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Abstract

Compressed sensing is a signal processing technique inhwddta is acquired directly in a
compressed form. There are two modeling approaches thdiecaonsidered: the worst-case (Hamming)
approach and a statistical mechanism, in which the sigmalsnadeled as random processes rather than
as individual sequences. In this paper, the second appisatudied. Accordingly, we consider a model
of the formY = HX + W, where each comportment & is given by X; = S,;U;, where{U,}
are i.i.d. Gaussian random variables, g} } are binary random variables independent{&f;}, and
not necessarily independent and identically distributeci), H € R**™ is a random matrix with
i.i.d. entries, andWW is white Gaussian noise. Using a direct relationship betwegaimum estimation
and certain partition functions, and by invoking methodsfrstatistical mechanics and from random
matrix theory (RMT), we derive an asymptotic formula for tihéimum mean-square error (MMSE) of
estimating the input vectaX givenY andH, ask,n — oo, keeping the measurement rafe,= k/n,
fixed. In contrast to previous derivations, which are basedhe replica method, the analysis carried in

this paper is rigorous.

Index Terms

Compressed Sensing (CS), minimum mean-square error (MM@&]ition function, statistical-
mechanics, replica method, conditional mean estimatidrase transitions, threshold effect, random

matrix.
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I. INTRODUCTION

Compressed sensing [1, 2] is a signal processing techniggiecompresses analog vectors by means
of a linear transformation. Using some prior knowledge anglgnalsparsity and by designing efficient
“encoders” and “decoders”, the goal is to achieve effectiwmpression in the sense of taking a much
smaller number of measurements than the dimension of tigénatisignal.

A general setup of compressed sensing is shown in Fig. 1. Thdanistn is as follows: A real
vector X € R” is mapped intoV € R* by an encoder (or compressof): R® — R¥. The decoder
(decompresson) : R¥ — R™ receivesY’, which is a noisy version o¥’, and outputsX as the estimation
of X. The measurement rate, or compression ratio, is defined as

k
=

1>

R 1)

Generally, there are two approaches to the choice of thedenc®he first approach is to constrain the
encoder to be dinear mapping, denoted by a matrikl € R**", usually called thesensing matrix
or measurement matrixnder this encoding linearity constraint, it is reasoeatd consider optimal
deterministic and random sensing matrices. The other apprsato considemnon-linear encoders. In
this paper, we will focus on random linear encoddifsis assumed to be a random matrix with i.i.d. entries
of zero mean and variandg'n. On the decoder side, most of the compressed sensing Uiteriiicuses
on low-complexity decoding algorithms which are robustwiéspect to observation noise, for example,
decoders based on convex optimization, greedy algoritletes,(see, for example [3-6]). In this paper,
on the other hand, the decoder is assumed to be optimal, paitned given by the minimum mean-
square error (MMSE) estimator. The input vect&r is assumed to be random distributing according
some measure that is modeling/capturing sparsity. Note ttha statistical assumption (or, Bayesian
formulation) is incompatible to “usual” compressive sagsimodels, in which the underlying signal is
assumed to be deterministic and the performance is measureal worst-case basis with respect to
X (Hamming theory). This statistical approach has been pusiyoadopted in the literature (see, for
example, [5-12]). Finally, the noise is assumed to additivetevand Gaussian.

The main goal of this paper is to analyze rigorously the asgtigobehavior of the MMSE, namely,
to find the MMSE fork, n — oo with a fixed ratioR. Using the asymptotic MMSE, one can investigate
the fundamental tradeoff between optimal reconstructimare and measurement rates, as a function of
the signal and noise statistics. For example, it will be e there exists a phase transition threshold
of the measurement rate (which only depends on the inpuststa). Above the threshold, the noise

sensitivity (defined as the ratio between that MMSE and theengisiance) is bounded for all noise
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Fig. 1. Noisy compressed sensing setup.

variances. Below the threshold, the noise sensitivity doasfinity as the noise variance tends to zero.

A. Known results and new contributions

There are several previously reported results that arescelgirectly or indirectly) to this work. Some
of these results were derived rigorously and some of theme wet, since they were based on the
powerful, but non-rigorousieplica method. In the following, we briefly state some of these rasuit
[12], using the replica method, a decoupling principle @& gosterior distribution was claimed, namely,
the outcome of inferring about any fixed collection of signiaheents becomes independent conditioned
on the measurements. Also, it was shown that each signakeeleposterior becomes asymptotically
identical to the posterior resulting from inferring the sagiement in scalar Gaussian noise. Accordingly,
this principle allows us to calculate the MMSE of estimatihg signal input given the observations. In
[11], among other results, it was shown rigorously that fod.i input processes, distributing according
to any discrete-continuous mixture measure, the phasssitican threshold for optimal encoding is
given by the input information dimension. This result serassa rigorous verification of the replica
calculations in [12]. In [10], using the replica method ahé tdecoupling principle, the authors extend
the scope of conventional noisy compressive sampling wtiegesensing matrix is assumed to have
i.i.d. entries to allow it to satisfy a certain freeness dbod (encompassing Haar matrices and other
unitarily invariant matrices). In [13, 14], the authors ide®d structured sensing matrices (not necessarily
i.i.d.), and a corresponding reconstruction procedurat #lows compressed sensing to be performed
at acquisition rates approaching to the theoretical optimats. A wide variety of previous works are
concerning low-complexity decoders, which are robust wébpect to the noise, e.g., decoders based
on convex optimizations (such d&s-minimization and/;-penalized least-squares) [3, 4], graph-based
iterative decoders such as linear MMSE estimation and appedg message passing (AMP) [5], etc.
For example, in [6], the linear MMSE and LASSO estimators werdistufor the case of i.i.d. sensing

matrices as special cases of the AMP algorithm, the perfocmaf which was rigorously characterized
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for Gaussian sensing matrices [15], and generalized fopadbclass of sensing matrices in [9]. Another,
somewhat related, subject is the recovery of the sparsitgnpawith vanishing and non-vanishing error
probability, which was studied in a number of recent workg,,d6, 16-22].

In this paper, under the previously mentioned model assomgtwe rigorously derive the asymptotic
MMSE in a single-letter form. The key idea in our analysis isfw that by using some direct relationship
between optimum estimation and certain partition funcif28], the MMSE can be represented in some
mathematically “convenient” form which (due to the presbumentioned input and noise Gaussian
statistics assumptions) consists of functions of 8ieltjesand Shannontransforms. This observation
allows us to use some powerful results from random matrioh€RMT), concerning the asymptotic
behavior (a.k.a. deterministic equivalents) of the Stsliand Shannon transforms (see e.g., [24, 25] and
many references therein). Our asymptotic MMSE formula seenappear different than the one that is
obtained from the replica method [12]. Nevertheless, nisakcalculations suggest that the results are
equivalent. Thus, similarly to other known cases in stattmechanics, for which the replica predictions
were proved to be correct, our results support the replicthodepredictions. In the same breath, we
believe that our formula is more insightful compared to teplica method results. Also, in contrast
to previous works in which only memoryless sources were idensd (an indispensable assumption in
the analysis), we consider a more general model which alwsrtain structured dependency among
the various components of the source. Finally, we mention itha previous related paper [26], the
authors have used similar methodologies to obtain the amtmpnismatched MSE of a codeword (from

a randomly selected code), corrupted by a Gaussian vectomeh

B. Organization

The remaining part of this paper is organized as follows. IrtiSedl, the model is presented and the
problem is formulated. In Section Ill, the main results amesd and discussed along with a numerical
example that demonstrates the theoretical result. In Set¥ipthe main result is proved, and finally, our

conclusions appear in Section V.

II. NOTATION CONVENTIONS AND PROBLEM FORMULATION
A. Notation Conventions

Throughout this paper, scalar random variables (RV'’s) walldenoted by capital letters, their sample
values will be denoted by the respective lower case lettedstheir alphabets will be denoted by the

respective calligraphic letters. A similar conventionlveipply to random vectors and matrices and their
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sample values, which will be denoted with same symbols irbthld face font. Probability measures will
be denoted generically by the let®r In particular,P (X,Y) is the joint density of the random vectors
X andY. Accordingly, P (X) will denote the marginal ofX, P (Y | X) will denote the conditional
density of Y given X, and so on.

The expectation operator of a measurable funcfidX, Y') with respect to (w.r.t.’ (X,Y") will be
denoted byE { f (X,Y)}. The conditional expectation of the same function given #ization y of Y,
will be denoted byE {f (X,Y) | Y = y}. When using vectors and matrices in a linear-algebraic &éym
n-dimensional vectors, like:, will be understood as column vectors, the operatoys and (-) will
denote vector or matrix transposition and vector or matarjegate transposition, respectively, and so,
X7 would be a row vector. For two positive sequen¢es} and{b,}, the notations:,, = b,, anda,, ~ b,
mean equivalence in the exponential order, ilien, %ln (an/by) = 0, andlim,, o (an/by) = 1,
respectively. For two sequencés, } and{b,}, the notatior,, < b,, means thatim,,_,~ (a, — b,) = 0.

Finally, the indicator function of an evept will be denoted byl 4.

B. Model and Problem Formulation

As was mentioned earlier, we consider sparse signals, si@opon a subspace with dimension smaller
thann. In the literature, it is often assumed that the input precé€shas i.i.d. components. In this work,
however, we generalize this assumption by consideringdhenfing stochastic model: Each component,
X, 1 <i<n,of X, is given byX; = S;U; where{U,} are i.i.d. Gaussian random variables with zero
mean and variance?, and {S;} are binary random variables taking values{in 1}, independently of
{U;}. Now, instead of assuming that tipattern sequences = (Si,...,S,) is i.i.d., we will assume a
more general distribution but we keep certain symmetry @rigs among the various possible sequences
{S}. In particular, we postulate that all sequené&s with the same number df's are equally likely,

namely, all configurations with the samenagnetizatioit
1
ms = — Z S; (2)

have the same probability. This literally means that the mnea® (S) depends onS only via ms.

Consider then the following form

P(S)=C,-exp{nf(ms)} 3)

The term “magnetization” is borrowed from the field of statistical mechapiicspin array systems, in which; is taking

values in{—1, 1}. Nevertheless, for the sake of convince, we will use this term also in rainigm.
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where f (-) is a certain function independent afand C,, is a normalization constant. Note that for the

popular i.i.d. assumptionf is a linear function. By using the method of types [27], weairbt

-1

Cp = Z exp{nf (ms)}
se{0,1}"
-1

= [ 3 Qe {nf (m)

me|[0,1]
= exp {—n . mﬁX{hz (m)+ f (m)}}

=exp {—n[h2 (mq) + f (ma)]} (4)

where Q2 (m) designates the number of binamyvectors with magnetizatiom:, hs (-) designates the
binary entropy function, aneh, is the maximizer ofhy (m) + f (m) over [0, 1]. In other words;n,, is

the a-priori magnetization, namely, the magnetization tlaiminateshe measuré@ (.S).

Remark 1While the Gaussian assumption 6f's is mandatory in our analysis, the assumption thiat
is taking values in{0, 1}, can be generalized to any discrete probability measureéh Sugeneralization
has some practical motivations [28]. Also, as was reponef29], statistical dependency in the pattern
sequence may lead to the appearance of phase transitiossdchy the source, in addition to the phase

transition caused by the channel.

Remark 2In the i.i.d. case, eaclX; is distributed according to following mixture distributio(a.k.a.

Bernoulli-Gaussian measure)
P(z)=(1-p)-0(z)+p- P (x) (5)

where ¢ (z) is the Dirac function,Pg; (z) is a Gaussian density function afd< p < 1. Consider a
random vectorX in which each component independentlgrawn fromP (x). Then, by the law of large
numbers (LLN),2 | X, 5, where|| X ||, designates the number of non-zero elements of a veXtor
Thus, it is clear that the weight parametrizes the signal sparsity aRgd is the prior distribution of the

non-zero entries.
Finally, we consider the following observation model

Y =HX+W, (6)
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whereH is ak xn random matrix, a.k.a. theensing matrixwith i.i.d. entries of zero mean and variance
1/n. The components of the noid& are i.i.d. Gaussian random variables with zero mean andneei
1/5. We denote byR 2 k/n the measurement rate.

The MMSE of X givenY and H is defined as follows
mmse(X | Y, H) ZE|X —E{X | Y, H}|? 7)

whereE{X |Y,H} is the conditional expectation w.r.t. the measié | Y, H). Accordingly, we
define theasymptotic MMSEs

D (R, 8) 2 limsup ~mmse(X | Y, H). 8)

n—oo N

As was mentioned earlier, our main goal is to rigorouslydedomputable, single-letter expression for
D (R, B).

1. M AIN RESULT

In this section, our main result is first presented and dismisEhen, we provide a numerical example
in order to illustrate the obtained theoretical results. ptaof of the main theorem is provided in Section
V.

Before we state our main result, we define some auxiliary fanstof a generic variable < [0, 1]:

N 1+ Bo? (R—x)] + \/[1 + 802 (R — z)]* + 4802z

® I , ©)
g (x) 214 Bolxb (x), (10)
= AR Bo?Rb (x)
I(m)-;lng(x)—lnb(az)—w, (11)
A B3oth? (z) 22
A B20%b (x)
and
t(x) 2 f(z) - gf () +V (2) [maRUQ + ];} . (14)
Next, for z,y € [0, 1] define the functions
2p 2
v (a,y) & gﬁ(f) 2 IZ‘Z f;(f) i (15)
vy () & g’/’)(]; + % (16)
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and

a(z,y) = W (17)
The asymptotic MMSE is given in the following theorem.
Theorem 1 (Asymptotic MMSH)et () be a random variable distributed according to
_ 2 2
Fola) = ;% P <_2‘qu> ier (PT:: RZ57) " <_2(PyiR%2)) (19)
wherem, is defined as in (4) and, 2 mqo?R+ R/j3. Let us define
K (Q,a1,a9) = % [1 + tanh <L(‘“)§2_O‘2> (19)
wherea; € [0,1] anday € R. Let m® and~° be solutions of the system_of equations
w2 m{K@ume @ t|  dodtm) (202)
m® SE{K (Q,m°,7°)} (20b)
where in case of more than one solutiém°,~°) is the pair with the largest value of
t(m®) + (mo - ;) Y +E {;L (m°) Q@ + In 2 cosh (W) } . (21)
Finally, define
o EE{K(Qm° ) Q) (22)
ps = E{K*(Q,m" ")}, (23)
/S E{K2(Q,m"7°) Q). (24)

Then, the limit supremum in (8) is, in fact, an ordinary limand the asymptotic MMSE is given by

D(R,8) = o*mb () + 25 %) 0% [P, = i) e (", ) — s (s, 5]
62
T2 ) [a (m®,m®) p} — a(m°, p3) pS] . (25)

In the following, we explain the above result qualitativedynd in particular, the various quantities that
have been defined in Theorem 1. The first important quantity.is which is obtained as the solution
of the system of equations in (20), and which we will refer $otle posterior magnetization. We use
the term “posterior” in order to distinguish it from the agi magnetizationm,; while m, is the

magnetization that dominates the probability distribaitfionction of the source, before observikg the
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posterior magnetization is the one that dominates the postgistribution, namely, after observing the
measurements. It is instructive to look at another reptasen of m°, which appears in the analysis,

and is given as follows
n
23

=1

—_

m° =

L(m) |yTh|’ —VOM (26)

2

1 + tanh (

SRS

where h; is the ith column of H. Note that the summand of the above sum is bounded between zer
and one, and hence, so1is°, which makes sense. Intuitively speaking, the first term guarent of
the hyperbolic tangent can be interpreted as a projectioth@fmeasurements on the sensing matrix
columns, andy® serves as a correction/alignment term so that the overadhstion gives the “correct”
magnetization (depending on the SNR and the measuremeit Téie role of the hyperbolic tangent
becomes clearer when considering the low noise case. Fpe BNR, the hyperbolic tangent behaves
very sharply; it converges to the sign function. When the $imction value equals one, the summand in
(26) also equals one, which means tat= 1. On the other hand, when the sign function value equals
—1, the summand equals zero, which means fat 0. So, for large SNR the posterior magnetization
simply equals to the a-priori magnetization. RegardingNMdSE itself, it can be seen that in this case
K (1) = K2 (-), and thusp§ = p§ and p5 = m°. Therefore, according to (25), we see that we are only

left with the first term on the right hand side, which for largéehaves, fotk > m°, like

o’my

2 ~
o mgb (Mmg) ~ GR—my) (27)

This result was already noticed in [£1fpr i.i.d. sources under which, = p.

Corollary 1 (“Infinite” SNR) In the low noise regime3 — oo, the asymptotic MMSE is given by

lim [8- D (R, 8)] = 02—

B—o0 R—m,

; (28)
for R > m,.

The solution to (21) is known as eritical point, beyond which the solution to (20) ceases to be the
dominant posterior magnetization, and accordingly, it nmusp elsewhere. Furthermore, as we vary one
of the other parameters of our model (including the sourcédet)pit might happen that the dominant

magnetization jumps from one value to another.

2In [10, 30], it was stated that (27) is proved rigorously in [11] for i.isurces. However, we suspect that this claim is

not true, due to the fact that in [11] the authors use the replica symm&sgrgotion in order to obtain this result.
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It is interesting to note that there are essentially twoinsdor possible phase transitions in our model:
The first one is the channd¥ that induces “long-range interactiodsThe second is the source, which
may have possible dependency (or interaction) betweeraiisus components (see (3)). Accordingly,
in [29, Example E] the problem of estimation of sparse sigredsuming thaf = I, was considered.
It was shown that, despite the fact that there are no longeramteractions induced by the channel, still
there are phase transitions if the source is not i.i.d. lddaethe i.i.d. case, the problem is analogous
to a system of non-interacting particles, where of courseplmase transitions can exist.

In the following, we consider the special case whé¢ien) is quadratit, i.e., f (m) = am + bm?/2,
and demonstrate that the dominant posterior magnetizatight jump from one value to another. Note
that this example was also considered in [29, Example E]. Fopl&ity of the demonstration, assume
that 02 and 3 are so small such that the random fluctuation in (19) are ribgigAccordingly, using

(20), we may write

o 1 1 dt(m)
m = 5 |:]. + tanh (2 dyn‘mmo)] (29)
~ % [1 + tanh (bm;—a)} , (30)

which can be regarded as the same equation okfliremagnetization (namely, after transformisg's
into spins,u; € {—1,1}, using the transformatiop; = 1 — 25;) as in the Curie-Weiss model of spin
arrays (see e.g., [31, Sect. 4.2]). For example,dfet 0 andb > 1, this equation has two symmetric
non-zero solutionstmg, which both dominate the partition function. 0f < a < 1, it is evident that
the symmetry is broken, and there is only one dominant smiuvhich is aboutngsgn(myg). Further
discussion on the behavior of the above saddle point equaditd various interesting approximations of
the dominant magnetization can be found in [29, 31, 32].

It is tempting to compare Theorem 1 with the prediction of thplica method [12]. Unfortunately,
we were unable to show analytically that the two results aragreement, despite the fact that there
are some similarities. Nevertheless, numerical calautatisuggest that this is the case. Fig. 2 shows the
asymptotic MMSE obtained using Theorem 1 and using the repiethod, as a function of, assuming

an i.i.d. source with sparsity raje= 0.1, and measurement rafeé = 0.3. It can be seen that both results

3In the considered settings, the posterior, is proportionalxljm{—ﬂ ly — HXH2 /2}, and after expansion of the norm,
the exponent includes an “external-field term”, proportionayfaH , and a “pairwise spin-spin interaction term”, proportional
to HHXHQ. These terms contain linear subset of components (or “particlesX),ofrhich are known as long-range interactions.
4As was noted in [29], quadratic model (similar to tEmdom-field Curie-Weiss modef spin systems (see e.g., [31, Sect.

4.2])) can be thought of as consisting of the first two terms of the Tagdoies expansion of a smooth function.
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Fig. 2. Comparison of the asymptotic MMSE using Theorem 1 and the replethod as a function of, for sparsity rate
p = 0.1, and measurement rafeé = 0.3.

give the same MMSE. Table | shows the relative error, definefinassg, — MMSEepiical /MMSQur, as

a function of 3. More enlightening numerical examples can be found in [10,138, 14].

IV. PROOF

A. Proof Outline

In this subsection, before getting deep into the proof of Téeol, we discuss the techniques and the
main steps which will be used in the proof. The analysis isré&gly composed of three main steps. The
first step is finding a generic expression of the MMSE. This is donasinyg a direct relationship between
the MMSE and some patrtition function, which can be found in LenimThis expression contains terms
that can be asymptotically assessed using the well-knovettj84 and Shannon transforms. In the second

step (appearing in Appendix B), we derive the asymptoti@bih of these functions (which are extremely
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TABLE |

COMPARISONBETWEEN THEOREM 1 AND THE REPLICA METHOD

10log 8  Relative Error

0 5.11-1073
10 8.09-1073
15 6.12-1073
20 6.51-1073
25 6.03-1073
30 4.65-1073
35 4.49-1073
40 4.59-1073

complex to analyze for finit@). In other words, we show that these functions convergdy piibbability
tending to one, as — oo, to some random functions that are much easier to work witls 1Ehdone
by invoking recent powerful methods from RMT, such as, the @lerstein method [33]. The resulting
functions are, in general, random, due to the fact that tlegedd on the observatiomsand the sensing
matrix H. Accordingly, we show that for the calculation of the asyatigt MMSE, it is sufficient to
take into account “only” combinations of typical vectofg} and matrices{ H}, where “typicality” is
defined in accordance to the above-mentioned asymptotidtge3inerefore, at the end of the second
step, we obtain an approximation (which is exactnas> oo) for the MMSE. Finally, in the last step,
using this approximation and large deviations theory, weiolthe result stated in Theorem 1 (this step

can be found in Appendix C).

B. Definitions

An important function, which will be pivotal to our derivati, is thepartition function which is

defined as follows.

Definition 1 (Partition Function)Let X andY be random vectors with joint density functi®n( X ,Y").
Let A = (A1,..., )" be a deterministic column vector of real-valued parameters. The partition
function w.r.t.P(X,Y), denoted byZ (Y; \), is defined as

Z(Y;A)é/ da P (x,Y)exp {A 'z}, (31)

n
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where it is assumed that the integral converges uniformhgadt in some neighborhood af= 0 °.

The motivation of the above definition is the following simpésult [23].

Lemma 1 (MMSE-partition function relatio)et Z (Y; A\) be defined as in (31). Then, the following
relation betweer? (Y; A) and the MMSE ofX givenY’, holds true

mmse(X | Y) £ iE{(Xi -E{X; | Y})2}
=1
n X 2
-3 [ety-uf [rEEAT Y @
; t A=0

—Z {WH}. 33)

Proof: Readily follows by taking the gradient of (31) w.rX, and evaluating the results at= 0

[ |
Our analysis will rely heavily on methods and results from RMwo efficient tools which are

commonly being used in RMT are ti&tieltjesand Shannonransforms, which are defined as follows.

Definition 2 (Stieltjes Transforml.et 1 be a finite nonnegative measure with support §upp_ R, i.e.,

p(R) < co. The Stieltjes transforng, (z) of  is defined forz € C — supp(u) as

5. = [ 42,

Let F'4 (-) be the empirical spectral distribution (ESD) of the eigengalof A ¢ RV*N, namely,

A 1

Fy (2) N {# of eigenvalues ofA < z}. (34)

The Stieltjes transform of'4 (x) is defined as

_ dFg(z) 1 C(A — 2T
sae)= = Ltr(A ) (35)

r—z

for e C\R™.

The last equality readily follows by using the spectral deposition of A, and the fact that the trace
of a matrix equals to the sum of its eigenvalues. For brevity, will refer to S4 (z) as the Stieltjes

transform of A, rather than the Stieltjes transform B% ().

®In case that this assumption does not hold, one can instead, paranegitize&eomponenk; of A as a purely imaginary

number)\; = jw; wherei = +/—1, similarly to the definition of the characteristics function.
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Definition 3 (Shannon Transformlhe Shannon of transform of a non-negative definite mattixe

CN*N is defined as
vA(2) = Indet (LA 4T (36)
A z) = N P 9

for z > 0.

The relation between our partition function and the Stielged Shannon transforms will become clear

in the sequel. Finally, we define the notion of deterministiaieslence.

Definition 4 (Deterministic Equivalencd)et (2, 7, P) be a probability space and I€f,,} be a series
of measurable complex-valued functions, : 2 x C — C. Let {g,,} be a series of complex-valued
functions, g, : C — C. Then,{g,} is said to be a deterministic equivalent of,,} on D C C, if there

exists a setd C Q with P (A) =1, such that
fon(w,2) —gn(2) =0 (37)
asn — oo for all w € A and for allz € D.

Loosely speaking{g, } is a deterministic equivalent of a sequence of random viasgly,,} if g, (z)

approximatesf,, (w, z) arbitrarily closely as: grows, for everyz € D and almost everw € A.

C. Auxiliary Results

In our derivations, the following asymptotic results wik lused.
Lemma 2Let (2, F, P) be a probability space, and consider a sequence of randdablm{Xi(”)}il.
Assume that

< o (38)

max {IE ‘Xi(n) T
n 1%

1<i<n

whereC, v > 0, andp > 1 are some fixed constants. Then,

nlL&P({wEQ: sup 12‘X§m) (w)‘ Ze}) =0 (39)

m>n M

for all € > 0, namely, <% >t ’Xi(n)

) converges to zero almost sure (a.s.)nas» co.

Proof: Using Chebyshev’s inequality and then Jensen’s inequéditya givend > 0, we have that
1 & 1 1 & g
: (n) < = 2z (n)
P{n;‘XZ >5}_6PE{<n;‘XZ ) } (40)
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L S| )]
< )
< — ;E ‘Xz (41)
1 (n) p
< 5 s B} 42)
C
< opnltv (43)

where the last inequality follows by (38). With (43), the ed result follows from common arguments
that rely on the Borel-Cantelli lemma. As this argument viaé used repeatedly in our analysis, for
completeness we explicitly present it here. Indeed, asitfie-hand side (r.h.s.) of (43) is summable, by

the Borel-Cantelli lemma, we have that

RPN e _
P ({w €Q: ; ‘XZ. (w)‘ > § infinitely often}) = 0. (44)

But sinced > 0 is arbitrary, the above holds for all rationat> 0. Since any countable union of sets of

zero probability is still a set of zero probability, we comdé that

P (U {w eN: izn: )XZ.(") (w)’ > 1 infinitely often}) =0. (45)
=1

geN q
|

n

Remark 3Note that the random variable{in(")}A

1=

, may depend on each other, and the result will be

still true.

The following lemmas deal with the asymptotic behavior oflac&unctions of random matrices, in
the form of Stielties and Shannon transforms, defined earlieg. drbofs of the following results are
based on a powerful approach by Bai and Silverstein [33]aatke Stieltjes transform method in the

spectral analysis of large-dimensional random matrices.

Lemma 3 ([34])Let X,, € C™! be a sequence of random matrices with iid. entries,
E|X;; — EX;;|* =1/, and letG; = diag (g1, ..., 1) € R™*! be a sequence of deterministic matrices,
satisfyingg; > 0 for all 1 < j <! andsup, g; < co. DenoteB,,, = X,,G; X  and letl, m — oo with

fixed 0 < ¢ 2 m/l < co. Then, for everyy > 0

%m det <iBm + Im> —n(y) =0, as. (46)
where
()élzljln(l—i—c-S(— ))—ln( S (— ))—1zl:M (47)
ny) = 2 955 (=7 A = 1+cg;S (=)

December 10, 2013 DRAFT



16

and S (z) is defined by the unique positive solution of the equation

-1
l

G- |1 9 _
5() = l;l—i-cng(z) : ' (48)

The next lemma deals with the asymptotic behavior of the setransform.

Lemma 4 ([35]) Let X ,,, G;, and B,, be defined as in Lemma 3. L&,, € C™*™ be a deterministic
sequence of matrices having uniformly bounded spectrahadgwith respect ten)®. Then, asn,l — oo

we a.s. have that

Ltr (@4 (B~ L))~ - r(€,,)8(2) 0, forall z € C\R,. (49)

m m

Remark 4In [36], the authors propose a somewhat more restrictivé (iseful) version of Lemma 4.

Assuming that®,,, has a uniformly bounded Frobenius norm (foral), they show similarly that

tr (@m (B — zIm)_1> (@) S (2)| = 0, for 2 € C\ R, (50)
a.s. asm,l — oo.

In order to apply the above results in our analysis, a somewloae general version will be needed.
First, the matrix®,,, in the Lemma 4 is assumed to be deterministic and bounded éirspiectral or
Frobenius senses). In our case, however, we will need to dial avrandom matrix®,,, which is
independent of the other random variables. The followingppsition accounts for this problem. The

proof is relegated to Appendix A.

Proposition 1 The assertion of Lemma 4 holds true also for a randdymne C™*™, which is independent

of X,,, and has a uniformly bounded spectral norm (with respecetYdon the a.s. sense.

Remark 5In Proposition 1, it is assumed th@,,, has uniformly bounded spectral norm (uniformly in

m) in the a.s. sense, namely,

limsup [|©,,| < oo (51)

m—ro0

with probability one. In other words, for every> 0, there exists some positivé/, such that for all

m > My we have that|®,,|| < D + ¢ for some finite constanb.

®Actually we only need to demand the distributidie,,, to be tight, namely, for alk > 0 there existsM > 0 such that
Fe,, (M) > 1— ¢ for all m.
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The second issue is regarding the assumption that the aation/l, in the previous lemmas, tends
to a strictly positive limit. In our case, however, this linthay be zero. Fortunately, it turns out that
the previous results still hold true also in this case, ngmeelcontinuity property w.r.tc. Technically
speaking, this fact can be shown by repeating the originabfsrof the above results and noticing that
the positivity assumption is superfluous. In case thais fixed while I goes to infinity (and there
vanishes), using the strong law of large numbers (SLLN), it syea see that the previous lemmas
indeed hold true. Also, ifn < /1, then a simple approach is to show that the diagonal elenoéritse
matrix X ,, XL concentrate around a fixed value, and that the row sum of affedial terms converges
to zero. Then using Gershgorin’s circle theorem [37] oneiobtthe deterministic equivalent.

In the following subsection, we prove Theorem 1. The proof aimst several tedious calculations and

lemmas, which will relegated to appendices for the sake afresience.

D. Main Steps in the Derivation of Theorem 1

Let s andr be two binary sequences of lengihand letS 2 spt(s) andR 2 spt(r) designate their
respectivegeneralized supportsiefined as spts) 2 {i e N: S; # 0}, and similarly forr. Also, define
L =T
Qsnr = Z €m; €y (52)
JESNR

wheree,,: andeé,; denote unit vectors of sizg5| x 1”7 and|R| x 1, having “1” at the indexesm? 2

: A —j .
i_y st andm’ =37 7, respectively.

Example 1Let n = 6, and consides = (1,1,0,0,1,1) andr = (0,1,1,0,0,1). Then,S = {1, 2, 5,6},
R = {2,3,6}, and thusS N R = {2,6}. Whencemj = 2, m} = 1, m$ = 4, andm}, = 3. Accordingly,

the matrix@ 4, IS given by

010 0
- - T

QL = (e8!l +esed) =0 0 0 0

000 1

For a vectory and a matrixV, we definev, = v|g andV 2 V|5, which is the restriction of the

entries ofv and the columns oV on the supportS, respectively. Finally, for brevity, we define the

"For a setA, we use|A| to designate its cardinality.
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following quantities

1 —1
Hs 2 <5H”§Hs n 0215> , (53)
S A T 1 -
HS = 5[HSHSL.+§IS , (54)
S A T 1 -
Hi,; = (B[HEHS], + —Is) (55)

where [H{ H ;] = HTHg - 22!, and [HZ’HS]” = [HyH ), — z;z), in which z; is theith row
of the H;.
In the following, we first derive a generic expression for th&18E. Under the model described in

Section Il, one have that

1 B 2
Py |Hao)= — - exp (— ly - Ha] ) (56)
(2m/ )+ 2
and that
1 12
P(x|s)= Z H d(x H ———e 2271, (57)
se{0,1}" i 8= i s;=1 2mo?

Therefore, the partition function (31) is given by

exp (<8 lly - Hal? /2+ \"a)
Z(y, H;\) = E IP’(S)/ d (z;) — e %,
se{0,1}" " (2r/8)"/? i H i Ell V2mo?

Now, note that

ly — Ha|> ] 6 (x:) = {y —2S hlyni+ S il hj] I (58)
s;=0

$;=0 €S 1,jES
= [y — 20T By + oL HI Hows] T] 0 w1) (59)
s;=0

whereh; denotes theth column of H, and similarly,

Az H § (i) = (Z i > 11 ) (60)
s;=0

i€S
=Ajms [ 6 () (61)
Si:O

Using the fact thab (-) is a measure ofR, one may conclude that

1 1 B, o
Z(y,H;\) = g P(s exp | —=
v ) se{0,1}" ) (27T/B)k/2 (V 27r02>|8| ’ < 2 Il )
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X / exp <—w§ (gHgHs + 2;&) Ts +xt (A\s + BHY )) des (62)
RIS
) P(s)exp (~5 lyl)

sefo,1} (2m/B)F/? (\/2%02)‘ |detl/2 [ (BHLH + %1,)]

-1
X exp { (BHZy + As)" <5H’§Hs + 01213> (BHTy + As)} (63)

oy exp{ (BHTy + As)" H® (BHT y+)\3)}
sy \/det (Bo2HTH s + I5)

where(C' is independent o\, but depends o andy. We are now in a position to find a preliminary

(64)

expression of the MMSE, using Lemma 1. Let
£ (y, Hg, As) £ exp { (BHLy + As) HE (BHLy + Xs) — = ln det (Bo*HL H s + Is)} , (65)

and therefore

Z(y, H;A) =C- > P(s)&(y, Hs, o). (66)
se{0,1}"
Now,
8(2\ { (BH Y+ As) H? (BH Y+ As)} = eTHS (BH Y+ )\s) i€Ss (67)
and thus
I\ (y,Hs,As) = €; s (BH y+)\s) Licsé (y, Hs, Xs) (68)
Recall that for a positive, twice differential functigf
d 1 d
=/ @ =5 (Cle (w)) (69)
d2 1 [ d? 1 d 2
0= 57 (@) - i (5 @) (70)

Thus, using (66) and (68), we have that (foK i < n),
> sefo,1} P (s) el H® (BHLy + Xs) Liesé (y, Hg, Xs)

oy 07 (v HiA) = 20 H N (71)
Let us calculate the second derivative. First, using (70) wg widte
9?2 A ai)\l (Zse{o,l}” P( ) THS (/BH Y+ As) Ties§ (yaHSa)\s))
oz n 2w HiA) = Z (y, H; )
2
(286{0,1}" P(s) T’H'S (ﬁH Y+ As) Liesé (y, Hs, As)) 72)
1Z (y, H; \))? '
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We have that

THS (BH Y+ )\s) Licsé (y, Hs, As)} = efﬂseiﬂiesf (y,Hs, As)

+e] H (BH y + Xs) e] HS (BHLy + As) Licsé (y, Hs, As) (73)

=e€; THs eilicsé (y, Hs, As) + eT%S (BH Y+ /\s) (5H Y+ As) Heilicsé (yaH87 As)-

(74)
Let € (y7 HS) é 5 (y7 HS7 O) Hence'
T s _..T S
i H (6H Y+ )\s) Liesé (y, Hs, )\s)} =e; Heilicsé (y, Hs)
A=0
+ eT’HsBQHs nyHs’Hsei]liesg (y; Hs) . (75)
Thus, substituting the last result in (72), evaluated at 0, we obtain
2 P (s) el H3e;1; ,H
%an(y,H; ) _ ZSE{O,I} (s)e; es€(y, Hs)
2% A=0 236{0,1}" P(s)¢(y, Hs)
" Zse{o,l}” P(s) T,HS52H yy ' HsH%eilicsé (y, H)
> scqoay P(s)€(y, Hs)
2
[Zse{o,l}" P (s) el HEBH ylicst (y, Hs)]
— ) (76)

2

Cscpony P ()€ (y. Ho)|
By Lemma 1, in order to obtain the MMSE, we need to sum the abovateqs overl < i < n. Recall
that for ann x n matrix A, the trace operator can be representetrgst) = S, &/ Ae; whereé; is

211

the ith column of then x n identity matrix. Thus, we have that

D el Hieilies = trHE (77)

=1

ZeTﬂsﬁQHS yy HsHelcs = Ztr (el M3 HE yy" H Heilics) (78)

=1 =1

= tr (%8ﬁ2HZnyHsHS > eie;ﬁl@-es> (79)
=1

= B’y HsH HHy. (80)

Accordingly, let us define

2
Ji(y, Hg) 2 = trHS + ﬁ y T HsHSHSHLy. (81)

1
n
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Now, the summation (normalized by over the first two terms in the r.h.s. of (76) gives

1
s)& (Y, Hs) 82
> seony P (s) € (y, Hs) SE%}HW@ Ji (y, Hs) € (y, Hs) ©2)

Regarding the last term in the r.h.s. of (76), we have

se{0,1}"

2
{ > P(s)e/HBH, yllzesé(y,Hs)]

= > > P )el HoB*H yy" HyH & Licsnré (v, Hs) € (y, Hy) . (83)
se{0,1}" re{0,1}"

Note thats andr» may not have the same support, and in particular, they mayang even the same
support size. This explains the appearance;ofvhich is of size|R| x 1. Now, we have that

n
> el M BH yy" HyH & licsnr = th (el HEB’H yy " HyH eilicsnr)  (84)
=1 =1

=tr (’HSBQHEnyHT’HT Z éieiT]lieé‘ﬂR> (85)

=1

= 62yTHs,H—SQsmr,HTH;€y (86)
where we have used the fact that

smr Z €i€; ]1165072 (87)

Let us define

NS

Jo (y,Hs, Hy) fyTHs%SQsmr%"HZy. (88)

Therefore, the summation (normalized by of the third term over < i < n reads
1

2 S P(s)P(r)Ja(y. Hs, Hy) € (y. Hy) € (y. Hy) . (89)
(Zse{o,l}" P(s)¢ (y, Hs)) se{0,1}" re{0,1}"

Finally, the difference between (82) and (89) gives the ntimad MMSE, which can be represented as

mmse(X | Y, H)
n

—E{E,. [Ji (Y,Hs)] ~E,. . [=(Y,Hs Hy)} (90)

whereE,, denotes the expectation taken w.r.t. the discrete measure
P(s)€ (Y, Hs)

s|Y,H , (91)
MoV ) S s e (v,
andE, . denotes the expectation taken w.r.t. the discrete prodeeisare

[Zue{(},l}" P(u) (Y, Hu)] i
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At this stage, the relation to the Stieltjes and Shannon toamsf is clear: The structure of the various
terms in¢&, Ji, Jo suggest an application of an extended version of the S8edtjgl Shannon transforms
of the matrix HX H .

The following proposition is essentially the core of our gsa; it provides approximations (which are
asymptotically exact in the a.s. sensefof, J,. Before stating the proposition, we define the following

2

A A . .
terms. Letm, = %2?21 Siy My = %2?21 ri, andmg , = 1 > siri, and recall the auxiliary variables

n

defined in (9)-(17). The following results are proved in App&nsal.

Proposition 2 (Asymptotic approximation§)nder the assumptions and definition presented earlier, the

following relations hold in the a.s. sense:

1 1 -1
lim — tr <5H§Hs + 213> = o%m,b (ms), (93)
n—oo N g
.1 -
lim - Indet (Bo?HL Hg + 1) = miI (my), (94)
1
lim —y" HsH Hjy — fn =0, (95)
n—oo n
and
1
Jim ~y"HH* Qo M H Y — g0 =0, (96)
where
A Lo (mg)m?2 ||yl | 0% (my) |HIy|’
fn = B + : (97)
g (ms) n g (ms) n
and (with some abuse of notations= o (mg, m,, ms))
A a y ' H,Qqr Hly
Gn =
g (ms) g (my) n
2 2
- a > b(my) [[Hyyl|”  b(ms) [[Hsy||
ﬂo- Msr +
g(ms) g (m;) g(m:) n g(ms) n
2
+ > 502mw (b mr)mr + b<ms)ms> ly] . (98)
g (ms) g (mr) g (mr) g (ms) n

The next step is to apply Proposition 2 to the obtained MMSE. Thea wilaservation here is as follows:

Let ¢ > 0 and define

1
—tr HS — o*msb (my)
n

A 1
T = {yERle,HE]RkX”: <€, EyTHS’HSHgy—fn < e,

1 1 -
‘nyTHs%SQsmr%’“HZy — —Indet (Bo* Hy Hs + Is) —msl (m;)

<,

< e} (99)
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and

2= U R A (100)
s,re{0,1}"x{0,1}"
By Proposition 2, this set has probability tending to onekas — oo. Accordingly, 7; is the set of
“typical” {y, H }-pairs of observation vectors and sensing matrices. The majose is to calculate the
following quantity

E{ii{xf - (E{X; | y,H}>2}} :E{;i{xf ~ (B{X; | y,H}f}m;}

i=1 =1

+E {711 i {Xf (E{Xi |y, H})2} 117—:} (101)

i=1

where 7 is the complementary (w.r.R*¥ x R¥*") of 7.. However, by using the Cauchy-Schwartz

1
E{I!X\I217zc}
n

<P e X1 (103)

inequality we have that

E{ii{x’f—@{xiry,H}P}nch <

=1

2
(102)

but, sinceE {# |]X||4} is bounded (for any:), andP {7} — 0 asn — oo, it follows that the last
expectation asymptotically vanishes. Thus, for the asytigptmlculation of the MMSE, only the first

term at the r.h.s. of (101) prevails.

Note that
Yy HsQurHyy = Z Ty sir, (104)
i=1
[Ty = Zn: nTy[* s, (105)
and .
|HTy|" = Zn; IRl y[* ;. (106)

Using Proposition 2 (along with the previous typicality ciolesations), and large deviations theory, the

asymptotic MMSE given in Theorem 1 is derived in Appendix C.

V. CONCLUSION

In this paper, we considered the calculation of the asyrigpttMSE calculation under sparse

representation modeling. As opposed to the popular warse-approach, we adopt a statistical framework
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for compressed sensing by modeling the input signal as aoramtocess rather than as an individual
sequence. In contrast to previous derivations, which waseth on the (non-rigorous) replica method, the
analysis carried out in this paper is rigorous. The derivabailds upon a simple relation between the
MMSE and a certain function, which can be viewed as a partitimetion, and hence can be analyzed
using methods of statistical mechanics. It was shown tleaMMSE can be represented in a special form
that contains functions of the Stielties and Shannon tramsfoil his observation allowed us to invoke

some powerful results from RMT concerning the asymptoticavéor of these transforms. Although our

asymptotic MMSE formula seems to be different from the oné thabtained by the replica method,

numerical calculations suggest that they are actually #mees This supports the results of the replica
method.

Finally, we believe that the tools developed in this paper,fandling the MMSE, can be used in
order to obtain the MMSE estimator itself. An example for swealfculation can be found in a recent
paper [26], where the MMSE (or, more generally, the mismatdM&E), along with the estimator itself,
were derived for a model of a codeword (from a randomly setéatode), corrupted by a Gaussian
vector channel. Also, we believe that our results, can beigdined to the case of mismatch, namely,
mismatched compressed sensing. An example for an integestismatch model could be a channel
mismatch, namely, the receiver has a wrong assumption orhtenel H, which can be modeled as
H=7H+ V1 —72Q, whereQ is some random matrix, independentHf, and0 < 7 < 1 quantifies
the proximity betweenH and H. Another mismatch configuration could be noise-variancematsh,
namely, the receiver has wrong knowledge about the noisanaa. It is then interesting to investigate
the resulted MSE in these cases, and in particular, to cheatheh there are new phase transitions

caused by the mismatch.

APPENDIXA

Proof of Proposition 1: Let X, X5,... be a sequence of i.i.d. random matrices (the subscript
index designates the “left” matrix dimensidt) defined over the probability spader, Fx, ux), and
let ®;,02,... be a sequence of random matrices defined over the probahiagesD, Fp, up).
Now, let (X x D,Fx x Fp,uxxp) be the respective product space. Obviously, sir@g, 2
O, (B, — zIm)_1 is determined byX ,, and®,,,, we can write every possible sequer@e, Q,, ... =

Q, (z,d),Q, (x,d),... for some(x,d) € X x D. Accordingly, we need to prove that the set

2

A={(x,d) € X xD: Lemma 4 holds trup
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has probability one in our product space. From Tonelli's thao[38],

P4} = [ dnen (@) (A1)
:/ 14 (.T,d) dpxxp (:L‘,d) (AZ)

XxD
-/ [ [ 14 e )] din (a). (A3)

D X

Now, let dy € D be a realization 0®,,, namely, a sequence of matric@ (dy), ® (dy), ... such
that ®,, maintains the boundedness condition (or distributionttighs). Accordingly, for thisl, we
can apply Lemma 4. Namely, the set of realizatiansuch that(x,dy) € A has probability one, and

therefore, for thisiy we have that

/]IA(m,d)duX (2) = 1.
X

Let B C D be the set of all realization$ such that®,,, maintains the boundedness condition. Then,

PA}= [ dun @)+ | [ [ 14 dp )] dpn (a) (A4)
B D\B LJx
> 1 (A.5)
where the last equality follows from the fact that the bouhwss condition happens w.p. 1. ]
APPENDIXB

Proof of Proposition 2: As can be seen from Proposition 2, we will deal with terms whiohsist
of scalar functions (e.g. Stieltjes and Shannon) of the fallgwnatrix

1 -1 -1
<ﬁH§Hs + 0213> =o? (Bo*H Hs +Is) .

In the following analysis, we need to use Lemmas 3 and 4, wieredntral quantity to be calculated is
S (z) given in (48). Indeed, givel (z), using (47) and (49), we will obtain the limit of the Shannom an
Stieltjes transforms. Accordingly, we substitute in thesamasX = H., G = 30%RIs, c = |S| /k =
ms/R. Note that by using these substitutions, we obtBir- XGX” = fo?HL H . Then, using (48)

for z = —1, we obtain thatS (—1) is given by the solution of

Thus, substitutingy; = 302 R (independently of the inde® andc = ms/R, we obtain

B Bo’R -1
S(=1) = <1+ﬁo—2R”gS(—1) +1> (B.1)
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_ 1+ Uzﬁmss (_1)
14 Bo2R+ Bo?mgS (—1)’

(B.2)

and thus

R —my) 2(R—my, 4B02%mg
S(-1) = [1+ﬁ0 ( m +;/BJ;BJ ( m)] + Bam (5.3)

Note thatS (—1) is recognized a$ (m,) defined in (9), and which will be used from now on.

A. Derivation of (93) and (94)

The results given in (93) and (94) follow directly from Lemmasr&l 4. Indeed, using Lemma 4 (in
particular (49)) with® = I, one obtains th&t

1 1. \! 1 _
—tr (5H§HS + 21'3) =0~ (Bo’HL H, + I,) Y o2mgb (my) (B.4)
n g n

a.s. asn — oo.

The second item follows directly from Lemma 3. Recall that

S| S|
Al 2 ng
== In (1 — B.
1 (7) k;_ln( +cgiS (=) —In (v (= ‘S, E 1+cg,S (B.5)
Thus, under our model, and by choosifng= 1, we obtain
R 9 B B Bo?Rb (my)
n(1) = - In [1+ Bo°b (ms) ms| — Inb (ms) T+ 5o (ma) s (B.6)

which is recognized ag (ms) defined in (11), and which will be used from now on. Thus, by Lemma

3, we conclude that
1 _
—Indet (B0 HLHs + Is) — mgI (my) (B.7)
n

a.s. asn — oo.

B. Derivation of (95)

Equation (95) is closely related to the terms appearing in LardnHowever, we cannot directly apply
it on our terms, unless we choo&® to be dependent oiiZ, which is not supported by Proposition 1.

Instead, we use the following idea: Let denote theith row of the matrixH g, and hence
k
Hiy =) vz
=1

8Note that the fact that Lemma 4 holds true also for matri&svith a vanishing ratiac is in use here (see discussion
after Proposition 1). Indeed, as the summation over the pattern segueix over the whole spacg0, 1}", the ratiom can,

in general, vanish.
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Thus,

1 1.\ 1 1. \"!
;yTHS (5H§Hs + 0213> HTy = - nyzf <5H§HS + 0213> z; (B.8)

1 —1
+ - Zyzy] <5HTH.9 JI.g) zj. (B.9)
wﬁj
Let us start with the first term at the r.h.s. of (B.9). Recalk tha

k
HIH, = Z ziz!.
=1
In the sequel, we will repeatedly use Lemmas 7-15, which glkeapin Appendix D. Using the matrix
inversion lemma (Lemma 7), we have that
1\ 1< 2T (B [HTH,] + 51.) " 2
ny (BHTHS Is> Zi=—Y yi—— (5 [Hs Ha, + 51s) . (B.10)

ST 4 52T (B [HEHS), + 51.) ' 2

Since the matrix(3 [HL H ). + #IS)_1 is statistically independent og;, we can write

k —1

Z 22T (B[HTHs], + 515) ' 2 1 &L 2io (B[HTHS], + L10)

Eo_ 1y y; —  (B11)
1+ 827 (B[HTH,|, + A1) 2 "1+ 5L (5[HTH,), + A1)
_ 1i vigt (PHYH, + 5 Ts) (8.12)
i 1+5%tr(5HTHs+ =1s) 1 |
k
1 y?mso% (ms)
—1 1+ Bo?msb (ms) (549
2 2
mso?b(ms) |yl (B.14)

" 1+ Bo%msb(ms) n
where in the first passage, we applied the trace lemma (Lemmarid)Lemma 12, in the second
passage we have used the rank-1 perturbation lemma (Lemmaard®)the third passage is due to
Lemma 4 (actually the first item of Proposition 2). In the follogj we provide a rigorous justification

to the above derivation. We first show that the first passageiés tramely, that we have a.s.,

1

1 i 2( 2 (B[HTH,|, + 215) 'z lu(BHIH,+ L1.)""
n

1+ 627 (B[HEHS), + 51s) 'z 1+ 8L (BHYH + 51,)”

There are at least two approaches to prove the last stateosémgy a graph-combinatorial method (very

1) —0. (B.15)

i=1

powerful but tedious), or the following approach. By Lemmatds enough to prove that

3 1
}§O<n1+5)a

(B.16)

z?(ﬁ [HZHSL"f'%Is)_lZi _ %tr(ﬁﬂTHS‘f'iIS)_l
L+ 2l (B[HYH,), + 1) 'z 1+t (BHTH, + 51,)”

-1
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for 6 > 0. Instead of showing (B.16), we will equivalently show that

1
max E
1<i<k

= (B[HEH.] + 51) " = — Lo (BH{H. + 1)

1+ 527 (8 [HIH,), + A1) =

p
} <0 <n11+5> ., (B.17)

and that
o lw(BHIHs+50,) " le(BHIH.+51)" ] _ o ( 1 )
SRt el (0 (SR + ) e 1w sk GRTH 1) | [T A
(B.18)
We now show (B.17). First, note that
-1 -1
’6" é 2 (6 [Hsz]z + %I‘g) i~ %tr (ﬂHgHS + %Is) (B 19)
14+ ﬁz? (ﬁ [HszL + %Is)_l Z;
@1 r T 1 - 1 T 1 -1
< |z (B[HsHs|,+ —Is| zi——tr|SHsHs+ —Is (B.20)
g n g
(®) 1 1 -1
< |2 (5 [HLH,], + 218> — —tr <B [HL.H), 215)
g g
1 T 1 T -
+ |-t (B [HTHS), + 51 - —tr BHTH + —213 (B.21)
n vt o
where (a) follows from the fact that? (3 [HTHS] + 51s) Y2iis non-negative, and thus,

1
— <1,

= (B.22)
1+ Bzl (B[HEH], + 51s) 2

and (b) follows by adding and subtracting the terfntr (8 [H H], + %13)71, and then using the

triangle inequality. Applying Lemma 14 to the second termhg t.h.s. of (B.21), one readily obtains

that
1 1.\ 1 1 \"! 2|1 2
~tr (5 [HiH|, + 213> — —tr <5H§HS + 213) < oIl _ 7. (B.23)
n g n g n n
uniformly in s. Applying Lemma 10 to the first term at the r.h.s. of (B.21), we¢aab
. . 1o\t 1 . 1 N\ ¢
E< |z (B[HsHs|, + —ls) zi—_w(f [HgHs|, + —1s S (B.24)
where according to Lemma 10, the constéhts given by
1 1o\
C=C,-E <15\ <5 [HLH,], + 0213> ) (B.25)

°The equivalence readily follows by adding and subtracting a common dedrthen using the triangle inequality.
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< Cpa2p>

(B.26)
where in the last inequality, we have used the fact {tHﬂHs] is non-negative, and thus

1 -1 1 -1
(5 [HZHS]i—i_UgIs) = <0213> :UQIS (B-27)

where for two matricesA € RV*N and B € RV*V the notationA < B means that the difference

B — A is non-negative definite. Thus, the bound in (B.24) is unifoms.i Therefore

E{le;[’} <O ( ;/2)

(B.28)
Thus, taking any > 2, we obtain (B.17). Similarly, for (B.18), we see that
2 Ll (BHIHs+ 1) lu(BHIH,+ LI,
U 14827 (B[HYHS], + 51s) 'z 1+t (BHTH,s + L15) 7"
2 (8 {HTHsL- + L)z - Lo (BHIH, + L1s) 7|
— — (B.29)
(14—62 THS]Z.—i—FIS) lzi> (1+5%tr(5H§Hs+%IS) 1)
(a) -1
< p tr (5H§Hs + 1213>
n

1 \*! 1 1 \!
2T <B [HiHg| + 0213> zi— <5H§Hs + 0213>

1\ ! 1 1 \!
2F (,3 [HH,]. + 0213) zi— —tr <5H§Hs + 0213>

(B.30)
where (a) follows from (B.22), and the fact that
1
<1, (8.31)
1+ Bitr (BHLHs + 51,)
and (b) follows from

n

1 1 -1 1 -1
—tr <5H£Hs—l—213> < —tr <2Is) = g2
n o g

(B.32)
Therefore, as before, by applying Lemma 10, we obtain g’ < O (n P/Q) as required. Finally,

we show that the error due to the passage from (B.12) to (B:48)be bounded uniformly is. Indeed
let the error be denoted by

—1
o Lw(3HIH, ¢ LI,)

B mso2b (my)
L+ 8L tr (BHLHs + 51,)

T B ()’ (B.33)

First, we see that

-1
|é‘: %tr(ﬁHsz—i_%Is)

mso?b (my)
1+ BLtr (BHTHs + 515)7"

1+ Bo?mgb (my) (B.34)
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1
‘%tr (502H£Hs + Is) — mgb (ms)

(1 + Bo2mab (my)) (1 +BLtr (BHTH, + #Is)‘l)

:0’2

(B.35)

<o’

1 _
~tr (Bo?HTHg + Is) ™' — mgb (ms)|, (B.36)
n

where the last inequality follows from (B.31) and the faatth+ Bo?mb (ms) > 1. Recall thath (my)

is the solution of the following equation (given in (B.2))

B Bo’R -1
b(ms) = (1 = BoZmab () + 1) . (B.37)

Let us define

11 RpBo?
2 2t (Bo®HIH, + 1) — ~tr bo

w
n (1 + Bo2Ltr (Bo2HLH s + I

S|

-1
)1+1> Is. (B.38)

Then, note that

-1
- RpBo?
(/BUQHZHS‘FIS) to bo 71"’1 I
1+ Bo?ltr (Bo?HLH s + Is)

RBo?
1+ Bo?itr (Bo2HLH, + 1)

-1
RpBo?
—+1| T (B.39)
<1+ﬂo'2rlltr(ﬁ02H£H8—|—Is) ! ) °

1

W (Bo*HTH, + 1)

_1Is‘|‘Is _502H£Hs —Is]

RBo?
1+ 502%tr (BUQHEHS + Is)_1

-1
RBo?
T +1| I (B.40)
<1+502}1tr (Bo?HIH, +15)" ) ’

— (Bo*HTH s+ I)™'

Is— 502H}§Hs]

— 0 (Bo*HYHs +I) ' Bo>HLH,
1 RBo?
1+ Bo2Ltr (Bo?HYH + I) ™

+9 (BoHLHg + 1) (B.41)

where (a) is due to Lemma 9, and in the last equalities we canceled outreemdanged the various

terms, and

—1
2
= ftbo 1] (B.42)
1+ Bo?ltr (Bo?HLH s + Is)

Therefore, using (B.41) we obtain

-1
1 11 RpBo?
w=—tr(Bo*HYHgs+1s) ——tr BUT —+1) I,
n o \1+ Bo2dtr (Bo?HLHgs + 1)
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-1
(8.41)

RBo*Ltr (Bo?HLH s + I)
w
1+ Bo?ltr (Bo?HLH s + I5)
k 21 21yT -1
=t H.H I
S Z,Bcr (Bo?HIH, + Iy) "zt -y pors tr (fo"Hy H + L)
=1 1+ Bo2itr (Bo2HLHs + 1)
where in the Iast equality we have used the fact fhat £ /n, and that

1 _
~wfo’ i ((Bo*HEH, + 1) HIHS) + — (B.43)

. (B.44)

k
tr ((5U2H§HS +1s)" HEHS) = tr ((502H§Hs +1) Y ziziT) (B.45)

k
=" 2T (Bo°HTH,s + 1) z. (B.46)
=1

Therefore

—1
1 11 2
w| = |~ tr (Bo?H Hs + 1) — —tr | R 1 bo _ 41 I,
n n 14 Bo?itr (Bo?H H + 1)
k

21 27T -1
Zﬁa ,BUQHTHs—l—IS) 1z wl Bo tr(ﬁo’ H Hs—|—Is) 1
o L+ Bo2itr (Bo2HIHs + 1)

1 _ 21 ¢ 2HTH. + 1 1
= ek S a0t (potmrE, 1) e - PP Ha Mt L)
e L+ o2kt (30°HLH, + 1)

Bo?z] tr (BUQ [HTHS] + Is)_l Z; 502% tr (ﬁJQHzHS + IS)_l ]
- 1

B44) |

(@ 1
= wo—
n

1+ Bo2z Ttr(ﬂa2 [HTHS] —I—IS) 1zi l—l—ﬁo'Q%tr(BazHZHs—l—Is)_

(B.47)

where (a) follows by the matrix inversion lemma (Lemma 7). Now, notettha

1 _
Itr (ﬂa2H£Hs —i—Is) ! — mgb (my)
n

(i)

-1
2
%tr (Bo’HLH s +I)~ Rpo ] -+ 1)

! — Mg _
1+ Bo2dtr (Bo2HIHg + I

RBo?
+my
1+ Bo2dtr (Bo2HLH s + I

-1
)_1 + 1) — mgb (my)

RBo? -

o

1—ms — +1
1+ BJQ%tr (BU2H£H3 + Is)

%tr (Bo’HLH s+ 1)

RBo?
+ ms 1 T
1+ Bo2Ltr (Bo?H Hg + Is)

-1
— + 1) — b (my) (B.48)

RBo?
14 Bo?ttr (Bo?H Hg + 1)

-1
+ 1) — b (my) (B.49)
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where in(a) we added and subtracted a common term(binwe have used the triangle inequality, and

in (c¢) we noticed that the first term i& given in (B.38). But using (B.37), we notice that

) -1
Hho 1) —b(my)
1+ Bo2Ltr (Bo?HLH s + I)
RBo? - Bo’R -
- 1) - ( . + 1> (B.50)
1 +502%tr (BUQHEHS + 1) 1+ Bo?msb (ms)
| 148w (B H{H. + 1) 1+ B0%mb(my) (B.51)
1+ B02R+ oL tr (Bo?HTHs + I5) " 1+ B0*R+ Bo*msb(ms) '
B20*R %tr (ﬁaQH’;THs + Is)_1 — mgb (my)
_ _ (B.52)
<1 + Bo?R+ Bo?ttr (Bo?HLH s + Is) 1> (14 Bo%R + Bo?mgb (ms))
1 _
2. ~tr (B0’ HYHy + 1) ' mgb () (B.53)
where
2 4
LA Fro"R (B.54)

(1 + Bo2R+ Bo? L tr (B0 HL H s + IS)_1> (1+ Bo2R + Bo2mgb (ms))
Thus, using (B.49) and (B.53), we obtain

1 — 1 _
Etr (602H5H5+I3) 1—msb(ms) < |w| + kms Etr (ﬂaQHF‘SFHS—i—IS) 1—77”L$b(ms) .

(B.55)
In the following, we show thab < km, < 1. First, formgs < R we see that
2 4
Kkmg = bl Rms_l (B.56)
(1 + Bo2R + B0t tr (802 HL H s + I'5) ) (1+ Bo2R + Bo?myb (ms))
(a) 2.4 p2
Y PR i (B.57)
(1+ Bo?R)
< 1. (B.58)

where (a) follows from the facts thatr (802HL H s + Is)_1 > 0 and thatb (ms) > 0. For ms > R,
we first note that (ms) > (ms — R) /ms, which follows from the facts thak (m,) is monotonically
decreasing i (by definition), and that

lim b(my) = =2 (B.59)

B—00 mg

Whence,
B20*Rmy

— (B.60)
(1 + Bo?R + Bo? L tr (50'2H£H3 + 1) ) (14 Bo2R + Bo?msb (my))

Kmg =
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2 4
< fo” Fms (B.61)
(1+ B0*R) (1+ Bo2R + Bo?m, 2=t )
_ 520" Rmy (B.62)
(1+ Bo?R) (1 + Bo?my) '
B20*R
< <1. :
S 0+ Bo2R) (1602 =1 (B.63)
Thus, using (B.55), we obtain
1 -1
—tr (Bo’HLH s +Is)  —msb(ms)| < R— |w| (B.64)
< R |w (B.65)

where# > 0 depends only o, o2, R. But, comparing (B.47) with (B.15), we readily concludettha|
converges to zero a.s., and uniformly ¢n Accordingly, based on (B.36) and (B.65), we conclude that
the error|é| in (B.36) converges to zero a.s., and can be bounded by ahvagiterm that is uniform in
S

Recalling (B.9), in order to finish the proof of (95), it remsito handle the second term on the r.h.s. of
(B.9). Essentially, there is nothing different in this terompared to the first term on the r.h.s. of (B.9).
Therefore, and for the sake of brevity, in the following, wee ube same reasoning as in the passage
from (B.11) to (B.14). Nevertheless, the same arguments ave lised to show (B.16), can be readily
applied also here. First, note that by applying Lemma 7 twicst(fivte remove fromH . H s the ith
term, namelyz;z7, and then we remove thgh term), we obtain
1< 1. \"!
- ;yzyjzf (BHZSFHS + 0218> zj

-1
, f: vzl (B [HIH,), + A1) 2 B9

"7 (14 paT (B[HTH), + 516) ' =) <1+5Z§'F (B[HTHS),, + 5 1) 1zj>

and thus the matrix inverse terms are statistically inddpatof z; and z;. Now, we use the same

arguments as before. Indeed, we may write that

—1

1213 =] (BLHEHO, + 55 s) 2 (8.67)
— _1 .

U (et b ) (e (st an) s

: k o o 2

@1 5 Yiy;Zi Zj0"b (ms) (B.68)

i (1+ 8Lt (8[HEH], + 515)7") (1 + 5Lt (B[HTH,], |+ L I,) _1)
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k
) 1§~ _viyiz! zj0°b (ms) (B.69)
n £ (14 Bomgb (ms))?

k 2
(©) o2b (mg 1
- 2 ) 5 | = D viyizl zj - msM (B.70)
(14 Ba?mgb (my))” |1 ij=1 "
2 HTy|” 2
_ o2b (m) 2 |HZy| o 1l (B.71)
(1 + Bo?misb (ms)) " "

where in(a) we applied Lemma 4 (or more precisely, (50)) to the numeratod Lemma 10 to the
denominator, in(b) we applied Lemma 13 and then Lemma 4 to the denominator, afid) iwe have
used (B.14). Therefore, based on (B.14), (B.71), and (B.2)vay conclude that

2
P S N 7 P G N <7 W] ) B
" 14 Bo2mgb(ms) n (14 Bomgb (my))? n T
4,212 2 2 HTyl
__ Botmbt(ms) iyl | 07b (ms) 1 Hsy| , (B.73)

(1+ Bo2meb(ms))? n (14 Bo?meb(m,))?  n

where in the last equality we have just rearranged terms.eftrer, we obtained (95), as claimed.

Remark 6Finally, before we turn into the proof of (96), we emphasizat tthe above derivation shows
that the magnitude of the errors that result from the aboyecqimation (e.g., (B.21) and (B.65)), can
be upper and lower bounded by a vanishing ternOofn~1~°) for 6 > 0, that is uniform ins. These
bounds, however, are random variables in general, depgming and H. We will use this fact in the

asymptotic evaluation of the MMSE.

C. Derivation of (96)

Showing (96) is much more challenging due to the fact that intrest to (95), we will need to
develop new deterministic equivalent results (in the fofnh@mma 4), so that we will be able to obtain
its asymptotic behavior. It will be seen that the main ideaunderivation is actually based on “guessing”
the form of the limit. This idea of guessing the limit is simil® a popular approach in RMT known as
Bai-Silverstein method [33].

Let z; and z; denote theth rows of the matricedd 3 and H,., respectively. Then, using the following

facts

k
Yy Hs=> yz!, (B.74)
=1
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and
k
Hiy=> vz, (B.75)
=1

we have that

1 1 -1 1 !
;yTHs <ﬁH§Hs + 0213> [ J (ﬁHZ H, + 021r> Hly

k

1 1
SN C
=1

o2

—1 —1
1 -
Is> Qsnr </8H77:H’F + UQL“) Zi

1 1 1 ~
+ g Zyz’yjzzT (BHZHS + 0'2I8> Qsﬁ'r <6H17:Hr + O’QIT> Zj. (B,76)
7]
Let us start with the first term at the r.h.s. of (B.76). Applyithg matrix inversion lemma (Lemma 7)
we obtain

k -1 -1
1 1 1 -
E Zyzzz;r </3H£Hs + 0_213> Qsmr <5HC£HT + 0_21r> zZ;
i=1

1 i vzl (B [HEHS]Z' + %Is)il Qs (8 [HTI:HTL + %Ir)il # (B.77)

e (14 82T (8 [HLHS), + 51s) 7" i) (1+ 821 (8 [HTH, ], + 51r) " )

Note that contrary to the previous case (95), where alreadkis stage, we were able to continue the
asymptotic analysis (e.g. see the passages used to obta#))Bn this case we cannot, because currently,
we do not know how the numerator behaves. Thus, in order tareantwe wish to find a real function
h,, for which

1 -1 1 -1 )
2T (/3 [HiH| + 0215> [ J </3 [H{H.| + (721r> Zi —hy, —0 (B.78)
a.s. asn — oo. First of all, using Lemma 11, we readily obtain tHat

1 -1 1 -1
2r (ﬁ [HH,]. + 0218) Qs (5 [H{H.| + UZIT) z;

1
— —tr
n

-1 -1
(6[H£Hs}i+;21s) Qsrr <5[H$HTL+;IT) Emr]ao (B.79)

a.s. asn — oo. Accordingly, h,, is to be chosen such that

1 1 -1 1 -1
ntr[<ﬂ [HZHS]ﬁUQIs) Qurn (B [H?HT]ﬁUQIT) Qimr] Chy 0. (B.80)

“Note that this passage is not essential, and can be avoided (for thel seomnat the r.h.s. of (B.76) this passage will not

be used).
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To this end, let us choosg, as follows
1 _ _
hn = E tr (Ds 1Qsﬁ'l'D7“ ! Zﬂr) (881)

where D, and D, are two matrices to be determined such that (B.80) holds Finst, note that

1 -1 1 -1 _ _
(SHEH, + 500) Quen (5[HEH, + 512) @y~ D' Qe D @y

1 \* 1 -1
= (slHEm) + 51 Qe (8 1HEH) + 51) Qb
1 -1
—D;'Qsy <5 [HZHT]Z + 0211’> i
_ 1 \"! _ _
+ Ds 1Q3ﬂ7’ <ﬁ [HZHT]Z + O_QIT> gﬁ'r - Ds leﬂrDr ! Zﬂr (B'82)

1 -t _ 1 -1
<ﬁ [HEHS]Z-‘}"UQIS) _D51] Qsﬂr </8 [HzHT]i+OQIT> zﬂr

+ D' Qg

1o\
(5 [H,THT]ZA—UZIT) — D; 1] I (B.83)

where in the first equality we added and subtracted a commam tard in the second passage we took
out the common factors. Thus, according to (B.80), we wishhimasthat the trace of the above two
terms, when normalized by, will converge to zero a.s. as — oo. Let us start with the first term in
(B.83). First, by Lemma 9,

g

1o\ _ 1 1 \"!
<ﬁ [H H|, + 0218) _D;'=DpD! [DS ~B[HIHS|, — 0213} (ﬁ [HH|, + 213> :
(B.84)

Let us choosdD, as follows

D, = <¢n + 012> I (885)

where1,, is to be determined such that (B.80) holds true. Thus, sulistit the above choice ab; in

(B.84), we obtain

1\ 1 \"!
(ﬁ [HSH), + 0215) - D;' =ynDy! (6 [HsH,|, + 0218)

1 -1
— D' [HyHs], (6 [HyHs), + 0213> . (B.86)
Therefore, the first term of (B.83) reads

—1 -1
[(B [H{Hs), + 01218> - Ds‘l] Qurr <g [HIH ], + 0121,) s
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-1 -1
=1, D1 (5 [HiH| + 012IS> Qs (5 [H{H,| + 1I1~> T

o2 snr

1 -1 1 -1
— BD;'HTH, (5 [H;FHS]Z_ + 0213> Qs <5 [HZHT]Z, + UQIT> . (B.87)
= YD IHSQSQTH Qsﬂr ﬁD 1I_ITI_IS,Hstﬁer Qsmr (B-88)

For simplicity of notation, we defineC 1/ (¥n +1/0?), and recall the notationH® 2

(ﬁHTHS + Is) . The trace of the second term on the r.h.s. of the above egjgalit be written as
(note thatDy is diagonal)

1 _ 1 \! 1. \"!
it (BDS 'HTH, <5 [HH|. + 0213> Qo (5 [H{H.| + 0217,> T )

sNr

k -1 -1
—tr (ﬁDslzziz; (B [HEH«S]Z"{';QIS) Qsnr (,8 [Her]i+;21r> T )

snr
C i T 1 - T 1 - T
n E < Hs HS]Z- + O_QIS> Qsﬂr (ﬁ [HTHTL- + O_2I7'> Qsﬂrzj

—1
76 i T%”Qsmr (5 [HZHTL + %IT) ng.zj (B.90)
n = 1+ ﬂZT%f jZi
where in(a) we have used the fact th&f L Hs = >F_| z;2

(B.89)

, in (b) we have used the cyclic property
of the trace operator, and if@) we have used the matrix inversion lemma. Then applying Lemma 8 o
(B[HFH.|, + I,a) we obtain

1
Lo (ﬁDs_ngHs (Sl8EH, + 51e) Quen (8 [HEH] 4 1) @) )

sNr

Bi 2THS  Qurn HE Qw7 Cﬁz 2 ML Quor ME020%) Wi Qurn2i g o)
n 1+ Bz;fp?-tf,jzj (1 + BzT’Hs > (1 + 55?%23'23')

Thus, using the last equality, the normalized trace of (Bi8&)iven by

¥nC= tr(?—Lstmr’HT sow) —BC— tr(HTHs%stmr%"Qsmr)

T,HS Qsmr%‘ ‘Qsmrzj
= 77an tr (7" QSOTH Qsﬂr - Z —
L+ 5z M52

C’ﬁz T%s Qsﬂr}tij182]~T% Qirrz

. (B.92)
(1 + BzT’HS > (1 + 5zf’H£j2j)
Now we are in a position to choosg,. Recalling the trace lemma, by setting
- BR 52R tr (Qsﬂr% Qsﬂr)
Un = 1 e 1 3 — (B.93)
1+ BrtrH™ (14 B trHS) (1+ B trH)
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the term on the r.h.s. of (B.92) will converge to zerora% grow large. Let us show that this is indeed
the right choice. Choosing (B.93), (B.92) can be explicitisitten as

T T
HS Qsm‘ H:,j Qsnrzj

%C tr (7{ QSOT% Qsﬂr - 72
L+ Bz M52

+ % Xk: THS 'Qsﬂ?‘%r sz 31% Qsﬁr'z] (B 94)
ts < +0zjH = )(1+ﬁz?ﬂf,j5j>
= % Z (% QSWH Qsmr) . ZJ'THZJ'QSWHZJ'QEWZJ'
no= 1+ BLarH” 1+Bz;‘r’Hf’jz]

OB S [ 2THE Qo HE 82,2 HT QT 2,
+7Z i 1,7 ¥8Nr Y5 J 1, ¥8Nr~<Jj
noS | (1 saH ) (1 +5z,%r.zj)

1 tr (% QsﬁrHrQsﬂr) /8 tr (Qsﬁrﬂr sﬂ'r) (B 95)

(1+ 5L wH®) (1+ 5L #) '

where the above equality follows by substitutittg, and rearranging the two sums. Now, proving that
the first term convergences a.s. to zermas oo, can be shown exactly as was already done in (B.16).

The convergence of the second term is essentially very girmldahe first term, but with more terms
involved (actually the second term can be seen as an extensithe first term). Indeed, by Lemma 2,
it is enough to prove that
~ p
E z?ﬁf,stﬂerj/Bz] T% Qsﬁ'rz] *tr (% QsmrHrQsmr)/B tr (Qsﬂr% Qsmr)
(1 + BZ??‘L?’J-Z]) (1 + 6Zj %i,jzj) (1 + BrlL tr %S) (1 + /Bn tr HT)

1
<0 <nl+(5> , (B.96)

or equivalently that (again, we add and subtract a comman #rd then we use the triangle inequality)

E zf%f,stmrH{jﬂsz% Qsmrzj %t (%SQsmrHrQsmr) ﬂ tr (Qsmr%rQsmr)
(14 82T943,2;) (1+ B2 HE,2;)

1
<O <n1+5> ) (B.97)

and that

i
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(HSQSFW'%T smr) B tr (Qsmr%T sﬂr)
(1 + BzT’Hf -z]-) ( + BzT’H’f 'z )

_% (HSQsﬂr%rQsﬁr) B - tr (Qsﬂr%rQsﬂr)
(1+ ﬁﬁ tr H®) (1+ B}L trH")
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Let us show (B.97). First, note that
Z;F'Hf’stmn'HZjﬂZ] T% Qsmrzj t (?—LSQSQT%T smr) 5 tr (Qsmr% Qsmr)

AN
|di| =

(B.99)
@) Tays T ~T 1 T
< 1% ’Hi,stﬂr/Hi,jﬁzj HE QSFW'ZJ —tr (H QsrrH; sﬁr)ﬁ tr (Qsﬂr% Qsmr)
(B.100)
(b) - - 1
= Z?Hs Qsmr%z JBZJ T,Hz ngﬂ'r'zj (%stmrﬂrQsmr) BZT’HT smrzj
1
+ tr (’H QsrrHj Qsmr) 52:T%T sﬂrzj (%SQSO’I‘H Qsﬂr)/B tr (Qsﬁr% Qsﬂr)
(B.101)
(c) T s Tayr
< |z; H; QSOT‘?—L'J,JZ] *tr (% QsnrHi Qsﬁ'r ‘Bz H; Qsﬂr'z]’
1
0] (M Quen QS )| [T HE, Qs — 110 (Quoy W Q) (8.102)
where (a) follows from the two obvious facts (that we already used)
1
— <1 B.103
1 +szT’Hf’sz - ( )
! 1, (B.104)

——Fa = =
L+ 52 My 2,
(b) follows by adding and subtracting the term

1 -
- tr (H Qsﬁr% Qsm'r) ﬁz?HZngﬂrzjv
and (c) follows from the trlangle inequality and pulling out the comn factor. But using the Cauchy-

Schwartz inequality, we may write

=
2p\ 1/2 1/2
) (E 321, Qh | )

< (E
(B.105)

1
<0 (W) (B.106)

2p
where the last inequality follows from the fact tH@li,BzT?—L’“ Sn,,z]’ is bounded (Lemma 15) and

T ~
Z; Hf,stﬂr%%n,jzj . tr (% Qsﬁr% Qsﬁ’r

P
T r
‘,Bz 7'[ smer’ }

- 1
z?%f,stﬂr%ijj *tr (7{ QSOTH Qsﬂr)

by using Lemma 10. The second term in (B.102) is handled sipil@hus, taking any > 2, we obtain
(B.97). Similar arguments can be applied to show that (B.@8htrue.
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So, hitherto we show that
1 1
UnC—tr (HEQarn HIQRey) = O~ tn (H’g HoHE jQure M jQ;FmT) 0 (B.107)

a.s. as» — oo wherez), is given by (B.93). Next, we consider the second term in (B.83ing Lemma

9 we may write

1 -1 1 1 -1
(ﬁ [H{H.| + 02[’°> _D:!'=D;! [DT —B[HIH,|, - U2IT] (5 [H{H.|, + 021,.) :
(B.108)
Let us choose
1
D, = <77n + 2) I, (Blog)
g

and thus

_ 1 -1 . - - 1 ~1
Dy len'r [(5 [HZHTL + 021"'> - D, 1] =Dy lemrDr ! (5 [HZHTL + O_QI'I'>

_ _ 1 \"!
—D;'Q4nyD; '8 [H{ Hy], (ﬁ [HIH,| + 0217«> : (B.110)
Let C =1/ (n, + 1/0?). Then, we have that

o k zTayr T ~
1 -1 —1 T r \_ CCB Zj ”i,stmrQsmrzj
;tr (DS Qs D, B [HTH,«L.”H; Sm) =— ]E . BE;F f,jij

(B.111)

where, as before, we have used the fact HitH s = Ele z;z! along with the cyclic property of the
trace operator, and the matrix inversion lemma. Therefa@imguthe same reasoning as before, by setting

AR

= B.112
1—1—6%‘51"7‘[7” ( )

Tin

the second term in (B.83) is given by

1+ Bz] H] ;% 1+ BLtr i
(B.113)

1
o (D' Qs [H] — D7) Q5ey) = o

cc i B Qs QorrZi 2t (Qury M Qhr)

j=1
This term converges a.s. to zeroas: grow large exactly due to the same reasons as before. Whence,
with the choice ofD,; and D, in (B.85) and (B.109), respectively,, given in (B.81) reads

1 tr (Qsﬂerﬂr)

hn = )
(1 + 22) (Un + 22) n

(B.114)

and we overall show that

1 1 \! 1 \*
~tr [(5 [H{Hg| + 0213> Qsnr <5 [H}H.], + 021,n> zm.] —h, —0.  (B.115)
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Thus far, we found a random functidr, which approximates the term of interest. This function imesl
the Stieltjes transform$ tr H”, 1 tr 5 and X tr Q 4, H" Q%,.. However, fortunately, Lemma 4 exactly

provides the behavior of these transforms. So, based on liisisreation, we conclude that
hyn —amg, =0 (B.116)

where we have used the fact that(Q QL) = D1 | sir; = nm,,, and we have defined

A 1

o , (B.117)
(m0 + 52) (Yo + 52)
in which
A PR
"= T Bt ) (B.118)
and
2 2
Yo é Q’BR _ B0 Rb (ms)ms,r . (B.119)
14+ Bo?m.b(m,) (14 Bo?msb(ms)) (1 + Bo?m,.b(m,))
Returning back to (B.77), we now may write
1< 1o\t 1o\
Ezz’b’l—‘ (yfﬁH:st + 0218> Qsnr <BHZH1" + O,QIT> Zi
=1
—1 -1 .
1 b y2=T (B [H?Hs] LIs)" Qs (5 [HTHT} + L0 5
M (1 BT (5 [HEH), + 3ek) 20) (14 62T (3 [HTHL] + 5 0p) 2)
]' Xk: y2am5 T
n 1+ Bo?msb (ms)) (1 + Bo?m,b(m,))
QM r ||y||2
. (B.120)

T (1 + BoZmyb (my)) (L + Bo2myb (my) n
Next, we take care of the second term in the r.h.s. of (B.78)clwby using Lemma 7 and Lemma 8

can be rewritten as

1< _ U . yiy; 2] HE i QsreHY %,
n § Yiyizi H'QsrpH"Zj = n E : Tss Ty =
Py = (14 BzTHS ) (1 + BEIH] zj)

yiyjﬁziT%f,stmr%f,jéi (’%?H:{,j’%j)

L+ 82T e z) (1+ p2IH2;) (1+ p2IHE 21
Yyiy; P (ziT?—Lf’jzj> 2iH Qo H 2

1+ B2THE2) (1 n 52?%;2]-) (1 n Bz;‘-F’Hf’jzj)

Ly
" (

. (B.121)

Ly
" (
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However, it can be seen that there is nothing essentialfgrdift in the above terms, when compared to
the behavior of the first term in the r.h.s. of (B.76), we anedy/earlier. Indeed, based on the previous
results and analysis, we can infer that

o |y HaQuor Hly —mas [yl
n (1 + Bo2msb(ms)) (14 Bo?m,b(m,))

k

1 N

- E yiyjz?HSQsmTHTZj =
i#£]

ams,rﬁojb (mr‘) [HyTHT‘HQ — My ||yH2} amsg 7“60'2[7 |:HyTHSH — My ||yH }

— 5 . (B.122)
n (1 + Bo?mgb (my)) (1 + Bo2m,b(m,))?  n(1+ Bo2mgsb (ms))? (1 + Bo?m,b(m,))
Therefore, using the last result, (B.120) and (B.76), we katecthat
1 T T 1 ! T 1 - T
. Hg 5H3H3+;Is Qsnr BHTH,A—;I,° H,y—q¢, =<0 (B.123)
whereg, is given by (98). ]

APPENDIXC

Derivation of (25): In this appendix, using the previous asymptotic resultsgdenive the asymptotic
MMSE. Recall that the MMSE is given by (90)

mmse(X | Y, H)
n

=E{E, [/ (Y.H)] ~E,. [J:(Y ,Hs Hy)l}. (C.1)

In the following, we asymptotically estimate each of theimas terms in the outer expectation. We start

with the analysis of the second term, and accordingly define

Z Z r)J2(y,Hs, Hy) & (y, Hs)E (y, Hyr) .

se{0,1}" re{o,1}"
Over the typical sefl;, using the definitions of, Ji, J2 in (65), (81), and (88), respectively, we know
that

“]2 ('.%I_Is’H'r)_/BZQn‘ <67 (CZ)
and that
1 2 1 -
Ling(y, Ho) - SmaI ()| < e ©3)

For brevity, we will henceforth use the following notations

ﬁjf _ B 4b?< Jm? yl® | Ao (m,) [Hiy|”
" #my)  n | 2%(my) o«
2 n Ty |2 .
év( )H H (ms) Zi:l‘i hl‘ Sz7 (C4)
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and

Bqn £ ¢ (mm M, Liot "fwz S 2in ‘fhif i 2im }yzhif Sm) . (C5)

The last notation emphasizes the important fact thatdepends on the pattern sequeneeand r
only through the quantitiesns, m,, ms,, > r, \yThi\Q Siy Doy \yThi\Qn-,Z?:l \yThi\Qsm. In the
following, we omit the notation of this dependency and yse, r) instead. With these definitions, we
now use the fact that for the calculation of the MMSE we onlyecabout(y, H)-typical sequences.
Let ¢ denote a random fluctuation term that results from the appraton we use in (C.3), namely, for

largen

1 B2 1 -
—Iné(y,Hs) = — fn, + =msI (mg) + . (C.6)
n 2 2
As was shown in Appendix B (see remark at the end of the apggntis fluctuation term is typically
lower and upper bounded by a vanishing term that is uniforra (andr), namely,|p| < O (1/n)

Therefore, ovefl, and for largen andk, the functionZ (y, H) is lower and upper bounded as follows

Z (y,H)< Z(y,H) < Z, (y,H) (C.7)
where
= Z Z srexp{ <(m5)+t(mr+L ms) Z\yTh\ s;
se{0.1}" Te{0,1}"
+L (m,) izn: |y h|*ry + go) } (C.8)
where B
£(m) = f (m) = 21 (m) + V (m) ”yn” (C.9)

Based on (C.8), we need to handle a double summation (9\werd r). In the following, we first

assess the exponential order of the summation pvéiirst, we rewriteZ, (y, H) as follows

% (y,H) = Z exp{n (t(ms )+ L (my) Z’yTh} sz>} Z q(s,r)exp{n (t(my)

se{0,1}" re{0,1}"

+L (m;) % Sy hl i+ 90) } (C.10)

i=1

"physically, over the typical set, this fluctuation will not affect the asymptogicavior of anyintensivequantity, namely,

a quantity that does not depend an(e.g., the dominant magnetization).
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= Z exp {n (t(ms )+ L (my) Z‘yTh} sl>}§’fi y,H,s) (C.11)

se{0,1}"

where for anys € {0,1}", we define

% (y,H,s) 2 Z q(s,r)exp {n <t (my) + L (m,) Z ly"h; ‘ ri £ cp) } (C.12)

re{0,1}"

Now, note thatZ. can be equivalently rewritten as
1 (y,H,s) Zexp {n (m, :l:(p)}o@p y, H,s,m,) (C.13)

where the summation is over, € [0/n,1/n,...,n/n], and

Z q(s,r exp( my Z ‘yTh ‘ rz) (C.14)

r: m(r)=m,

1>

Q?(y’Ha&mr)

where with slight abuse of notations, the summation is peréal over sequenceswith magnetization,
m (r) = }lzl L T4, fixed tom,.. For the sake of brevity, we will omit the: sign.

In the following, we will find the asymptotic behavior (ﬁ”(y,H, s, m,), and then the asymptotic
behavior of 7, (y,H,s). For f(y,H,s,mr), we will need to count the number of sequenges,

having a given magnetizatiom,, and also admit some linear constraint. Accordingly, adesithe

following set
Fs ({pz}le,m) = {ve{o,l}” > v —mm| <6, Y viug —npy| <6, zzl,...,L} (C.15)
i=1 i=1
where L € N is fixed, and{u,;}! , for I = 1,..., L are given sequences of real numbers. Thus, the

above set contains binary sequences that admit a set of toeatraints. We will upper and lower bound
the cardinality ofF; ({pl}lL:1 ,m) for a givend > 0, m, and {p;},. Then, we will use the result in
order to approximate? (y,H,s,m;).

Define

L
JAY exp {Zl:1 QUUG | — W}
2exp { (Zz 1 QUi — 7) } cosh (W)

,Un), let

exp {ZZL:I D VU — YDy vi}
2" exp {% <ZlL:1 o E?:l Uj | — n*y) } H?:l cosh (M) )
(C.17)

P (s ok v | {uiahy) (C.16)

where {o;}{, and~y are auxiliary parameters. Now, fer= (v, ...

P (v}, [ {w)f,) 2

December 10, 2013 DRAFT



45

Then, we have that

12 P (ve B (om)i {arkiy v | {udey) (C.18)
exp {Zlel Y Vi — Y Y iy ”i}
_ _ (C.19)
veF, 2" exp {% (ZlL:1 Y Ui — n’y) } [Ii=; cosh (M)
exp { Ly o (npr — ) = (nm - 5)}
§ ’U;a 2" exp {% (ZlL:1 Y i Uil — n’y) } [Ti=; cosh (M) (20
= ‘fa {(m)le mH o {ZZLZI colnpn=9) = (i - 5)} (C.21)

7 .
27 exp {% (ZZL:I QY il Uig — n’}’) } [T, cosh (M)

It is easy to verify that<{a;°}f:1 ,fyo) given by the solution of the following set of equations

=é+iiw +iitanh Zita ofuir =7 wig, 1=1,...,L (C.22)
pl n 2n 1:1 2,l 2n Z:1 2 lal7 10t ’ )

and

6 1 1 r Zlel alui,l — ’70
m—n+2+2n;tanh< 5 , (C.23)

maximize the right hand side of (C.21) (w.r(ty)lL:1 and~). Thus, using the last results, we have the

following upper bound

L Opy. . __ A0
) ‘ - exp {% <ZZL:1 aF Doy Uiy — n’y°> } [Ti=; 2cosh (Zl:l St )

L
}}—5 <{Pl}z:1 , exp {ZZL:I af (npp — 8) —~° (nm — 5)}

n

L L
~on{ (ot St ) - (Sof -5 )
=1 =1

=1

n L o, . __ A0
—l—Zln [2 cosh <Zl1 alzuz’l 7 )] } (C.24)

i=1

1>

Rs. (C.25)
For a lower bound, we first note that

1=P (veFs ({adym) oty | {udty)
+P (v e 75 (I m) oty | {udt) (C.26)

< |75 (T m) | 5 + P (0 € 75 ({0 m) s{andtey o | ey (€.27)
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where the last inequality follows by the same consideratiwa have used for obtaining (C.21) (but now

with ¢§ instead of—¢). Using Boole’s inequality,

P(ve 75 ({odfm) oty v | {wl, ) <P (v :

n
+P ('v : Zvi“i,l —np;

=1
It is easy to verify that the paramete[nsl}f:1 and~ that are solving the following the following equations

n
E v; —nm
i=1

>0, 1=1,...,L;{a} 7| {ul}le> . (C.28)

> 0; {al}lel » 7Y ’ {ul}lL=1>

n

E {:L Z ViU |

=1

{"1}5:1} =p, l=1,...,L, (C.29)

and
1 n

where the expectation is taken w.r.t. the conditional ifistion (C.17), are also maximizing the

{ul}le} =m (C.30)

conditional distribution (maximum-likelihootf. Therefore, using the SLLN, the two terms on the right

hand side of (C.28) are negligible as— oo, namely,

P(ve s (todom) oy [{w)f,) < 7 (€:3D)

for any = > 0. Thus,

).ﬁ ({p,}le m)‘ > (1—7)R_s. (C.32)

Whence, (C.25) and (C.32) provide tight (ds— 0) upper and lower bounds on cardinality of
Fs ({PI}ZL:1 =m>-

Returning back to our problem, we will use the above resulbroer to find an asymptotic estimate
of Q‘A”(y,H,s,mT):

g(va_IaS?mr)

1>

q(s,)exp (L (my) zn: \yThi\Qn> : (C.33)
=1

r: m(r)=m,

and recall thay (s, r) depends ors, r as follows

q (87T) =dq <m87m7'7 z ’yTh’L{Z T, ms,ra Z |yThZ‘2 SiTq, Z |yTh2‘2 Si) . (034)

i=1 =1 i=1

12Essentially, this follows from the fact that (C.17) maintains all the sufficiatistics induced byFs ({pl}le ,m).
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In accordance to the previous notations used in the calonlaif )}‘5 <{pl}lL:1,m)‘, let us define

i1 = ly"h; 2 Ui 2 = s;, andwu; 3 = \yThi}Q s;, namely, the coefficients of the terms which depend on

r (recall (C.34)). Now, the main observation here is tﬁé(y,H, s, m,) can be represented as

n
> 2
Qﬁ(yaHﬂsva) = 271/ g <m87m’r‘7p17p27p37 Z ‘yTh”L‘ Si) €Xp (nL (mr) pl)an (dpladp27dp3)
DCR3 i=1

(C.35)
where D is the codomait? of (p1, s, p3), and {%,} is a sequence of probability measures that are
proportional to the number of sequenaesvith > 7" | rju; ; ~ np; for j =1,2,3, andd ;" | r; = nm,.
These probability measures satisfy the large deviationsciple (LDP) [39, 40], with the following
respective lower semi-continuous rate function

In2— 1Ry, if {p}_, €D

I(P17P27P3) = (036)
00, else

where Ry 2 lims_,o Rs given in (C.25). Indeed, by definition, the probability meas4d,, is the ratio
between)}“(; ({pl}?zl ,mr>

we have thaﬂimnﬁw%m% (B) = —1I(p1, p2, p3). Accordingly, due to it large deviations properties,

and2™ (the number of possible sequences). Thus, for any Bords setD,

applying Varadhan’s theorem [39, 40] on (C.35), one obtains

n
% o o o 2 o o
Z (y,H,s,m;) —q <m87m7“71017p2ﬂ P35 Z ‘yThz" 5z’> €xXp {n <ln2 +L(m,) pf — 1 <{Pl }13:1>)}

=1
(C.37)
Where{p;’}f’:1 are given by (using the fact that the exponential term is egpv
(05, 75, 05) =ang max finy +L(my) pr = 1 ({piFy ) }
p1,p2,p3ER
1
= arg max {L (my)p1+ —1In RO} . (C.38)
p1,P2,p3€ER n
Whence, the maximizers are the solutions of the followingatigns: ] is the solution of
10
L(m;)+ ——=—1InRy =0, (C.39)
n dpy
andpj for j = 2,3, are the solutions of
0
— InRy =0. (C.40)

Ip;

13Note that we do not need to explicitly defifi® simply due to the fact that the exponential term in (C.35) is concave (see

(C.38)), and thus the dominating , p2, ps are the same ove® or overR3.
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We have that (for = 1,2, 3)

3
10 oay 187 ooy 0v°
——1 § L E : E( b SN
nR 0= 2n Uil — 2 Pl 8p,~ o, + mapi

n dp;
o =
Zgii [%Z zl+f2tanh (Zl 1al2u” 7 )ui,l_pl]

and by using the saddle point equations (C.22) and (C.28)Jast two terms in the above equations

vanish, and we remain with
10
n dp;
Thus, combined with (C.39) and (C.40), we conclude that= L (m,), and thatas = a3 = 0.

In Ry = —as. (C.43)

Accordingly, the exponential term boils down to

1
L (m,)p] + - In Ry

o 1 - (o] o [¢]
=L (m,)p] + on (L (my) Zum —ny ) — L (my) p; + m,y
i=1

1 - L T 7,1 — °
—i—nizlln[Zcosh( (m);1 7)]

o I~ L(mp)ujn—v° 1 L(my) wig —~°
= m,y —|——Z ( )2 +nZln[2(:osh< ( )2 )}
; i=1

2 (8 m,). (C.44)

po

Hence, we obtained that (with the substitutionuef = |y h;|”)

> o o o g 2 o
g (yv H) Sva‘) — q (msa my, P1, P2, p37 Z ’yThZ| si) exp (nh ('Y 7m7‘)) (045)
i=1

where~°, {pf}?zl solve the following set of equations (based on (C.22) an@3)}.

1 & L (my) [y"hi|* —5°
me = o ; 1 4 tanh ( 5 ) (C.46a)
P9 = %Z 1+tanh( (m, ’y hil” - )] ly” (C.46b)
=1
S = zi 1+tanh( (m, ’y hil” =1 )] (C.46¢)
n i=1
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T ,2_ o
1 + tanh (L(mr) vy h[ = )] ‘yThi’23i- (C.46d)

n

o 1
Pzzﬁz

i=1

Thus far, we approximated” (y,H,s,m,). Recalling (C.13), the next step in our analysis is to

2

approximateZ’, (y, H,s). Using the last approximation, and applying once again dfsaa’s theorem
(or simply, the Laplace method [41, 42]) on (C.13), one olstairat

" (y, H,s) ZeXp t(m,) £ ) Z (y,H,s,m,)

XQ<m87m?7pi (m?)nog (m$75)7p§ (m?,s),Z{yThi‘23i> exp{n (h(7 )+t )} (C 47)

=1
where the dominatingr; is the saddle point, i.e., one of the solutions to the eqgoatio

0 1z .m0 10 yl? B
where we have used the fact thgtn) = f (m) — 21 (m) +V (m) ||ly|* /n. Simple calculations reveal

that the derivative of. (v°, m) w.r.t. m is given by (note that° also depends om,.)

0 0 0 J
D my =y m e g L Z 5 | o = o]
1< L(m)uii—~°\1[ 0 0
ey L (m) [y"hil OL(m) | 7, 2
=7 +2n; 1+tanh< 5 I ‘ hz‘

J 1 1< L(m)u;; —~°

but the last term in r.h.s. of the above equation is zero (dug€t23)), and thus

o SR L(m) |yTh|* —° 8L .
%h(v,m)—v +%; 1+tanh( 5 ‘ h’ (C.51)
Thus, substituting the last result in (C.48), we have that
- L ¢ Lme) [y"hi|* =2 \] oL (mp) | 1 0 .o Lo
Y (mr) - % ; 1 + tanh ( 9 am ‘ h’ ’ - 3m§3f (mr) + 5‘[ (mr)
my 9 - 0 oo Iyl
+ 2 omo (my) — 0mgv(m’"> ot (C.52)

So, hitherto, we obtained that the asymptotic behavi(f@(y, H, s) is given by (C.47), and the various

dominating terms are given by

n L o Thiz— o 3
MUSEEDY 1+tanh( ) o bl = )] )y nf? 0 m) + L1 ()
i=1

2 om ome

T
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my 9 - 9 Iyl
T I o _ o .
4 e ) = oV (m) T (C.53a)
1 n L o Thi 2 A0
me = — 1+tanh< ) [y" bl = )] , (C.53b)
2n prt 2
n [ 2
1 o Thz __AO
Pl = o Z 1 + tanh < (my) ‘y | i ) ‘yThi 2, (C.53c)
n i=1 L 2 J
1 n L o Thi 2 __ AO
pi =5 > |1+ tanh ( (m7) ly" el "~ ) si, (C.53d)
" =1 L 2 i
1 n [ L o Thi 2 __A©
p3 = %Z 1 —|—tanh< (my) ‘yQ = ) ly R si. (C.53e)
=1 L J

This concludes the asymptotic analysis of the summation aver(C.10). We now take care of the

summation oves in (C.11). Let

A o o o o ) o ) - 2
q (8) =4q <m57mr’ P1 (m'r) ) P2 (mra S) ) P3 (mra S) ’Z ‘yThZ| Si) . (054)

=1

Applying (C.47) on (C.11), we have that

%y (y, H) = {n(007mD+mD)E - S™ g (g) exp {n (f (ms) + L (my) % Z [y Rl s & @) }
i=1

se{0,1}" i=
A e{n(h('w,mi)%(mi))} Z exp (n ({{ (ms) + <,0)) 3 (y, H,ms) (C.55)
where as before
_ A " 2
Z (y, H,ms) = q(s)exp (L (ms) > [y hi sz-) : (C.56)
s: m(8)=ms i=1

However, & (y, H,m,) has essentially the same form &f (y, H, s, m,), which we have analyzed

earlier. So, using the same technique, we readily obtain that

Z (y, H,m) < q(ms) exp (nh (7%, ms)) (C.57)
whereh (7°,ms) is defined as in (C.44) (note that the exponential term is amtd the previous one),

and

4

q(ms) = q(ms,my, pi (my) , p3 (Mg, ms) , ps (my,ms) , pi (ms)) (C.58)

in which 4°, {pf}?:2 solve the following set of equations

g L (my) [yTh|” - 7°
ms_%; )

5 (C.59a)

1 + tanh (
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o1y~ L(mp) |y hi|” = 7°\ | L (my) [y hi|” —5°
p2:4nizl 1+tanh< 5 1 4 tanh 5 , (C.59Db)
o1y L(mp) |y hi|” = °\ | L (my) |y hi|” —5° :
P3 47%; 1+tanh< ’2 } 1+ tanh ‘2 ‘ |yThi‘
(C.59c)
_ Tr 2 o\ ]
ZZQLZ 1+ tanh (L(mS)}yth‘ 7) TR (C.59d)

Finally, the summation ovem, in (C.55) is again estimated by using the Laplace method, amd w

obtain
24 (y, H) = q(mg,mg, pt (my) , p3 (Mg, mg) , p5 (my, mg) , py (myg))
xexp{n (h(v°,m?)+h(3°,m3) +t(m?) +t(m3) £ ¢)} (C.60)
where
1 (m2) = —21”: 1+tanh( m;) ‘yghi‘2‘7°>] )y e )+ 1 )
I T m) - v ()
5 (m3) = —;n 1+ tanh (L " ’yzhl‘Q‘“)] D) T hf? — g () + 5T )
+ T 0 Tne) — v oy B
m$:21n§; 1 + tanh (L( 2)‘y2hl‘2_70 ] )
m= o |1+ tan <L(m§) \yzhz\Z ‘io>] :
i=1
Pl = % i _1 + tanh <L () ‘yzhif — PYO)_ \y (C.61)
=1 L i
ps = ;leil -1 + tanh <L(m$) ’y;hi|2 _’yo)_ 1 + tanh ( (m3) ’yZhZ| — ﬁ")] )
ps = jnz: :1 + tanh <L(m2) ’y;hif _70): 1 + tanh ( ’y;hi| iO) ly"hil”
Py = 217%2:; :1 + tanh <L (m) ‘y;hif — :YO): ‘yThi‘ (C.62)
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Not surprisingly, due to the symmetry betweerandr, it can be seen that the, = m;, and whence

the above set of equations reduces to

o 1 ¢ L(m®) [y"hi|* —=~°\ | oL (m° T2 0 o 1o
= 2 Htanh( 2 o T = ) 5T )
m? a T o o Hy”2
+ 5 gl (M) = 55V (m®) ==, (C.63a)
me = — 1+tanh< ”y [ = )] : (C.63b)
2n P 2
o _ o _ L(mo) ‘yThZ’2 - ’70
Pl = g 1+tanh< 5 y (C.63c)
e L) |yThi? =\ ]’
g8 = — 1+tanh< y Ml 77 ) , (C.63d)
4n =1 2
1< L (m®) 2_.0\1?
o m Yy i
=1 Z 1 4 tanh ( 5 ) ‘y (C.63e)
and by using (98)
o [ o013 2&( °08) o oa(m®ps)b(m®) 5y | o oyl
Q<m 7{/11}1:1) =p 9% (m°) p3—2 & (m°) B py |p1 —m | (C.64)
Based on (C.1), we also need to find the asymptotic behavior of
> P(s)é(y, Hs), (C.65)
se{0,1}"
and
> P(s)i(y, Hs)& (y. Hs). (C.66)

se{0,1}"
However, obviously, the previous analyzed term can be deghes an extended version of the above

terms, and so we can immediately conclude that

> P(s)&(y, Hs) < exp{n (h(y°,m°) +(m))}, (C.67)
se{0,1}"
> P(s)Ji(y, Hs)&(y, Hs) =< w(m®)exp {n (h(y°,m°) +1(m°))} (C.68)
se{0,1}"
where by using (81), (93), and (98) (noting that in this ca$e= p; and p5 = m°)
- a(m®) , ,a(m®)b(m’) ol o ollylf
w (m°) = a*m°b (m )—1—52 (e )pl 2Wﬁ302m [pl -m n] . (C.69)
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Therefore, using the last asymptotic results, the asynmpéstiimate of the inner term of the expectation

in (C.1) is given by

1
P(s)Ji(y,Hs)§ (y, Hs)
>scrony P(s)&(y, H 86{20:1} ® ®

_ ! > Y. P()P(r)ha(y Hs Hr)€(y. Hs)& (y, Hy)

2
(ZSG{O,l}" P(s)¢ (y, Hs)) se{0,1}" ref{o,1}

<w(m®) - g (m® o Hy ) (C.70)
o 2
:#m%m%+£$xﬁﬁPﬂhw—ﬁbmwmﬂ—ﬁam&@n
2
o o ) 8 = o, ) ). €71)

Accordingly, using the dominated convergence theorem (D[38), and the asymptotic behavior of
|yl /n, we obtain thet
52

2m°b (m®) + o2 ()

mmse X |Y . H o o 0 ov o
4X | )xE{a o (m°) 5% — @ (m°, 43) 3]

n

+f§ZXW£{QmﬂR+§)m%mﬂWﬂwm%—@aWﬁﬁn}(on)

Finally, in the following, we will show a concentration propeof the saddle point equations given in
(C.63), and obtain “instead” the saddle point equationgmyiv (20)-(24). Accordingly, the expectation
in (C.72) becomes “superfluous”, as all the involved randomalbtes (n° and {pf}le) converge to
a deterministic quantity. According to (C.63), it can berséat the saddle point equations share the

following common term

n

lzqs (\h?Yf) (C.73)

n “
=1
where¢ () : R — R is some integrable function (in the' sense). In the following, we first show that

(C.73) admits an SLLN property. To this end, let us define
A n
T, =) K (C.74)
=1

wherek; £ ¢ (]hiTY\Q), and letG,, = o (X, W)No (T,,, Tr+1,...) be theo-field (filtration) generated

by Ty, {Ki};~,,, X, andW. We will now show thatM,, = —T*" is a backwards martingale sequence

“Note that for an i.i.d. source we simply have that = po® wherep =P {S; = 1} for 1 <i < n.
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A
w.rt. F, = G_,, n < —1. Indeed, form < —1, we have that

E {Mm+1 ]-"m} = IE{ Toma gm} . (C.75)
-m—1
Settingn = —m, we see that
E{Tn—l gn} :E{M gn} (C.76)
n—1 n—1
_ I E{ Ky gn} (C.77)
n—1 n—1

where we have used the fact thBt is measurable w.r.,,. Now, we have that

E{K,|G,No (Y)} =E{K.|T,,Y,o(X, W)} (C.78)

= E{Kj|T,,Y,0 (X, W)} (C.79)

for any 1 < j < n, where in the first equality we have used the facts fiat= o (X, W) N
o (Tn, Tnt1,...) = o (X, W) No(Th, Knt1,Knto,...), thatY = >" | h;X; + W and that{h;}
are statistically independent, and the second equalitgvisl due to the structure & = HX + W,
the symmetry off,, w.r.t. Ki,..., K, and the fact thafh;} are statistically independent. Clearly,

zn:E{Ki]Tn,Y,U(X,W)} :E{Zn:Ki Tn,Y,a(X,W)} (C.80)

i=1 i=1

=T, (C.81)

and thus, due to (C.79), we obtain tHa{ K,,|G, N o (Y)} = T,,/n a.s. Whence, using (C.77) and the

last result, we obtain

Th—1 o T K,
E{n—l gn}_n—lE{n—l gn} (C.82)
T, K,
:nl—E{E{nl‘gnﬂo(Y)}‘gn} (C.83)
o T T (C.84)

n—1 mnnh-1) n
This concludes the proof that/,, is a backwards martingale sequence w{k,},. ;. Now, by the
backwards martingale convergence theorem [43, 44], weadethat7,,/n converges as — oo, and in

L', to a random variablésd = lim,,_, o T}, /n. Obviously, for allm

K, i K,
K = lim Smttf et Hmin (C.85)

n—oo n
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where (due to the fact thdth,}, are i.i.d.)

2
n+m-+i
RmH(p(hﬁH(z thj+W) ) fori=1,...,n. (C.86)

j=mti
Thus K is o (X, W) N o (hp+1,...)-measurable, for allm, and hence it is alsar (X, W) N
N, @ (hm+1,...)-measurable (namely, the taitfield generated by h;} intersected withr (X, W)).
Thus, by the Kolmogorov’s 0-1 law [43], we conclude that thexists a constar?’ € R (w.r.t. o (X, W)
such thatP {K = C | o (X, W)} = 1. This constant is obviously given by

. T
C:E{K]U(X,W)}:nlgroloE{n

o (X, W)} . (C.87)

Thus, we have shown that

1 n T 2 1 " T 2
n;gb(‘hiY| )—nE{;gb(]hiY‘ ) ‘X,W}—w, (C.88)
a.s. asn — oo, hamely, we show an SLLN property of (C.73). Our next step is ferithe asymptotic

behavior of each summand. First, we note that
hI'Y = bl [HX], + X, |h||*> + hTW (C.89)

where [H X, = HX — h;X;. Let X; be a newn-dimensional vector, such that ifth component is
zero and the other components are identical to thaKofSimilarly, let H; denote a new matrix such
that itsith column contains zeros, and the other columns are idéntcdose of H. Accordingly, let

%, ; denote thejth row of H;. With this notations, we have th&H X, = H; X ;. Thus,

k
r = . . 5T X . . . . 2
hiY = Z; Hj [zm‘Xz + WJ] + X [ (C.90)
‘7:
1 -
= = D [ X+ W] 4+ X ) (co1)
j=1

where Iflm 2 vnH; ;. Given X, by using Lyapunov’s central limit theorem [45], we may inthe

following weak convergence

B
asn — oo. Accordingly, let# be the limit point in (C.92), namely? ~ N (0,m,0?R + R/f3).
Therefore, based on (C.91), (C.92), and Slutsky's lemma [4@nrha 2.8], we may conclude that
(conditioned onX)

k
1 . ~
=1

TY -4 o + RX,. (C.93)
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In the sequel, we use the following two results. The first reisulhe continuous mapping theorem [46,
Th. 2.3].

Lemma 5 (The continuous mapping theordme} ® : R — R be an almost-everywhere continuous
mapping, and le{.J;} be a sequence of real-valued random variables that cors/ergakly to a real-

valued random variabld. Then,{® (J;)} converges weakly to the real-valued random variable/).
The second result is the following extension of Portmantekausna [46, Theorem 2.2].
Lemma 6 (Portmanteau’s lemma (extended versiam)) f : R* — R be a measurable and continuous

at every point in a se¥’. Let X, 4 X where X takes its values if¥. Then Ef(X,) — Ef(X) if

and only if the sequence of random variab{es(X,,)} is asymptotically uniformly integrabjenamely,

im0 im sup,, o0 E {1 f (X)L y(x.y 500} = 0.

Whence, using the last results, and Lemmas 5 and 6, we obtif th

1< 1 s
n;qs(}h’{yf) —nE{;¢(]@+RXi\2) X} -0 (C.94)
Now, applying the SLLN on (C.94), we finally may write that
1 - 2 2
nZZl(b(\hiTﬂ >—>E[¢ (y@+RX1 )} (C.95)

a.s. asn — oo, where the expectation is taken w.r.t. the product measomeesponding ta?, and X
which is distributed according to a mixture of two measui@sac measure ad with weight 1 — my,
and a Gaussian measure with zero mean and variah@nd weightm,,. Equivalently, the last result

can be rewritten as
1 ¢ Ty |2 2
EZQ&(}hiY] ) —>E[¢(|%| )] (C.96)
=1
a.s. asn — oo, where the expectation ove?” is now taken w.r.t. a mixture of two measures: Gaussian
measure with zero mean and variange.oc”R + R/j3) and weightl — m,, and a Gaussian measure
with zero mean and varianden,oR + R/ + R?¢?) and weightm,,.

Therefore, applying the last general asymptotic result @& ghddle point equations given in (C.63),

we obtain

1
°— _"R
v -3

In our case, the sequence of random variakaie@thf) meet the asymptotic uniform integrability assumption of

)

2 dm dm

o 2 o
1 + tanh (L(m AE )

drL (m)‘ I%IQ} ~dt(m)

‘mmO

Lemma 6, for the various choices @faccording to (20)-(24).
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o 2 o
mozlE{l—&—tanh(L(m)‘%’ 7)},
2 2
1 L(m®) | 2% —~°
p;:pZZQE{1+tanh< (m)“;{’ 7>]|%|2},
' L) 2P - \]
ps = -E 1+tanh< mn 5 7) ,
LT L) 21 = \]
o= 1E 1+tanh< mn . 7) 212y (C.97)
as claimed. ]

APPENDIXD

MATHEMATICAL TOOLS

Lemma 7 ([33]) [Matrix Inversion Lemma] LetlJ be anN x N invertible matrix ande € CV, ¢ € C

for which U + cxa™ is invertible. Then

Hyr—1
H oY1 U
" (U + cxx = D.1
( ¢ ) 1+ cxHU 1z (®-1
Lemma 8 (Matrix Inversion Lemma 2)nder the assumptions of Lemma 7,
1 Hyr—1
(U +caat) =y - Y @r’U (D.2)

Tt iU s
Lemma 9 (Resolvent Identity)et U and V' be two invertible complex matrices of siZé x N. Then
vl-vili=—v'l'UU-vyvL (D.3)
The following lemma is a powerful tool which is widely used iiMR with many versions and extensions.
Lemma 10 ([24, 25])Let Ay € CV*V be a sequence of deterministic matrices, andelet CV have

i.i.d. complex entries with zero mean, varianceV, and boundedth order momeni ]Xi|l < y;. Then,

foranyp > 1

" 1 1 a\2 T o
E CCNAN.’IZN — NtrAN ftI‘ANAN [V4 + Vgp} (D.4)

where(C), is a constant depending only @n

Lemma 11 ([25, 35])[Trace Lemma] Let(An )y, AN € CN*N | pbe a sequence of random matrices

and (zn)ys1 = [Xin,- - , Xyn]' € CV, a sequence of random vectors of i.i.d. entries, statltica
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independent of Ay ) v, Assume thatt {X; ;} =0, E {]Xm-|2} =1,E {\Xi,j|8} < oo, and thatA

has bounded spectral norm (in the a.s. sense). Then, a.s.,

1
—allAyay — + AN = 0. (D.5)

Lemma 12 ([47])Let (an),>1 > (bn)ps1 s (@n)psy 5 (bn), -, be four infinite sequences of complex random
variables. Assume that, < a, andb,, =< b,, in the a.s._sense.
o If |an|, |by| @and/or|ay,|, |b,| are a.s. bounded, then a.s.,
anby, = Anby.
o If |an], ]l_;n\_l and/or|a,|, |b,| " are a.s. bounded, then a.s.,

An/bp < @y /by

Lemma 13 ([25, 35])Let (An)y>;, AN € CN*N pe a sequence of matrices with uniformly bounded
spectral norm, andBy)y~,, By € CN*N pe random Hermitian, with eigenvalugs < ... < Ay
such that, with probability one, there exist> 0 for which \; > ¢ for all large N. Then, forvy € CV,

1 1 .
S trANBy - —tr Ay (By +onvf) -0 (D.6)

a.s. asN — oo, WhereB]‘\,1 and (By + va)_1 are assumed to exist with probability 1.

Lemma 14 ([48])[Rank-1 Perturbation Lemma] Letc C\ R*, A € CV*N and B € CV*V where

B is Hermitian nonnegative definite, ande CV. Then,

tr ((B —2Iy)" = (B + @al - ZIN)‘l) A‘ < = Al (D.7)

t(z,RT)

where dis{-, -) denotes the Euclidean distance.

Lemma 15Let x € C be a random vector with i.i.d. entries each with zero meanumitlvariance,
and letAy € CV*N such thaty/tr AX Ay is uniformly bounded for allV. Then, for any finitep,

ElzNAyzy| < oo (D.8)
for all V.
Proof: By Jensen’s inequality we may write that
E {:c%ANacN‘p < or—1 (E ‘a;%ANa:N — trAN}p + |trAN]p> < 00

where the second inequality follows from the facts that:ftrst term in the r.h.s. is bounded by Lemma

10, and the second term is bounded by assumption. ]
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