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Abstract

Many biological systems are modulated by unknown slow processes. This can
severely hinder analysis - especially in excitable neurons, which are highly non-
linear and stochastic systems. We show the analysis simpli�es considerably if the
input matches the sparse �spiky� nature of the output. In this case, a linearized
spiking Input-Output (I/O) relation can be derived semi-analytically, relating input
spike trains to output spikes based on known biophysical properties. Using this I/O
relation we obtain closed-form expressions for all second order statistics (input -
internal state - output correlations and spectra), construct optimal linear estimators
for the neuronal response and internal state and perform parameter identi�cation.
These results are guaranteed to hold, for a general stochastic biophysical neuron
model, with only a few assumptions (mainly, timescale separation). We numerically
test the resulting expressions for various models, and show that they hold well, even
in cases where our assumptions fail to hold. In a companion paper we demonstrate
how this approach enables us to �t a biophysical neuron model so it reproduces
experimentally observed temporal �ring statistics on days-long experiments.

1 Introduction

Neurons are modeled biophysically using Conductance-Based Models (CBMs). In CBMs,
the membrane time constant and the timescales of fast channel kinetics determine the
timescale of Action Potential (AP) generation in the neuron. These are typically around
1− 20 msec. However, there are various modulating processes that a�ect the response on
slower timescales. Many types of ion channels exist, and some change with a timescale
as slow as 10 sec [1]. Additional new sub-cellular kinetic processes are being discovered
at an explosive rate [3, 43, 11]. This variety is particularly large for very slow processes
[33].

Generally, current CBMs can be considered as strictly accurate only below a certain
timescale, since they do not incorporate most of these slow processes. A main reason
for this �neglect� is that such slow processes are not well characterized. This is espe-
cially problematic since neurons are excitable, so their dynamics is far from equilibrium,
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highly non-linear and contain feedback. Due to the large number of processes which are
unknown or lacking known parameters, it would be hard to simulate or analyze such
models. Therefore, it may be hard to quantitatively predict how adding and tuning slow
processes in the model would a�ect the dynamics at longer timescales.

In order to allow CBMs with many slow process to be �tted and analyzed, it is
desirable to have general expressions that describe their Input-Output (I/O) relation
explicitly, based on biophysical parameters. In a previous paper [47], we found that this
becomes possible if we use (experimentally relevant [13, 27, 10, 17, 22]) sparse spike inputs,
similar to the typical output of the neuron (Fig. 1A&B). In this case, we derived semi-
analytically1 a discrete piecewise linear map describing the neuronal dynamics between
stimulation spikes, for a general deterministic neuron model with a few assumptions
(mainly, a timescale separation assumption). Based on this reduced map, we were able
to derive expressions for the `mean' behavior of the neuron (e.g., �ring modes, �ring rate
and mean latency).

In this paper, we �nd that stronger and more general analytical results can be ob-
tained if we take into account the stochasticity of the neuron - arising from ion channel
noise2[38, 23]. Due to the presence of this noise, the discrete map describing the neuronal
response is �smoothed out�, and can be linearized. This linearized map constitutes a
concise description for the neuronal I/O (Eqs. 11-12) based on biophysically meaningful
parameters. This I/O is well described by an `engineering-style' block diagram with feed-
back (Fig. 1C), where the input is the process of stimulation intervals and the output is
the AP response (Fig. 1A). Note that the response is a�ected both by internal noise and
by the input. Beyond conceptual lucidity, such a linear I/O allows the utilization of well
known statistical tools to derive all second order statistics, to construct linear optimal
estimators and to perform parameter identi�cation. These results hold numerically (Fig.
2), even sometimes when our assumptions break down (Figs. 3-5).

In our previous paper, [47], we used our results to model recent experiments [17]
where synaptically isolated individual neurons, from rat cortical culture, were stimulated
with extra-cellular sparse current pulses for an unprecedented duration of days. Our
results enabled us to explain the `mean' response of these neurons. However, the second
order-statistics in the experiment seem particularly puzzling. The neurons exhibited 1/fα

statistics [28], responding in a complex and irregular manner from seconds to days. In a
companion paper [45], we demonstrate the utility of our new results. These results allow
us to reproduce and analyze the origins of this 1/fα on very long timescales.

2 Results

This section described our main results in outline. The details of each sub-section here
appear in the corresponding sub-section in section 4. For readers who do not wish to go
through the detailed derivations, the present section is self-contained. In our notation
〈·〉 is an ensemble average, i ,

√
−1, a non-capital boldfaced letter x , (x1, . . . , xn)

>

1A semi-analytic derivation is an analytic derivation in which some terms are obtained by relatively
simple numerics. See 2.2 for our implementation.

2We demonstrated that such noise should strongly a�ect the neuronal response to sparse stimulation
[47].
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Figure 1: Schematic summary A Aim: �nd the I/O relation between inter-stimulus
intervals (Tm) and Action Potential (AP) occurrences (Ym) - for a general biophysical
neuron model (Eq. 1-3). B An AP �occurred� if the voltage V crossed a threshold
Vth following the (sparse) stimulus, with Tm � τAP. C Result: Biophysical neuron
model reduced to a simple linear system with feedback (Eqs. 11-12), and biophysically
meaningful parameters (F,d,a and w).
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is a column vector (where (·)> denotes transpose), and a boldfaced capital letter X is a
matrix (with components Xmn).

2.1 Full model

The voltage dynamics of an isopotential neuron are determined by ion channels, protein
pores which change their conformations stochastically with voltage-dependent rates [23].
At the population level, such dynamics are generically described by [16, 21, 47] a CBM

V̇ = f (V, r, s, I (t)) (1)

ṙ = Ar (V ) r + Br (V, r) ξr (2)

ṡ = As (V ) s + Bs (V, s) ξs , (3)

with voltage V , stimulation current I (t), rapid variables r (e.g., m,n, h in the Hodgkin-
Huxley (HH) model [24]), slow variables s (e.g., slow sodium inactivation [7]), rate matri-
ces Ar/s, white noise processes ξr/s (with zero mean and unit variance), and matrices Br/s

which can be written explicitly using the rates and ion channel numbers [39] (D = BB>

is the di�usion matrix [39]). For simplicity, we assumed that r and s are not coupled di-
rectly, but this is non-essential [51, 9]. The parameter space can be constrained [47], since
we consider here only excitable, non-oscillatory neurons which do not �re spontaneously
and which have a single resting state - as is common for cortical cells, e.g., [17].

Since the components of r and s usually represent fractions, in some cases it is more
convenient to use the normalization constraint (i.e., that fractions sum to one), and reduce
the dimensions of r, s, and ξr/s. After this reduction, the form of Eqs. 1-3 changes to

V̇ = f (V, r, s, I (t)) (4)

ṙ = Ar (V ) r− br (V ) + Br (V, r) ξr , (5)

ṡ = As (V ) s− bs (V ) + Bs (V, s) ξs , (6)

where all the variables and parameters have been rede�ned (with their size decreased).
Note that we have slightly abused notation by using the same symbols in Eqs. 4-6 and
in Eqs. 1-3. The speci�c set of equations used will always be stated. We call Eqs. 4-6
the �compressed form� of the CBM.

Such biophysical neuronal models (either Eqs. 1-3 or 4-6) are generally complex and
non-linear, containing many variables and unknown parameters (sometimes ranging in
the hundreds [29, 42]), not all of which can be identi�ed [25]. Therefore, such models
are notoriously di�cult to tune, highly susceptible to over-�tting and computationally
expensive [20, 35, 12]. Also, the high degree of non-linearity usually prevents exact
mathematical analysis of such models at their full level of complexity [14]. However, much
of the complexity in such models can be overcome under well de�ned and experimentally
relevant settings [13, 27, 10, 17, 22], if we use sparse inputs, similar in nature to the spikes
commonly produced by the neuron.

2.2 Model reduction

We consider a stimulation setting motivated by the experiments described in [17] and
further elaborated on in sec. 3. Speci�cally, suppose I (t) consists of a train of pulses
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arriving at times {tm} (Fig. 1A, top), so Tm = tm+1 − tm � τAP with τAP being the
timescale of an AP (Fig. 1B). Our aim is to describe the AP occurrences Ym, where
Ym = 1 if an AP occurred immediately after the m-th stimulation, and 0 otherwise (Fig.
1A, bottom). Note that since the neuron is excitable it does not generate APs unless
stimulated, as in [17].

In this section we �average out� Eqs. 1-3 using a semi-analytical method similar to that
in [47].To do so, we need to integrate Eqs. 1-3 between tm and tm+1. Since Tm � τAP, the
rapid AP generation dynamics of (V, r) relax to a steady state before tm+1. Therefore,
the neuron AP �remembers� any history before tm only through sm = s (tm). Given
sm, the response of the fast variables (V, r) to the m-th stimulation spike will determine
the probability to generate an AP. This probability, pAP (s), collapses all the relevant
information from Eqs. 1-2, and can be found numerically from the pulse response of
Eqs. 1-2 with s held �xed (section 4.2.4).

In order to integrate the remaining Eq. 3, we de�ne X+, X− and X0 to be the averages
of a quantity Xs tduring an AP response a failed AP response and rest, respectively3.
Also, we denote

X (Ym, Tm) , τAPT
−1
m (YmX+ + (1− Ym)X−) +

(
1− τAPT

−1
m

)
X0 , (7)

as the steady state mean value of Xs. For analytical simplicity we assume4 Tm � τs. We
obtain, to �rst order

sm+1 = sm + TmA (Ym, Tm) sm + nm . (8)

where nm is a white noise process with zero mean and variance TmD (Ym, Tm). For the
compressed form (Eqs. 4-6) we have instead

sm+1 = sm + Tm [A (Ym, Tm) sm − b (Ym, Tm)] + nm . (9)

Note that such a simpli�ed discrete time map has far fewer parameters than the full model,
since it is written explicitly only using the averaged microscopic rates of s (through A
and D), population sizes (through D), the probability to generate an AP given s, pAP (s),
and the relevant timescales. This e�ective model exposes the large degeneracy in the
parameters of the full model and leads to signi�cantly reduced simulation times and
mathematical tractability. Notably, the dynamics of the state sm (Eq. 8) depends on the
input Tm and the output Ym - and this feedback a�ects all of our following results.

2.3 Linearization

In this section we exploit the intrinsic ion channel noise to linearize the neuronal dynamics,
rendering it more tractable than the (less realistic) noiseless case [47]. Suppose that the
inter-stimulus intervals {Tm} have stationary statistics with mean T∗ so that τAP �
Tm � τs with high probability. Since s is slow and AP generation is rather noisy in
this regime [47] (so pAP (sm) is slowly varying), we assume that a stable excitability �xed
point s∗ exists. Therefore, the perturbations ŝm = sm− s∗ are small and we can linearize

3
e.g., as in Eqs. 51.-53. Note also a similar notation was also used in [47] (e.g., Eqs. 2.15-2.16), where

we used H/M/L instead of +/− /0.
4later we shall demonstrate numerically that this is not a necessary condition.
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pAP (sm) ≈ p∗+w>ŝm. Denoting X∗ = X (p∗, T∗), the mean AP �ring rate can be found
self consistently from the location of the �xed point s∗,

〈Ym〉 = p∗ = pAP (s∗) , (10)

where s∗ depends on p∗ through A∗s∗ = 0 - or s∗ = A−1∗ b∗ in the compressed form.
The perturbations around the �xed point s∗ are described by the linear system for

the variables T̂m = Tm − T∗, ŝm = sm − s∗ and Ŷm = Ym − 〈Ym〉,
ŝm+1 = Fŝm + dT̂m + aŶm + nm , (11)

Ŷm = w>ŝm + em , (12)

where F , I + T∗A∗,
〈
nmn>m

〉
= T∗D∗, em is a (non-Gaussian) white noise process,

〈em〉 = 〈emnm〉 = 0, σ2
e ,

〈
e2m
〉

= p∗ (1− p∗) , d , A0s∗ and a , τAP (A+ −A−) s∗. If
we use the compressed form instead, then these results remain valid, except we need to
re-de�ne d , A0s∗ − b0 and a , τAP [(A+ −A−) s∗ − (b+ − b−)].

The linear I/O for the �uctuations in Eq. 11-12, which contains feedback from the
`output' Ŷm to the state variable ŝm (Fig. 1C), can be very helpful mathematically and
its parameters are directly related to biophysical quantities.

2.4 Linear systems analysis

Using standard tools, this formulation makes it now possible to construct optimal linear
estimators for Ym and sm [2], perform parameter identi�cation [31], and �nd all second
order statistics in the system [40, 19], such as correlations or Power Spectral Densities
(PSD). For example, for f � T−1∗ , the PSD of the output is

SY (f) = w>Hc (−f)
(
D∗ + T−2∗ dd>ST (f)

)
H>c (f) w (13)

+ T∗σ
2
e

∣∣1 + T−1∗ w>Hc (f)a
∣∣2

where
Hc (f) ,

(
2πfi−A∗ − T−1∗ aw>

)−1
.

Similarly, the PSD of the state variables is

Ss (f) = Hc (−f)
(
D∗ + T−1∗ aa>σ2

e + T−2∗ dd>ST (f)
)
H>c (f) , (14)

and the input-ouput cross-PSD is

SY T (f) = T−1∗ w>Hc (−f) dST (f) . (15)

Again, note the large degeneracy here - many di�erent sets of parameters will generate
the same PSD. Using similar methods, the PSDs of various response features, such as the
AP latency or amplitude, can also be derived (Eq. 125).

Finally, we note Eqs. 97 and 98 can be re-arranged as a direct I/O relation. De�ning

Hext (f) , T−1∗ w>Hc (f) d (16)

H int (f) ,
(
T−1∗ w>Hc (f) K + 1

)
σv (17)

with K and σv given by Eqs. 116-118, we obtain, in the frequency domain,

Ŷ (f) = Hext (f) T̂ (f) +H int (f) z (f) , (18)

where Ŷ (f) , T̂ (f) and z (f) are the Fourier transforms of Ym, T̂m and zm, respectively,
with zm being a white noise process with zero mean and unit variance.
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2.5 Numerical tests

As we argued so far, a main asset of the present approach is its applicability to a broad
range of models of various degrees of complexity and realism. Our recall that our three
assumptions are

1. τAP � Tm (temporally sparse input).

2. Tm � τs (timescale separation).

3. A stable excitability �xed point s∗ exists (�noisy� neuron).

In this section we will demonstrate that our analytical approximations agree very well
with the numerical solution of Eqs. 1-3, even in some cases where the assumptions 2 and
3 do not hold. Therefore, these assumptions are su�cient, but not necessary.

2.5.1 The HHS model

First, in Fig. 2 we tested our results on the HH model with Slow sodium inactivation.
This `HHS' model ([47], and see section 4.5.1 for parameter values) augments the classic
HH model [24] with an additional slow inactivation process of the sodium conductance
[7, 15]. The HHS model includes the uncoupled stochastic Hodgkin-Huxley (HH) model
equations [16], and is written in the compressed formulation (Eqs. 4-6)

CV̇ = ḡNasm
3h (ENa − V ) + ḡKn

4 (EK − V ) + ḡL (EL − V ) + I (t) (19)

ṙ = [αr (V ) (1− r)− βr (V ) r]φ+
√
N−1φ (αr (V ) (1− r) + βr (V ) r)ξr , (20)

for r = m,n and h, with the additional kinetic equation for slow sodium inactivation

ṡ = δ (V ) (1− s)− γ (V ) s+
√
N−1 (δ (V ) (1− s) + γ (V ) s)ξs , (21)

where V is the membrane voltage, I (t) is the input current, m, n and h are ion channel
�gating variables�, αr (V ) , βr (V ) , δ (V ) , and γ (V ) are the voltage dependent kinetic rates
of these gating variables, φ is an auxiliary dimensionless number, C is the membrane's
capacitance, EK , ENa and EL are ionic reversal potentials, ḡK , ḡNa and ḡL are ionic
conductances and N is the number of ion channels.

In Fig. 2A we show that through Eq. 10 we can accurately calculate p∗, the mean
probability to generate an AP (so p∗T−1∗ is the �ring rate of the neuron). In Fig. 2B
we demonstrate both the analytical expression (Eqs. 13 and 14), or a simulation of the
reduced model (Eq. 8), will give the PSDs SY (f) or Ss (f) of the full model (Eqs. 1-3). In
Fig. 2D we do the same for the analytical expression (Eq. 15) of the Cross-PSD SY T (f).
In Fig. 2C we show that we can construct a linear optimal �lter for the internal state ŝm,

given
{
{Tk}m−1k=0 , {Yk}

m−1
k=0

}
quite well, with low mean square error (section 4.4.4).

2.5.2 Testing the limit of our assumptions

Next, we demonstrate that our analytical expressions hold also for various other models.
Speci�cally, in the following scenarios: (1) when the kinetics of the neuron are extended
to arbitrarily slow timescales, (2) when the assumptions 2 and 3 break down, (3) when
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Figure 2: Comparing the mathematical results with the numerical simulation
of the full model (Eq. 1-3) for the stochastic HHS model (section 4.5.1). A Firing
probability p∗

(
T−1∗

)
(Eq. 10) for di�erent currents (Istim = 7.5, 7.7, 7.9, 8.1, 8.3 µA from

bottom to top). B The PSDs SY (f) and Ss (f). `Map' is a (104 faster) simulation of
Eq. 8 together with pAP (sm), while `Approx' refers to the analytical expressions (Eqs.
13-14). Note the high/low-pass �lter shapes of SY (f) and Ss(f), respectively. C Optimal
linear estimation of ŝ. D Amplitude and phase of the cross-spectrum SY T (f) for Poisson
stimulation (Eqs. 15). Note that the frequency range was cut due to spectral estimation
noise (see Fig. 8). Parameters: I0 = 7.9µA and T∗ = 50 ms in B-D, and also stimulation
is periodical in A-C. Note the low-pass �lter shapes of SY T (f)
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the rapid and slow kinetics are coupled (4) when �physiological� synaptic inputs are used.
These results are presented in Figs. 3 and 4, with speci�c model parameters given in
section 4.5.

First, we tested whether or not the model can be extended to arbitrarily slow timescales.
We added to the HHS model four types of slow sodium inactivation processes with in-
creasingly slower kinetics and smaller channel numbers. In the �rst case, those processes
were added additively (as di�erent currents), so s was replaced with

∑
i si in the volt-

age equation (Eq. 19). This model was denoted `HHMS' (HH with Many Sodium slow
inactivation processes, section 4.5.4). In the second case, those processes were added in
a multiplicative manner (as di�erent processes a�ecting the same channel, in the uncou-
pled approximation), so s was replaced with

∏
i si in the voltage equation (Eq. 19). We

denote this model as `Multiplicative HHMS' (section 4.5.5). In both cases, our analytical
approximations seemed to hold quite well. For example, the approximated SY (f) (Eq.
13) corresponded rather well with the numerical simulation of the full model (Fig. 4B
and D, respectively).

Next, to test the limits of our assumptions we extended the HHS model to the HHSIP
model (from [47], see section 4.5.6) and added a potassium inactivation current which
had faster kinetics (so τs ≈ 5 Hz). So if T−1∗ = 10 Hz, we get T∗ ≈ 0.5τs, so the timescale
separation assumption 2 is not strictly valid here. Also, for certain parameter values we
get a limit cycle in the dynamics of ŝm, so the �xed point assumption 3 fails. However,
it seems that our approximations still follow the numerical simulation of the full model:
for p∗ at various stimulation frequencies T−1∗ and currents I0 (Fig. 3A), for SY (f) at
T−1∗ = 10 Hz when assumption 2 breaks down (Fig. 3B, top), for SY (f) at T−1∗ = 30 Hz
when assumption 3 breaks down (near a Hopf bifurcation) and a limit cycle begins to
form (see Fig. 3B, bottom), and for state estimation of ŝ1 using a linear optimal �lter,
again at T−1∗ = 10 Hz (Fig. 3C).

The only discrepancy seemed to appear in the limit cycle case, where the frequency of
the limit cycle �sharpens� the peak in SY (f) (Fig. 3B, bottom). This may suggest that,
in this case, the perturbations of the system near the limit cycle could be linearized, and
that the eigenvalues of that linearized system might be related to the eigenvalues of the
linearized system around the (now unstable) �xed point s∗. More generally, the results so
far indicate that even if our assumptions are inaccurate, it is possible that the resulting
error will not accumulate and remain small - in comparison with the intrinsic noise in the
model.

Next, to challenge the approximation even more, we added to the HHSIP model four
types of sodium currents with increasingly slower kinetics and fewer channels, similarly
to the HHMS model (so this is the `HHMSIP' model, section 4.5.7). This signi�cantly
increased the variance of the dynamic noise nm, rendering the dynamics more �noisy�.
These random �uctuations in sm (Fig. 3E) are of similar magnitude to the width of the
threshold (non-saturated) region in pAP (sm) (see Fig. 6). This renders the �xed point
assumption 3 inaccurate, since now the linear approximation pAP (sm) ≈ p∗ + w>ŝm
breaks down most of the time. However, even in this case, the approximations seem to
hold quite well with simulations of the full neuronal model (Fig. 3D-F).

In Fig. 4A we used a coupled version of the HHS model (`coupled HHS' model, section
4.5.2), in which the equations for r and s in the full model are tangled together, and not
separated as we assumed in Eqs. 2-3. Even in this case, our approximations seemed to
hold well.
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Finally, in Fig. 4C, we extend the HHS model so that the stimulations are not given
directly, but through a synapse. We used the biophysical Tsodyks-Markram model [48] of
a synapse with short-term depression, with added stochasticity (`HHSTM' model, section
4.5.3). This also seemed to work well.

2.5.3 System identi�cation

Suppose that, as in many experiments, we do not know the biophysical properties of
the neuron, but can only measure its input and output. Can we �t a model using only
this information? As we explained before, it is di�cult to �t CBMs (especially using
such limited information) since they are highly degenerate models, with many unknown
parameters. However, under sparse stimulation, and given our assumptions, we showed
the model dynamics can be accurately described using a linear model for the �uctuations
(Eq. 18). Such linear models are non-degenerate5, and can be �tted using only input-
output information, by applying standard methods [31].

In this section, we demonstrate that it is possible to �t such linear models to the
dynamics of CBMs, using three di�erent CBMs (HHS,HHSIP and HHMS with η = 0). In
order to estimate the quality of the �tted linear model, we use it to predict the current
AP response Ym, using only the previous history of the stimulation intervals and AP
responses {Tk, Yk}m−1k=0 . The performance of an estimator Ỹm is quanti�ed using the error
probability

Perror =
1

n

n∑
m=0

[
Ym

(
1− Ỹm

)
+ (1− Ym) Ỹm

]
(note a summand is zero if Ỹm = Ym and one otherwise). The 95% con�dence intervals
of Perror are given by ±ζ

√
Perror (1− Perror) /n, where ζ is the inverse zero-mean unit

variance Gaussian CDF at 0.975.
Following Eq. 18 we use an ARMAx(M,M,M) model [31] (recall M is the dimen-

sion of s), estimated from
{
T̂m, Ŷm

}
using the Matlab system identi�cation toolbox6.

Assuming the �tted model is accurate, this would be an optimal linear estimator. Since
Ym = 0 or 1, we need to round the value of the linear estimate

Y Estimator
m =

⌈
Ŷ ARMAx
m + 〈Ym〉 − 0.5

⌉
. (22)

In order to assess the performance of our estimator, we compare it with two other pre-
dictors. The most trivial predictor is the mean predictor, which has a constant estimator

Y mean
m = d〈Ym〉 − 0.5e (23)

(where d·e is the upper integer value). Another predictor is the `oracle' predictor - which
�cheats� and estimates the current response with the added information on the internal
state of the neuron

Y oracle
m = dpAP (sm)− 0.5e (24)

5Assuming no pole-zero cancellation.
6A more general Box-Jenkins model is not required, since the poles of Hext (f) and Hint (f) are

identical (assuming no pole-zero cancellation).
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Figure 3: Comparing mathematical results with full model simulation when the
assumptions fail to hold. In the HHSIP model (HHS with potassium inactivation)
we plot A p∗

(
T−1∗

)
for di�erent currents (I0 = 7.5, 7.7, 7.9, 8.1, 8.3 µA from bottom to

top). B SY (f) for two values of T∗. Upper �gure shows the case when T∗ ≈ 0.5τs so the
timescale separation assumption breaks down. In the lower �gure the parameters are close
to a Hopf bifurcation where a limit cycle is formed so the �xed point assumption breaks
down, so the estimation of the limit cycle frequency component is less accurate. C The
estimation of ŝ1 for T−1∗ ≈ 30 Hz is even better than in the HHS case. Similarly to A-C
we plot the results of the HHMSIP model (HHSIP with many additional slow sodium
inactivation kinetics) in (D-F), which has considerably more noise in the slow kinetics,
and so even larger �uctuations (which further invalidates the �xed point assumption).
See section 4.5 for various model details.
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Figure 5: Predictability of the neuronal response for the HHS, HHSIP and
HHMS models. Prediction error for three predictor types, as described in section 2.5.3
- mean (Eq. 23), oracle (Eq. 24) and the linear optimal estimator (Eq. 22), constructed
using blind system identi�cation.

, with pAP (·) and sm de�ned as in chapter 2.2. Any reasonable predictor should out-
perform the mean predictor. Also, the best possible predictor cannot out-perform the
oracle predictor. Therefore,

Pmean
error ≤ PEstimator

error ≤ P oracle
error .

As can be seen in Fig. 5, these bounds are maintained. Moreover, it seems that
PEstimator
error ≈ P oracle

error . This means that our estimator achieves the optimal performance
(among all estimators). This indicates that

1. The dynamics of the neuron can be accurately described using a linear system, as
suggested by Eq. 18.

2. Surprisingly, the linear model is accurate even for very large values of N , (e.g.,
N = 1012) in which the CBM is practically deterministic, invalidating7 assumption
3.

3. The parameters of the linear system can be estimated from the input-output data
of the neuron using standard methods.

7In the deterministic limit the �xed point looses its stability, and the dynamics near the �xed point
can be described using piecewise linear map [47].
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3 Discussion

In this work we found that under a temporally sparse (�spike-like�) stimulation regime
(Fig. 1A&B) we can perform accurate semi-analytical linearization of the spiking input-
output relation of a CBM (Fig. 1C), while retaining biophysical interpretability of the
parameters (e.g., Fig. 7). This linearization considerably reduces model complexity and
parameter degeneracy, and enables the use of standard analysis and estimation tools.
Importantly, this method is rather general, since it can be applied to any stochastic
CBM, with only a few assumptions.

Connection to previous work. To the best of our knowledge, such results are novel, as
no previous work examined the response of general stochastic CBMs to temporally sparse
input for extended durations. However, in [47] we modeled neurons under periodical
stimulation using deterministic Conductance-Based Models (CBMs) with all the slow
kinetics being completely uncoupled from each other, and slower than the stimulation
rate. Using a reduction scheme similar in nature to that described here, we were able to
describe the CBM's excitability and response using a discrete-time map - which �samples�
the neuronal state in each stimulation. Analyzing this map, we obtained analytical results
describing the neuronal activation modes, spike latency dynamics, mean �ring rate and
short-time �ring patterns.

The current work generalizes this previous work. Here, we considered the general case
of stochastic CBMs, under general sparse stimulation patterns and with coupled slow
kinetic dynamics. Therefore, the framework in the previous work [47] could be considered
as a special case of this work, in which there is an in�nite number of ion channels (N →∞,
so Br/s = Dr/s = 0), Tm = T∗ (so T̂m = 0) and As (V ) (the rate matrix) is a diagonal
matrix. In the current work we similarly show that, in the generalized framework, the
CBM's excitability and responses can be succinctly described using a discrete-time map.
It is then straightforward to derive results paralleling those in [47] in this more general
setting, such the mean �ring rate (Eq. 10).

Theoretical novelty. However, the main novelty lies in our additional results, that
could not be derived in [47]. Speci�cally, due to the presence of noise, we were able to
linearize the map's dynamics, and derive an explicit input-output relation. Such a lin-
earization became possible because we made the (unusual) choice that the �input� to the
CBM consists of the time-intervals between stimulation pulses, while the �output� is a
binary series indicating whether or not an AP happened immediately after a stimulation
pulse. The linearized input-output relation can be expressed either in biophysically in-
terpretable �state space� (Eq. 11-12 and Fig. 1C), or as a sum of the �ltered input and
�ltered noise (Eq. 18). Note that the overall I/O includes the mean output (Eq. 10)
which is nonlinear. However, the linear part of the response, allows the derivation of the
power spectral densities (Eq. 13), the construction of linear optimal estimators (e.g., Fig.
2C) and blind identi�cation of the (linearized) system parameters (Fig. 5).

We performed extensive numerical simulations (section 2.5) that indicate that our
analytical results are accurate - sometimes even if our assumptions (i.e., the timescale
separation Tm � τs and the �noisiness� of the CBM dynamics) break down. However,
clearly there are cases, beyond our assumptions, in which are results cannot hold. For
example, if T̂m has very large �uctuations, then the response of the neuron cannot be
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completely linear, since 0 < Ŷm < 1. Such cases may require an extension of the formalism
described here. There are many possible extensions which we did not pursue here. For
example, one can extend the modeling framework (e.g., multi-compartment neurons) and
stimulation regime (e.g., heterogeneous pulse amplitudes). However, it seems that an
important assumption, that cannot be easily removed, is that the input is temporally
sparse (τAP � Tm ).

Practical signi�cance. Is such a sparse temporally stimulation regime �physiologically
relevant� for the soma of a neuron? Currently, such question cannot be answered directly,
since it is impossible to accurately measure all the current arriving to the soma from
the dendrites under completely physiological conditions. However, there is some indirect
evidence. Recent studies have shown that the distribution of synaptic e�cacies in the
cortex is log-normal [44] - so a few synapses are very strong, while most are very weak.
This indicates that the neuronal �ring patterns might in fact be dominated by a small
number of very strong synapses while the sum of the weak synapses sets the voltage
baseline [26]. Such a possibility is supported by the fact that individual APs can trigger
the complex network events in humans [37, 30]. Also, in rats, individual cortical cells
can elicit whisker movements in [6] and even modify the global brain state [32]. Taken
together, these observations suggests that the above-threshold stimulation reaching the
soma may be temporally sparse in some cases.

There are other obvious cases were our results are immediately applicable. First, in
an axonal compartment, the relevant input current is indeed an AP spike train, arriving
from a previous compartment. Second, a direct pulse-like stimulation is used in cochlear
implants [22, and references therein]. Lastly, such stimulation is used as an experimental
probe [10, 17, 18]. Speci�cally, since we now have a precise expression for the power
spectral density of the response, we are now ready to use these analytical results in [45]
to reproduce the 1/fα behavior of the neuron in the experiments of [17] and explore its
implications on its input-output relation.

4 Methods

In this section we provide the details of the results presented in the paper. Each section
here corresponds to a section in the original paper. The �rst four (theoretical) sections
can be read independently of each other (except when we discuss the repeating `HHS
model' example). The last section give the details of the numerical simulations.

4.1 Full model (biophysical neuron models)

As we explained in section 2.1, a general model for a biophysical isopotential neuron is
given by the following equations

V̇ = f (V, r, s, I (t)) , (25)

ṙ = Ar (V ) r + Br (V, r) ξr , (26)

ṡ = As (V ) s + Bs (V, s) ξs , (27)

with voltage V , stimulation current I (t), rapid variables r (e.g., m,n, h in the Hodgkin-
Huxley (HH) model [24]), slow variables s (e.g., slow sodium inactivation [7]), rate matri-
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ces Ar/s, white noise processes ξr/s (with zero mean and unit variance), and matrices Br/s

which can be written explicitly using the rates and ion channel numbers [39] (D = BB>

is the di�usion matrix [19, 39]). In this section we give the speci�c forms of Ar/s and
Br/s, and their origin based on neuronal biophysics.

Microscopic origins

Such a model is commonly called a stochastic Conductance Based Model (CBM). In a non-
stochastic CBM, the dynamics of the membrane voltage V (Eq. 37) are deterministically
determined by some general function of V , the stimulation current I (t), and some internal
state variables r and s. In contrast, the dynamical equations for r and s here adhere to
a speci�c Stochastic Di�erential Equation (SDE) form, since these variables describe the
�population state� of all the ion channels in the neuron. We now explain the biophysical
interpretation of those equations.

At the microscopic level, each ion channel has several states, and it switches between
those states with voltage dependent rates [23]. This is usually modeled using a Markov
model framework [8]. Formally, suppose we index by c the di�erent types of channels,
c = 1, ..., C. For each channel type c there exist N (c) channels, where each channel of
type c possesses K(c) internal states. In the Markov framework, for each ion channel that
resides in state i, the probability that the channel will be in state j after an in�nitesimal
time dt is given by {

A
(c)
ij (V ) dt , if j 6= i

1−∑j 6=iA
(c)
ji (V ) dt , if j = i

, (28)

where A(c) (V ) is called the �rate matrix� for that channel type.
To facilitate mathematical analysis and e�cient numerical simulation, we preferred

to model stochastic CBMs using a compressed, SDE form. This method was initially
suggested by [16], but their method su�ered from several problems [21]. In a recent paper
[39] a more general method was derived, which had none of the previous problems, and
was shown numerically to produce a very accurate approximation of the original Markov
process description.

Derivation

According to [39], if we de�ne x
(c)
k to be the fraction of c-type channels in state k, and

x(c) to be a column vector composed of x
(c)
k , then

ẋ(c) = A(c) (V ) x(c) + B(c)
(
V,x(c)

)
ξ(c) , (29)

where ξ(c) is a white noise vector process - meaning it has zero mean and auto-covariance〈
ξ(c) (t)

(
ξ(c) (t′)

)>〉
= Iδc,c′δ (t− t′)

where I is the identity matrix, δ (t) is the Dirac delta function, and δc,c′ = 1 if c = c′ and
0 otherwise. Furthermore, B(c) is de�ned so that in Eq. 29 each component of ξ(c), which

is associated with a transition pair i� j, is multiplied by

√(
A

(c)
ij x

(c)
j +A

(c)
ji x

(c)
i

)
/N (c),
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and appears in the equation for ẋ
(c)
i and ẋ

(c)
j with opposite signs. Note that B(c) is

not necessarily square since it has K(c) rows but the number of columns is equal to the
number of transition pairs.

We now need to combine Eq. 29 for all c to obtain Eqs. 1-3 . For simplicity, assume
now that all ion channels types can be classi�ed as either �rapid� or �slow� (this assumption
can be relaxed). In this case we can concatenate all vectors related to rapid channels

r ,
(
x>(1), ...,x

>
(R)

)>
and to slow channels s ,

(
x>(R+1), ...,x

>
(R+S)

)>
, where R + S = C.

We similarly de�ne ξr and ξs together with the block matrices

Ar ,


A(1) 0 . . . 0

0 A(2) . . . 0
...

...
. . .

...
0 0 · · · A(R)

 , As ,


A(R+1) 0 . . . 0

0 A(R+2) . . . 0
...

...
. . .

...
0 0 · · · A(R+S)


and similarly for Br and Bs. Note that Ar is square with size M̃ =

∑R
c=1K

(c) rows

while As is square with size M̃ =
∑R+S
c=R+1K

(c) rows.

4.1.1 Compressed formulation

In some cases, it is more convenient to re-write Eqs.1-3 in a compressed form (this is
always possible)

V̇ = f (V, r, s, I (t)) , (30)

ṙ = Ãr (V ) r− br (V ) + B̃r (V, r) ξr , (31)

ṡ = Ãs (V ) s− bs (V ) + B̃s (V, s) ξs , (32)

where r, s, and ξr/s have been rede�ned (their dimension has decreased), as we will show
next. First, we comment that the main disadvantage is of these equations is that they are
less compact and the notation is somewhat more cumbersome. That's why we preferred
to not to work with this formalism in the results section. However, there are also several
advantages to this approach: (1) The vectors and matrices are smaller, (2) The rate
and di�usion matrices do not have �troublesome� zero eigenvalues and can be diagonal
(which is analytically convenient), (3) Most CBMs are written using this form (e.g the
HH model), so it is easier to apply our results using this formalism.

Derivation

To derive these compressed equations, we use the fact x
(c)
k denote fractions, so

∑
k x

(c)
k =

1, for all c. We can use this constraint, together with the irreducibility of the underlying
ion channel process, to reduce by one the dimensionality of Eq. 29 (see [46] for further
details). De�ning I to be the identity function, J to be the I with it last row removed,

e , (0, 0, ..., 1)
>
, u , (1, 1, ..., 1)

>
, G ,

(
I− eu>

)
J>, Ã(c) , JA(c)G, B̃(c) , JB(c)

(with x
(c)

K(c) replaced by 1− x1− x2...− xK(c)−1) and b(c) , −JA(c)e (Ã(c) is invertible),

we obtain the following equation for the reduced state vector y(c) = Jx(c) (which has
only K(c) − 1 states)

ẏ(c) = Ã(c)y(c) − b + B̃(c)ξ(c) .
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Again assuming that all channels can be classi�ed as either �rapid� or �slow�, we

concatenate all vectors related to rapid channels r ,
(
y>(1), ...,y

>
(R)

)>
and to slow channels

s ,
(
y>(R+1), ...,y

>
(R+S)

)>
, where R+S = C. We obtain Eqs. (31-32) by similarly de�ning

br,bs,ξr and ξs together with the block matrices

Ãr ,


Ã

(1)
0 . . . 0

0 Ã
(2)

. . . 0
...

...
. . .

...

0 0 · · · Ã
(R)

 , Ãs ,


Ã

(R+1)
0 . . . 0

0 Ã
(R+2)

. . . 0
...

...
. . .

...

0 0 · · · Ã
(R+S)

 ,

and similarly for B̃r and B̃s. Note that Ãr is square with M̃r =
∑R
c=1K

(c) − R rows

while Ãs is square with M̃s =
∑R+S
c=R+1K

(c)−S rows. Furthermore, it can be shown [46]

that Ã(c) is a strictly stable matrix (all its eigenvalues are also eigenvalues of A(c) except
its zero eigenvalue, and so have a strictly negative real part), and D̃(c) , B̃(c)B̃(c)> is
positive de�nite (so all its eigenvalues are real and strictly positive). Therefore, also Ãr

and Ãs are both strictly stable and D̃r and D̃s are positive de�nite. Therefore, if V is
held constant, 〈s〉 and 〈r〉 tend to s∞ = Ã−1s bs and r∞ = Ã−1r br, respectively.

Example - the HHS model

The HHS model can be easily written using the compressed formulation. For example,
comparing Eq. 21 with Eq. 32 we �nd that

As (V ) = −γ (V )− δ (V ) (33)

bs (V ) = −δ (V ) (34)

Bs (V, s) =

√
(δ (V ) (1− s) + γ (V ) s)N−1s φ (35)

Ds (V, s) = (δ (V ) (1− s) + γ (V ) s)N−1s φ . (36)

Note that all the parameters are scalar in the HHS model, and so are not boldfaced, as
in the general case.

4.2 Model reduction

In this section with give additional technical details on section 2.2. Speci�cally, we show
how, given sparse spike stimulation and a few assumptions, it is possible to derive a simple
reduced dynamical system (Eq. 8) from the full equations of a general biophysical model
for an isopotential neuron (Eqs. 1-3),

V̇ = f (V, r, s, I (t)) , (37)

ṙ = Ar (V ) r + Br (V, r) ξr , (38)

ṡ = As (V ) s + Bs (V, s) ξs . (39)

For more details on how its parameters and variables map to microscopic biophysical
quantities, see section 4.1.
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4.2.1 The excitability constraint

As explained in section 2.1, we focus on models for excitable neurons describable by
equations of the general form of Eqs. 37-39, rather than on arbitrary dynamical systems.
This imposes some constraints on the parameters [47]. Formally, recall that τAP and τs are
the respective kinetic timescales of {V, r} and s, and that τAP < τs. Suppose we �freeze�
the dynamics of s (so that e�ectively τs=∞) and allow only V and r to evolve in time.
We say the original model describes an excitable neuron, if the following conditions hold
in this �semi-frozen� model:

1. If I (t) = 0, then for all initial conditions, V and r rapidly (within timescale τAP)
relax to a constant and unique steady state (�rest�).

2. Assume that V and r are near rest, and a short stimulation pulse is given with
duration tstim ≤ τAP and amplitude I0. For certain initial conditions and values of
I0, we get either a stereotypical �strong� response (�AP response�) or a stereotypical
�weak� response in V (�no AP response�). Only for a very small set of initial condi-
tions and values of I0, do we get an �intermediate� response (�weak AP response�).
By �stereotypical� we mean that the shape of response does not change much be-
tween trials or for di�erent initial conditions in {V, r} (however, it can change with
s).

Note that due to condition 1, such an excitable neuron is not oscillatory and does not
spontaneously �re APs.

4.2.2 Problem formulation

Formally, suppose an excitable neuron receives a train of identical stimuli, so

I (t) =

∞∑
m=−∞

u (t− tm) ,

where u (x) is a pulse, of width tw (so u (x) = 0 for x outside [0, tw]). We denote by
{Ym}∞m=−∞ the occurrence events of AP responses at times {tm}∞m=−∞ , i.e., immediately
after each stimulation time tm (Fig. 1A),

Ym ,

{
1 , if an AP occurs

0 , otherwise
. (40)

De�ning Tm , tm+1 − tm, the inter-stimulus interval, and τAP as the upper timescale of
an AP event (Fig. 1B we make the following assumption.

Assumption 1 (a) The stimulation pulse width is small, tw < τAP.(b) The spike times
{tm}∞m=0 are temporally sparse, i.e. τAP � Tm for every m (�no collisions�).

Our main objective here is to mathematically characterize the relation between {Ym} and
{Tm} under the most general conditions.
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4.2.3 Derivations

We de�ne the sampled quantities Vm , V (tm), rm , r (tm), sm , s (tm), xm ,(
Vm, r

>
m, s

>
m

)>
and the history set Hm ,

{
{xk}mk=−∞ , {Tk}mk=−∞ , {Yk}mk=−∞

}
(note that

Hm ⊂ Hm+1). The Stochastic Di�erential Equation (SDE) description in Eqs. (37-39)
implies that xm is a �state vector� with the Markov property, namely it is a su�cient
statistic on the history to determine the probability of generating an AP at each stimu-
lation,

P (Ym = 1|xm) = P (Ym = 1|xm,Hm−1) , (41)

and, together with Ym and Tm, its own dynamics

P (xm+1|xm, Tm, Ym) = P (xm+1|Hm) , (42)

which implies the following causality relations

x0
T0→ x1

T1→ x2 · · · xm
↓ ↗ ↓ ↗ ↓ ↓
Y0 Y1 Y2 · · · Ym

. (43)

This causality structure is reminiscent of the well known Hidden Markov Model [41],
except that in the present case the output Ym, a�ects the transition probability, and we
have input Tm. Theoretically, if we knew the distributions in Eqs. 41 and 42, as well
as the initial condition P (x0), we could integrate and �nd an exact probabilistic I/O
relation P ({Yk}mk=0 | {Tk}

m
k=0). However, since it may be hard to �nd an expression for

P (xm+1|xm, Tm, Ym) in general, we make a simplifying assumption.

Assumption 2 Tm � τs for every m.

This assumption, together with Assumption 1 and the excitable nature of the CBM,
renders the dynamics between stimulations relatively easy to understand. Speci�cally,
between two consecutive stimulations, the fast variables (V (t) , r (t)) follow stereotypically
either the �AP response� (Ym = 1) or the �no-AP response� (Ym = 0), then equilibrate
rapidly (within time τAP) to some quasi-stationary distribution q (V, r|sm). Meanwhile,
the slow variable s (t), starting from its initial condition at the time of the previous
stimulation, changes slowly according to Eq. 39, a�ected by the voltage trace of V (t)
(through As (V )).

Summarizing this mathematically, we obtain the following approximations

P (Ym|sm) ≈
ˆ
P (Ym|V, r, sm) q (V, r|sm) dV dr , (44)

P (Vm+1, rm+1, sm+1|sm, Tm, Ym) ≈ q (Vm+1, rm+1|sm+1)P (sm+1|sm, Tm, Ym) .(45)

Using these equations together with Eqs. 41, 42, we obtain

pAP (sm) , P (Ym = 1|sm) = P (Ym = 1|sm,Hm−1) , (46)

P (sm+1|sm, Ym, Tm) = P (sm+1|sm, Ym, Tm,Hm−1) . (47)
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Therefore, the �excitability� vector sm can now replace the full state vector xm =
(
Vm, r

>
m, s

>
m

)>
as the su�cient statistic that retains all relevant the information about the history of pre-
vious stimuli. Given the input {Tm}∞m=−∞, Eqs. 46 and 47 together completely specify
a Markov process with the causality structure

s0
T0→ s1

T1→ s2 · · · sm
↓ ↗ ↓ ↗ ↓ ↓
Y0 Y1 Y2 · · · Ym

. (48)

Since the function pAP (s) is not a�ected by the kinetics of s, it can be found by numerical
simulation of a single AP using only Eqs. 37-38, when s is held constant (see section
4.2.4). Now, instead of �nding P (sm+1|sm, Ym, Tm) directly, we calculate the increments
∆sm , sm+1 − sm by integration of the SDE in Eq. 39 between tm and tm+1 . First, we
integrate the �predictable� part of the increment

〈∆sm|sm, Tm, Ym〉 =

ˆ tm+1

tm

As (V (t)) s (t) dt , (49)

≈
(ˆ tm+1

tm

As (V (t)) dt

)
sm , (50)

to �rst order, where 〈X|Y 〉 denotes the conditional expectation of X given Y . Note

that As ∼ O
(
τ−1s

)
, so second order corrections are of order O

((
Tmτ

−1
s

)2)
. Due to

assumption 2, we have Tmτ
−1
s � 1, so these corrections are negligible. Now,

ˆ tm+1

tm

As (V (t)) dt = τAP

(
1

τAP

ˆ tm+τAP

tm

As (V (t)) dt

)
+ (Tm − τAP)

(
1

Tm − τAP

ˆ tm+1

tm+τAP

As (V (t)) dt

)
= τAP (A+ (sm)Ym + A− (sm) (1− Ym)) + (Tm − τAP) A0 (sm)

where we de�ned

A0 (sm) =
1

Tm − τAP

ˆ tm+1

tm+τAP

As (V (t)) dt , (51)

A− (sm) =
1

τAP

ˆ tm+τAP

tm

As (V (t)) dt , if Ym = 0 , (52)

A+ (sm) =
1

τAP

ˆ tm+τAP

tm

As (V (t)) dt , if Ym = 1 , (53)

which are the average rates during rest, during an AP response and during a no-AP
response, receptively. Note a similar notation was also used in [47] (e.g., Eqs. 2.15-2.16),
where the +/− /0 were replaced with H/M/L.

Next, we calculate the remaining part of the increment, which is the �innovation�,

nm , ∆sm − 〈∆sm|sm, Tm, Ym〉 .
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Obviously, 〈nm|sm, Tm, Ym〉 = 0, and also

〈
nmn>m|sm, Tm, Ym

〉
=

〈(ˆ tm+1

tm

Bs (V (t) , s (t)) ξs (t) dt

)(ˆ tm+1

tm

Bs (V (t) , s (t′)) ξs (t′) dt′
)>
|sm, Tm, Ym

〉

=

ˆ tm+1

tm

dt

ˆ tm+1

tm

dt′δ (t− t′) Bs (V (t) , s (t)) B>s (V (t′) , s (t′))

=

ˆ tm+1

tm

Bs (V (t) , s (t)) B>s (V (t′) , s (t)) dt

=

ˆ tm+1

tm

Ds (V (t) , s (t)) dt

≈
ˆ tm+1

tm

Ds (V (t) , sm) dt

to �rst order. Note that Ds ∼ O
(
τ−1s /N

)
, where N = mincN

(c) (N (c) is the channel
number of the c-type channel, as we de�ned in section 4.1), while Eq. 54 has corrections

of size O
((
Tmτ

−1
s /N

)2)
. Since N ≥ 1 (usually N � 1), and due to assumption 2, we

have Tmτ
−1
s /N � 1, so these corrections are also negligible. Now,

ˆ tm+1

tm

Ds (V (t) , sm) dt = τAP (YmD+ (sm) + (1− Ym) D− (sm)) + (Tm − τAP) D0 (sm)(54)

where we de�ned

D0 (sm) =
1

Tm − τAP

ˆ tm+1

tm+τAP

Ds (V (t) , sm) dt (55)

D− (sm) =
1

τAP

ˆ tm+τAP

tm

Ds (V (t) , sm) dt , if Ym = 0 (56)

D+ (sm) =
1

τAP

ˆ tm+τAP

tm

Ds (V (t) , sm) dt , if Ym = 1 . (57)

Additionally, we note that A±/0 (sm) generally tend to be rather insensitive to changes in
sm. This is because the kinetic transition rates (which are used to construct As (V ), as
explained in section 4.1) tend to demonstrate this insensitivity when similarly averaged
(see Fig. 4B and Fig. 5 in [47]). The usual reasons behind this are (see appendix section
B1 of [47]): (1) The common sigmoidal shape of the voltage dependency of the transition
rate reduces their sensitivity to changes in the amplitude of the AP or the resting potential.
(2) The shape of the AP is relatively insensitive to s. (3) The resting voltage is relatively
insensitive to s. Therefore, in most cases we can approximate A±/0 (sm) to be constant
for simplicity (though this not critical to our subsequent results), as we shall henceforth
do.

In summary, de�ning

A (Ym, Tm) = τAPT
−1
m (YmA+ + (1− Ym) A−) +

(
1− τAPT

−1
m

)
A0 , (58)
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and

D (Ym, Tm, sm) = τAPT
−1
m (YmD+ (sm) + (1− Ym) D− (sm)) +

(
1− τAPT

−1
m

)
D0 (sm)

(59)
we can write

∆sm = TmA (Ym, Tm) sm + nm , (60)

with〈nm|sm, Tm, Ym〉 = 0 and〈
nmn>m|sm, Tm, Ym

〉
= TmD (Ym, Tm, sm) . (61)

These equations correspond to the result presented in Eq. 8.
Finally, we note that the distribution of nm given sm, Tm, Ym can be generally com-

puted using the approach described in [39]. For example, it can be well approximated to
have a normal distribution if channel numbers are su�ciently high and channel kinetics
are not too slow [39]. In that case only knowledge of the variance (Eq. 61) is su�cient to
generate nm. And so, using Eqs. 46, 60 and the full distribution of nm, we can now sim-
ulate the neuronal response using a reduced model, more e�ciently and concisely (with
fewer parameters) than the full model (Eqs. 37-39), since every time step is a stimulation
event. In simulation time should shorten approximately by a factor of 〈Tm〉 /dt, where dt
is the full model simulation step. Note that the reduced model parameters, having been
deduced from the full model itself, still retain a biophysical interpretation.

4.2.4 Calculation of pAP (s)

We numerically calculated pAP (s) by disabling all the slow kinetics in the model - i.e.,
we only use Eqs. 1-2 in main text, while ṡ = 0. Then, for every value of s we simulated
this �semi-frozen� model numerically by �rst allowing r to relax to a steady state and
then giving a stimulation pulse with amplitude I0. We repeat this procedures 200 times
for each s, and calculate pAP (s) as the fraction of simulations that produced an AP.
A few comments are in order: (1) In some cases (e.g., the HHMS model) we can use
a shortcut and calculate pAP (s) based on previous results. For example, suppose we
know the probability function p̃AP (s) for some model with a scalar s and we make the
substitution s = h (s) where the components of s represent independent and uncoupled
channel types [39] - then pAP (s) = p̃AP (h (s)) in the new model. (2) The timescale
separation assumption τAP � Tm � τs implies that all the properties of the generated
AP (amplitude, latency etc.) maintain similar causality relations with sm as does Ym, so
we can �nd their distribution using the same simulation we used to �nd pAP (s), similarly
to the approach taken to compute L (s) in the deterministic setting [47]. (3) Numerical
results (Fig. 6) suggest that we can generally write

pAP (s) = Φ
(
E (s) /

√
Nr

)
, (62)

where Φ is the cumulative distribution function of the normal distribution, E (s) is
some �excitability function� (as de�ned in [47], so pAP (s) = 0.5 on the threshold Θ =

{s|E (s) = 0}), and N
−1/2
r , the �noisiness� of the rapid sub-system, directly a�ects the

slope of pAP (s) (Fig. 6D, bottom). Also, as explained in [47], E (s) is usually mono-
tonic in each component separately and increasing in I0 (Fig. 6C, top) - which could be
considered as just another component of s which has zero rates.
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Figure 6: Fitting of pAP (s) = Φ ((s− a) /b) in the HHS model. A Fitting of pAP (s)
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4.2.5 Compressed formulation - reduction

We can perform a very similar model reduction and linearization using the compressed
formalism presented in section 4.1.1. We just need to de�ne (or re-de�ne) A±,0, b±,0,
D±,0(sm), A (Ym, Tm), b (Ym, Tm) and D (Ym, Tm, sm) in the obvious way and repeat
very similar derivations, arriving to

∆sm = Tm [A (Ym, Tm) sm − b (Ym, Tm)] + nm ,

instead of Eq. 60 (or Eq. 8). Next, we demonstrate this for the HHS model.

4.2.6 Example - HHS model reduction

We derive the parameters of the HHS reduced map. Recall that the HHS model is based on
the compressed formulation. Following the reduction technique described in the previous
sections, we numerically �nd the average rates γ±,0 and δ±,0 (as in Eqs. 2.15-2.16 of [47],
where there we denoted H/M/L instead of +/−/0 here), τAP and pAP (s) (section 4.2.4).

From Eqs. 33-36, we �nd,

A±,0 = −γ±,0 − δ±,0 (63)

b±,0 = −δ±,0 (64)

D±,0 (s) = N−1s (δ±,0 (1− s) + γ±,0s) . (65)

and so A (Ym, Tm) and D (Ym, Tm, sm) are de�ned as in Eqs. 58 and 59, and similarly

b (Ym, Tm) = τAPT
−1
m (Ymb+ + (1− Ym) b−) +

(
1− τAPT

−1
m

)
b0 .

We give for example some speci�c values: if τAP = 15 msec, then in the range I0 =
7.5− 8.3µA, we have δ±,0 = 25.5− 25.6 mHz, γ+ = 22.9− 22.1mHz, γ− = 0.9− 1.3µHz
and γ0 = 0.29− 0.28µHz.

Recall that these averaged kinetic rates are determined by the shape of the voltage
dependent rates (γ (V ) and δ (V ), see Eq. 126) [47]. The relative values of the averaged
kinetic rates determine what kind of information can be stored in s (which retains the
�memory� of the neuron between stimulation). We qualitatively demonstrate this in Fig.
7 depicting the values of γ±,0 for three di�erent shapes of γ (V ): when γ (V ) is sigmoidal
with high threshold, when it is sigmoidal with low threshold and when it is constant.
These determine whether γ (V ) is a�ected by the output (APs), the input (stimulation
pulses) or neither. Therefore: (1) if γ (V ) and δ (V ) are independent of the voltage, then
s cannot store any information on input or output. (2) if γ (V ) or δ (V ) have low voltage
threshold , then s can directly store information on the input. (3) if γ (V ) or δ (V ) have
high voltage threshold , then s can directly store information about the output. In the
HHS model the inactivation rate γ has high threshold, while δ is voltage independent -
therefore, s directly stores information on the output.

4.3 Linearization

In this section we present a more detailed account on how to arrive from the reduced
model (mainly, Eq. 8) to its linearized version (the results in Eqs. 11-12).
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Figure 7: The averaged kinetic rates. Left : The averaged rates demonstrated for
three common kinetic rates γ (V ) with sigmoidal shapes. Right : The voltage threshold of
the sigmoid determines whether the process is sensitive to APs (the output), stimulation
pulse (the input), or neither. Note that a similar classi�cation of biophysical processes
a�ecting excitability was previously suggested in [52, Fig. 3.1]
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First, we write the complete reduced model, using Eqs. 60, 61 and 46. The reduced
model is a non-linear stochastic dynamic �state-space� system with Tm, the inter-stimulus
interval lengths, serving as inputs, sm representing the neuronal state, and Ym the output.
We have

∆sm = TmA (Ym, Tm) sm + nm , (66)

Ym = pAP (sm) + em , (67)

where
〈
nmn>m|sm, Tm, Ym

〉
= TmD (Ym, Tm, sm),

A (Ym, Tm) = τAPT
−1
m (YmA+ + (1− Ym) A−) +

(
1− τAPT

−1
m

)
A0 ,

and

D (Ym, Tm, sm) = τAPT
−1
m (YmD+ (sm) + (1− Ym) D− (sm)) +

(
1− τAPT

−1
m

)
D0 (sm) ,

and we de�ned
em , Ym − pAP (sm) . (68)

Based on the causality structure in Eq. 43, it is straightforward to prove that em and
nm are uncorrelated white noise processes - i.e., 〈em〉 = 0, 〈nm〉 = 〈ennm〉 = 0 and〈
nmn>n

〉
=
〈
nmn>m

〉
δmn, 〈emen〉 =

〈
e2m
〉
δmn where δnm = 1 if n = m and 0 otherwise.

We now examine the case where {Tm} is a Wide Sense Stationary (WSS) process (i.e.,
the �rst and second order statistics of the process are invariant to time shifts), with mean
T∗, so that the assumptions τAP � Tm � τs are ful�lled with high probability. In this
case the processes {sm} and {Ym} are also WSS, with constant means 〈sm〉 = s∗ and

〈Ym〉 = p∗. Also, it is straightforward to verify that
〈
T̂mnn

〉
= 0, and

〈
T̂men

〉
= 0.

In order to linearize the system in Eqs. 60-67 we denote T̂m , Tm−T∗, Ŷm , Ym−p∗,
ŝm , sm− s∗,w , ∇pAP|s∗ . In order for this linearization to be accurate we require that
ŝm is �small enough�.

Assumption 3 With high probability |ŝm| � |s∗| (component-wise) and
∣∣w>ŝm

∣∣ �∣∣ŝ>m (∇∇pAP|s∗) ŝm
∣∣.

This assumption essentially means that s∗ = s∗ (p∗, T∗) is a stable �xed point of the
system (Eqs. 60-67), and stochastic �uctuations around it are small, compared to the
size of the region {s|pAP (sm) 6= 0, 1} (usually determined by the noise level of the rapid
system {V, r}, see section 4.2.4). Given Assumption 3, we can approximate to �rst order

pAP (sm) ≈ p∗ + w>ŝm , (69)

which allows us to linearize Eq. 67. This essentially means that the components of
ŝm determine the neuronal response linearly, with the components of w serving as the
e�ective weights (related to the relevant conductances in the original full neuron model).

Next, we wish to linearize Eq. 60. Using our assumptions, we obtain to �rst order

ŝm+1 ≈ ŝm + A (p∗, T∗) (s∗ + ŝm) (70)

+ A0 (s∗ + ŝm) T̂m + τAP (A+ −A−) (s∗ + ŝm) Ŷm + nm
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Taking expectations and using Eqs. 67 and 69, we obtain

0 = 〈sm+1 − sm〉 ≈ T∗A (p∗, T∗) s∗, (71)

to zeroth order. De�ning the solution of this equation is s∗ (p∗, T∗) and we can �nd p∗
implicitly from

p∗ = pAP (s∗ (p∗, T∗)) . (72)

We write the explicit solution of this equation as p∗ (T∗). Next, using |ŝm| � |s∗|, Eq. 71
and de�ning

F , I + T∗A∗ (p∗, T∗) (73)

d , A0s∗ (74)

a , τAP (A+ −A−) s∗ (75)

we can approximate Eq. 70 as

ŝm+1 = Fŝm + dT̂m + aŶm + nm , (76)

which, together with
Ŷm = w>ŝm + em , (77)

yields a simple linear state space representation with T̂m as the input, ŝm as the state,
Ŷm as the output and two uncorrelated white noise sources with variances

Σn ,
〈
nmn>m

〉
= T∗D∗ (p∗, T∗, s∗) , (78)

σ2
e ,

〈
e2m
〉
≈ p∗ − p2∗ , (79)

to �rst order.

4.3.1 Derivation of w

From Eq. 62, we note that generally we can write

w = ∇pAP (s)s=s∗
=
∇E (s∗)√

2πNr
exp

(
−E

2 (s∗)
2Nr

)
, (80)

where in many cases the excitability function E (s) has the form E (s) = µ>s− θ, where
the components of µ are proportional to the relevant conductances [47]. Therefore, if

p∗ = pAP (s∗) = Φ
(
E (s) /

√
Nr

)
→ 0 or 1

then E (s) → ±∞, so in this case (assuming E (s∗) is not a particularly �pathological�
function) we have

w→ 0 . (81)

4.3.2 Compressed formulation - linearization

In the compressed formulation (introduced in sections 4.1.1 and 4.2.5), we can per-
form similar linearization by re-de�ning F , I + T∗A (p∗, T∗) ,d , A0s∗ − b0,a ,
τAP ((A+ −A−) s∗ − (b+ − b−)), and repeat very similar derivations, where now we can
write more explicitly

s∗ = A−1 (p∗, T∗) b (p∗, T∗) , (82)

instead of Eq. 71.
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4.3.3 Example - HHS model linearization

Note again that all the parameters are scalar now, and so are not boldfaced, as in the
general case. From Eqs. 72 and 82 we obtain s∗ and p∗ for a given T∗. Once s∗ is known,
from Eq. 80 w can be obtained8 . Next, we denote the average inactivation rate at steady
state by

γ∗ , (p∗γ+ + (1− p∗) γ−) τAPT
−1
∗ +

(
1− τAPT

−1
∗
)
γ0 ,

and similarly for the recovery rate δ∗. And so, s∗ = δ∗/ (γ∗ + δ∗), and

A∗ = A∗ (p∗, s∗) = −γ∗ − δ∗, (83)

b∗ = −δ∗ , (84)

D∗ = D∗ (p∗, T∗, s∗) = N−1s (δ∗γ∗/ (γ∗ + δ∗)) . (85)

Denoting γ1 , γ+ − γ− and similarly for δ1, we obtain

F = 1− T∗ (γ∗ + δ∗) (86)

a = τAP (γ∗δ1 − γ1δ∗) / (γ∗ + δ∗) (87)

d = (γ∗δ0 − γ0δ∗) / (γ∗ + δ∗) (88)

Finally, from Eqs. 78-79 we �nd

Σn = T∗D∗ (89)

σ2
e = p∗ − p2∗ . (90)

4.4 Linear systems analysis

In section 2.4 we describe the neuronal dynamics using a linear system for the �uctuations,
as depicted in Fig. 1. This linear description allows us to use standard engineering tools
to analyze the system. In this section we provide an easy to follow description on how
this was done, for those unfamiliar with these topics.

4.4.1 Second order statistics and linear systems

We start with a short reminder on some known results for stochastic processes [40, 19];
these results are standard but are provided for completeness. These results will be used
in later sections.

Assume {xm} and {ym} are two real-valued vector stochastic processes that are jointly
wide-sense stationary (i.e., a simultaneous time shift of both processes will not change
their �rst and second order statistics). We de�ne the cross-covariance (recall that x̂ =
x− 〈x〉)

Rxy (k) ,
〈
x̂mŷ>m+k

〉
and the Cross-Power Spectral Density (CPSD), given by its Fourier transform

Sxy (ω) , F [Rxy (·)] (ω) =

∞∑
k=−∞

Rxy (k) e−iωk .

8(also, as explained in section 4.3.1, we approximately have w ∝ ḡNa, from Eq. 19.
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Additionally, the auto-covariance is de�ned as Rx , Rxx and the corresponding Power
Spectral Density (PSD) as Sx , Sxx. Also, note that Ryx (k) = R>xy (−k) and so

Syx (k) = S>xy (−ω).
Suppose now that {ym} is generated from a process {xm} using a linear system: i.e.,

if the Fourier transform x (ω) ,
∑∞
k=−∞ xke

−iωk exists, then in the frequency domain

y (ω) = H (ω) x (ω) ,

where H (ω) is a matrix-valued �transfer� function. Therefore, under some regularity
conditions (allowing us to switch the order of integration end expectation),

Sxy (ω) =

∞∑
k=−∞

〈
x̂mŷ>m+k

〉
e−iωk

= Sx (ω) H> (ω) (91)

And similarly

Sy (ω) =

∞∑
k=−∞

〈
ŷmŷ>m+k

〉
e−iωk

= H (−ω)Sx (ω) H> (ω) (92)

where in the second equality here we used an almost identical derivation as for Sxy (ω).
Note that if instead

y (ω) = Hx (ω) x (ω) + Hz (ω) z (ω) ,

where x and z are two uncorrelated signals, then we can write

y (ω) = H (ω) v (ω) ,

where

H (ω) =

[
Hx (ω) 0

0 Hz (ω)

]
, v (ω) = [x (ω) , z (ω)] .

Thus Eqs. 91 and 92 respectively give

Sxy (ω) = Sx (ω) H>x (ω) , (93)

Sy (ω) = Hx (−ω)Sx (ω) H>x (ω) + Hz (−ω)Sz (ω) HT
z (ω) . (94)

4.4.2 The second order statistics of our system

Previously, we derived Eq. 11-12, which describe the neuronal dynamics using a linear
system, written in �state-space� form

ŝm+1 = Fŝm + dT̂m + aŶm + nm , (95)

Ŷm = w>ŝm + em (96)
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where nm, em and T̂m are uncorrelated, zero mean processes with the PSDs Σn ,
T∗D (p∗, T∗, s∗) , σ2

e = p∗ (1− p∗) and ST (ω) respectively.
In order to apply Eqs. 93 and 94 to our system we �rst need to �nd the transfer

function of the system. Applying the Fourier transform to Eqs. 95-96 gives

eiω ŝ (ω) = Fŝ (ω) + dT̂ (ω) + aŶ (ω) + n (ω) , (97)

Ŷ (ω) = w>ŝ (ω) + e (ω) . (98)

Re-arranging terms, we obtain

ŝ (ω) = Hc (ω)
(
n (ω) + dT̂ (ω) + ae (ω)

)
, (99)

Ŷ (ω) = w>Hc (ω)
(
n (ω) + dT̂ (ω) + ae (ω)

)
+ e (ω) , (100)

where we denoted
Hc (ω) ,

(
Ieiω − F− aw>

)−1
.

This gives the �closed loop� transfer functions of the system (including the e�ect of the
feedback Ŷ (ω)). Next, combining Eqs. 99-100 and Eqs. 93-94, leads to explicit expres-
sions for the PSDs and CPSDs.

SsT (ω) = Hc (−ω) dST (ω) (101)

Ss (ω) = Hc (−ω)
(
Σn + aa>σ2

e + dd>ST (ω)
)
H>c (ω) , (102)

SY T (ω) = w>Hc (−ω) dST (ω) , (103)

SY (ω) = w>Hc (−ω)
(
Σn + dd>ST (ω)

)
H>c (ω) w (104)

+ σ2
e

∣∣1 + w>Hc (−ω)a
∣∣2 .

For low frequencies it is sometimes more convenient to use the �continuous-time� versions
of the PSDs, Sxy (f) , T∗Sxy (ω)ω=2πfT∗

for f � T−1∗ , which are approximated by

SsT (f) = T−1∗ Hc (−f) dST (f)

Ss (f) = Hc (−f)
(
D (p∗, T∗, s∗) + T−1∗ aa>σ2

e + T−2∗ dd>ST (f)
)
H>c (f) ,(105)

SY T (f) = T−1∗ w>Hc (−f) dST (f) , (106)

SY (f) = w>Hc (−f)
(
D (p∗, T∗, s∗) + T−2∗ dd>ST (f)

)
H>c (f) w (107)

+ T∗σ
2
e

∣∣1 + T−1∗ w>Hc (−f)a
∣∣2 .

where
Hc (f) =

(
2πfiI−A (p∗, T∗)− T−1∗ aw>

)−1
,

and we used the fact that F = I + T∗A (p∗, T∗) (Eq. 73) and Σn = T∗D (p∗, T∗, s∗) (Eq.
78).

Note that if the dimension of s is �nite and there is no degeneracy, we can always
write

SY (f) = c0 +

M∑
j=1

cj

(2πf)
2

+ λ2j
, (108)

31



where λi, the poles of SY (f), are determined solely by the poles of Hc (f) and ST (f),
while all the other parameters in Eq. 107 a�ect only the constants cj . Commonly, ST (f)
has no poles - for example, if ST (f) is constant so Tm is a renewal process (e.g., the
stimulation is periodic or Poisson). Therefore all poles of SY (f) (or the other PSDs) are
determined by Hc (f), i.e. λj are the roots of the characteristic polynomial∣∣λI−A (p∗, T∗)− T−1∗ aw>

∣∣ = 0 . (109)

4.4.3 Spectral factorization

Equations 97 and 98 can be re-arranged as a direct I/O relation, formulated, for conve-
nience, in the frequency domain (this can be either f or ω - in the section we use ω for
brevity of notation, and f in other places). Speci�cally, this relation is of the form

Ŷ (ω) = Hext (ω) T̂ (ω) +H int (ω) v (ω) , (110)

so vm= F−1 (v (ω)) is a single scalar �noise� process with zero mean and PSD σ2
v (here

F−1 is the inverse Fourier transform). This vm process combines the contributions of em
and nm, which are the noise processes in the original system (in Eqs. 97-98). Such a
description, as in Eq. 110, describes concisely the contributions of the input and noise to
the output (an ARMAx model [31]). Using 93 and 94 we respectively �nd that

SY T (ω) = Hext (−ω)ST (ω) (111)

SY (ω) =
∣∣Hext (ω)

∣∣2 ST (ω) +
∣∣H int (ω)

∣∣2 σ2
v . (112)

Comparing Eq. 103 with Eq. 111 we obtain

Hext (ω) = w>Hc (ω) d . (113)

Comparing Eq. 104 with 112, while using Eq. 113, will yield the equation∣∣H int (ω)
∣∣2 σ2

v = w>Hc (−ω) ΣnH>c (ω) w + σ2
e

∣∣1 + w>Hc (−ω)a
∣∣2 . (114)

This is a �spectral factorization� problem [2], with solution

H int (ω) = w>Hc (ω) K + 1 , (115)

where
K = a+ FPwσ−2v (116)

and
σ2
v = w>Pw + σ2

e , (117)

with P the solution of

P = FPF> −
(
w>Pw + σ2

e

)−1
FPww>PF> + Σn (118)

(derived from the general discrete-time algebraic Riccati equation). This can be veri�ed
by substitution.
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4.4.4 Optimal linear estimation of linear systems

Given that the neuronal dynamics are given by the linear system in Eqs. 97-98, there are
two di�erent estimation problems one may be interested in. We may want to estimate,

based on the history of the previous inputs and outputs
{
T̂k, Ŷk

}m−1
k=−∞

, either the param-

eters of the model (F,w,a,d, σe and Σn), or the variables in the model (Ŷm or ŝm). The
�rst problem is generally termed a �system identi�cation� problem [31], while the second
is a ��ltering� (or prediction) problem [2]. Both are intimately related, and sometimes
the solution of the second problem can yield a method of solving the �rst problem (e.g.,
section 3.3 in [2]).

A relatively simple way to approach the second (�ltering) problem involves the output
decomposition we have found in section 4.4.3

Ŷ (ω) = w>Hc (ω) dT̂ (ω) +
(
w>Hc (ω) K + 1

)
v (ω) .

Using this decomposition we can now write a new state-space representation for the
system in terms of new state variable ẑm,

ẑm+1 =
(
F + aw>

)
ẑm + dT̂m + Kvm ,

Ŷm = w>ẑm + vm ,

which has the same output in the frequency domain (recall, from linear systems theory,
that a single I/O relation can be generated by multiple state space realizations). This
�innovation form� is particularly useful, since, given the entire history of the previous

inputs and outputs Hm−1 ,
{
T̂k, Ŷk

}m−1
k=−∞

, we can recursively estimate the current

state precisely (with zero error) [2]

ẑm =
(
F + aw>

)
ẑm−1 + dT̂m−1 + K

(
Ŷm−1 −w>ẑm−1

)
. (119)

Given this precise estimate of ẑm, the best linear estimate of Ŷm is simply〈
Ŷm|Hm−1

〉
= w>ẑm

and the estimation error is simply〈(
Ŷm −

〈
Ŷm|Hm−1

〉)2〉
=
〈
v2m
〉

= σ2
v .

Since both the innovation form and the original form have the same second order statistics
for the input-output, the optimal linear estimator (and its error) for Ŷm in the original
system would be the same. Moreover, one can show [2] that Eq. 119 will also give the
optimal linear estimate of ŝm in the original system, and with error P (Eq. 118). This
solution is the well-known �Kalman �lter�.
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4.4.5 Example - HHS model power spectral densities

Substituting the parameters for the linearized map (Eqs. 86-90) into the expressions for
the power-spectral densities (Eq. 105-107), gives

SY (f) =
w2
(
D∗ + T−2∗ d2ST (f)

)
+ T∗σ2

e

(
(2πf)

2
+A2

∗
)

(2πf)
2

+
(
A∗ + T−1∗ wa

)2 (120)

Ss (f) =
D∗ + T−1∗ a2σ2

e + T−2∗ d2ST (f)

(2πf)
2

+
(
A∗ + T−1∗ wa

)2 (121)

SY T (f) =
T−1∗ wd

2πfi−A∗ − T−1∗ wa
ST (f) . (122)

Note that when ST (f) ≡ 0 (i.e., periodical spike stimulus), SY (f) has the shape of
high pass �lter (Fig 2B, top). In contrast, Ss (f) (Fig 2B, bottom) and SY T (f) both
have the shape of a low pass �lter (Fig 2D, top). From Eqs. 112 and 111 we know

that SY (f) =
∣∣H int (f)

∣∣2 σ2
v and SY T (f) = Hext (f)ST (f), respectively. Therefore, this

indicates that H int (f) and Hext (f) are high pass and low pass �lters, respectively.

4.4.6 Power spectral densities of response features

So far we have concentrated on the PSD of the response Ym. However, it is easy to
extend our formalism to derive the PSDs of di�erent features of the AP, such as its
latency or amplitude. We exemplify this on the latency. In [47] we showed (Fig. 3)
that for deterministic CBMs, the latency of the AP generated in response to the m-th
stimulation can be written as a function of the excitability Lm = L (sm). In a stochastic
model, we have instead

Lm =

{
L (sm) + φm , Ym = 1

not defined , Ym = 0

where φm is a zero mean, white noise process generated by the stochasticity of the rapid
system. Since it is problematic to de�ne the PSD of Lm if sometimes Ym = 0, we focus
on the case that p∗ = 1, so we always have Ym = 1 . In this case, assuming again that
the perturbations in ŝm are small, we can linearize

L (sm) ≈ L (s∗) + l>ŝm

where l = ∇L (s)s=s∗ to obtain (using Eq. 11)

ŝm+1 = Fŝm + dT̂m + nm , (123)

L̂m = l>ŝm + φm (124)

where he F = I + T∗A (1, T∗). Therefore, it is straightforward to show that the PSD of
the latency is

SL (f) = l>Ss (f) l + T∗σ
2
φ (125)

where σ2
φ =

〈
φ2m
〉
. Note that if latency is a good indicator of excitability, i.e. L (s)

changes similarly to p (s) so that l ∝ w, then SL (f) = c1SY (f) + c2 for some constants
c1, c2, when the input is periodic (Tm = T∗) and p∗ → 1.
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4.5 Numerical tests

MATLAB (2010b) code is available on the ModelDB website, with accession number
144993. In all the numerical simulations of the full stochastic Biophysical neuron model
we used Eqs. 1-3 in main text. We used �rst order Euler�Maruyama integration with
a time step of dt = 5µsec (quantitative results were veri�ed also at dt = 0.5µsec).
Each stimulation pulse was given as a square pulse with a width of tstim = 0.5 ms and
amplitude I0 (which were respectively named t0 and I0 in [47]). The results are not
a�ected qualitatively by our choice of a square pulse shape. We de�ne an AP to have
occurred if, after the stimulation pulse was given, the measured voltage has crossed some
threshold Vth (we use Vth = −10 mV in all cases). In all cases where direct stimulation
is given, unless stated otherwise, we used periodic stimulation with I0 = 7.9µA and
T∗ = 50 msec. Note that for the parameter values used, no APs are spontaneously
generated, consistently with experimental results [17].

The PSDs were estimated using the Welch method and averaged over 8 windows,
unless 1/f behavior was observed, in which case we used a single window instead, since
long term correlations may generate bias if averaging is used [5]. Numerical estimation
of the cross-PSD is more problematic. When estimating cross-spectra, estimation noise
level can be quite high (proportional to the inverse coherence, according to [4], p. 321).
To estimate the level of estimation noise, we estimate the cross-spectrum with the input
randomly shu�ed (Fig. 8). Since in this case there is no input-output correlation, this
new estimate is pure noise.

Next, we describe the models used Figs. 2-4 and provide their parameter values. These
models have either been studied in the literature or are extensions of such models, which
are meant to explore the limit for the validity of our analytic approximations. In all cases
where direct stimulation is given, unless stated otherwise, we use periodic stimulation
with I0 = 7.9µA and T∗ = 50 msec. Notice the form of the models is given in the (more
popular) compressed formalism (section 4.1.1), which employs the normalization of state
occupation probability to reduce the dimensionality of equations of Eqs. 2-3 in the main
text.

4.5.1 The HHS model

The HHS model combines the Hodgkin-Huxley equations [24] with slow sodium inacti-
vation [7, 15]. The model equations [47], which employ the uncoupled stochastic noise
approximation, are

CV̇ = ḡNasm
3h (ENa − V ) + ḡKn

4 (EK − V ) + ḡL (EL − V ) + I (t)

ṁ = φ [αm (V ) (1−m)− βm (V )m] +

√
N−1m φ (αm (V ) (1−m) + βm (V )m)ξm

ṅ = φ [αn (V ) (1− n)− βn (V )n] +

√
N−1m φ (αn (V ) (1− n) + βh (V )n)ξn

ḣ = φ [αh (V ) (1− h)− βh (V )h] +
√
N−1h φ (αh (V ) (1− h) + βh (V )h)ξh

ṡ = δ (V ) (1− s)− γ (V ) s+

√
N−1s (δ (V ) (1− s) + γ (V ) s)ξs .
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Figure 8: Estimation noise in the cross-power spectral density. To estimate the

level of this noise in Fig. 2D, we added SY T̃ (f) where
{
T̃m

}
is a shu�ed version of {Tm}.

Only when the estimated SY T (f) is above SY T̃ (f), is its estimation valid. Therefore, in
�gure 2D we show only this region (left of dashed black line), where estimation is valid.
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Most of the parameters are given their original values (as in [24, 15]):

VNa = 50 mV, VK = −77 mV, VL = −54 mV,

ḡNa = 120 (kΩ · cm2)−1, ḡK = 36 (kΩ · cm2)−1, gL = 0.3 (kΩ · cm2)−1,

αn(V ) = 0.01(V+55)
1−e−0.1·(V +55) kHz, βn(V ) = 0.125 · e−(V+65)/80 kHz,

αm(V ) = 0.1(V+40)
1−e−0.1·(V +40) kHz, βm(V ) = 4 · e−(V+65)/18 kHz,

αh(V ) = 0.07 · e−(V+65)/20 kHz, βh(V ) =
(
e−0.1·(V+35) + 1

)−1
kHz,

where in all the rate functions V is used in units of mV. In order to obtain the speci�c spike
shape and the latency transients observed in cortical neurons, some of the parameters were
modi�ed to

Cm = 0.5 µF/cm2 , φ = 2

γ (V ) = 0.51 · (e−0.3·(V+17) + 1)−1 Hz , δ (V ) = 0.05e−(V+85)/30 Hz . (126)

We emphasize that these speci�c choices do not a�ect any of our general arguments, but
were chosen for consistency with experimental results [17]. Estimates of channel number
vary greatly [47]. For simplicity, we chose N = Nn = Nh = Nm = Ns, and unless stated
otherwise, we chose, by default N = 106, as in [47]. Note that the HHS model is the same
model presented in the paper with M = 1, φs,1 = 1, Ns,1 = N , Nr,j = N and φr = φ.

4.5.2 The Coupled HHS model

The coupled version of the HHS model uses the same parameters as the uncoupled version,
and a similar voltage equation

CV̇ = ḡNas0m0h0 (ENa − V ) + ḡKn0 (EK − V ) + ḡL (EL − V ) + I (t)

where the variables n0 and s0m0h0 describe the respective fraction of potassium and
sodium channels residing in the �open� state. To obtain the coupled model equations,
we need to assume something about the structure of the ion channels. The original
assumption by Hodgkin and Huxley was that the channel subunits (e.g., m,n and h) are
independent. Over the years, it became apparent that this assumption is inaccurate, and
the sodium channel kinetic subunits are, in fact, not independent [50]. However, it is
not yet clear how the slow sodium inactivation is coupled to the rapid channel kinetics
(e.g., [34, 36]), so we nevertheless used the original naive HH model assumption that the
subunits are independent. In that case the potassium channel structure is given by (for
brevity, the voltage dependence on the rates is henceforth ignored for this model)

n0

4αn


βn

n1

3αn



2βn

n2

2αn



3βn

n3

αn



4βn

n4

while for the sodium channel it is described by
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3αm


βm

s0m1h0

2αm



2βm

s0m2h0

αm



3βm

s0m3h0

αh �� βh

s0m0h1

3αm


βm

s0m1h1

2αm



2βm

s0m2h1

αm



3βm

s0m3h1

δ �� γ

s1m0h0

3αm


βm

s1m1h0

2αm



2βm

s1m2h0

αm



3βm

s1m3h0

αh �� βh

s1m0h1

3αm


βm

s1m1h1

2αm



2βm

s1m2h1

αm



3βm

s1m3h1

In this diagram, transition rates indicated between two boxed regions, imply that the
same rates are used between all corresponding states in boxed regions. The corresponding
32 SDEs are derived using the method described in [39] (or 30 equations if we use the
compressed formalism). In this model we used I0 = 8.3µA.

4.5.3 The HHSTM model

In order to investigate the e�ect of a more �physiological� stimulation, we changed the
HHS model and added synapses. We used the popular Tsodyks-Markram model for the
e�ect of a synapse with short-term-depression on the somatic voltage (the model �rst
appeared in [48] and was slightly corrected in [49]). In the model x, y and z are the
fractions of resources in the recovered, active and inactive states respectively, interacting
through the system

y
↗ ↘

x ←− z
. (127)

Here the z → x rate is τ−1rec , the x→ y rate is τ−1in , and the x→ y rate is USEδ (t− tsp),
where δ (·) is the Dirac delta function, and tsp is the pre-synaptic spike arrival time. The
post-synaptic current is given by Is (t) = ASEy (t) where ASE is a parameter. Addition-
ally, we added noise to the model using the coupled SDE method [39], assuming that the
diagram in Eq. 127, with the corresponding rates, hint at the underlying Markov kinetic
structure, with N = 106. As in Fig. 1B of [48], we used τin = 800 msec, τrec = 3 msec and
USE = 0.67. Additionally, we set ASE = 70µA to obtain an AP response in our model.

4.5.4 The HHMS model

The HHMS model consists of many sodium currents, each with a di�erent slow kinetic
variable. The equations are identical to the HHS model, except that ḡNas is replaced by
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ḡNaM
−1∑M

i=1 si, where s1 has the same equation as s in the HHS model, and for i > 2,

ṡi = [δ (V ) (1− si)− γ (V ) si]φs,i +
√

(δ (V ) (1− si) + γ (V ) si)N
−1
s,i φs.iξs,i ,

with φs,i = εi and Ns,i = N0ε
iη, where γ (V ) and δ (V ) are taken from the HHS model.

Unless mentioned otherwise, we chose as default ε = 0.2, η = 1.5,M = 5 and N0 = N as
in Fig. 4.

4.5.5 The Multiplicative HHMS model

The Multiplicative HHMS model is identical to the HHMS model with η = 1, except that
ḡNaM

−1∑M
i=1 si is replaced with ḡNa

∏M
i=1 si.

4.5.6 The HHSIP model

The HHSIP model equations [47] are identical to the HHS model equations, except that s
is renamed to s1 and an Inactivating Potassium current was added to the voltage equation,
where

IK = ḡMn
4s2 (EK − V ) ,

with ḡM = 0.05ḡK and

ṡ2 = δ2 (V ) (1− s2)− γ2 (V ) s2 +

√
N−1s2 (δ (V ) (1− s2) + γ (V ) s2)ξs,2 ,

where Ns2 = N and

δ2 (V ) =
3.3e(V+35)/15 + e−(V+35)/20

1 + e−(V+35)/10
Hz, γ2 (V ) =

3.3e(V+35)/15 + e−(V+35)/20

1 + e(V+35)/10
Hz .

Again, in all the rate functions V is used in mV units. In this model we used I0 = 8.3µA
and T∗ = 33 msec.

4.5.7 The HHMSIP model

The HHMSIP model combines HHSIP and HHMS. Its equations are identical to the
HHMS model with η = 2, except it also contain the IK current from the HHSIP model.
In this model we used I0 = 8.3µA and T∗ = 33 msec, unless otherwise speci�ed.
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