel

mismatch, namely, the receiver has a wrong assumption on thechannelH, which can be modeled as

Ĥ = τH +
√
1− τ2Q, whereQ is some random matrix, independent ofH, and0 ≤ τ ≤ 1 quantifies

the proximity betweenĤ andH. Another mismatch configuration could be noise-variance mismatch,

namely, the receiver has wrong knowledge about the noise variance. It is then interesting to investigate

the resulted MSE in these cases, and in particular, to check whether there are new phase transitions

caused by the mismatch.

APPENDIX A

Proof of Proposition 1: Let X1,X2, . . . be a sequence of i.i.d. random matrices (the subscript

index designates the “left” matrix dimensionk) defined over the probability space(X ,FX , µX ), and

let Θ1,Θ2, . . . be a sequence of random matrices defined over the probability space (D,FD, µD).

Now, let (X ×D,FX ×FD, µX×D) be the respective product space. Obviously, sinceQm
△
=

Θm (Bm − zIm)−1 is determined byXm andΘm, we can write every possible sequenceQ1,Q2, . . . =

Q1 (x, d) ,Q2 (x, d) , . . . for some(x, d) ∈ X ×D. Accordingly, we need to prove that the set

A △
= {(x, d) ∈ X ×D : Lemma 4 holds true}
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has probability one in our product space. From Tonelli’s theorem [38],

P {A} =

∫

A
dµX×D (x, d) (A.1)

=

∫

X×D
1A (x, d) dµX×D (x, d) (A.2)

=

∫

D

[∫

X
1A (x, d) dµX (x)

]

dµD (d) . (A.3)

Now, let d0 ∈ D be a realization ofΘm, namely, a sequence of matricesΘ1 (d0) ,Θ2 (d0) , . . . such

that Θm maintains the boundedness condition (or distribution tightness). Accordingly, for thisd0 we

can apply Lemma 4. Namely, the set of realizationsx such that(x, d0) ∈ A has probability one, and

therefore, for thisd0 we have that
∫

X
1A (x, d) dµX (x) = 1.

Let B ⊂ D be the set of all realizationsd such thatΘm maintains the boundedness condition. Then,

P {A} =

∫

B
dµD (d) +

∫

D\B

[∫

X
1A (x, d) dµX (x)

]

dµD (d) (A.4)

≥ 1 (A.5)

where the last equality follows from the fact that the boundedness condition happens w.p. 1.

APPENDIX B

Proof of Proposition 2: As can be seen from Proposition 2, we will deal with terms whichconsist

of scalar functions (e.g. Stieltjes and Shannon) of the following matrix
(

βHT
sHs +

1

σ2
Is

)−1

= σ2
(

βσ2HT
sHs + Is

)−1
.

In the following analysis, we need to use Lemmas 3 and 4, where the central quantity to be calculated is

S (z) given in (48). Indeed, givenS (z), using (47) and (49), we will obtain the limit of the Shannon and

Stieltjes transforms. Accordingly, we substitute in these lemmas:X = HT
s , G = βσ2RIs, c = |S| /k =

ms/R. Note that by using these substitutions, we obtainB = XGXT = βσ2HT
sHs. Then, using (48)

for z = −1, we obtain thatS (−1) is given by the solution of

S (−1) =





1

|S|

|S|
∑

l=1

gl
1 + cglS (−1)

+ 1





−1

.

Thus, substitutinggl = βσ2R (independently of the indexl) andc = ms/R, we obtain

S (−1) =

(

βσ2R

1 + βσ2Rms

R S (−1)
+ 1

)−1

(B.1)
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=
1 + σ2βmsS (−1)

1 + βσ2R+ βσ2msS (−1)
, (B.2)

and thus

S (−1) =
−
[

1 + βσ2 (R−ms)
]

+

√

[1 + βσ2 (R−ms)]
2 + 4βσ2ms

2βσ2ms
. (B.3)

Note thatS (−1) is recognized asb (ms) defined in (9), and which will be used from now on.

A. Derivation of (93) and (94)

The results given in (93) and (94) follow directly from Lemmas 3and 4. Indeed, using Lemma 4 (in

particular (49)) withΘ = Is, one obtains that8

1

n
tr

(

βHT
sHs +

1

σ2
Is

)−1

= σ2
1

n

(

βσ2HT
sHs + Is

)−1 → σ2msb (ms) , (B.4)

a.s. asn→ ∞.

The second item follows directly from Lemma 3. Recall that

η (γ)
△
=

1

k

|S|
∑

l=1

ln (1 + cglS (−γ))− ln
(

γ2S (−γ)
)

− 1

|S|

|S|
∑

l=1

glS (−γ)
1 + cglS (−γ) . (B.5)

Thus, under our model, and by choosingγ = 1, we obtain

η (1) =
R

ms
ln
[

1 + βσ2b (ms)ms

]

− ln b (ms)−
βσ2Rb (ms)

1 + βσ2b (ms)ms
, (B.6)

which is recognized as̄I (ms) defined in (11), and which will be used from now on. Thus, by Lemma

3, we conclude that

1

n
ln det

(

βσ2HT
sHs + Is

)

→ msĪ (ms) (B.7)

a.s. asn→ ∞.

B. Derivation of (95)

Equation (95) is closely related to the terms appearing in Lemma 4. However, we cannot directly apply

it on our terms, unless we chooseΘ to be dependent onH, which is not supported by Proposition 1.

Instead, we use the following idea: Letzi denote theith row of the matrixHs, and hence

HT
sy =

k
∑

i=1

yizi.

8Note that the fact that Lemma 4 holds true also for matricesX with a vanishing ratioc is in use here (see discussion

after Proposition 1). Indeed, as the summation over the pattern sequencess is over the whole space{0, 1}n, the ratiom can,

in general, vanish.
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Thus,

1

n
yTHs

(

βHT
sHs +

1

σ2
Is

)−1

HT
sy =

1

n

k
∑

i=1

y2i z
T
i

(

βHT
sHs +

1

σ2
Is

)−1

zi (B.8)

+
1

n

k
∑

i 6=j

yiyjz
T
i

(

βHT
sHs +

1

σ2
Is

)−1

zj . (B.9)

Let us start with the first term at the r.h.s. of (B.9). Recall that

HT
sHs =

k
∑

i=1

ziz
T
i .

In the sequel, we will repeatedly use Lemmas 7-15, which all appear in Appendix D. Using the matrix

inversion lemma (Lemma 7), we have that

1

n

k
∑

i=1

y2i z
T
i

(

βHT
sHs +

1

σ2
Is

)−1

zi =
1

n

k
∑

i=1

y2i
zT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi

1 + βzT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi

. (B.10)

Since the matrix
(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

is statistically independent onzi, we can write

1

n

k
∑

i=1

y2i z
T
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi

1 + βzT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi

≍ 1

n

k
∑

i=1

y2i
1
n tr

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

1 + β 1
n tr

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1 (B.11)

≍ 1

n

k
∑

i=1

y2i
1
n tr

(

βHT
sHs +

1
σ2 Is

)−1

1 + β 1
n tr

(

βHT
sHs +

1
σ2 Is

)−1 (B.12)

≍ 1

n

k
∑

i=1

y2imsσ
2b (ms)

1 + βσ2msb (ms)
(B.13)

=
msσ

2b (ms)

1 + βσ2msb (ms)

‖y‖2
n

(B.14)

where in the first passage, we applied the trace lemma (Lemma 11)and Lemma 12, in the second

passage we have used the rank-1 perturbation lemma (Lemma 13), and the third passage is due to

Lemma 4 (actually the first item of Proposition 2). In the following, we provide a rigorous justification

to the above derivation. We first show that the first passage is true, namely, that we have a.s.,

1

n

k
∑

i=1

y2i

(

zT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi

1 + βzT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi

−
1
n tr

(

βHT
sHs +

1
σ2 Is

)−1

1 + β 1
n tr

(

βHT
sHs +

1
σ2 Is

)−1

)

→ 0. (B.15)

There are at least two approaches to prove the last statement:using a graph-combinatorial method (very

powerful but tedious), or the following approach. By Lemma 2,it is enough to prove that

max
1≤i≤k

E

{∣

∣

∣

∣

∣

zT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi

1 + βzT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi

−
1
n tr

(

βHT
sHs +

1
σ2 Is

)−1

1 + β 1
n tr

(

βHT
sHs +

1
σ2 Is

)−1

∣

∣

∣

∣

∣

p}

≤ O
(

1

n1+δ

)

,

(B.16)
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for δ > 0. Instead of showing (B.16), we will equivalently show that9

max
1≤i≤k

E

{∣

∣

∣

∣

∣

zT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi − 1
n tr

(

βHT
sHs +

1
σ2 Is

)−1

1 + βzT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi

∣

∣

∣

∣

∣

p}

≤ O
(

1

n1+δ

)

, (B.17)

and that

max
1≤i≤k

E

{∣

∣

∣

∣

∣

1
n tr

(

βHT
sHs +

1
σ2 Is

)−1

1 + βzT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi

−
1
n tr

(

βHT
sHs +

1
σ2 Is

)−1

1 + β 1
n tr

(

βHT
sHs +

1
σ2 Is

)−1

∣

∣

∣

∣

∣

p}

≤ O
(

1

n1+δ

)

.

(B.18)

We now show (B.17). First, note that

|ei| △
=

∣

∣

∣

∣

∣

zT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi − 1
n tr

(

βHT
sHs +

1
σ2 Is

)−1

1 + βzT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi

∣

∣

∣

∣

∣

(B.19)

(a)

≤
∣

∣

∣

∣

∣

zT
i

(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

zi −
1

n
tr

(

βHT
sHs +

1

σ2
Is

)−1
∣

∣

∣

∣

∣

(B.20)

(b)

≤
∣

∣

∣

∣

∣

zT
i

(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

zi −
1

n
tr

(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

n
tr

(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

− 1

n
tr

(

βHT
sHs +

1

σ2
Is

)−1
∣

∣

∣

∣

∣

(B.21)

where(a) follows from the fact thatzT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi is non-negative, and thus,

1

1 + βzT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi

≤ 1, (B.22)

and (b) follows by adding and subtracting the term1n tr
(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

, and then using the

triangle inequality. Applying Lemma 14 to the second term in the r.h.s. of (B.21), one readily obtains

that
∣

∣

∣

∣

∣

1

n
tr

(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

− 1

n
tr

(

βHT
sHs +

1

σ2
Is

)−1
∣

∣

∣

∣

∣

≤ σ2 ‖Is‖
n

=
σ2

n
, (B.23)

uniformly in s. Applying Lemma 10 to the first term at the r.h.s. of (B.21), we obtain

E

{∣

∣

∣

∣

∣

zT
i

(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

zi −
1

n
tr

(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1
∣

∣

∣

∣

∣

p}

≤ C̃

np/2
, (B.24)

where according to Lemma 10, the constantC̃ is given by

C̃ = Cp · E
(

1

|S| tr
(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−2
)p/2

(B.25)

9The equivalence readily follows by adding and subtracting a common termand then using the triangle inequality.
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≤ Cpσ
2p, (B.26)

where in the last inequality, we have used the fact that
[

HT
sHs

]

i
is non-negative, and thus

(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

�
(

1

σ2
Is

)−1

= σ2Is (B.27)

where for two matricesA ∈ RN×N andB ∈ RN×N the notationA � B means that the difference

B −A is non-negative definite. Thus, the bound in (B.24) is uniform in s. Therefore,

E {|ei|p} ≤ O
(

1

np/2

)

. (B.28)

Thus, taking anyp > 2, we obtain (B.17). Similarly, for (B.18), we see that

|ẽi| △
=

∣

∣

∣

∣

∣

1
n tr

(

βHT
sHs +

1
σ2 Is

)−1

1 + βzT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi

−
1
n tr

(

βHT
sHs +

1
σ2 Is

)−1

1 + β 1
n tr

(

βHT
sHs +

1
σ2 Is

)−1

∣

∣

∣

∣

∣

=

∣

∣

∣
zT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi − 1
n tr

(

βHT
sHs +

1
σ2 Is

)−1
∣

∣

∣

(

1 + βzT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi

)(

1 + β 1
n tr

(

βHT
sHs +

1
σ2 Is

)−1
) (B.29)

(a)

≤ β

n
tr

(

βHT
sHs +

1

σ2
Is

)−1
∣

∣

∣

∣

∣

zT
i

(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

zi −
1

n
tr

(

βHT
sHs +

1

σ2
Is

)−1
∣

∣

∣

∣

∣

(b)

≤ βσ2

∣

∣

∣

∣

∣

zT
i

(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

zi −
1

n
tr

(

βHT
sHs +

1

σ2
Is

)−1
∣

∣

∣

∣

∣

(B.30)

where(a) follows from (B.22), and the fact that

1

1 + β 1
n tr

(

βHT
sHs +

1
σ2 Is

)−1 ≤ 1, (B.31)

and (b) follows from

1

n
tr

(

βHT
sHs +

1

σ2
Is

)−1

≤ 1

n
tr

(

1

σ2
Is

)−1

= σ2 (B.32)

Therefore, as before, by applying Lemma 10, we obtain thatE |ẽi|p ≤ O
(

n−p/2
)

, as required. Finally,

we show that the error due to the passage from (B.12) to (B.13)can be bounded uniformly ins. Indeed,

let the error be denoted by

ê
△
=

1
n tr

(

βHT
sHs +

1
σ2 Is

)−1

1 + β 1
n tr

(

βHT
sHs +

1
σ2 Is

)−1 − msσ
2b (ms)

1 + βσ2msb (ms)
. (B.33)

First, we see that

|ê| =
1
n tr

(

βHT
sHs +

1
σ2 Is

)−1

1 + β 1
n tr

(

βHT
sHs +

1
σ2 Is

)−1 − msσ
2b (ms)

1 + βσ2msb (ms)
(B.34)
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= σ2

∣

∣

∣

1
n tr

(

βσ2HT
sHs + Is

)−1 −msb (ms)
∣

∣

∣

(1 + βσ2msb (ms))
(

1 + β 1
n tr

(

βHT
sHs +

1
σ2 Is

)−1
) (B.35)

≤ σ2
∣

∣

∣

∣

1

n
tr
(

βσ2HT
sHs + Is

)−1 −msb (ms)

∣

∣

∣

∣

, (B.36)

where the last inequality follows from (B.31) and the fact that 1+ βσ2msb (ms) ≥ 1. Recall thatb (ms)

is the solution of the following equation (given in (B.2))

b (ms) =

(

βσ2R

1 + βσ2msb (ms)
+ 1

)−1

. (B.37)

Let us define

w
△
=

1

n
tr
(

βσ2HT
sHs + Is

)−1 − 1

n
tr

(

Rβσ2

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 + 1

)−1

Is. (B.38)

Then, note that

(

βσ2HT
sHs + Is

)−1 −
(

Rβσ2

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 + 1

)−1

Is

(a)
=
(

βσ2HT
sHs + Is

)−1

[

Rβσ2

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 Is + Is − βσ2HT
sHs − Is

]

(

Rβσ2

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 + 1

)−1

Is (B.39)

=
(

βσ2HT
sHs + Is

)−1

[

Rβσ2

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 Is − βσ2HT
sHs

]

(

Rβσ2

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 + 1

)−1

Is (B.40)

= −ϑ
(

βσ2HT
sHs + Is

)−1
βσ2HT

sHs

+ ϑ
(

βσ2HT
sHs + Is

)−1 Rβσ2

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 (B.41)

where (a) is due to Lemma 9, and in the last equalities we canceled out andrearranged the various

terms, and

ϑ
△
=

(

Rβσ2

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 + 1

)−1

. (B.42)

Therefore, using (B.41) we obtain

w =
1

n
tr
(

βσ2HT
sHs + Is

)−1 − 1

n
tr

(

Rβσ2

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 + 1

)−1

Is
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(B.41)
= −̟βσ2 1

n
tr
(

(

βσ2HT
sHs + Is

)−1
HT

sHs

)

+̟
Rβσ2 1

n tr
(

βσ2HT
sHs + Is

)−1

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 (B.43)

= −̟ 1

n

k
∑

i=1

βσ2zT
i

(

βσ2HT
sHs + Is

)−1
zi +̟

1

n

k
∑

i=1

βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 (B.44)

where in the last equality we have used the fact thatR = k/n, and that

tr
(

(

βσ2HT
sHs + Is

)−1
HT

sHs

)

= tr

(

(

βσ2HT
sHs + Is

)−1
k
∑

i=1

ziz
T
i

)

(B.45)

=

k
∑

i=1

zT
i

(

βσ2HT
sHs + Is

)−1
zi. (B.46)

Therefore

|w| =

∣

∣

∣

∣

∣

∣

1

n
tr
(

βσ2HT
sHs + Is

)−1 − 1

n
tr

(

R
βσ2

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 + 1

)−1

Is

∣

∣

∣

∣

∣

∣

(B.44)
=

∣

∣

∣

∣

∣

̟
1

n

k
∑

i=1

βσ2zT
i

(

βσ2HT
sHs + Is

)−1
zi −̟

1

n

k
∑

i=1

βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

̟
1

n

k
∑

i=1

[

βσ2zT
i

(

βσ2HT
sHs + Is

)−1
zi −

βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1

]∣

∣

∣

∣

∣

(a)
= ̟

1

n

∣

∣

∣

∣

∣

k
∑

i=1

[

βσ2zT
i tr

(

βσ2
[

HT
sHs

]

i
+ Is

)−1
zi

1 + βσ2zT
i tr

(

βσ2
[

HT
sHs

]

i
+ Is

)−1
zi

− βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1

]∣

∣

∣

∣

∣

(B.47)

where(a) follows by the matrix inversion lemma (Lemma 7). Now, note that
∣

∣

∣

∣

1

n
tr
(

βσ2HT
sHs + Is

)−1 −msb (ms)

∣

∣

∣

∣

(a)
=

∣

∣

∣

∣

∣

∣

1

n
tr
(

βσ2HT
sHs + Is

)−1 −ms

(

Rβσ2

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 + 1

)−1

+ms

(

Rβσ2

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 + 1

)−1

−msb (ms)

∣

∣

∣

∣

∣

∣

(b)

≤

∣

∣

∣

∣

∣

∣

1

n
tr
(

βσ2HT
sHs + Is

)−1 −ms

(

Rβσ2

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 + 1

)−1
∣

∣

∣

∣

∣

∣

+ms

∣

∣

∣

∣

∣

∣

(

Rβσ2

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 + 1

)−1

− b (ms)

∣

∣

∣

∣

∣

∣

(B.48)

(c)
= |w|+ms

∣

∣

∣

∣

∣

∣

(

Rβσ2

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 + 1

)−1

− b (ms)

∣

∣

∣

∣

∣

∣

(B.49)
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where in(a) we added and subtracted a common term, in(b) we have used the triangle inequality, and

in (c) we noticed that the first term isw given in (B.38). But using (B.37), we notice that
∣

∣

∣

∣

∣

∣

(

Rβσ2

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 + 1

)−1

− b (ms)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(

Rβσ2

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 + 1

)−1

−
(

βσ2R

1 + βσ2msb (ms)
+ 1

)−1
∣

∣

∣

∣

∣

∣

(B.50)

=

∣

∣

∣

∣

∣

1 + βσ2 1
n tr

(

βσ2HT
sHs + Is

)

1 + βσ2R+ βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1 − 1 + βσ2msb (ms)

1 + βσ2R+ βσ2msb (ms)

∣

∣

∣

∣

∣

(B.51)

=
β2σ4R

∣

∣

∣

1
n tr

(

βσ2HT
sHs + Is

)−1 −msb (ms)
∣

∣

∣

(

1 + βσ2R+ βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1
)

(1 + βσ2R+ βσ2msb (ms))
(B.52)

△
= κ

∣

∣

∣

∣

1

n
tr
(

βσ2HT
sHs + Is

)−1 −msb (ms)

∣

∣

∣

∣

(B.53)

where

κ
△
=

β2σ4R
(

1 + βσ2R+ βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1
)

(1 + βσ2R+ βσ2msb (ms))
. (B.54)

Thus, using (B.49) and (B.53), we obtain
∣

∣

∣

∣

1

n
tr
(

βσ2HT
sHs + Is

)−1 −msb (ms)

∣

∣

∣

∣

≤ |w|+ κms

∣

∣

∣

∣

1

n
tr
(

βσ2HT
sHs + Is

)−1 −msb (ms)

∣

∣

∣

∣

.

(B.55)

In the following, we show that0 < κms < 1. First, forms ≤ R we see that

κms =
β2σ4Rms

(

1 + βσ2R+ βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1
)

(1 + βσ2R+ βσ2msb (ms))
(B.56)

(a)

≤ β2σ4R2

(1 + βσ2R)2
(B.57)

≤ 1. (B.58)

where(a) follows from the facts thattr
(

βσ2HT
sHs + Is

)−1 ≥ 0 and thatb (ms) ≥ 0. For ms > R,

we first note thatb (ms) ≥ (ms −R) /ms, which follows from the facts thatb (ms) is monotonically

decreasing inβ (by definition), and that

lim
β→∞

b (ms) =
ms −R

ms
. (B.59)

Whence,

κms =
β2σ4Rms

(

1 + βσ2R+ βσ2 1
n tr

(

βσ2HT
sHs + Is

)−1
)

(1 + βσ2R+ βσ2msb (ms))
(B.60)
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≤ β2σ4Rms

(1 + βσ2R)
(

1 + βσ2R+ βσ2ms
ms−R
ms

) (B.61)

=
β2σ4Rms

(1 + βσ2R) (1 + βσ2ms)
(B.62)

≤ β2σ4R

(1 + βσ2R) (1 + βσ2)
≤ 1. (B.63)

Thus, using (B.55), we obtain
∣

∣

∣

∣

1

n
tr
(

βσ2HT
sHs + Is

)−1 −msb (ms)

∣

∣

∣

∣

≤ 1

1−msκ
|w| (B.64)

≤ κ̃ |w| (B.65)

whereκ̃ > 0 depends only onβ, σ2, R. But, comparing (B.47) with (B.15), we readily conclude that |w|
converges to zero a.s., and uniformly ins. Accordingly, based on (B.36) and (B.65), we conclude that

the error|ê| in (B.36) converges to zero a.s., and can be bounded by a vanishing term that is uniform in

s

Recalling (B.9), in order to finish the proof of (95), it remains to handle the second term on the r.h.s. of

(B.9). Essentially, there is nothing different in this term compared to the first term on the r.h.s. of (B.9).

Therefore, and for the sake of brevity, in the following, we use the same reasoning as in the passage

from (B.11) to (B.14). Nevertheless, the same arguments we have used to show (B.16), can be readily

applied also here. First, note that by applying Lemma 7 twice (first, we remove fromHT
sHs the ith

term, namely,ziz
T
i , and then we remove thejth term), we obtain

1

n

k
∑

i 6=j

yiyjz
T
i

(

βHT
sHs +

1

σ2
Is

)−1

zj

=
1

n

k
∑

i 6=j

yiyjz
T
i

(

β
[

HT
sHs

]

i,j
+ 1

σ2 Is

)−1
zj

(

1 + βzT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi

)

(

1 + βzT
j

(

β
[

HT
sHs

]

i,j
+ 1

σ2 Is

)−1
zj

) , (B.66)

and thus the matrix inverse terms are statistically independent of zi and zj . Now, we use the same

arguments as before. Indeed, we may write that

1

n

k
∑

i 6=j

yiyjz
T
i

(

β
[

HT
sHs

]

i,j
+ 1

σ2 Is

)−1
zj

(

1 + βzT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi

)

(

1 + βzT
j

(

β
[

HT
sHs

]

i,j
+ 1

σ2 Is

)−1
zj

) (B.67)

(a)≍ 1

n

k
∑

i 6=j

yiyjz
T
i zjσ

2b (ms)
(

1 + β 1
n tr

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1
)

(

1 + β 1
n tr

(

β
[

HT
sHs

]

i,j
+ 1

σ2 Is

)−1
) (B.68)
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(b)≍ 1

n

k
∑

i 6=j

yiyjz
T
i zjσ

2b (ms)

(1 + βσ2msb (ms))
2 (B.69)

(c)
=

σ2b (ms)

(1 + βσ2msb (ms))
2





1

n

k
∑

i,j=1

yiyjz
T
i zj −ms

‖y‖2
n



 (B.70)

=
σ2b (ms)

(1 + βσ2msb (ms))
2

[
∥

∥HT
sy
∥

∥

2

n
−ms

‖y‖2
n

]

(B.71)

where in (a) we applied Lemma 4 (or more precisely, (50)) to the numerator,and Lemma 10 to the

denominator, in(b) we applied Lemma 13 and then Lemma 4 to the denominator, and in(c) we have

used (B.14). Therefore, based on (B.14), (B.71), and (B.9), we may conclude that

fn =
msσ

2b (ms)

1 + βσ2msb (ms)

‖y‖2
n

+
σ2b (ms)

(1 + βσ2msb (ms))
2

[
∥

∥HT
sy
∥

∥

2

n
−ms

‖y‖2
n

]

(B.72)

=
βσ4m2

sb
2 (ms)

(1 + βσ2msb (ms))
2

‖y‖2
n

+
σ2b (ms)

(1 + βσ2msb (ms))
2

∥

∥HT
sy
∥

∥

2

n
, (B.73)

where in the last equality we have just rearranged terms. Therefore, we obtained (95), as claimed.

Remark 6Finally, before we turn into the proof of (96), we emphasize that the above derivation shows

that the magnitude of the errors that result from the above approximation (e.g., (B.21) and (B.65)), can

be upper and lower bounded by a vanishing term ofO
(

n−1−δ
)

for δ > 0, that is uniform ins. These

bounds, however, are random variables in general, depending on y andH. We will use this fact in the

asymptotic evaluation of the MMSE.

C. Derivation of (96)

Showing (96) is much more challenging due to the fact that in contrast to (95), we will need to

develop new deterministic equivalent results (in the form of Lemma 4), so that we will be able to obtain

its asymptotic behavior. It will be seen that the main idea inour derivation is actually based on “guessing”

the form of the limit. This idea of guessing the limit is similar to a popular approach in RMT known as

Bai-Silverstein method [33].

Let zi andz̃i denote theith rows of the matricesHs andHr, respectively. Then, using the following

facts

yTHs =

k
∑

i=1

yiz
T
i , (B.74)
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and

HT
ry =

k
∑

i=1

yiz̃i, (B.75)

we have that

1

n
yTHs

(

βHT
sHs +

1

σ2
Is

)−1

Qs∩r
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βHT
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1
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1

σ2
Is

)−1

Qs∩r

(

βHT
rHr +

1

σ2
Ir

)−1

z̃j . (B.76)

Let us start with the first term at the r.h.s. of (B.76). Applyingthe matrix inversion lemma (Lemma 7)

we obtain

1

n

k
∑
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y2i z
T
i
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βHT
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)−1

Qs∩r
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=
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β
[

HT
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]
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(
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β
[

HT
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)(
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i

(

β
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HT
rHr
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σ2 Ir
)−1

z̃i

) . (B.77)

Note that contrary to the previous case (95), where already at this stage, we were able to continue the

asymptotic analysis (e.g. see the passages used to obtain (B.14)), in this case we cannot, because currently,

we do not know how the numerator behaves. Thus, in order to continue, we wish to find a real function

hn for which

zT
i

(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

Qs∩r

(

β
[

HT
rHr

]

i
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σ2
Ir

)−1

z̃i − hn → 0 (B.78)

a.s. asn→ ∞. First of all, using Lemma 11, we readily obtain that10
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i
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β
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HT
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Qs∩r

(

β
[

HT
rHr

]

i
+

1

σ2
Ir

)−1

z̃i

− 1
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β
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QT
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]

→ 0 (B.79)

a.s. asn→ ∞. Accordingly,hn is to be chosen such that

1

n
tr

[

(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

Qs∩r

(

β
[

HT
rHr

]

i
+

1

σ2
Ir

)−1

QT
s∩r

]

− hn → 0. (B.80)

10Note that this passage is not essential, and can be avoided (for the second term at the r.h.s. of (B.76) this passage will not

be used).
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To this end, let us choosehn as follows

hn =
1

n
tr
(

D−1
s Qs∩rD

−1
r QT

s∩r

)

(B.81)

whereDs andDr are two matrices to be determined such that (B.80) holds true. First, note that
(

β
[

HT
sHs

]

i
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1
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)−1

Qs∩r

(

β
[
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]

i
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Ir

)−1

QT
s∩r −D−1

s Qs∩rD
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r QT

s∩r

=
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β
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sHs

]

i
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(

β
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i
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s∩r

−D−1
s Qs∩r

(

β
[
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rHr

]

i
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1

σ2
Ir
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s∩r

+D−1
s Qs∩r

(

β
[

HT
rHr

]

i
+

1

σ2
Ir

)−1

QT
s∩r −D−1

s Qs∩rD
−1
r QT

s∩r (B.82)

=

[

(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

−D−1
s

]

Qs∩r

(

β
[

HT
rHr

]

i
+

1

σ2
Ir

)−1

QT
s∩r

+D−1
s Qs∩r

[

(

β
[

HT
rHr

]

i
+

1

σ2
Ir

)−1

−D−1
r

]

QT
s∩r, (B.83)

where in the first equality we added and subtracted a common term, and in the second passage we took

out the common factors. Thus, according to (B.80), we wish to show that the trace of the above two

terms, when normalized byn, will converge to zero a.s. asn → ∞. Let us start with the first term in

(B.83). First, by Lemma 9,
(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

−D−1
s = D−1

s

[

Ds − β
[

HT
sHs

]

i
− 1

σ2
Is

](

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

.

(B.84)

Let us chooseDs as follows

Ds =

(

ψn +
1

σ2

)

Is (B.85)

whereψn is to be determined such that (B.80) holds true. Thus, substituting the above choice ofDs in

(B.84), we obtain
(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

−D−1
s = ψnD

−1
s

(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

− βD−1
s

[

HT
sHs

]

i

(

β
[
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sHs

]

i
+

1

σ2
Is

)−1

. (B.86)

Therefore, the first term of (B.83) reads
[

(

β
[

HT
sHs

]

i
+

1

σ2
Is

)−1

−D−1
s

]

Qs∩r

(

β
[

HT
rHr

]

i
+

1

σ2
Ir

)−1

QT
s∩r
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= ψnD
−1
s

(

β
[

HT
sHs

]

i
+

1
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)−1

Qs∩r

(

β
[

HT
rHr

]

i
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Ir
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s∩r

− βD−1
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β
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Ir
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QT
s∩r (B.87)

= ψnD
−1
s Hs

iQs∩rH
r
iQ

T
s∩r − βD−1

s HT
sHsH

s
iQs∩rH

r
iQ

T
s∩r. (B.88)

For simplicity of notation, we defineC
△
= 1/

(

ψn + 1/σ2
)

, and recall the notationHs △
=

(

βHT
sHs +

1
σ2 Is

)−1
. The trace of the second term on the r.h.s. of the above equality can be written as

(note thatDs is diagonal)

1

n
tr

(

βD−1
s HT

sHs

(

β
[

HT
sHs

]

i
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1
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]
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σ2
Ir
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)

(a)
=

1
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

βD−1
s

k
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T
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s∩r





(b)
=
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∑
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j

(

β
[
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QT
s∩rzj (B.89)

(c)
=
Cβ

n

k
∑

j=1

zT
j H

s
i,jQs∩r

(

β
[

HT
rHr

]

i
+ 1

σ2 Ir
)−1

QT
s∩rzj

1 + βzT
j H

s
i,jzj

(B.90)

where in(a) we have used the fact thatHT
sHs =

∑k
i=1 ziz

T
i , in (b) we have used the cyclic property

of the trace operator, and in(c) we have used the matrix inversion lemma. Then applying Lemma 8 on
(

β
[

HT
rHr

]

i
+ 1

σ2 Ir
)−1

we obtain

1

n
tr

(

βD−1
s HT
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(

β
[
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]

i
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s∩r

)

=
Cβ

n

k
∑
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zT
j H

s
i,jQs∩rH

r
i,jQ

T
s∩rzj

1 + βzT
j H

s
i,jzj

− Cβ

n

k
∑

j=1

zT
j H

s
i,jQs∩rH

r
i,jβz̃j z̃

T
j H

r
i,jQ

T
s∩rzj

(

1 + βzT
j H

s
i,jzj
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1 + βz̃T
j H

r
i,j z̃j

) . (B.91)

Thus, using the last equality, the normalized trace of (B.88)is given by

ψnC
1

n
tr
(

Hs
iQs∩rH

r
iQ

T
s∩r

)

− βC
1

n
tr
(

HT
sHsH

s
iQs∩rH

r
iQ

T
s∩r

)

= ψnC
1

n
tr
(

Hs
iQs∩rH

r
iQ

T
s∩r

)

− Cβ

n

k
∑

j=1

zT
j H

s
i,jQs∩rH

r
i,jQ

T
s∩rzj

1 + βzT
j H

s
i,jzj

+
Cβ

n

k
∑

j=1

zT
j H

s
i,jQs∩rH

r
i,jβz̃j z̃

T
j H

r
i,jQ

T
s∩rzj

(

1 + βzT
j H

s
i,jzj

)(

1 + βz̃T
j H

r
i,j z̃j

) . (B.92)

Now we are in a position to chooseψn. Recalling the trace lemma, by setting

ψn =
βR

1 + β 1
n trHr

− β2R 1
n tr

(

Qs∩rH
rQT

s∩r

)

(

1 + β 1
n trHs

) (

1 + β 1
n trHr

) , (B.93)
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the term on the r.h.s. of (B.92) will converge to zero asn, k grow large. Let us show that this is indeed

the right choice. Choosing (B.93), (B.92) can be explicitlywritten as

ψnC
1

n
tr
(

Hs
iQs∩rH

r
iQ

T
s∩r

)

− Cβ

n

k
∑
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zT
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) (B.94)

=
Cβ

n
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1
n tr
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r
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s∩r

)

1 + β 1
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r
i,jQ

T
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s
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]
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n

k
∑
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


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r
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1
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n trHr

)

]

(B.95)

where the above equality follows by substitutingψn, and rearranging the two sums. Now, proving that

the first term convergences a.s. to zero asn→ ∞, can be shown exactly as was already done in (B.16).

The convergence of the second term is essentially very similar to the first term, but with more terms

involved (actually the second term can be seen as an extension of the first term). Indeed, by Lemma 2,

it is enough to prove that
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
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∣
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∣

∣
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p



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1
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)

, (B.96)

or equivalently that (again, we add and subtract a common term and then we use the triangle inequality)
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∣

∣
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s∩r

)

(

1 + βzT
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s
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r
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, (B.97)

and that
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Let us show (B.97). First, note that

|di| △
=

∣

∣

∣

∣
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∣
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where(a) follows from the two obvious facts (that we already used)

1

1 + βzT
j H

s
i,jzj

≤ 1 (B.103)

1
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j H

r
i,j z̃j

≤ 1, (B.104)

(b) follows by adding and subtracting the term
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and (c) follows from the triangle inequality and pulling out the common factor. But using the Cauchy-

Schwartz inequality, we may write
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≤ O
(

1

np/2

)

(B.106)

where the last inequality follows from the fact thatE

∣

∣

∣
βz̃T

j H
r
i,jQ

T
s∩rzj

∣

∣

∣

2p
is bounded (Lemma 15) and

by using Lemma 10. The second term in (B.102) is handled similarly. Thus, taking anyp > 2, we obtain

(B.97). Similar arguments can be applied to show that (B.98) holds true.
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So, hitherto we show that
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1
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→ 0 (B.107)

a.s. asn→ ∞ whereψn is given by (B.93). Next, we consider the second term in (B.83). Using Lemma

9 we may write
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(B.108)

Let us choose

Dr =
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ηn +
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)

Ir, (B.109)

and thus
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Let C̃ = 1/
(

ηn + 1/σ2
)

. Then, we have that
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(B.111)

where, as before, we have used the fact thatHT
sHs =

∑k
i=1 ziz

T
i along with the cyclic property of the

trace operator, and the matrix inversion lemma. Therefore, using the same reasoning as before, by setting

ηn =
βR

1 + β 1
n trHr

, (B.112)

the second term in (B.83) is given by
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This term converges a.s. to zero asn, k grow large exactly due to the same reasons as before. Whence,

with the choice ofDs andDr in (B.85) and (B.109), respectively,hn given in (B.81) reads

hn =
1

(

ηn + 1
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) (

ψn + 1
σ2

)

tr
(

Qs∩rQ
T
s∩r

)

n
, (B.114)

and we overall show that
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Thus far, we found a random functionhn which approximates the term of interest. This function involves

the Stieltjes transforms1n trHr, 1
n trHs and 1

n trQs∩rH
rQT

s∩r. However, fortunately, Lemma 4 exactly

provides the behavior of these transforms. So, based on this observation, we conclude that

hn − αms,r → 0 (B.116)

where we have used the fact thattr
(

Qs∩rQ
T
s∩r

)

=
∑n

i=1 siri = nms,r, and we have defined

α
△
=

1
(

η0 +
1
σ2

) (

ψ0 +
1
σ2

) , (B.117)

in which

η0
△
=

βR

1 + βσ2mrb (mr)
, (B.118)

and

ψ0
△
=

βR

1 + βσ2mrb (mr)
− β2σ2Rb (ms)ms,r

(1 + βσ2msb (ms)) (1 + βσ2mrb (mr))
. (B.119)

Returning back to (B.77), we now may write

1

n

k
∑

i=1

zT
i

(

y2i βH
T
sHs +

1

σ2
Is

)−1

Qs∩r

(

βHT
rHr +

1

σ2
Ir

)−1

z̃i

=
1

n

k
∑

i=1

y2i z
T
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

Qs∩r

(

β
[

HT
rHr

]

i
+ 1

σ2 Ir
)−1

z̃i
(

1 + βzT
i

(

β
[

HT
sHs

]

i
+ 1

σ2 Is
)−1

zi

)(

1 + βz̃T
i

(

β
[

HT
rHr

]

i
+ 1

σ2 Ir
)−1

z̃i

)

≍ 1

n

k
∑

i=1

y2i αms,r

(1 + βσ2msb (ms)) (1 + βσ2mrb (mr))

=
αms,r

(1 + βσ2msb (ms)) (1 + βσ2mrb (mr))

‖y‖2
n

. (B.120)

Next, we take care of the second term in the r.h.s. of (B.76), which by using Lemma 7 and Lemma 8

can be rewritten as

1

n

k
∑

i 6=j

yiyjz
T
i H

sQs∩rH
rz̃j =

1

n

k
∑

i 6=j

yiyjz
T
i H

s
i,jQs∩rH

r
i,j z̃j

(

1 + βzT
i H

s
i zi

)

(

1 + βz̃T
j H

r
j z̃j

)

− 1

n

k
∑

i 6=j

yiyjβz
T
i H

s
i,jQs∩rH

r
i,j z̃i

(

z̃T
i H

r
i,j z̃j

)

(

1 + βzT
i H

s
i zi

)

(

1 + βz̃T
j H

r
j z̃j

)(

1 + βz̃T
i H

r
i,j z̃i

)

− 1

n

k
∑

i 6=j

yiyjβ
(

zT
i H

s
i,jzj

)

zT
j H

s
i,jQs∩rH

r
j z̃j

(

1 + βzT
i H

s
i zi

)

(

1 + βz̃T
j H

r
j z̃j

)(

1 + βzT
j H

s
i,jzj

) . (B.121)
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However, it can be seen that there is nothing essentially different in the above terms, when compared to

the behavior of the first term in the r.h.s. of (B.76), we analyzed earlier. Indeed, based on the previous

results and analysis, we can infer that

1

n

k
∑

i 6=j

yiyjz
T
i HsQs∩rH

rz̃j ≍
α
[

yTHsQs∩rH
T
ry −ms,r ‖y‖2

]

n (1 + βσ2msb (ms)) (1 + βσ2mrb (mr))

−
αms,rβσ

2b (mr)
[

∥

∥yTHr

∥

∥

2 −mr ‖y‖2
]

n (1 + βσ2msb (ms)) (1 + βσ2mrb (mr))
2 −

αms,rβσ
2b (ms)

[

∥

∥yTHs

∥

∥

2 −ms ‖y‖2
]

n (1 + βσ2msb (ms))
2 (1 + βσ2mrb (mr))

. (B.122)

Therefore, using the last result, (B.120) and (B.76), we conclude that

1

n
yTHs

(

βHT
sHs +

1

σ2
Is

)−1

Qs∩r

(

βHT
rHr +

1

σ2
Ir

)−1

HT
ry − qn ≍ 0 (B.123)

whereqn is given by (98).

APPENDIX C

Derivation of (25): In this appendix, using the previous asymptotic results, wederive the asymptotic

MMSE. Recall that the MMSE is given by (90)

mmse(X | Y ,H)

n
= E

{

Eµs
[J1 (Y ,Hs)]− Eµs×r

[J2 (Y ,Hs,Hr)]
}

. (C.1)

In the following, we asymptotically estimate each of the various terms in the outer expectation. We start

with the analysis of the second term, and accordingly define

Z (y,H)
△
=

∑

s∈{0,1}n

∑

r∈{0,1}n

P (s)P (r) J2 (y,Hs,Hr) ξ (y,Hs) ξ (y,Hr) .

Over the typical setTǫ, using the definitions ofξ, J1, J2 in (65), (81), and (88), respectively, we know

that

∣

∣J2 (y,Hs,Hr)− β2qn
∣

∣ < ǫ, (C.2)

and that
∣

∣

∣

∣

1

n
ln ξ (y,Hs)−

β2

2
fn − 1

2
msĪ (ms)

∣

∣

∣

∣

< ǫ. (C.3)

For brevity, we will henceforth use the following notations

β2

2
fn =

β3σ4b2 (ms)m
2
s

2g2 (ms)

‖y‖2
n

+
β2σ2b (ms)

2g2 (ms)

∥

∥HT
sy
∥

∥

2

n

△
= V (ms)

‖y‖2
n

+ L (ms)

∑n
i=1

∣

∣yThi

∣

∣

2
si

n
, (C.4)
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and

β2qn
△
= q

(

ms,mr,ms,r,

∑n
i=1

∣

∣yThi

∣

∣

2
si

n
,

∑n
i=1

∣

∣yThi

∣

∣

2
ri

n
,

∑n
i=1

∣

∣yThi

∣

∣

2
siri

n

)

. (C.5)

The last notation emphasizes the important fact thatqn depends on the pattern sequencess and r

only through the quantitiesms,mr,ms,r,
∑n

i=1

∣

∣yThi

∣

∣

2
si,
∑n

i=1

∣

∣yThi

∣

∣

2
ri,
∑n

i=1

∣

∣yThi

∣

∣

2
siri. In the

following, we omit the notation of this dependency and useg (s, r) instead. With these definitions, we

now use the fact that for the calculation of the MMSE we only care about(y,H)-typical sequences.

Let ϕ denote a random fluctuation term that results from the approximation we use in (C.3), namely, for

largen

1

n
ln ξ (y,Hs) ≈

β2

2
fn +

1

2
msĪ (ms) + ϕ. (C.6)

As was shown in Appendix B (see remark at the end of the appendix), this fluctuation term is typically

lower and upper bounded by a vanishing term that is uniform ins (andr), namely,|ϕ| ≤ O (1/n)11.

Therefore, overTǫ and for largen andk, the functionZ (y,H) is lower and upper bounded as follows

Z− (y,H) ≤ Z (y,H) ≤ Z+ (y,H) (C.7)

where

Z± (y,H)
△
=

∑

s∈{0,1}n

∑

r∈{0,1}n

q (s, r) exp

{

n

(

t̃ (ms) + t̃ (mr) + L (ms)
1

n

n
∑

i=1

∣

∣yThi

∣

∣

2
si

+L (mr)
1

n

n
∑

i=1

∣

∣yThi

∣

∣

2
ri ± ϕ

)}

(C.8)

where

t̃ (m)
△
= f (m)− m

2
Ī (m) + V (m)

‖y‖2
n

. (C.9)

Based on (C.8), we need to handle a double summation (overs and r). In the following, we first

assess the exponential order of the summation overr. First, we rewriteZ± (y,H) as follows

Z± (y,H) =
∑

s∈{0,1}n

exp

{

n

(

t̃ (ms) + L (ms)
1

n

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)}

∑

r∈{0,1}n

q (s, r) exp
{

n
(

t̃ (mr)

+L (mr)
1

n

n
∑

i=1

∣

∣yThi

∣

∣

2
ri ± ϕ

)}

(C.10)

11Physically, over the typical set, this fluctuation will not affect the asymptoticbehavior of anyintensivequantity, namely,

a quantity that does not depend onn (e.g., the dominant magnetization).
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△
=

∑

s∈{0,1}n

exp

{

n

(

t̃ (ms) + L (ms)
1

n

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)}

Z̃± (y,H, s) (C.11)

where for anys ∈ {0, 1}n, we define

Z̃± (y,H, s)
△
=

∑

r∈{0,1}n

q (s, r) exp

{

n

(

t̃ (mr) + L (mr)
1

n

n
∑

i=1

∣

∣yThi

∣

∣

2
ri ± ϕ

)}

. (C.12)

Now, note thatZ̃± can be equivalently rewritten as

Z̃± (y,H, s) =
∑

mr

exp
{

n
(

t̃ (mr)± ϕ
)}

Ẑ (y,H, s,mr) (C.13)

where the summation is overmr ∈ [0/n, 1/n, . . . , n/n], and

Ẑ (y,H, s,mr)
△
=

∑

r: m(r)=mr

q (s, r) exp

(

L (mr)

n
∑

i=1

∣

∣yThi

∣

∣

2
ri

)

(C.14)

where with slight abuse of notations, the summation is performed over sequencesr with magnetization,

m (r)
△
= 1

n

∑n
i=1 ri, fixed tomr. For the sake of brevity, we will omit the± sign.

In the following, we will find the asymptotic behavior of̂Z (y,H, s,mr), and then the asymptotic

behavior ofZ̃± (y,H, s). For Ẑ (y,H, s,mr), we will need to count the number of sequences{r},

having a given magnetizationmr, and also admit some linear constraint. Accordingly, consider the

following set

Fδ

(

{ρl}Ll=1 ,m
)

△
=

{

v ∈ {0, 1}n :

∣

∣

∣

∣

∣

n
∑

i=1

vi − nm

∣

∣

∣

∣

∣

≤ δ,

∣

∣

∣

∣

∣

n
∑

i=1

viui,l − nρl

∣

∣

∣

∣

∣

≤ δ, l = 1, . . . , L

}

(C.15)

whereL ∈ N is fixed, and{ui,l}ni=1 for l = 1, . . . , L are given sequences of real numbers. Thus, the

above set contains binary sequences that admit a set of linear constraints. We will upper and lower bound

the cardinality ofFδ

(

{ρl}Ll=1 ,m
)

for a givenδ > 0, m, and{ρl}Ll=1. Then, we will use the result in

order to approximateẐ (y,H, s,mr).

Define

P

(

vi; {αl}Ll=1 , γ | {ui,l}Ll=1

)

△
=

exp
{

∑L
l=1 αlviui,l − γvi

}

2 exp
{

1
2

(

∑L
l=1 αlui,l − γ

)}

cosh
(∑

L
l=1

αlui,l−γ
2

) (C.16)

where{αl}Ll=1 andγ are auxiliary parameters. Now, forv = (v1, . . . , vn), let

P

(

v; {αl}Ll=1 , γ | {ul}Ll=1

)

△
=

exp
{

∑L
l=1 αl

∑n
i=1 viui,l − γ

∑n
i=1 vi

}

2n exp
{

1
2

(

∑L
l=1 αl

∑n
i=1 ui,l − nγ

)}

∏n
i=1 cosh

(∑
L
l=1

αlui,l−γ
2

) .

(C.17)
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Then, we have that

1 ≥ P

(

v ∈ Fδ (ρ,m) ; {αl}Ll=1 , γ | {ul}Ll=1

)

(C.18)

=
∑

v∈Fδ

exp
{

∑L
l=1 αl

∑n
i=1 viui,l − γ

∑n
i=1 vi

}

2n exp
{

1
2

(

∑L
l=1 αl

∑n
i=1 ui,l − nγ

)}

∏n
i=1 cosh

(∑
L
l=1

αlui,l−γ
2

) (C.19)

≥
∑

v∈Fδ

exp
{

∑L
l=1 αl (nρl − δ)− γ (nm− δ)

}

2n exp
{

1
2

(

∑L
l=1 αl

∑n
i=1 ui,l − nγ

)}

∏n
i=1 cosh

(∑
L
l=1

αlui,l−γ
2

) (C.20)

=
∣

∣

∣
Fδ

{

(ρl)
L
l=1 ,m

}∣

∣

∣

exp
{

∑L
l=1 αl (nρl − δ)− γ (nm− δ)

}

2n exp
{

1
2

(

∑L
l=1 αl

∑n
i=1 ui,l − nγ

)}

∏n
i=1 cosh

(∑
L
l=1

αlui,l−γ
2

) . (C.21)

It is easy to verify that
(

{α◦
l }Ll=1 , γ

◦
)

given by the solution of the following set of equations

ρl =
δ

n
+

1

2n

n
∑

i=1

ui,l +
1

2n

n
∑

i=1

tanh

(

∑L
l=1 α

◦
l ui,l − γ◦

2

)

ui,l, l = 1, . . . , L, (C.22)

and

m =
δ

n
+

1

2
+

1

2n

n
∑

i=1

tanh

(

∑L
l=1 αlui,l − γ◦

2

)

, (C.23)

maximize the right hand side of (C.21) (w.r.t.(α)Ll=1 and γ). Thus, using the last results, we have the

following upper bound

∣

∣

∣
Fδ

(

{ρl}Ll=1 ,m
)∣

∣

∣
≤

exp
{

1
2

(

∑L
l=1 α

◦
l

∑n
i=1 ui,l − nγ◦

)}

∏n
i=1 2 cosh

(∑
L
l=1

α◦
l ui,l−γ◦

2

)

exp
{

∑L
l=1 α

◦
l (nρl − δ)− γ◦ (nm− δ)

}

= exp

{

1

2

(

L
∑

l=1

α◦
l

n
∑

i=1

ui,l − nγ◦

)

−
(

L
∑

l=1

α◦
l (nρl − δ)− γ◦ (nm− δ)

)

+

n
∑

i=1

ln

[

2 cosh

(

∑L
l=1 α

◦
l ui,l − γ◦

2

)]}

(C.24)

△
= Rδ. (C.25)

For a lower bound, we first note that

1 = P

(

v ∈ Fδ

(

{ρl}Ll=1 ,m
)

; {αl}Ll=1 , γ | {ul}Ll=1

)

+ P

(

v ∈ Fc
δ

(

{ρl}Ll=1 ,m
)

; {αl}Ll=1 , γ | {ul}Ll=1

)

(C.26)

≤
∣

∣

∣
Fδ

(

{ρl}Ll=1 ,m
)∣

∣

∣

1

R−δ
+ P

(

v ∈ Fc
δ

(

{ρl}Ll=1 ,m
)

; {αl}Ll=1 , γ | {ul}Ll=1

)

(C.27)
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where the last inequality follows by the same considerations we have used for obtaining (C.21) (but now

with δ instead of−δ). Using Boole’s inequality,

P

(

v ∈ Fc
δ

(

{ρl}Ll=1 ,m
)

; {αl}Ll=1 , γ | {ul}Ll=1

)

≤ P

(

v :

∣

∣

∣

∣

∣

n
∑

i=1

vi − nm

∣

∣

∣

∣

∣

> δ; {αl}Ll=1 , γ | {ul}Ll=1

)

+ P

(

v :

∣

∣

∣

∣

∣

n
∑

i=1

viui,l − nρl

∣

∣

∣

∣

∣

> δ, l = 1, . . . , L; {αl}Ll=1 , γ | {ul}Ll=1

)

. (C.28)

It is easy to verify that the parameters{αl}Ll=1 andγ that are solving the following the following equations

E

{

1

n

n
∑

i=1

viui,l

∣

∣

∣

∣

∣

{ul}Ll=1

}

= ρl, l = 1, . . . , L, (C.29)

and

E

{

1

n

n
∑

i=1

vi

∣

∣

∣

∣

∣

{ul}Ll=1

}

= m (C.30)

where the expectation is taken w.r.t. the conditional distribution (C.17), are also maximizing the

conditional distribution (maximum-likelihood)12. Therefore, using the SLLN, the two terms on the right

hand side of (C.28) are negligible asn→ ∞, namely,

P

(

v ∈ Fc
δ

(

{ρl}Ll=1 ,m
)

;α, γ | {ul}Ll=1

)

≤ τ (C.31)

for any τ > 0. Thus,

∣

∣

∣
Fδ

(

{ρl}Ll=1 ,m
)∣

∣

∣
≥ (1− τ)R−δ. (C.32)

Whence, (C.25) and (C.32) provide tight (asδ → 0) upper and lower bounds on cardinality of

Fδ

(

{ρl}Ll=1 ,m
)

.

Returning back to our problem, we will use the above result inorder to find an asymptotic estimate

of Ẑ (y,H, s,mr):

Ẑ (y,H, s,mr)
△
=

∑

r: m(r)=mr

q (s, r) exp

(

L (mr)

n
∑

i=1

∣

∣yThi

∣

∣

2
ri

)

, (C.33)

and recall thatq (s, r) depends ons, r as follows

q (s, r) = q

(

ms,mr,

n
∑

i=1

∣

∣yThi

∣

∣

2
ri,ms,r,

n
∑

i=1

∣

∣yThi

∣

∣

2
siri,

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)

. (C.34)

12Essentially, this follows from the fact that (C.17) maintains all the sufficient statistics induced byFδ

(

{ρl}Ll=1
,m

)

.
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In accordance to the previous notations used in the calculation of
∣

∣

∣
Fδ

(

{ρl}Ll=1 ,m
)∣

∣

∣
, let us define

ui,1
△
=
∣

∣yThi

∣

∣

2
, ui,2

△
= si, andui,3

△
=
∣

∣yThi

∣

∣

2
si, namely, the coefficients of the terms which depend on

r (recall (C.34)). Now, the main observation here is thatẐ (y,H, s,mr) can be represented as

Ẑ (y,H, s,mr) = 2n
∫

D⊂R3

g

(

ms,mr, ρ1, ρ2, ρ3,

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)

exp (nL (mr) ρ1)Cn (dρ1, dρ2, dρ3)

(C.35)

whereD is the codomain13 of (ρ1, ρ2, ρ3), and {Cn} is a sequence of probability measures that are

proportional to the number of sequencesr with
∑n

i=1 riui,j ≈ nρj for j = 1, 2, 3, and
∑n

i=1 ri ≈ nmr.

These probability measures satisfy the large deviations principle (LDP) [39, 40], with the following

respective lower semi-continuous rate function

I (ρ1, ρ2, ρ3) =















ln 2− 1
n lnR0, if {ρl}3l=1 ∈ D

∞, else

(C.36)

whereR0
△
= limδ→0Rδ given in (C.25). Indeed, by definition, the probability measure Cn is the ratio

between
∣

∣

∣
Fδ

(

{ρl}3l=1 ,mr

)∣

∣

∣
and2n (the number of possible sequences). Thus, for any Borel setB ⊂ D,

we have thatlimn→∞
1
n lnCn (B) = −I (ρ1, ρ2, ρ3). Accordingly, due to it large deviations properties,

applying Varadhan’s theorem [39, 40] on (C.35), one obtains

Ẑ (y,H, s,mr) → q

(

ms,mr, ρ
◦
1, ρ

◦
2, ρ

◦
3,

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)

exp
{

n
(

ln2+L (mr) ρ
◦
1 − I

(

{ρ◦l }3l=1

))}

(C.37)

where{ρ◦l }3l=1 are given by (using the fact that the exponential term is convex)

(ρ◦1, ρ
◦
2, ρ

◦
3) = arg max

ρ1,ρ2,ρ3∈R

{

ln2+L (mr) ρ1 − I
(

{ρl}3l=1

)}

= arg max
ρ1,ρ2,ρ3∈R

{

L (mr) ρ1 +
1

n
lnR0

}

. (C.38)

Whence, the maximizers are the solutions of the following equations:ρ◦1 is the solution of

L (mr) +
1

n

∂

∂ρ1
lnR0 = 0, (C.39)

andρ◦j for j = 2, 3, are the solutions of

∂

∂ρj
lnR0 = 0. (C.40)

13Note that we do not need to explicitly defineD simply due to the fact that the exponential term in (C.35) is concave (see

(C.38)), and thus the dominatingρ1, ρ2, ρ3 are the same overD or overR3.
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We have that (fori = 1, 2, 3)

1

n

∂

∂ρi
lnR0 =

1

2n

3
∑

l=1

∂α◦
l

∂ρi

n
∑

i=1

ui,l −
1

2

∂γ◦

∂ρi
−

3
∑

l=1

ρl
∂α◦

l

∂ρi
− α◦

i +m
∂γ◦

∂ρi

+
1

2n

n
∑

i=1

tanh

(

∑3
l=1 α

◦
l ui,l − γ◦

2

)[

3
∑

l=1

ui,l
∂α◦

l

∂ρi
− ∂γ◦

∂ρi

]

(C.41)

= −α◦
i +

3
∑

l=1

∂α◦
l

∂ρi

[

1

2n

n
∑

i=1

ui,l +
1

2n

n
∑

i=1

tanh

(

∑3
l=1 α

◦
l ui,l − γ◦

2

)

ui,l − ρl

]

+
∂γ◦

∂ρi

[

m− 1

2
− 1

2n

n
∑

i=1

tanh

(

∑3
l=1 α

◦
l ui,l − γ◦

2

)]

, (C.42)

and by using the saddle point equations (C.22) and (C.23), the last two terms in the above equations

vanish, and we remain with

1

n

∂

∂ρi
lnR0 = −α◦

i . (C.43)

Thus, combined with (C.39) and (C.40), we conclude thatα◦
1 = L (mr), and thatα◦

2 = α◦
3 = 0.

Accordingly, the exponential term boils down to

L (mr) ρ
◦
1 +

1

n
lnR0

∣

∣

∣

∣

ρ◦

= L (mr) ρ
◦
1 +

1

2n

(

L (mr)

n
∑

i=1

ui,1 − nγ◦

)

− L (mr) ρ
◦
1 +mrγ

◦

+
1

n

n
∑

i=1

ln

[

2 cosh

(

L (mr)ui,1 − γ◦

2

)]

= mrγ
◦ +

1

n

n
∑

i=1

L (mr)ui,1 − γ◦

2
+

1

n

n
∑

i=1

ln

[

2 cosh

(

L (mr)ui,1 − γ◦

2

)]

△
= h (δ◦,mr) . (C.44)

Hence, we obtained that (with the substitution ofui,1 =
∣

∣yThi

∣

∣

2
)

Ẑ (y,H, s,mr) → q

(

ms,mr, ρ
◦
1, ρ

◦
2, ρ

◦
3,

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)

exp (nh (γ◦,mr)) (C.45)

whereγ◦, {ρ◦l }3l=1 solve the following set of equations (based on (C.22) and (C.23))

mr =
1

2n

n
∑

i=1

[

1 + tanh

(

L (mr)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

, (C.46a)

ρ◦1 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (mr)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∣

∣yThi

∣

∣

2
, (C.46b)

ρ◦2 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (mr)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

si, (C.46c)
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ρ◦3 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (mr)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∣

∣yThi

∣

∣

2
si. (C.46d)

Thus far, we approximatedẐ (y,H, s,mr). Recalling (C.13), the next step in our analysis is to

approximateZ̃± (y,H, s). Using the last approximation, and applying once again Varadhan’s theorem

(or simply, the Laplace method [41, 42]) on (C.13), one obtains that

Z̃± (y,H, s) =
∑

mr

exp
(

n
(

t̃ (mr)± ϕ
))

Ẑ (y,H, s,mr)

≍ q

(

ms,m
◦
r , ρ

◦
1 (m

◦
r) , ρ

◦
2 (m

◦
r , s) , ρ

◦
3 (m

◦
r , s) ,

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)

exp
{

n
(

h (γ◦,m◦
r) + t̃ (m◦

r)
)}

(C.47)

where the dominatingm◦
r is the saddle point, i.e., one of the solutions to the equation

∂

∂m
f (m)− 1

2
Ī (m)− m

2

∂

∂m
Ī (m) +

1

n

∂

∂m
V (m)

‖y‖2
n

+
∂

∂m
h (γ◦,m) = 0 (C.48)

where we have used the fact thatt̃ (m) = f (m)− m
2 Ī (m) + V (m) ‖y‖2 /n. Simple calculations reveal

that the derivative ofh (γ◦,m) w.r.t. m is given by (note thatγ◦ also depends onmr)

∂

∂m
h (γ◦,m) = γ◦ +m

∂

∂m
γ◦ +

1

n

n
∑

i=1

1

2

[

∂

∂m
L (m)ui,1 −

∂

∂m
γ◦
]

+
1

n

n
∑

i=1

tanh

(

L (m)ui,1 − γ◦

2

)

1

2

[

∂

∂m
L (m)ui,1 −

∂

∂m
γ◦
]

(C.49)

= γ◦ +
1

2n

n
∑

i=1

[

1 + tanh

(

L (m)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∂L (m)

∂m

∣

∣yThi

∣

∣

2

+
∂

∂m
γ◦

[

m− 1

2
− 1

2n

n
∑

i=1

tanh

(

L (m)ui,1 − γ◦

2

)

]

, (C.50)

but the last term in r.h.s. of the above equation is zero (due to (C.23)), and thus

∂

∂m
h (γ◦,m) = γ◦ +

1

2n

n
∑

i=1

[

1 + tanh

(

L (m)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∂L (m)

∂m

∣

∣yThi

∣

∣

2
. (C.51)

Thus, substituting the last result in (C.48), we have that

γ◦ (m◦
r) =− 1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∂L (m◦
r)

∂m◦
r

∣

∣yThi

∣

∣

2 − ∂

∂m◦
r

f (m◦
r) +

1

2
Ī (m◦

r)

+
m◦

r

2

∂

∂m◦
r

Ī (m◦
r)−

∂

∂m◦
r

V (m◦
r)

‖y‖2
n

. (C.52)

So, hitherto, we obtained that the asymptotic behavior ofZ̃± (y,H, s) is given by (C.47), and the various

dominating terms are given by

γ◦ (m◦
r) = − 1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∂L (m◦
r)

∂m◦
r

∣

∣yThi

∣

∣

2 − ∂

∂m◦
r

f (m◦
r) +

1

2
Ī (m◦

r)

December 10, 2013 DRAFT



50

+
m◦

r

2

∂

∂m◦
r

Ī (m◦
r)−

∂

∂m◦
r

V (m◦
r)

‖y‖2
n

, (C.53a)

m◦
r =

1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

, (C.53b)

ρ◦1 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∣

∣yThi

∣

∣

2
, (C.53c)

ρ◦2 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

si, (C.53d)

ρ◦3 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∣

∣yThi

∣

∣

2
si. (C.53e)

This concludes the asymptotic analysis of the summation overr in (C.10). We now take care of the

summation overs in (C.11). Let

q (s)
△
= q

(

ms,m
◦
r , ρ

◦
1 (m

◦
r) , ρ

◦
2 (m

◦
r , s) , ρ

◦
3 (m

◦
r , s) ,

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)

. (C.54)

Applying (C.47) on (C.11), we have that

Z± (y,H) ≍ e{n(h(γ◦,m◦
r)+t̃(m◦

r))} ∑

s∈{0,1}n

q (s) exp

{

n

(

t̃ (ms) + L (ms)
1

n

n
∑

i=1

∣

∣yThi

∣

∣

2
si ± ϕ

)}

△
= e{n(h(γ◦,m◦

r)+t̃(m◦
r))}∑

ms

exp
(

n
(

t̃ (ms)± ϕ
))

Z̄ (y,H,ms) (C.55)

where as before

Z̄ (y,H,ms)
△
=

∑

s: m(s)=ms

q (s) exp

(

L (ms)

n
∑

i=1

∣

∣yThi

∣

∣

2
si

)

. (C.56)

However, Z̄ (y,H,ms) has essentially the same form of̃Z (y,H, s,mr), which we have analyzed

earlier. So, using the same technique, we readily obtain that

Z̄ (y,H,ms) ≍ q̄ (ms) exp (nh (γ̃
◦,ms)) (C.57)

whereh (γ̃◦,ms) is defined as in (C.44) (note that the exponential term is similar to the previous one),

and

q̄ (ms)
△
= q (ms,m

◦
r , ρ

◦
1 (m

◦
r) , ρ

◦
2 (m

◦
r ,ms) , ρ

◦
3 (m

◦
r ,ms) , ρ

◦
4 (ms)) (C.58)

in which γ̃◦, {ρ◦l }4l=2 solve the following set of equations

ms =
1

2n

n
∑

i=1

[

1 + tanh

(

L (ms)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

, (C.59a)
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ρ◦2 =
1

4n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)][

1 + tanh

(

L (ms)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

, (C.59b)

ρ◦3 =
1

4n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)][

1 + tanh

(

L (ms)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

∣

∣yThi

∣

∣

2

(C.59c)

ρ◦4 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (ms)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

∣

∣yThi

∣

∣

2
. (C.59d)

Finally, the summation overms in (C.55) is again estimated by using the Laplace method, and we

obtain

Z± (y,H) ≍ q (m◦
s,m

◦
r , ρ

◦
1 (m

◦
r) , ρ

◦
2 (m

◦
r ,m

◦
s) , ρ

◦
3 (m

◦
r ,m

◦
s) , ρ

◦
4 (m

◦
s))

× exp
{

n
(

h (γ◦,m◦
r) + h (γ̃◦,m◦

s) + t̃ (m◦
r) + t̃ (m◦

s)± ϕ
)}

(C.60)

where

γ◦ (m◦
r) = − 1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∂L (m◦
r)

∂m◦
r

∣

∣yThi

∣

∣

2 − ∂

∂m◦
r

f (m◦
r) +

1

2
Ī (m◦

r)

+
m◦

r

2

∂

∂m◦
r

Ī (m◦
r)−

∂

∂m◦
r

V (m◦
r)

‖y‖2
n

,

γ̃◦ (m◦
s) = − 1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
s)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

∂L (m◦
s)

∂m◦
s

∣

∣yThi

∣

∣

2 − ∂

∂m◦
s

f (m◦
s) +

1

2
Ī (m◦

s)

+
m◦

s

2

∂

∂m◦
s

Ī (m◦
s)−

∂

∂m◦
s

V (m◦
s)

‖y‖2
n

,

m◦
r =

1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

,

m◦
s =

1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
s)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

,

ρ◦1 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∣

∣yThi

∣

∣

2
, (C.61)

ρ◦2 =
1

4n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)][

1 + tanh

(

L (m◦
s)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

,

ρ◦3 =
1

4n

n
∑

i=1

[

1 + tanh

(

L (m◦
r)
∣

∣yThi

∣

∣

2 − γ◦

2

)][

1 + tanh

(

L (m◦
s)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

∣

∣yThi

∣

∣

2

ρ◦4 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦
s)
∣

∣yThi

∣

∣

2 − γ̃◦

2

)]

∣

∣yThi

∣

∣

2
. (C.62)
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Not surprisingly, due to the symmetry betweens andr, it can be seen that them◦
s = m◦

r , and whence

the above set of equations reduces to

γ◦ = − 1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∂L (m◦)

∂m◦

∣

∣yThi

∣

∣

2 − ∂

∂m◦
f (m◦) +

1

2
Ī (m◦)

+
m◦

2

∂

∂m◦
Ī (m◦)− ∂

∂m◦
V (m◦)

‖y‖2
n

, (C.63a)

m◦ =
1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

, (C.63b)

ρ◦1 = ρ◦4 =
1

2n

n
∑

i=1

[

1 + tanh

(

L (m◦)
∣

∣yThi

∣

∣

2 − γ◦

2

)]

∣

∣yThi

∣

∣

2
, (C.63c)

ρ◦2 =
1

4n

n
∑

i=1

[

1 + tanh

(

L (m◦)
∣

∣yThi

∣

∣

2 − γ◦

2

)]2

, (C.63d)

ρ◦3 =
1

4n

n
∑

i=1

[

1 + tanh

(

L (m◦)
∣

∣yThi

∣

∣

2 − γ◦

2

)]2
∣

∣yThi

∣

∣

2
, (C.63e)

and by using (98)

q
(

m◦, {ρ◦l }3l=1

)

=β2
α (m◦, ρ◦2)

g2 (m◦)
ρ◦3 − 2

α (m◦, ρ◦2) b (m
◦)

g3 (m◦)
β3σ2ρ◦2

[

ρ◦1 −m◦ ‖y‖2
n

]

. (C.64)

Based on (C.1), we also need to find the asymptotic behavior of

∑

s∈{0,1}n

P (s) ξ (y,Hs) , (C.65)

and

∑

s∈{0,1}n

P (s) J1 (y,Hs) ξ (y,Hs) . (C.66)

However, obviously, the previous analyzed term can be regarded as an extended version of the above

terms, and so we can immediately conclude that

∑

s∈{0,1}n

P (s) ξ (y,Hs) ≍ exp
{

n
(

h (γ◦,m◦) + t̃ (m◦)
)}

, (C.67)

∑

s∈{0,1}n

P (s) J1 (y,Hs) ξ (y,Hs) ≍ w (m◦) exp
{

n
(

h (γ◦,m◦) + t̃ (m◦)
)}

(C.68)

where by using (81), (93), and (98) (noting that in this caseρ◦3 = ρ◦1 andρ◦2 = m◦)

w (m◦)
△
= σ2m◦b (m◦) + β2

α (m◦)

g2 (m◦)
ρ◦1 − 2

α (m◦) b (m◦)

g3 (m◦)
β3σ2m◦

[

ρ◦1 −m◦ ‖y‖2
n

]

. (C.69)
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Therefore, using the last asymptotic results, the asymptotic estimate of the inner term of the expectation

in (C.1) is given by

1
∑

s∈{0,1}n P (s) ξ (y,Hs)

∑

s∈{0,1}n

P (s) J1 (y,Hs) ξ (y,Hs)

− 1
(

∑

s∈{0,1}n P (s) ξ (y,Hs)
)2

∑

s∈{0,1}n

∑

r∈{0,1}n

P (s)P (r) J2 (y,Hs,Hr) ξ (y,Hs) ξ (y,Hr)

≍ w (m◦)− g
(

m◦, {ρ◦l }3l=1

)

(C.70)

= σ2m◦b (m◦) +
2b (m◦)

g3 (m◦)
β3σ2

[

‖y‖2
n

m◦ − ρ◦1

]

[m◦α (m◦)− ρ◦2α (m◦, ρ◦2)]

+
β2

g2 (m◦)
[α (m◦) ρ◦1 − α (m◦, ρ◦2) ρ

◦
3] . (C.71)

Accordingly, using the dominated convergence theorem (DCT)[38], and the asymptotic behavior of

‖y‖2 /n, we obtain that14

mmse(X | Y ,H)

n
≍ E

{

σ2m◦b (m◦) +
β2

g2 (m◦)
[α (m◦) ρ◦1 − α (m◦, ρ◦2) ρ

◦
3]

+
2b (m◦)

r3 (m◦)
β3σ2

[(

maσ
2R+

R

β

)

m◦ − ρ◦1

]

[m◦α (m◦)− ρ◦2α (m◦, ρ◦2)]

}

. (C.72)

Finally, in the following, we will show a concentration property of the saddle point equations given in

(C.63), and obtain “instead” the saddle point equations given in (20)-(24). Accordingly, the expectation

in (C.72) becomes “superfluous”, as all the involved random variables (m◦ and {ρ◦i }3i=1) converge to

a deterministic quantity. According to (C.63), it can be seen that the saddle point equations share the

following common term

1

n

n
∑

i=1

φ
(

∣

∣hT
i Y
∣

∣

2
)

(C.73)

whereφ (·) : R → R is some integrable function (in theL1 sense). In the following, we first show that

(C.73) admits an SLLN property. To this end, let us define

Tn
△
=

n
∑

i=1

Ki, (C.74)

whereKi
△
= φ

(

∣

∣hT
i Y
∣

∣

2
)

, and letGn = σ (X,W )∩σ (Tn, Tn+1, . . .) be theσ-field (filtration) generated

by Tn, {Ki}i>n, X, andW . We will now show thatMn
△
= −T−n

n is a backwards martingale sequence

14Note that for an i.i.d. source we simply have thatPx = pσ2 wherep = P {Si = 1} for 1 ≤ i ≤ n.
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w.r.t. Fn
△
= G−n, n ≤ −1. Indeed, form ≤ −1, we have that

E

{

Mm+1

∣

∣

∣

∣

∣

Fm

}

= E

{

T−m−1

−m− 1

∣

∣

∣

∣

∣

G−m

}

. (C.75)

Settingn = −m, we see that

E

{

Tn−1

n− 1

∣

∣

∣

∣

∣

Gn

}

= E

{

Tn −Kn

n− 1

∣

∣

∣

∣

∣

Gn

}

(C.76)

=
Tn
n− 1

− E

{

Kn

n− 1

∣

∣

∣

∣

∣

Gn

}

(C.77)

where we have used the fact thatTn is measurable w.r.t.Gn. Now, we have that

E {Kn|Gn ∩ σ (Y )} = E {Kn|Tn,Y , σ (X,W )} (C.78)

= E {Kj |Tn,Y , σ (X,W )} (C.79)

for any 1 ≤ j ≤ n, where in the first equality we have used the facts thatGn = σ (X,W ) ∩
σ (Tn, Tn+1, . . .) = σ (X,W ) ∩ σ (Tn,Kn+1,Kn+2, . . .), that Y =

∑n
i=1 hiXi + W and that{hi}

are statistically independent, and the second equality follows due to the structure ofY = HX + W ,

the symmetry ofTn w.r.t. K1, . . . ,Kn, and the fact that{hi} are statistically independent. Clearly,

n
∑

i=1

E {Ki|Tn,Y , σ (X,W )} = E

{

n
∑

i=1

Ki

∣

∣

∣

∣

∣

Tn,Y , σ (X,W )

}

(C.80)

= Tn, (C.81)

and thus, due to (C.79), we obtain thatE {Kn|Gn ∩ σ (Y )} = Tn/n a.s. Whence, using (C.77) and the

last result, we obtain

E

{

Tn−1

n− 1

∣

∣

∣

∣

∣

Gn

}

=
Tn
n− 1

− E

{

Kn

n− 1

∣

∣

∣

∣

∣

Gn

}

(C.82)

=
Tn
n− 1

− E

{

E

{

Kn

n− 1

∣

∣

∣

∣

∣

Gn ∩ σ (Y )

} ∣

∣

∣

∣

∣

Gn

}

(C.83)

=
Tn
n− 1

− Tn
n (n− 1)

=
Tn
n
, a.s. (C.84)

This concludes the proof thatMn is a backwards martingale sequence w.r.t.{Fn}n≤−1. Now, by the

backwards martingale convergence theorem [43, 44], we deduce thatTn/n converges asn→ ∞, and in

L1, to a random variableK
△
= limn→∞ Tn/n. Obviously, for allm

K = lim
n→∞

K̃m+1 + . . .+ K̃m+n

n
, (C.85)
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where (due to the fact that{hi}i are i.i.d.)

K̃m+i = φ





∣

∣

∣

∣

∣

∣

hT
m+i





n+m+i
∑

j=m+i

hjXj +W





∣

∣

∣

∣

∣

∣

2

 , for i = 1, . . . , n. (C.86)

Thus K is σ (X,W ) ∩ σ (hm+1, . . .)-measurable, for allm, and hence it is alsoσ (X,W ) ∩
⋂

m σ (hm+1, . . .)-measurable (namely, the tailσ-field generated by{hi} intersected withσ (X,W )).

Thus, by the Kolmogorov’s 0-1 law [43], we conclude that thereexists a constantC ∈ R (w.r.t.σ (X,W ))

such thatP {K = C | σ (X,W )} = 1. This constant is obviously given by

C = E {K | σ (X,W )} = lim
n→∞

E

{

Tn
n

∣

∣

∣

∣

∣

σ (X,W )

}

. (C.87)

Thus, we have shown that

1

n

n
∑

i=1

φ
(

∣

∣hT
i Y
∣

∣

2
)

− 1

n
E

{

n
∑

i=1

φ
(

∣

∣hT
i Y
∣

∣

2
)

∣

∣

∣

∣

∣

X,W

}

→ 0, (C.88)

a.s. asn → ∞, namely, we show an SLLN property of (C.73). Our next step is to infer the asymptotic

behavior of each summand. First, we note that

hT
i Y = hT

i [HX]i +Xi ‖hi‖2 + hT
i W (C.89)

where [HX]i
△
= HX − hiXi. Let X̂i be a newn-dimensional vector, such that itsith component is

zero and the other components are identical to that ofX. Similarly, let Ĥ i denote a new matrix such

that its ith column contains zeros, and the other columns are identical to those ofH. Accordingly, let

ẑi,j denote thejth row of Ĥ i. With this notations, we have that[HX]i = Ĥ iX̂i. Thus,

hT
i Y =

k
∑

j=1

Hj,i

[

ẑT
i,jX̂i +Wj

]

+Xi ‖hi‖2 (C.90)

=
1√
n

k
∑

j=1

H̃j,i

[

ẑT
i,jX̂i +Wj

]

+Xi ‖hi‖2 . (C.91)

where H̃i,j
△
=

√
nHi,j . Given X, by using Lyapunov’s central limit theorem [45], we may infer the

following weak convergence

1√
n

k
∑

j=1

H̃j,i

[

ẑT
i,jX̂i +Wj

]

d−→ N
(

0, Rmaσ
2 +

R

β

)

, (C.92)

as n → ∞. Accordingly, let Y be the limit point in (C.92), namely,Y ∼ N
(

0,maσ
2R+R/β

)

.

Therefore, based on (C.91), (C.92), and Slutsky’s lemma [46, Lemma 2.8], we may conclude that

(conditioned onX)

hT
i Y

d−→ Y +RXi. (C.93)
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In the sequel, we use the following two results. The first resultis the continuous mapping theorem [46,

Th. 2.3].

Lemma 5 (The continuous mapping theorem)Let Φ : R → R be an almost-everywhere continuous

mapping, and let{Ji} be a sequence of real-valued random variables that converges weakly to a real-

valued random variableJ . Then,{Φ (Ji)} converges weakly to the real-valued random variableΦ (J).

The second result is the following extension of Portmanteau’slemma [46, Theorem 2.2].

Lemma 6 (Portmanteau’s lemma (extended version))Let f : Rk 7→ R be a measurable and continuous

at every point in a setC . Let Xn
d→ X whereX takes its values inC . ThenEf (Xn) → Ef (X) if

and only if the sequence of random variables{f (Xn)} is asymptotically uniformly integrable, namely,

limM→∞ lim supn→∞ E
{

|f (Xn)|1|f(Xn)|>M

}

= 0.

Whence, using the last results, and Lemmas 5 and 6, we obtain that15

1

n

n
∑

i=1

φ
(

∣

∣hT
i Y
∣

∣

2
)

− 1

n
E

{

n
∑

i=1

φ
(

|Y +RXi|2
)

∣

∣

∣

∣

∣

X

}

→ 0. (C.94)

Now, applying the SLLN on (C.94), we finally may write that

1

n

n
∑

i=1

φ
(

∣

∣hT
i Y
∣

∣

2
)

→ E

[

φ
(

|Y +RX|2
)]

, (C.95)

a.s. asn → ∞, where the expectation is taken w.r.t. the product measure corresponding toY , andX

which is distributed according to a mixture of two measures:Dirac measure at0 with weight 1 −ma,

and a Gaussian measure with zero mean and varianceσ2 and weightma. Equivalently, the last result

can be rewritten as

1

n

n
∑

i=1

φ
(

∣

∣hT
i Y
∣

∣

2
)

→ E

[

φ
(

|X |2
)]

, (C.96)

a.s. asn→ ∞, where the expectation overX is now taken w.r.t. a mixture of two measures: Gaussian

measure with zero mean and variance
(

maσ
2R+R/β

)

and weight1 − ma, and a Gaussian measure

with zero mean and variance
(

maσ
2R+R/β +R2σ2

)

and weightma.

Therefore, applying the last general asymptotic result to the saddle point equations given in (C.63),

we obtain

γ◦ = −1

2
E

{[

1 + tanh

(

L (m◦) |X |2 − γ◦

2

)]

dL (m)

dm

∣

∣

∣

∣

m=m◦

|X |2
}

− dt (m)

dm

∣

∣

∣

∣

m=m◦

,

15In our case, the sequence of random variablesφ
(

∣

∣hT

i Y
∣

∣

2
)

meet the asymptotic uniform integrability assumption of

Lemma 6, for the various choices ofφ according to (20)-(24).
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m◦ =
1

2
E

{

1 + tanh

(

L (m◦) |X |2 − γ◦

2

)}

,

ρ◦1 = ρ◦4 =
1

2
E

{[

1 + tanh

(

L (m◦) |X |2 − γ◦

2

)]

|X |2
}

,

ρ◦2 =
1

4
E







[

1 + tanh

(

L (m◦) |X |2 − γ◦

2

)]2






,

ρ◦3 =
1

4
E







[

1 + tanh

(

L (m◦) |X |2 − γ◦

2

)]2

|X |2






, (C.97)

as claimed.

APPENDIX D

MATHEMATICAL TOOLS

Lemma 7 ([33]) [Matrix Inversion Lemma] LetU be anN ×N invertible matrix andx ∈ CN , c ∈ C

for which U + cxxH is invertible. Then

xH
(

U + cxxH
)−1

=
xHU−1

1 + cxHU−1x
. (D.1)

Lemma 8 (Matrix Inversion Lemma 2)Under the assumptions of Lemma 7,

(

U + cxxH
)−1

= U−1 − U−1cxxHU−1

1 + cxHU−1x
. (D.2)

Lemma 9 (Resolvent Identity)Let U andV be two invertible complex matrices of sizeN ×N . Then

U−1 − V −1 = −U−1 (U − V )V −1. (D.3)

The following lemma is a powerful tool which is widely used in RMT with many versions and extensions.

Lemma 10 ([24, 25])Let AN ∈ CN×N be a sequence of deterministic matrices, and letx ∈ CN have

i.i.d. complex entries with zero mean, variance1/N , and boundedlth order momentE |Xi|l ≤ νl. Then,

for any p ≥ 1

E

∣

∣

∣

∣

xH
NANxN − 1

N
trAN

∣

∣

∣

∣

p

≤ Cp

Np/2

(

1

N
trANAH

N

)p/2
[

ν
p/2
4 + ν2p

]

(D.4)

whereCp is a constant depending only onp.

Lemma 11 ([25, 35])[Trace Lemma] Let(AN )N≥1, AN ∈ CN×N , be a sequence of random matrices

and (xN )N≥1 = [X1,N , . . . , XN,N ]T ∈ CN , a sequence of random vectors of i.i.d. entries, statistically
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independent of(AN )N≥1. Assume thatE {Xi,j} = 0, E
{

|Xi,j |2
}

= 1, E
{

|Xi,j |8
}

< ∞, and thatA

has bounded spectral norm (in the a.s. sense). Then, a.s.,

1

N
xH
NANxN − 1

N
trAN → 0. (D.5)

Lemma 12 ([47])Let (an)n≥1 , (bn)n≥1 , (ān)n≥1 ,
(

b̄n
)

n≥1
be four infinite sequences of complex random

variables. Assume thatan ≍ ān andbn ≍ b̄n in the a.s. sense.

• If |an|,
∣

∣b̄n
∣

∣ and/or|ān|, |bn| are a.s. bounded, then a.s.,

anbn ≍ ānb̄n.

• If |an|,
∣

∣b̄n
∣

∣

−1
and/or|ān|, |bn|−1 are a.s. bounded, then a.s.,

an/bn ≍ ān/b̄n.

Lemma 13 ([25, 35])Let (AN )N≥1, AN ∈ CN×N , be a sequence of matrices with uniformly bounded

spectral norm, and(BN )N≥1, BN ∈ CN×N be random Hermitian, with eigenvaluesλ1 ≤ . . . ≤ λN

such that, with probability one, there existǫ > 0 for which λ1 > ǫ for all largeN . Then, forvN ∈ CN ,

1

N
trANB−1

N − 1

N
trAN

(

BN + vNvH
N

)−1 → 0 (D.6)

a.s. asN → ∞, whereB−1
N and

(

BN + vvH
)−1

are assumed to exist with probability 1.

Lemma 14 ([48]) [Rank-1 Perturbation Lemma] Letz ∈ C \ R+, A ∈ CN×N andB ∈ CN×N where

B is Hermitian nonnegative definite, andx ∈ CN . Then,
∣

∣

∣
tr
(

(B − zIN )−1 −
(

B + xxH − zIN

)−1
)

A
∣

∣

∣
≤ ‖A‖

dist(z,R+)
(D.7)

where dist(·, ·) denotes the Euclidean distance.

Lemma 15Let xN ∈ CN be a random vector with i.i.d. entries each with zero mean andunit variance,

and letAN ∈ CN×N such that
√

trAH
NAN is uniformly bounded for allN . Then, for any finitep,

E
∣

∣xH
NANxN

∣

∣

p
<∞ (D.8)

for all N .

Proof: By Jensen’s inequality we may write that

E
∣

∣xH
NANxN

∣

∣

p ≤ 2p−1
(

E
∣

∣xH
NANxN − trAN

∣

∣

p
+ |trAN |p

)

<∞

where the second inequality follows from the facts that: thefirst term in the r.h.s. is bounded by Lemma

10, and the second term is bounded by assumption.
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