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Abstract

Long term temporal correlations frequently appear at many levels of neural activ-
ity. We show that when such correlations appear in isolated neurons, they indicate
the existence of slow underlying processes and lead to explicit conditions on the dy-
namics of these processes. Moreover, although these slow processes can potentially
store information for long times, we demonstrate that this does not imply that the
neuron possesses a long memory of its input, even if these processes are bidirec-
tionally coupled with neuronal response. We derive these results for a broad class
of biophysical neuron models, and then �t a speci�c model to recent experiments.
The model reproduces the experimental results, exhibiting long term (days-long)
correlations due to the interaction between slow variables and internal �uctuations.
However, its memory of the input decays on a timescale of minutes. We suggest
experiments to test these predictions directly.

1 Introduction

Long term temporal correlations, or �f−α statistics� [22], are ubiquitously found at mul-
tiple levels of brain and behavior [50, and refrences therein]. For example, f−α statistics
appear in human cognition [14, 40], brain and network activity (measured using electroen-
cephalograph or local �eld potentials [3, and refrences therin]), and even Action Potentials
(APs) generated by single neurons [30, 11]. The presence of these long correlations in a
neuron's AP responses suggests it is a�ected by processes with slow dynamics, which can
retain information for long times. As a result, if these slow processes are also a�ected
by APs, then the generation of each AP (indirectly) depends on a rather long history of
the neuron's previous inputs and APs. This potentially allows a single neuron to perform
complex computations over very long timescales. However, it remains unclear whether
this type of computation indeed occurs.

Cortical neurons indeed contain processes taking place on multiple timescales. Many
types of ion channels are known, with a large range of kinetic rates [1]. Additional new
sub-cellular kinetic processes are being discovered at an explosive rate [2, 44, 9]. This
variety is particularly large for very slow processes [29]. Such rich biophysical machinery
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can potentially modulate the generation of Action Potentials (APs) on long timescales.
Evidence for such abilities was observed in recent works, which investigated how cortical
neurons temporally integrate noisy current stimuli [27, 26, 39]. The temporal integra-
tion of the input was approximated using �lters with power law decay, re�ecting �long
memory�. However, these �lters were �tted only up to a timescale of about 10 sec (or
equivalently, frequencies smaller than 10−1 Hz), possibly due to the limited duration of
the experiments, which involve intracellular recording.

This raises the question - would the neuron still have long memory on timescales longer
than 10 sec? Generally, the answer may depend on the type of stimulus used. For example,
certain ion channels may �remember� non-sparse inputs longer than sparse inputs [47].
Here, we focus on the case of the sparse (AP-like) input (Fig. 1), imitating the �natural�
input for an axonal compartment which receives APs from a previous compartment. Such
stimulation is used in various experiments (e.g., [17, 8, 11]).

We �nd general conditions under which a neuron can generate f−α statistics in its
spiking activity, and show that this does not imply that a neuron has long memory
of its history. Speci�cally, in order to generate f−α statistics slow processes should
span a wide range of timescales with slower processes having a higher level of internally
generated �uctuations (e.g., more �noisy�, due to lower ion channel numbers). However,
in a minimal model that generates this behavior, slow processes do not retain memory of
the input �uctuations beyond a �nite �short� timescale, even though they are a�ected by
the membrane's voltage. A main reason for this is that the �fastest adaptation process�
in the model adjusts the neuron's response in such a way that any perturbation in the
response is canceled out, before slower processes are a�ected.

We �t the minimal model to the days-long experiments in [11], where synaptically
isolated individual neurons, from a rat cortical culture, were stimulated with extra-cellular
sparse current pulses for an unprecedented duration of days. The neurons exhibited f−α

statistics, responding in a complex and irregular manner from seconds to days. The
synaptic isolation of the neurons in the network, and their low cross-correlations indicate
that these f−α �uctuations are internally generated in the neurons (section D). We are
able to reproduce their results (Fig. 3), and predict that the neuron should remember
perturbations in its input for about 102 seconds (Fig. 4). We suggest further experiments
to test these predictions (Fig. 5).

The remainder of the paper is organized as follows. We begin in section 2.1 by present-
ing the basic setup. Then, in section 2.2, we present the general framework for biophysical
modeling of neurons. Working in this framework, in section 2.3 we recall the mathemati-
cal formalism from [46] and derive the power spectrum density for periodic input stimuli.
Following a description of f−α behavior in section 3.1, we provide in section 3.2 both
general and �minimal� conditions for a neuron to display such scaling. In section 3.3 we
consider the implications of the model for the input-output relation of the neuron, given
general stationary inputs. In section 3.4 we demonstrate this numerically in a speci�c
biophysical model which is �tted to the experimental results of [11]. We conclude in
section 4 with a summary and discussion of our results. An extensive appendix contains
many of the technical details used throughout the paper.
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2 Methods

2.1 Preliminaries

In our notation 〈·〉 is an ensemble average, i ,
√
−1, a non-capital boldfaced letter

x , (x1, . . . , xn)
>

is a column vector (where (·)> denotes transpose), and a boldfaced
capital letter X is a matrix (with components Xmn).

Stimulation. As in [46] we examine a single, synaptically isolated, excitable neuron un-
der �spike� stimulation. In this stimulation regime, the stimulation current, I (t), consists
of a train of identical short pulses arriving at times tm and amplitude I0. The intervals
between the stimulation times are denoted Tm , tm+1 − tm (Fig. 1A, top). We assume
that the stimulation is sparse, i.e., Tm � τAP, with τAP being the timescale of an AP
(Fig. 1B). Since the neuron is �excitable� it does not generate APs unless stimulated, as
in [11] (i.e., the neuron is neither oscillatory nor spontaneously �ring). However, after
a stimulation the neuron can either respond with a detectable AP or not respond. We
denote AP occurrences a Ym, where Ym = 1 if an AP occurred immediately after the
m-th stimulation, and 0 otherwise (Fig. 1A, bottom). Note also that Ym is not generally
the same as the common count process generated from the APs by binning them into
equally sized bins (section B.1) - unless Tm is constant and equal to the bin size.

Statistics. We assume both Ym and Tm are wide-sense stationary [37]. We denote
p∗ , 〈Ym〉 to be the mean probability to generate an AP and T∗ , 〈Tm〉 as the mean
stimulation period. Furthermore, we denote Ŷm , Ym − p∗ and T̂m = Tm − T∗ as the
perturbations of Ym and Tm from their means. An important tool in quantifying the
statistics of signals is the power spectral density (PSD), namely the Fourier transform of
the auto-covariance [37]. For analytical convenience, in this work we will use a PSD of
the form

SY (f) , T∗

∞∑
k=−∞

〈
ŶmŶm+k

〉
e−2πfT∗ik, (1)

with 0 ≤ f � T−1
∗ in Hertz frequency units. Note that this PSD is proportional to

the PSD of the common binned AP (Eq. 68), under periodical stimulus and for low
frequencies - which is the regime under which we will investigate the PSD (similarly to
the experiment [11]). We similarly de�ne the PSD ST (f) and the cross-PSD SY T (f).

2.2 General Framework

We model the neuron in the standard framework of biophysical neural models - i.e.,
Conductance Based Models (CBMs). However, rather than focusing only on a speci�c
model, we establish general results about a broad class of models. In this framework,
the voltage dynamics of an isopotential neuron are determined by ion channels, protein
pores which change conformations stochastically with voltage-dependent rates [19]. On
the population level, such dynamics are generically very well described by models of the
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Response

Stimulus

Figure 1: Stimulation Regime. A Stimulation consists of (extracellular) sparse current
spikes, with inter-stimulus intervals Tm and Action Potential (AP) occurrences Ym. B
An AP �occurred� if the voltage V crossed a threshold Vth following the (sparse) stimulus,
with Tm � τAP.

form of ([46], Eqs. 4-6 )

V̇ = f (V, r, s, I (t)) (2)

ṙ = Ar (V ) r− br (V ) + Br (V, r) ξr (3)

ṡ = As (V ) s− bs (V ) + Bs (V, s) ξs (4)

with voltage V , stimulation current I (t), rapid variables r (e.g., m,n, h in the Hodgkin-

Huxley (HH) model [20]), slow �excitability� variables s ∈ [0, 1]
M

(e.g., slow sodium
inactivation [6]), white noise processes ξr/s (with zero mean and unit variance). Also,
the matrices Ar/s and the vectors br/s can be written explicitly using the kinetic rates
of the ion channels, while the matrices Br/s can be written using those rates in addition
to ion channel numbers. Lastly, we denote

Dr , BrB
>
r ; Ds , BsB

>
s

as the di�usion matrices [35]. In these models the voltage and the rapid variables con-
stitute the AP generation, while the slow variables modulate the excitability of the cell.
For simplicity, we assumed that r and s are not coupled directly, but this is non-essential
[46]. The parameter space can be constrained [48], since we consider here only excitable
neurons which do not �re spontaneously (non-oscillatory) and which have a single resting
state - as is common for isolated cortical cells, e.g., [11].

2.3 The power spectral density of the response

PSD-based estimators are central tools in quantifying long term correlations [41, 25], and
are commonly used in experimental settings - as in [11]. Therefore, In this section we
focus on the PSD of the neural response under sparse stimulation regime (section 2.1) of
a CBM (section 2.2).
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2.3.1 Recap - previous mathematical results

Typically, CBMs (Eqs. 2-4) contain many unknown parameters, and are highly non-
linear. Therefore, it is quite hard to �t them using a purely simulation based approach,
especially over long timescales, where simulations are long and models have more unknown
parameters. Therefore, we developed a reduction method that simpli�es analysis and
enables �tting of such models. We refer the reader to [46] for full mathematical details.

In this method, we semi-analytically1 reduce the full model (2-4) to a simpli�ed model,
under the assumption that the timescales of rapid and slow variables are well separated.
Given another assumption, that the neuron dynamics are su�ciently �noisy�, we can
linearize the model dynamics, so that

Ŷm = p∗ + w> (s (tm)− s∗) , (5)

where p∗, s∗ (the excitability �xed point) and wj (an �e�ective weight� of component
sj ,) can be found self-consistently as a function of T∗. After these quantities are found,
an expression for the output PSD SY (f) in this model can be written explicitly. We let
X+, X− and X0 denote the averages of the quantity Xs during an AP response, a failed
AP response and rest, respectively. Also, we denote

X∗ , τAPT
−1
∗ (p∗X+ + (1− p∗)X−) +

(
1− τAPT

−1
∗
)
X0

as the steady state mean value of Xs. For example, A∗ and D∗ are the respective steady
state means of As and Ds. Additionally, we denote σ2

e , p∗ − p2
∗ as the steady state

variance of Ym,

a , τAP ((A+ −A−) s∗ − (b+ − b−)) (6)

as a �feedback� vector (see Fig. 1C in [46] to understand this interpretation), and

Hc (f) ,
(
2πfiI−A∗ − T−1

∗ aw>
)−1

(7)

as the �closed loop transfer function� (including the e�ect of the feedback), with I being
the identity matrix. Using the above notation, we can derive the PSD of the response.
Given a periodical stimulation (T̂m = 0) we obtain ([46], Eq. 14)

SY (f) = w>Hc (−f)D∗H
>
c (f)w + T∗σ

2
e

∣∣1 + T−1
∗ w>Hc (−f)a

∣∣2 . (8)

Though Eq. 8 relies on two simplifying assumptions, extensive numerical simulations
([46], Figs. 3-4) showed that this expression is rather robust and remains accurate in
many cases even if these assumptions do not hold. Therefore, in this work we will always
assume that Eq. 8 is accurate.

2.3.2 The e�ect of feedback

In the neuron, the slow excitability variables s a�ect the response of the neuron, which,
in turn, a�ects the dynamics of the the slow excitability variables. To simplify analysis,

1A semi-analytic derivation is an analytic derivation in which some terms are obtained by relatively
simple numerics.
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it is desirable to �isolate� this feedback e�ect. In order to do this, we apply the Sherman
Morrison lemma to Eq. 7,

w>Hc (−f) = w>Ho (−f)
(
1− T−1

∗ w>Ho (−f)a
)−1

,

with
Ho (f) , (2πfiI−A∗)

−1
(9)

being the �open loop� version of Hc (f) (i.e., if a is set to zero). Using this in Eq. 8 we
obtain

SY (f) = SoY (f) |κ (f)|−2
, (10)

with SoY (f) being the �open loop� version of SY (f) (i.e., SY (f) with a set to zero),

SoY (f) , T∗σ
2
e + w>Ho (−f)D∗H

>
o (f)w (11)

and κ (f) determines the e�ect of the feedback

κ (f) , 1− T−1
∗ w>Ho (−f)a . (12)

Note that κ (f) depends on the feedback through the variable a. If a → 0, for example,
the kinetic rates of s are not sensitive to AP occurrences2. In that case κ (f) → 1 and
SY (f)→ SoY (f).

2.3.3 Partial fractions decomposition

In order to simplify analysis, we decompose the vector expressions in Eqs. 11-12 to partial
fractions.

If A∗ is diagonalizable, than we can write Eq. 11 as (section A.1)

SoY (f) = T∗σ
2
e +

M∑
k=1

ck

(2πf)
2

+ λ2
k

, (13)

where the poles λk are the inverse timescales of the slow variables (the eigenvalues of A∗),
arranged from large to small according to their magnitudes (0 < |λM | < |λM−1| < · · · < |λ1|)
and

ck =

M∑
j=1

wkDkjwj
2λk

λk + λj
(14)

being the amplitude of these poles, with Dkj and wk being the respective components
of D∗ and w in a basis in which A∗ is diagonal. Note that, ∀k, Re [λk] < 0 (from the
properties of A∗).

Using a similar derivation for κ (f), we obtain

κ (f) = 1−
M∑
k=1

T−1
∗ wkak

2πfi− λk
, (15)

with ak and wk being the respective components of a and w in a base in which A∗ is
diagonal.

2For example, this can happen if the kinetic rates all have low voltage threshold, resulting in
A+ ≈ A−and b+ ≈ b−.
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2.3.4 Example - a �diagonal� model

For concreteness, we demonstrate our results on a simple model in which A∗ is a diagonal
matrix and, as a result, D∗ (which depends on A∗) is also diagonal. In this �diagonal�
model all the components of s are uncoupled (i.e., belong to di�erent channel types), Eq.
4 can be written as [46, section 4.1]

ṡk = δk (V ) (1− sk)− γk (V ) sk + σs,k (V, sk) ξs,k (16)

∀k ∈ {1, . . . ,M}, where σs,k (V, s) =
[
(δk (V ) (1− sk) + γk (V ) sk)N−1

s,k

]1/2
and Ns,k are

the number of slow ion channels of type k. Similarly as before, γ+,k, γ−,k and γ0,k denote
the averages of the kinetic rate γk (V ) during an AP response, a failed AP response and
rest, respectively. In addition

γ∗,k = τAPT
−1
∗ (p∗γ+,k + (1− p∗) γ−,k) +

(
1− τAPT

−1
∗
)
γ0,k

is the average γk (V ) in steady state. We use a similar notation for δ. Therefore

(A∗)kk = −γ∗,k − δ∗,k
(D∗)kk =

1

Ns,k

γ∗,kδ∗,k
γ∗,k + δ∗,k

with zero on all other (non-diagonal) components and

ak = τAP
(γ∗ (δ+ − δ−)− (γ+ − γ−) δ∗)

γ∗ + δ∗
. (17)

Therefore, in Eqs. 13-14 we have,

λk = −γ∗,k − δ∗,k (18)

ck = w2
kDkk =

w2
k

Ns,k

γ∗,kδ∗,k
γ∗,k + δ∗,k

. (19)

Importantly, by tuning the parameters M,γk (V ) , δk (V ), Ns,k and wk we seem to
have complete freedom in determining λk, ck and ak (Eqs. 17-19). This, in turn, would
give complete freedom in tuning SoY (f) and κ (f). Therefore, it seems that for any CBM
(i.e., not only diagonal models) we can �nd an equivalent diagonal model - which produces
exactly the same PSD of the response.

The only caveat in the previous argument is that in non-diagonal models λk can be
complex, but not in a diagonal model, since the kinetic rates γk (V ) and δk (V ) must be
real numbers. How would the situation change if some of the poles had complex values?
Complex poles (i.e., for which Im [λk] > 0) always come in conjugate pairs. These pairs
behave asymptotically (i.e., for 2πf � |λk| or 2πf � |λk|) very similarly to two real
poles, with an additional �resonance� (either a bump or depression) in a narrow range in
the vicinity of these poles (i.e., 2πf ∼ |λk|) (see section A.2, or [34]).

7



3 Results

3.1 Background on f−α statistics

As observed in [11], the responses of isolated neurons exhibit long-term correlations ro-
bustly3, under sparse pulse stimulation (Fig. 1 and section 2.1). Signals with such long-
term correlations are often described by the term �f−α noise�. This is because the Power
Spectral Density (PSD, [37]) is a central tool in detecting and quantifying such signals
[41, 25]. As the name implies, if the AP pattern Ym is a �f−α noise signal� then its PSD
(Eq. 8) has a f−α shape

SY (f) ∝ f−α , (20)

where the PSD is de�ned here as in Eq. 1. As is usually the case for most f−α phenomena,
Eq. 20 is true only in a certain range fmin ≤ f ≤ fmax, and with 0 < α ≤ 2. Note also
that if α > 1, then fmin > 0 necessarily4. Such f−α behavior is considered interesting due
to its �scale-free� properties, which can sometimes indicate a �long memory�, as explained
in the introduction. Therefore, it is interesting to ask the following questions:

1. What is the biophysical origin of the f−α behavior?

2. Does this f−α behavior imply that the neuron �remembers� its history on very long
timescales (hours and days)?

We aim to answer the �rst question in section 3.2, focusing on the case of periodical
stimulation Tm = T∗, as in [11]. The second question is addressed in section 3.3, where we
examine a general sparse stimulation process Tm. Finally, in section 3.4.2 we �t a speci�c
CBM (which is an extension of a previous CBM) so it adheres to this set of minimal
constraints. We numerically reproduce the experimental results of [11] and demonstrate
our predictions.

3.2 Biophysical modeling of f−α statistics

As we explained in the Introduction, neurons contain a large variety of processes operating
on slow timescales. These processes are, in many cases, not well characterized or contain
unknown parameters. Therefore, it is hard to model the behavior of the neuron on slow
timescales with a CBM using only simulation. With so many unknowns, an exhaustive
parameter search is unfeasible5. Fortunately, since we derived a semi-analytic expression
for the PSD (Eq. 8), starting from some initial �guess� (as to which process to include,
and with what parameters), it is relatively straightforward to tune the parameters so that
the CBM reproduces the experimental results (i.e., by maximizing some �goodness of �t�
measure).

However, even if a speci�c model could be found to reproduce the experimental results,
it would still be unclear whether or not this is would be a �useful� model - one which can
be used to infer the biophysical properties of the neuron, or its response to untested
inputs. The �rst problem is that CBMs are highly degenerate, where di�erent parameter

3i.e., in all neurons for which 0 < p∗ < 1.
4Otherwise, 0.25 ≥ p∗ − p2∗ =

〈
Ŷ 2
m

〉
≥ 2
´ fmax
0 SY (f) df =∞, which is a contradiction.

5Also simulations take a long time, since experiments, as in [11], are days-long.
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values can generate similar behaviors6, so we can never be sure if the �correct� model
was inferred. The second problem is that it is unclear whether a �correct� model would
be generally useful - since di�erent neurons from the same type can have very di�erent
parameters [28].

In order to address the �rst problem, initially, in section 3.2.1 we analyze Eq. 8, and
attempt to answer a more general question - what class of CBM models can generate the
experimental results? We �nd �rather general� su�cient conditions - i.e., which, given a
few assumptions, also become necessary conditions. Next, in section 3.2.2, we aim to �nd
a �minimal� set of constraint on a CBM to ful�ll theses conditions. Qualitatively, these
conditions indicate that, in order to reproduce the experimental results, a general CBM
must:

1. Include only a �nite number of ion channels of each type (implying a stochastic
model).

2. Include few slow processes with timescales �covering� the range of timescales over
which SY (f) ∝ f−α is observed.

3. Obey a certain scaling relation (with an exponent of 1 − α), implying that slower
processes are more �noisy�.

More detailed explanations of these conditions, and a concrete example, are provided in
the following two subsections.

3.2.1 General conditions for f−α statistics

In this section we derive general conditions on the parameters of a CBM (section 2.2)
so it can generate robust f−α statistics in SY (f). Here, we focus on the case of sparse
periodical input Tm = T∗ � τAP (as in [11]).

This analysis is based on the decomposition of the PSD SY (f) as a ratio of SoY (f)

and the feedback term |κ (f)|2. Recall that SY (f) ∝ f−α is robustly observed for all
stimulation parameters - even when p∗ is near 0 or 1 (see section 3.1). Note that one
can arbitrarily vary p∗ by changing the stimulation parameters (such as I0 or T∗). It is
straightforward to show that when p∗ → 0 or p∗ → 1, the e�ect of feedback is negligible7,
and therefore SY (f) ≈ SoY (f). This implies that, at least for some simulation parameters,
SoY (f) ∝ f−α. For this reason, and for the sake of analytical simplicity, we �rst develop
general conditions so that SoY (f) ∝ f−α, and later we discuss the e�ects of the feedback
κ (f).

Note from Eq. 13 that if M (the dimension of s - the number of slow processes) is
�nite, one can have SoY (f) ∝ f−α exactly if and only if α = 0 or 2. However, these values
are far from what was measured experimentally (Eq. 40). Therefore, SoY (f) ∝ f−α can
be generated exactly only in some limit (in which M is in�nite), or approximately (if
M is �nite). Also, note that if 2πf � |λ1|, then SoY (f) − T∗σ2

e ∝ f−2. Additionally, if
2πf � |λM |, we have SoY (f) ≈ constant. Therefore, Eq. 13 can generate SoY (f) ∝ f−α

with 0 < α < 2 only for |λM | < 2πf < |λ1|.
6e.g., in Eq. 14 many di�erent parameters would give the same ck.
7Near the edges, w→ 0 (Eq. 81 in [46]), and so κ (f)→ 1.
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Next, we explain when this becomes possible. For simplicity assume that in Eq. 13
T∗σ

2
e is negligible and all the poles are real (the e�ect of complex poles will be discussed

below). We de�ne the following pole density

ρ (λ) ,
M∑
k=1

ckδ (λ− λk) (21)

where δ (·) is Dirac's delta function. Using Eqs. 13 and 21 we obtain

SoY (f) =

ˆ
ρ (λ) dλ

(2πf)
2

+ λ2
. (22)

For |λM | � 2πf � |λ1| and 0 < α < 2, Eq. 22 becomes

SoY (f) = Cf−α (23)

if and only if (section A.3)

ρ (λ) = ρ0 |λ|1−α (24)

in the range |λ1| > |λ| > |λM |, with ρ0 = 2π−1C sin (πα/2). Therefore, ρ (λ), the
distribution of the poles, must scale similarly to SoY (f) (but with a di�erent exponent).

Several comments are in order at this point.

1. It was previously known that, in a linear system, a f−α PSD could be generated
using a similarly scaled sum of real poles [21, 22]. The novelty here is two-fold:
(1) Quantitatively analyzing the PSD of CBMs (which are highly non-linear) in a
similar way (through Eq. 8) (2) Finding that condition 24 is not only su�cient, but
necessary.

2. Formally, Eq. 24 can be exact only in the continuum limit where the the number
poles is in�nite and they are closely packed. However, in practice, Eq. 23 remains a
rather accurate approximation even if the poles are few and well separated (Fig. 2A),
as we shall demonstrate in the next section (as in [21, 22]). Clearly, for simulation
purposes, it is bene�cial to use a CBM with a �nite number of (preferably, few)
poles .

3. We have assumed that all the poles are real. What happens if some of the poles
are complex? Recall (section 2.3.4) that if some poles have complex values then
SoY (f) also has �resonances� (bumps or depressions) in a narrow range near these
poles. Technically, scaling these resonance peaks can also be used to approximate
Eq. 23 (Fig. 2B). However, we did not pursue this method here since it would
require signi�cantly more poles and would be much harder to implement.

4. Note that so far we have discussed only SoY (f). One can perform a similar analysis
directly on SY (f). However, we �nd it is easier to �rst simplify κ (f) and then use
Eq. 10. From Eq. 10 the PSD SY (f) will have a power-law shape in the range
|λM | � 2πf � |λ1| if, in that range: either (1) the magnitude of κ (f) is constant
or slowly varying, or (2) κ (f) also has a power-law shape. In the �rst case the
exponent of SY (f) will be the same as the exponent of SoY (f), and in the second
case the exponent will di�er. The conditions for both cases can be derived similarly
to our analysis of SoY (f). We demonstrate this next, in a more speci�c context.
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Figure 2: Generating f−α PSD using a �nite number of poles - a graphic de-
scription. Using partial fraction decomposition (Eq. 13) SoY (f) ∝ f−α (blue) can be
approximated (on a log-log scale) in two distinct ways: A Using a sum of a real poles
(green), with scaled amplitudes (approximating Eq. 24) B Using a sum of complex poles
(orange), with scaled �resonance peaks� (Eq. 44). In this work we focus on the �rst case
(A), since it is simpler and requires much fewer poles.

3.2.2 A minimal model for f−α statistics

In the previous section we found general conditions under which Eq. 11 gives SoY (f) ∝
f−α. In this section, we aim is to generate SoY (f) ∝ f−α over fmin < f < fmax in a
minimal model, in which M (the dimension of s) is as small as possible. As explained
in section 2.3.4 we do not lose any relevant generality if we restrict ourselves to the
case where A∗ is diagonal (Eq. 16). From Eq. 24, we know that |λk| must �cover� the
frequency range fmin < f < fmax. In order forM to be small, we choose λk to be uniform
over a logarithmic scale (similarly to [22]), so λk ∝ εk with ε < 1. The �simplest� way to
achieve this is to have (see Eq. 16)

γk (V ) = γ1 (V ) εk−1 ; δk (V ) = δ1 (V ) εk−1 (25)

so

λk = λ1ε
k−1 . (26)

In order for λk/ (2π) to cover the range [fmin, fmax] we require that

|λ1| > 2πfmax ; |λM | = |λ1| εM−1 � 2πfmin . (27)

Given M , this sets a constraint on ε. In order to have scaling in ρ (λ), as in Eq. 24, we

also require that ck ∝ |λ|1−α dλ ∝ ε(2−α)k, since dλ = λk − λk−1 ∝ εk. Therefore, from
Eqs. 19 and 18 we have

w2
k

Ns,k
∝ ε(1−α)k .

11



so that SoY (f) ∝ f−α. Therefore, we require that wk ∝ ε−µk, Ns,k ∝ ενk with 2µ + ν =
α − 1. For µ > 0 the slower processes (larger k) have larger weight. For ν > 0 slower
processes have a smaller number of ion channels (therefore, they are more �noisy�).

In section A.4, we investigate what type of scaling will generate also SY (f) ∝ f−α,
taking into account the e�ects of feedback (through κ (f)). We conclude that, because of
the feedback, a value of µ > 0 would not change the exponent of SY (f) over a �reasonable�
range of parameters (i.e., assuming ν > −2). Therefore, the simplest way to generate
SY (f) ∝ f−α would be to take µ = 0. In this case, we have (Eq. 57), for −1 < ν < 1
and |λM | � 2πf � |λ1|,

SY (f) ∝ 1

Ns,1

f−(1+ν)

ln2 f
, (28)

where the logarithmic correction arises from the e�ect of feedback κ (f). A few comments
on Eq. 28 are in order at this point.

1. Due to the logarithmic correction, in order to approximate SY (f) ∝ f−α it is a
reasonable choice to set ν slightly higher than α− 1, e.g.,

ν = α− 0.9 . (29)

2. Even if there is no scaling in the parameters (i.e., µ = ν = 0), we obtain SY (f) ∝
f−1 (neglecting logarithmic factors).

3. Eq. 28 is based on asymptotic derivation, which is correct in two opposing limits
(�sparse� or �dense� poles, section A.5), indicating that these results are rather
robust to parameter perturbations.

4. The magnitude of the ion channels number Ns,1 is inversely proportional to the
magnitude of SY (f) (i.e., its proportionality constant), while the value w1 (the
magnitude of the weights) does not a�ect SY (f).

5. When Ns,1 →∞ we have SY (f)→ 0, implying that in the deterministic limit, such
a CBM does not generate f−α noise (in accordance with our results from [48]).

3.3 The input-output relation of the neuron

In the previous section we derived minimal biophysical constraints under which a neuron
may generate f−α statistics in response to periodic stimulation. In this section we explore
the input-output relation of the neuron under these constraints, in the case where the
inter-stimulus intervals Tm form a general (sparse) random process. We decompose the
neuronal response into contributions from its �long� history of internal �uctuations and
its �short� history of inputs, quantifying neuronal memory.

3.3.1 The linearized input-output relation

Recall that T̂m , Tm − T∗, with T∗ , 〈Tm〉 and ST (f) the PSD of Tm. As explained in
[46], for a general CBM8 we can decompose Ŷm, the �uctuations in the neuronal response,

8i.e., Eqs. 2-4, with the same assumptions as we had in section 2.3.1.
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to a linear sum of the history of the input and internal noise, i.e.,

Ŷm =

∞∑
k=0

hext
k T̂m−k +

∞∑
k=0

hint
k zm−k , (30)

with the �lter hext
k used to integrate external �uctuations in the inputs, and the �lter

hint
k used to integrate zm, a zero mean and unit variance white noise representing internal

�uctuations (e.g., ion channel noise). It is easier to analyze this I/O in the frequency
domain, where Eq. 30 becomes ([46], Eq. 18)

Ŷ (f) = Hext (f) T̂ (f) +H int (f) z (f) , (31)

where we de�ne X (f) to be the Fourier transform of X (t). Together, Hext (f) and
H int (f)) describe the T̂m → Ŷm neuronal I/O at very long timescales.

Note that these �lters are related to the PSDs, in the following way

SY T (f) = Hext (−f)ST (f) , (32)

SY (f) =
∣∣Hext (f)

∣∣2 ST (f) +
∣∣H int (f)

∣∣2 . (33)

Notably, from Eq. 33, if the input to the neuron is not periodical (so, ST (f) 6= 0), then
the PSD SY (f) should be the same as calculated previously, except for the addition of

|Hext (f)|2 ST (f).

3.3.2 The shape of the input-output �lters

For a general CBM, we can derive semi-analytically the exact form of the �lters in Eq.
31 from its parameters, as we did for SY (f). For example, if T̂m = 0 (periodical input),
then also ST (f) = 0, and so

|Hint (f)|2 = SY (f) , (34)

where SY (f) is the PSD we derived previously (Eq. 8). Additionally, we obtain ([46],
Eq. 16)

Hext (f) = T−1
∗ w>Hc (f)d . (35)

with
d , A0s∗ − b0. (36)

Next, we �nd both �lters for the minimal model described in section 3.2.2. Recall that
in this model

wk = w1 ; ak ∝ εk ; dk ∝ εk (37)

with a1 and d1 respectively given by Eqs. 6 and 36. To simplify analysis, we derive an
asymptotic form for both �lters, for the cases |λM | � 2πf � |λ1| and 2πf � |λ1| . First,
from Eq. 34, and Eq. 57, we �nd

|Hint (f)| ∼
{
f−α/2/ ln f , if |λM | � 2πf � |λ1|
constant , if 2πf � |λ1|

. (38)

Similarly, from Eq. 35, we �nd (section A.6)

Hext (f) ≈ qd1

2πfi− qa1
. (39)

where q , (1− ε)−1
T−1
∗ w1. A few comments on Eqs. 38-39 are in order at this point.
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1. We found that Hext (f) is a low pass �lter with a pole at fext = qa1/2π while
H int (f) ∼ f−α/2 for 2πf � |λ1|. Consequently, in the temporal domain (Eq. 30),
for large t (i.e., large k), the neuron's memory of its external input decays expo-
nentially (hext

k ∼ e−f1T∗k), while its memory of its internal �uctuations decays as a
power law (hint

k ∼ k−(1−α/2)). Therefore, the input memory has a �nite timescale
(equal to f−1

ext), while the memory of internal �uctuations is �long� (with a cuto�
only near f−1

min).

2. It is perhaps surprising that Eq. 35, which has multiple poles, becomes a low pass
�lter with a single pole f1. The derivation (section A.6) gives two main reasons for
this. First, the scaling of wk and dk in Eq. 37 induces only a weak (logarithmic)
scaling of the poles in open-loop. Second, even this weak scaling is canceled by the
a�ects of the feedback.

3. Naturally, other models may have a di�erent shape of Hext (f). This could be
probed directly, as we explain later, in section 3.4.3.

3.4 Modeling experimental results

In this section we apply our results to experimental data, described in section 3.4.1. In
section 3.4.2 we implement the set of �minimal constraints� we found in section 3.2.2 in
a speci�c CBM, and �t it to experimental data in which SY (f) ∝ f−α. The analytical
results in section 3.2 suggest that this speci�c CBM is a �reasonable� representative of
the family of CBMs that can generate the experimental results. Other members of this
family can be reached by varying the parameters within the (either minimal or general)
constraints. Next, in section 3.4.3 we use our results from section 3.3.2 on the �tted
model. We show that, although internal �uctuations in the model can a�ect the neural
response on a timescale of days, the memory of the input is only retained for a duration
of minutes. We suggest speci�c experiments to test this prediction. In section 3.4.4 we
suggest further predictions

3.4.1 Experimental details

The experiment from [11], where a single synaptically isolated neuron, residing in a culture
of rat cortical neurons, is stimulated periodically with a train of extracellular short current
pulses with constant amplitude I0. The observed neuronal response was characterized by
di�erent modes ([11], Fig 2). We focus on the �intermittent mode� steady state, in which
0 < p∗ < 1 (i.e., sometimes the stimulation evokes an AP, and sometimes it does not).
The patterns observed in Ym, the AP occurrences timeseries, are rather irregular ([11],
Fig. 2E), span multiple timescales ([11], Fig. 5) and variable (i.e., patterns are not
repeatable [11], Fig. 9A). More quantitatively, as indicated by the analysis ([11], Fig. 6),
for all intermittently �ring neurons, the patterns in Ym fall into the category of �f−α

noise� where the value of α varied signi�cantly between neurons - with

α = 1.43± 0.35 (40)

(mean±SD). As we explained in section 3.1, this f−α behavior is true only in some limited
range fmin < f < fmax. From the experimental data, (Fig. 6C in [11]) it can be estimated
that fmin < 10−5Hz and fmax ∼ 10−2Hz. Also, since α > 1, then 0 < fmin (see section
3.1).
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3.4.2 The HHMS model - a biophysical implementation of the minimal con-
straints

In our previous work [48] we already �tted a model that �ts many of the �mean� properties
of the neuronal response (e.g., �ring modes, transients and �ring rate). This model is an
extension of the original Hodgkin-Huxley model which includes Slow sodium inactivation
[6, 10] (The HHS model, see section C.1). In order to maintain this �t with the ex-
perimental results, we extend the HHS model with additional slow components, obeying
Eq. 16. We denote this as the HHMS model (Hodgkin Huxley model with Many Slow
variables, section C.2). The equations are identical to the HHS model, except that in the

voltage equation (Eq. 71) ḡNas is replaced by ḡNaM
−1
∑M
i=1 si, where s1 has the same

equation as s in the HHS model (Eq. 75). By symmetry, this gives identical weights to
component si (i.e., ∀k : wk = w1). The remaining rates (for k ≥ 2) are chosen according
to our constraints, so γk (V ) = γ (V ) εk−1, δk (V ) = δ (V ) εk−1 (as in Eq. 25), where γ (V )
and δ (V ) are taken from the HHS model (Eq. 75) and also Ns,k = Nsε

νk. Therefore, the
only free parameters are ε,M,Ns, ν and I0 (I0 is the current amplitude of the stimulation
pulses).

This model can be used to �t the experimental results for any α ∈ [0, 2). We performed
a numerical simulation of the full equations (Eqs. 2-4) of the HHMS model under peri-
odical stimulation with T∗ = 50 msec. We aimed to �t experiment from [11], which had
a similar stimulation and exhibited SY (f) ∼ f−α, with α = 1.4 (which is approximately
the average α value measured in [11]). The current amplitude I0 was set to I0 = 7.7µA
so that the model would have the same mean response probability p∗ ≈ 0.4 as in the
experimental data (using the self consistent equations for p∗ from [46]). We chose M = 5
and ε = 0.2 in order to satisfy constraint Eq. 27 with a minimal M . We chose ν = 0.5
to satisfy Eq. 29. Lastly, we chose Ns = 104 in order to �t the magnitude of the SY (f).
This reproduced all the scaling relations observed experimentally (Fig. 3).

3.4.3 Predictions - Probing the input-output relation of the neuron

After �tting the HHMS model to the experimental results, we can examine its resulting
linearized input-output relation, described by the �lters Hext (f) and H int (f) (Eq. 31).
The H int (f) �lter integrates internal �uctuations , while the Hext (f) �lter determines
how external �uctuations (in the input) a�ect its response.

In accordance with the asymptotic forms in Eqs. 38 and 39, we �nd that Hext (f) is
a low pass �lter with a pole fext ∼ 10−2Hz (Fig. 4, green) while H int (f) ∼ f−α/2 for
fmin < f < 10−2Hz (Fig. 4, red) with fmin < 10−5Hz. Therefore, as explained in section
3.3.2 this model implies implies that the response of the neuron is a�ected by internal
�uctuations over the scale of days (∼ f−1

min) or more, generating the f−α behavior we
observe in Fig. 3. However external input is remembered only for minutes (∼ f−1

ext).
Next, we examine two methods which allow us to probe Hext (f) directly and examine

these predictions.
First, a simple method to probe the external input �lter Hext (f) is through Eq. 32.

Allowing reliable estimation of Hext (f) in a certain frequency range requires a random

process stimulation for which |Hext (f)|2 ST (f) �
∣∣H int (f)

∣∣ in that range, as explained
in section B.2. To demonstrate this method we estimate STY (f) from the existing exper-
imental data taken from [12], in which ST (f) ∼ f−β (above some lower cuto�). In Fig.
5A we compare this estimation with STY (f) in the HHMS model in a limited range where
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Figure 3: The measures of �scale free� rate dynamics in the HHMS model -
comparison of the experimental data from [11] and a simulation of the extended HHS
model (solid and dashed lines, respectively). We use here the same measures as in Fig.
6 in [11]: A The �ring rate �uctuations estimated using bins of di�erent sizes (T =10,
30, 100 and 300 sec) and plotted on a normalized time axis (units in number of bins),
after subtracting the mean of each series. B CV of the bin counts, as a function of bin
size, plotted on a log-linear axis. C Firing rate periodogram. D Detrended �uctuations
analysis. E Fano factor (FF) curve. F Allan factor (AF) curve. G Length distribution of
spike�response sequences, on a half-logarithmic axes. H Length distribution of no-spike-
response sequences, on a double-logarithmic axes. For additional details on measures used
see section B.1.
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timescale 
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< minutes 

Figure 4: System decomposition into external (input - T̂ (f)) and internal (�uctuation -
z (f)) �lters. For a �tted HHMS model, Hext (f) is a low pass �lter with cuto� < 10−2 Hz
while Hint (f) ∼ f−α/2 for f < 10−2 Hz.

ST (f) is su�ciently high for estimation to be accurate. It is similar to STY (f) from our
�tted HHMS model, validating our estimate of Hext (f) for that frequency range.

Second, The �lter Hext (f) could be probed more accurately and at lower frequencies
- by sinusoidally modulating the input (the internal-stimulus intervals), analogously to
the sinusoidally modulated input current used in [27, 26, 39],

T̂m = Tamp

L∑
l=1

sin (2πflT∗m) . (41)

As we explain in section B.3, in this case the output of the neuron would be

Ŷm =

L∑
l=1

Tamp

∣∣Hext (fl)
∣∣ sin (2πflT∗m+ ∠Hext (fl)

)
+ “noise” .

This allows us to easily estimate |Hext (f)| using the peaks of T−1
ampŶ (f) (the Fourier

transform of T−1
ampŶm) at frequencies fl, as we demonstrate in Fig. 5B, using our �tted

HHMS model.

3.4.4 Additional Predictions

As explained in [11, 48] the latency of the AP can serve as an indicator of the cell's
excitability. Speci�cally, this is true in the HHMS model, for periodical stimulus and
p∗ = 1, where the PSD of the latency, SL (f), is a shifted and scaled version of SY (f)
with p∗ → 1 (see section 4.4.6 in [46]). Therefore, in the HHMS model we also have
SL (f) ∝ f−α approximately (neglecting logarithmic factors).

Next, suppose we vary some measurable stimulation parameter, such as the mean
stimulation rate T−1

∗ . How would this a�ect the shape of the �lters we derived? The
analytical results allow us to calculate this explicitly in the HHMS model.

First, we consider the gain of the external input �lter Hext (f) (i.e., Hext (0)). As we
explain in section A.7, if f � fcutoff , than

Hext (f) ≈ p∗T−1
∗ = f̄out , (42)
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Figure 5: Input memory in �tted model. (A) Comparison of |SY T (f)| of the �tted
model (`Model') to that estimated from the experimental con�rms (`Experiment') the
prediction of the input �lter |Hext (f)| for probed range. (B) This �lter (`Approx') can
be probed more accurately by peaks of Ŷ (f) (`Simulation'), by applying a �sum of sines�
input (Eq. 41).

which is the mean �ring rate of the neuron - a simply measurable quantity.
Second, how wouldHint (f) change if T∗ is varied? SinceHint (f) is directly measurable

only through SY (f) (Eq. 34), we consider SY (f) instead. From Eq. 57 it is clear
that if SY (f) ∼ f−α approximately at low frequencies then the exponent α should not
depend much on any external parameter (assuming 0 < p∗ < 1). This was observed
experimentally when the stimulation rate (T−1

∗ ) was varied, as can be seen in Fig. 1G in
[13].

4 Discussion

4.1 Generating f−α PSD.

In this work we aim to explain biophysically the phenomenon of f−α behavior in the
response of isolated neurons, and explore its implications on the input-ouput relation
of the neuron. We do this under a regime of sparse stimulation (Fig. 1), and in the
biophysical framework of stochastic conductance-based models (CBMs, Eqs. 2-4). In this
setting our analytical results [46] can be used to derive a closed form expression for the
Power Spectral Density (PSD, Eq. 8) based on the parameters of the slow kinetics in
the CBM. This PSD is a�ected by the closed-loop interaction - the slow dynamics a�ect
the AP response, which, in turn, feeds back and a�ects the kinetics of the slow processes
(section 2.3.2). Moreover, the contribution of each slow process to the PSD can be exactly
quanti�ed (section 2.3.3), as we demonstrate using a simple model (section 2.3.4).

These mathematical results expose the large parameter degeneracy of CBMs [28, 46],
i.e., that many �di�erent� models will quantitatively produce the same behavior. Due the

18



the degeneracy of CBMs, we �rst aimed to derive rather general su�cient conditions for
the generation of f−α noise in a CBM (section 3.2.1). These conditions indicate which
types of CBMs can generate the observed behavior. We show that, in order to generate
f−α behavior, neurons should have intrinsic �uctuations (e.g. due to ion channel noise),
and have a number of slow processes with a large range of timescales, �covering� the
entire range over which f−α statistics is observed. Furthermore, the parameters of these
processes must be scaled in a certain way in order to generate f−α noise with a speci�c
α (Eq. 24).

We implement these constraints in a minimal CBM (section 3.2.2), in which the slow
processes are uncoupled, except through the voltage, as in [48]. Initially, we �nd that
the speci�c scaling relation can be achieved either by scaling the (1) �magnitude� or (2)
the ion channel number - so slower processes will be either (1) �stronger� or (2) �more
noisy�. However, the �feedback� e�ect in the model (the slow process being a�ected by
the APs) prevents f−α statistics from being generated in case (1). In contrast, option
(2) can robustly generate the observed f−α statistics in the neuronal response for any
0 < α < 2 (Eq. 28 and Fig. 6).

Naturally, outside of the framework of CBMs (Eqs. 2-4) long term correlations may be
modeled di�erently, since there are numerous distinct ways to generate power law distri-
butions [32]. For example, as numerically demonstrated in [13], 1/f statistics in neuronal
�ring patterns can be generated by assuming global (cooperative) interactions between
ion channels (i.e., not through the voltage). Biophysically, the signi�cance of interactions
between ion channels is still not clear ([31] and Brief Communications arising), but other
cellular processes that might a�ect excitability on slower timescales clearly exhibit in-
teractions (e.g., gene regulation networks [7]). Mathematically, such interactions render
the slow dynamics (Eq. 4) non-linear at constant voltage [15]. It would be interesting
to generalize the theory we presented here in order to understand how to tune the PSD
in such a non-linear setting, since this has the potential to further reduce the number of
parameters and model complexity.

4.2 Biophysical implementation.

We examine our theoretical predictions numerically. We do this using a stochastic
Hodgkin Huxley type model with slow sodium inactivation that was previously �tted
to the basic experimental results [48]. We extend this model to include four additional
slow processes, which resemble slow sodium inactivation (section C.2). The only di�er-
ence is that each process is slower than the previous one, and has a lower number of
ion channels, according to the speci�c scaling relation that was derived. The resulting
model indeed generates f−α noise, and is demonstrated numerically (Fig. 3) to �t the
experimental results of [11]. This is the �rst time, to our knowledge, that a cortical neu-
ron model (either biophysical or phenomenological) reproduces experimental results over
such long timescales. Notably, without the analytical results, it would be hard to tune
the parameters of a biophysical neuron, due to the large number of unknown parameters.

Previous works [24, 45] demonstrated numerically that, even with constant current
stimulation, incorporating slow processes into an excitable cell model can generate f−α

in its response. In [24] a HH model was extended to include multiple slow processes
with scaled rates in the potassium channel produced f−α �ring rate response. Their
model produced an exponent of α ≈ 0.5, replicating experiments measurements from
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the auditory nerves. Another work [45], aiming to reproduce the activity of heart cells,
produced long term correlations with α ≈ 1.6− 2 using a re�ected di�usion process.

The identity of the speci�c slow processes involved in generating f−α remains a mys-
tery at this point, since there are many possible mechanisms which can modulate the
excitability of the cell in such long timescales. For example, ion channel numbers, con-
ductances and kinetics are constantly being regulated and may change over time (e.g.,
[23, 49]). Also, the ionic concentrations in the cell depend on the activity of the ionic
pumps, which can be a�ected by metabolism [43]. Finally, the spike initiation region
can signi�cantly shift its location with time (e.g., 17 µm distally during 48 hours of high
activity [18]), and so can cellular neurites [36, 33]. Only after such slow processes are
quantitatively characterized, we can determine their e�ect on the neuron's excitability at
long timescales.

4.3 The input-output relation.

The linearized input-output relation of the �tted CBM was derived using the methods
described in [46]. This linearized relation decomposes the contributions of external in-
puts and internal �uctuations to the response of the neuron. This decomposition (Eq.
31) shows that even though the neuron can �remember� its intrinsic �uctuations over
timescales of days, its memory of past pulse inputs can be limited to a shorter timescale
of ∼ 102 sec (Fig. 4). Notably, the neuron has this limited memory for such inputs even
though processes on much slower timescales exist in the model.

In the introduction we mentioned previous works [27, 26, 39] which also described the
temporal integration in the neuron using power-law �lters, although in a rather di�erent
(non-sparse) stimulation regime. Our �tted model indicates that similar power-law in-
tegration still occurs at very long timescales. However, it is not the input that is being
integrated, but the internal �uctuations in the neuron, and this is what drives the f−α

statistics measured by [11]. Also, as in [27, 26, 39], the neuronal response in our model
is indeed a�ected by the last 10 sec of its external inputs. However, our model suggests
the response will not be signi�cantly a�ected by spike perturbations in its input that
occurred more than 102 sec ago.

Qualitatively, this speci�c timescale of the input memory stems from the �fastest slow
negative feedback process� in the model (in this speci�c model, slow sodium inactivation).
This process responds to perturbations in the input which change the �ring rate much
more quickly then all the other slow processes. Its response to perturbation brings the
�ring rate back to its steady state, before slower processes even register that the �ring rate
has changed. Therefore, e�ectively, these slower processes do not store much information
about input perturbations. We suggest experiments to test input memory directly, by
using f−α stimulation (Fig. 5A), �sum of sines� stimulation (Fig. 5B) and a variation of
the mean stimulation rate (Eq. 42 and Fig. 7).
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Appendix

A Detailed derivations

A.1 Derivation of Eqs. 13-14

Recall Eq. 11.

SoY (f) , T∗σ
2
e + w>Ho (−f)D∗H

>
o (f)w .

Suppose that A∗ is diagonalizable, so that we can write A∗ = UÃV, where U = V−1

and Ã is some diagonal matrix. In that case

w>Ho (−f)D∗H
>
o (f)w

= w> (−2πfiI−A∗)
−1

D∗
(
2πfiI−A>∗

)−1
w

= w>
(
−2πfiI−UÃV

)−1

D∗

(
2πfiI−V>ÃU>

)−1

w

= w>V−1
(
−2πfiI− Ã

)−1

U−1D∗
(
U−1

)> (
2πfiI− Ã

)−1 (
V−1

)>
w

= w̃>
(
−2πfiI− Ã

)−1

D̃
(

2πfiI− Ã
)−1

w̃

where in the last line we denoted w̃ =
(
V−1

)>
w and D̃ = U−1D∗

(
U−1

)>
. Denoting

Dkj =
(
D̃
)
kj
, Akj =

(
Ã
)
kj
, Ak = Akk and wk = (w̃)k, and noting that D̃ is a symmetric

matrix (since D∗ is symmetric), the last line can be decomposed into partial fractions in
the following way

w̃>
(
−2πfiI− Ã

)−1

D̃
(

2πfiI− Ã
)−1

w̃

=
∑
k,j

wkDkjwj
(−2πfi−Ak) (2πfi−Aj)

= −
∑
k,j

wkDkjwj
Ak +Aj

[
1

−2πfi−Ak
+

1

2πfi−Aj

]

=
∑
k,j

wkDkjwj
Ak +Aj

[
1

2πfi+Ak
+

1

−2πfi+Ak

]

= 2
∑
k,j

wkDkjwj
Ak +Aj

[
Ak

(2πf)
2

+A2
k

]

=
∑
k

∑
j

wkDkjwj
2Ak

Ak +Aj

 1

(2πf)
2

+A2
k

which gives Eqs. 13-14.
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A.2 Complex poles

Suppose the partial fraction decomposition of SoY (f) (Eq. 13) contains complex poles.
Since SoY (f) is real, these poles must appear for complex conjugate pairs λ, λ̄, with
complex conjugate amplitudes, as follows

c

(2πf)
2

+ λ2
+

c̄

(2πf)
2

+ λ̄2

=
c
(

(2πf)
2

+ λ̄2
)

+ c̄
(

(2πf)
2

+ λ2
)

(
(2πf)

2
+ λ2

)(
(2πf)

2
+ λ̄2

)
=

(2πf)
2

(c+ c̄) + cλ̄2 + c̄λ2

(2πf)
4

+ (2πf)
2 (
λ2 + λ̄2

)
+ |λ|2

. (43)

Denoting eiθ , λ/ |λ| and eiφ , c/ |c| we can write Eq. 43 as

2 |c| (2πf)
2

cos (φ) + |λ|2 cos (φ+ 2θ)

(2πf)
4

+ 2 (2πf)
2 |λ|2 cos (2θ) + |λ|4

=


2|c| cos(φ)

(2πf)2
, if 2πf � |λ|

|c|
|λ|2

cos(φ)+cos(φ+2θ)
1+cos(2θ) , if 2πf ∼ |λ|

2|c| cos(φ+2θ)

|λ|2 , if 2πf � |λ|
. (44)

Note that for 2πf ∼ |λ|, this can go to in�nity if θ → ±π/2. In comparison, for a real
pole

c

(2πf)
2

+ λ2
=


c

(2πf)2
, if 2πf � |λ|

c
2|λ|2 , if 2πf ∼ |λ|
c
|λ|2 , if 2πf � |λ|

.

Therefore, the asymptotic behavior is similar, except that for a simple pole there is a
di�erent pre-factor in each region.

A.3 Derivation of Eq. 24

From Eq. 22, we have

SoY (f) =

ˆ
ρ (λ) dλ

(2πf)
2

+ λ2
.
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We de�ne ρ̃ (λ) = |λ|α−1
ρ (λ) and recall that ρ (λ) = 0 outside of the range |λM | < |λ| <

|λL+1|. We obtain

SoY (f) =

ˆ λM

λL+1

(−λ)
1−α

ρ̃ (λ)

(2πf)
2

+ λ2
dλ

u= −λ
2πf

= (2πf)
−α
ˆ −λL+1/2πf

−λM/2πf

u1−αρ̃ (−2πfu)

1 + u2
du

→ (2πf)
−α
ˆ ∞

0

u1−αρ̃ (−2πfu)

1 + u2
du (45)

where we assumed in the last line that|λL+1| � 2πf � |λM | and recall that 0 < α < 2
(note that if α < 0 or α > 2, the last integral will diverge). Therefore, clearly

SoY (f) ∝ f−α (46)

in that range if ρ̃ (λ) is constant.
However, is this also necessary condition? In order that Eq. 46 would remain true we

must have ˆ ∞
0

u1−αρ̃ (−2πfu)

1 + u2
du = C, (47)

where C is some �nite constant. To show that this must imply that ρ̃ (λ) is constant we
de�ne x = − ln (2πf), and ρ̂ (− ln (−x)) , ρ̃ (x). Eq. 47 then becomes

ˆ ∞
0

u1−αρ̂ (x− lnu)

1 + u2
du = C .

Changing variables to v = lnu (so u = ev and du = evdv) we obtain

ˆ ∞
−∞

e−αvρ̂ (x− v)

1 + e−2v
dv = (ψ ∗ ρ̂) (x) = C (48)

with ∗ denoting the convolution operation and

ψ (x) ,
e−αv

1 + e−2v
.

Assuming that the (generalized) Fourier transform of ρ,

% (ω) ,
ˆ ∞
−∞

ρ̂ (x) e−iωxdx ,

exists, we take the Fourier transform of Eq. 48, and obtain

Ψ (ω) % (ω) = 2πCδ (ω) (49)

where δ (ω) is Dirac's delta function, and

Ψ (ω) ,
ˆ ∞
−∞

ψ (x) e−iωxdx =
π

2 sin (π (α+ iω) /2)
. (50)
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Therefore, From Eqs. 49-50, we obtain

% (ω) =
Cδ (ω)

Ψ (0)
= 4C sin (πα/2) δ (ω)

and so
ρ̂ (x) = 2π−1C sin (πα/2) ,

a constant. Therefore, ρ̃ (x) is also a constant, which is what we wanted to prove.
To summarize, we �nd that

SoY (f) = Cf−α . (51)

if and only if
ρ (λ) = 2π−1C sin (πα/2) |λ|1−α . (52)

A.4 Derivation of Eq. 28 and related matters

In the diagonal model presented in section 3.2.2

SoY (f) = T∗σ
2
e +

M∑
k=1

ck

(2πf)
2

+ λ2
k

, (53)

with λk = λ1ε
k−1, and

ck =
w2
k

Ns,k

γ∗,kδ∗,k
γ∗,k + δ∗,k

(54)

where wk = w1ε
−µ(k−1) and Ns,k = Ns,1ε

ν(k−1). Therefore ck = c1ε
(1−η)(k−1) with

η = ν + 2µ, and we can write

SoY (f) = T∗σ
2
e + c1

M−1∑
j=0

εj(1−η)

(2πf)
2

+ λ2
1ε

2j
.

In section A.5, we �nd that for |λM | � 2πf � |λ1|

M−1∑
j=0

εj(1−η)

(2πf)
2

+ λ2
1ε

2j
≈ g (ε, η)×



εM(1−η) (2πf)
−2

, if η > 1

ln
(
|λ1| εM/ (2πf)

)
(2πf)

−2
, if η = 1

λ−2
1

(
2πf
|λ1|

)−(1+η)

, if 1 > η > −1

λ−2
1 ln (−2πf/λ1) , if η = −1

λ−2
1 , if η < −1

(55)

where g (ε, η) is some proportionality constant that depends only on ε and η. This ap-
proximation immediately gives us SoY (f). It is accurate both in the limit that the poles
are sparse (ε→ 0) and in the limit that the poles are dense (ε→ 1−).

Next, we note that ak = a1ε
k−1 with a1 = τAP (γ∗,1 (δ+,1 − δ−,1)− (γ+,1 − γ−,1) δ∗,1) / (γ∗,1 + δ∗,1).

Applying these substitutions to Eq. 15, we obtain
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κ (f) = 1− T−1
∗ w1a1

M−1∑
j=0

ε(1−µ)j

2πfi− |λ1| εj

= 1 + T−1
∗ w1a1

M−1∑
j=0

ε(1−µ)j
(
2πfi+ λ1ε

j
)

(2πf)
2

+ (λ1εj)
2 .

Therefore

κ (f)− 1

T−1
∗ w1a1λ1

=
2πf

λ1
i · g (ε, µ)×



εM(1−µ) (2πf)
−2

, if µ > 1

ln
(
|λ1| εM/ (2πf)

)
(2πf)

−2
, if µ = 1

λ−2
1

(
2πf
|λ1|

)−(1+µ)

, if 1 > µ > −1

λ−2
1 ln (2πf/ |λ1|) , if µ = −1

λ−2
1 , if µ < −1

+ g (ε, µ− 1)×



εM(2−µ) (2πf)
−2

, if µ > 2

ln
(
|λ1| εM/ (2πf)

)
(2πf)

−2
, if µ = 2

λ−2
1

(
2πf
|λ1|

)−µ
, if 2 > µ > 0

λ−2
1 ln (2πf/ |λ1|) , if µ = 0

λ−2
1 , if µ < 0

=



g (ε, µ− 1) εM(2−µ)
(

2πf
|λ1|

)−2

, if µ > 2

g (ε, µ− 1) ln
(
|λ1| εM/ (2πf)

) (
2πf
|λ1|

)−2

, if µ = 2

g (ε, µ− 1)
(

2πf
|λ1|

)−µ
, if 2 > µ ≥ 1

(ig (ε, µ) + g (ε, µ− 1))
(

2πf
|λ1|

)−µ
, if 1 > µ > 0

g (ε, µ− 1) ln (2πf/ |λ1|) , if µ = 0

g (ε, µ− 1) , if µ < 0

where we used the fact that 2πf � |λ1| . Now, if the constant 1 is negligible, then we
have

|κ (f)|−2 ≈ T 2
∗w
−2
1 a−2

1 λ2
1 ×



g−2 (ε, µ− 1) ε−2M(2−µ)
(

2πf
|λ1|

)4

, if µ > 2

g−2 (ε, µ− 1)
(
ln
(
|λ1| εM/ (2πf)

))−2
(

2πf
|λ1|

)4

, if µ = 2

g−2 (ε, µ− 1)
(

2πf
|λ1|

)2µ

, if 2 > µ ≥ 1(
g2 (ε, µ) + g2 (ε, µ− 1)

)−1
(

2πf
|λ1|

)2µ

, if 1 > µ > 0

g−2 (ε, µ− 1) (ln (2πf/ |λ1|))−2
, if µ = 0

g−2 (ε, µ− 1) , if µ < 0

(56)

Therefore, since SY (f) = SoY (f) |κ (f)|−2
, we have (assuming σ2

eT∗ is negligible), for
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µ = 0

SY (f) ≈ g−2 (ε,−1) g (ε, η)T 2
∗ c1

w2
1a

2
1 ln2 (2πf/ |λ1|)

×



εM(1−η)
(

2πf
|λ1|

)−2

, if η > 1

ln
(
|λ1| εM/ (2πf)

) (
2πf
|λ1|

)−2

, if η = 1(
2πf
|λ1|

)−(1+η)

, if 1 > η > −1

ln
(

2πf
|λ1|

)
, if η = −1

1 , if η < −1

,

(57)
This approximation captures well the asymptotic behavior of SY (f) (Eq. 8) for the HHMS
model with |λM | � 2πf � |λ1|, as can be seen in Fig. 6 for various values of η. Note that
from Eq. 54 c1 ∝ w2

1/Ns,1. Therefore: (1) the parameter w1 has e�ectively been canceled
out from the expression and does not a�ect SY (f) in this range, (2) SY (f) ∝ N−1

s,1 .
For µ > 0, we recall that η = ν+2µ, and note that in the (�relevant�) range−1 < η < 1,

due to the e�ects of feedback (Eq. 56),

SY (f) = SoY (f) |κ (f)|−2 ∝


f−(1+ν+2µ) , µ < 0

f−(1+ν) , 2 > µ > 0

f−(1+ν+2µ−4) , µ > 2

so the contribution of µ, the scaling in w, can either decrease the exponent of SY (f) (if
µ < 0), not change it (if 2 > µ > 0) or increase it only if ν is already quite negative
(ν < −2). Therefore, ν does not really �help� in increasing the exponent of SY (f). If,
for example, ν = 0, then we can have SY (f) ∝ f−α with α ≤ 1 (which is lower than the
observed value of α ≈ 1.4). Therefore, the �simplest� choice to generate SY (f) ∝ f−α

would be µ = 0 and ν = η with η slightly higher than α − 1 (due to the logarithmic
correction in Eq. 57).

A.5 Derivation of Eq. 55

We wish to calculate the sum

M−1∑
j=0

εj(1−η)

(2πf)
2

+ λ2
1ε

2j
.

assuming that
|λ1| εM−1 � 2πf � |λ1| . (58)

We shall do this in two opposing limits - when the poles are sparse, and when they are
dense.
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Figure 6: Analytic expression SY (f) (full line, Eq. 8) for the HHMS model and its
asymptotic approximation (dotted line, Eq. 57, with �tted pre-factors), for di�erent
values of η, with I = 7.5µA, M = 20 and ε = 0.2. Note that the slopes match the
analytical approximation well and increase with η when η ∈ [−1, 1]. However, near
f ∼ fmax the asymptotic approximation becomes inaccurate (and even diverges, due to
the logarithmic factor).

A.5.1 Sparse poles

First, we assume the poles are sparse (i.e., well separated, so ε � 1). We denote j∗ ,
dln (2πf/ |λ1|) / ln εe (where d·e denotes the upper integer values), so

M−1∑
j=0

εj(1−η)

(2πf)
2

+ λ2
1ε

2j
≈

M−1∑
j=j∗

εj(1−η)

(2πf)
2 +

j∗−1∑
j=0

εj(1−η)

λ2
1ε

2j

= (2πf)
−2

M−1∑
j=j∗

εj(1−η) + λ−2
1

j∗−1∑
j=0

ε−j(1+η)

∀η 6=±1
= (2πf)

−2 ε
j∗(1−η) − εM(1−η)

1− ε(1−η)
+ λ−2

1

1− ε−j∗(1+η)

1− ε−(1+η)

≈ (2πf)
−2 (−2πf/ |λ1|)(1−η) − εM(1−η)

1− ε(1−η)
+ λ−2

1

1− (2πf/ |λ1|)−(1+η)

1− ε−(1+η)

≈


(2πf)

−2 εM(1−η)

ε(1−η)−1
, if η > 1

λ−2
1

(
2π
|λ1|

)−(1+η) (
1

1−ε(1−η) −
1

1−ε−(1+η)

)
· f−(1+η) , if 1 > η > −1

λ−2
1

1−ε−(1+η) , if η < −1
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where in the last line we used the assumption in Eq. 58. Next, for η = 1,

M−1∑
j=0

1

(2πf)
2

+ λ2
1ε

2j
≈ (2πf)

−2
M−1∑
j=j∗

1 + λ−2
1

j∗−1∑
j=0

ε−2j

= (2πf)
−2

(M − j∗) +
λ−2

1 − (2πf)
−2

1− ε−2

≈ (2πf)
−2

ln
(
|λ1| εM/ (2πf)

)
/ ln ε ,

where in the last line we used the assumption in Eq. 58. Next, for η = −1,

M−1∑
j=0

ε2j

(2πf)
2

+ λ2
1ε

2j
≈ (2πf)

−2
M−1∑
j=j∗

ε−2j + λ−2
1

j∗−1∑
j=0

1

= (2πf)
−2 (2πf/ |λ1|)2 − ε2M

1− ε2 + λ−2
1 j∗

≈ λ−2
1 ln (2πf/ |λ1|) / ln ε

A.5.2 Dense poles

Next, we assume the poles are dense (i.e., very close to each other, so 1− ε� 1). In this
case, we denote, λj = |λ1| εj , dλj = λj−1 − λj = (1− ε) |λ1| εj−1 =

(
ε−1 − 1

)
λj , so
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(|λ1|)1−η (
ε−1 − 1

)M−1∑
j=0

εj(1−η)

(2πf)
2

+ λ2
1ε

2j

=

M−1∑
j=0

λ−ηj dλj

(2πf)
2

+ λ2
j

≈
ˆ |λ1|

|λ1|εM−1

λ−ηdλ

(2πf)
2

+ λ2

= (2πf)
−η−1

ˆ |λ1|

|λ1|εM−1

(λ/2πf)
−η
d (λ/2πf)

1 + (λ/2πf)
2

= (2πf)
−η−1

ˆ |λ1|/2πf

|λ1|εM−1/2πf

x−ηdx

1 + x2

≈ (2πf)
−η−1 ·


´∞
|λ1|εM−1/2πf

x−ηdx
1+x2 , if η ≥ 1´∞

0
x−ηdx
1+x2 , if 1 > η > −1´ |λ1|/2πf

0
x−ηdx
1+x2 , if η ≤ −1

≈ (2πf)
−η−1 ·



(
|λ1| εM−1/2πf

)−η+1
/ (η − 1) , if η > 1

ln
(
2πf/ |λ1| εM−1

)
, if η = 1´∞

0
x−ηdx
1+x2 , if 1 > η > −1

ln (|λ1| /2πf) , if η = −1

(|λ1| /2πf)
−η−1

/ (−η − 1) , if η < −1

=



1
η−1

(
|λ1| εM−1

)−η+1 · (2πf)
−2

, if η > 1

ln
(
2πf/ |λ1| εM−1

)
· (2πf)

−2
, if η = 1

π
2 cos(πη/2) · (2πf)

−η−1
, if 1 > η > −1

ln (|λ1| /2πf) , if η = −1
1

−η−1 |λ1|−η−1
, if η < −1

.

A.5.3 Summary

In the dense limit

M−1∑
j=0

εj(1−η)

(2πf)
2

+ λ2
1ε

2j
≈
(
ε−1 − 1

)−1



1
η−1

(
εM−1

)−η+1 · (2πf)
−2

, if η > 1

ln
(
2πf/ |λ1| εM−1

)
· (2πf)

−2
, if η = 1

πλ−2
1

2 cos(πη/2) ·
(

2πf
|λ1|

)−(η+1)

, if 1 > η > −1

λ−2
1 ln (|λ1| /2πf) , if η = −1
1

−η−1λ
−2
1 , if η < −1

.

In the sparse pole limit
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M−1∑
j=0

εj(1−η)

(2πf)
2

+ λ2
1ε

2j
≈



εM(1−η)

ε(1−η)−1
(2πf)

−2
, if η > 1[

ln
(
|λ1| εM/ (2πf)

)
/ ln ε

]
(2πf)

−2
, if η = 1

λ−2
1

(
1

1−ε(1−η) −
1

1−ε−(1+η)

)
·
(

2πf
|λ1|

)−(1+η)

, if 1 > η > −1

λ−2
1 ln (2πf/ |λ1|) / ln ε , if η = −1
λ−2
1

1−ε−(1+η) , if η < −1

So, in general, assuming some continuity between both limits

M−1∑
j=0

εj(1−η)

(2πf)
2

+ λ2
1ε

2j
≈ c (ε, η) ·



εM(1−η) (2πf)
−2

, if η > 1

ln
(
|λ1| εM/ (2πf)

)
(2πf)

−2
, if η = 1

λ−2
1

(
2πf
|λ1|

)−(1+η)

, if 1 > η > −1

λ−2
1 ln (2πf/ |λ1|) , if η = −1

λ−2
1 , if η < −1

(59)

where c (ε, η) is some proportionality constant that depends only on ε and η. Note that
in both cases c (ε, η) diverges when η → ±1,∞ or when ε→ 1.

A.6 Derivation of Eq. 39

From Eq. 35, using similar notation and analysis as in the previous section, we write

Hext (f) = Hext (f) /κ (f)

with

Hext (f) , T−1
∗ w> (2πfiI−A∗)

−1
d

being the �open loop� version of Hext (f) (i.e., if a was zero). For 2πf � |λ1| we have

κ (f) = 1 + T−1
∗ w1a1

M−1∑
j=0

εj
(
2πfi+ |λ1| εj

)
(2πf)

2
+ (λ1εj)

2

≈ 1 +
iT−1
∗ w1a1

2πf

M−1∑
j=0

εj

= 1 +
iT−1
∗ w1a1

2πf (1− ε)

where we assumed
(
1− εM

)
≈ 1. Similarly, for 2πf � |λ1|,

Hext (f) = −T−1
∗ w1d1

M−1∑
j=0

εj
(
2πfi+ |λ1| εj

)
(2πf)

2
+ (λ1εj)

2

≈ − iT−1
∗ w1d1

2πf (1− ε)
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Therefore, for 2πf � |λ1|,

Hext (f) = Hext (f) /κ (f)

≈ T−1
∗ w1d1 (1− ε)−1

2πfi− T−1
∗ w1a1 (1− ε)−1 . (60)

For |λ1| εM � 2πf � |λ1|, using Eq. 56 for µ = 0, we obtain

κ (f) ≈ 1 + T−1
∗ w1a1λ

−2
1

[
iλ−1

1 g (ε, 0) |λ1| ln (2πf/ |λ1|) g (ε,−1)
]

≈ w1a1g (ε,−1)

−T∗λ1
ln (2πf/ |λ1|)

and, similarly

Hext (f) ≈ −T−1
∗ w1d1λ

−2
1

[
iλ−1

1 g (ε, 0) |λ1| ln (2πf/ |λ1|) g (ε,−1)
]

≈ w1d1g (ε,−1)

T∗λ1
ln (2πf/ |λ1|)

so

Hext (f) = Hext (f) /κ (f) = −d1

a1
.

Note that this expression matches with Eq. 60 for f → 0.

A.7 Derivation of Eq. 42

Recall, from Eq. 39, that for 2πf � (1− ε)−1
T−1
∗ w1a

Hext (f) ≈ −d1

a1
. (61)

We can simplify this expression further by substituting the expressions for a1 and d1. As
noted in [48, , Fig. 4B] (where the +/− /0 notation is replaced with H/M/L notation),
in the HHS model γ (V ) has a high voltage threshold γ+ � max (γ−, γ0) and δ (V ) has a
rather low voltage threshold, so it is approximately voltage independent, with

δ+ ≈ δ− ≈ δ0 ≈ δ∗ , δ . (62)

Therefore,

a1 = τAP (γ∗ (δ+ − δ−)− (γ+ − γ−) δ∗) / (γ∗ + δ∗) ≈ − (γ+ − γ−) δτAP/ (γ∗ + δ)

and
d1 = (γ∗δ0 − γ0δ∗) / (γ∗ + δ∗) ≈ (γ∗ − γ0) δ/ (γ∗ + δ) .

Finally, using

γ∗ , (p∗γ+ + (1− p∗) γ−) τAPT
−1
∗ +

(
1− τAPT

−1
∗
)
γ0 ≈ p∗γ+τAPT

−1
∗ + γ0 (63)
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Figure 7: The external input �lter Hext (f) in the HHMS model - comparison of analytical
expression (Eq. 35, solid line), asymptotic approximation (Eq. 39, dotted line) and
p∗T

−1
∗ ≈ Hext (0) value (Eq. 64, dashed line).

and γ+ − γ− ≈ γ+, we have, for |λ1| εM � 2πf � |λ1|,

−d1

a1
=
γ∗ − γ0

γ+τAP
≈ p∗T−1

∗ .

Therefore, in that range,

Hext (f) ≈ −d1

a1
≈ p∗
T∗

. (64)

Interestingly, we found that Hext (0) ≈ f̄out , p∗T
−1
∗ , the mean �ring rate of the neuron

(See Fig. 7).

B Detailed explanation of �gures

B.1 Statistical measures in Fig. 3

In Fig. 3 we compare our model to the data using measures that were designed to reveal
and estimate �scaling� in empirical signals, as used in [11]. These were applied exactly
as in [11]. For completeness, we repeat here the details on how this was done. Further
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details on meaning of these measures and the relations among them appear in [5, 25]. The
measures used the count process Zn (T ), generated by binning the spikes into N equally
sized bins of width T . We further de�ne the empirical average of Z (T )

Z̄ (T ) , N−1
N∑
n=1

Zn (T ) (65)

and the empirical variance

σ2
Z (T ) , N−1

N∑
n=1

(
Zn (T )− Z̄ (T )

)2
(66)

If Zn (T ) is a wide-sense stationary signal then for N → ∞ than, from the law of
large numbers, Eqs. 65 and 66 should converge to the ensemble averages 〈Zn (T )〉 and〈
Ẑ2
n (T )

〉
, respectively.

1. The rate �uctuations shows the process

Z̃n (T ) , Zn (T )− Z̄ (T ) ,

estimated using bins of di�erent sizes (T = 10, 30, 100 and 300 sec) and plotted on
a normalized time axis (units in number of bins).

2. The Coe�cient of Variation (CV) is de�ned as the ratio of the standard deviation
to the mean

CV (T ) ,
σZ (T )

Z̄ (T )
.

3. The Detrended Fluctuation Analysis (DFA) [38] was performed as follows. First,
Zn (Tbin) was calculated with Tbin = 1 sec. Then a piecewise linear curve Un (T ),
with segments of length T , was �t to the Zn (Tbin). Then the Root Mean Square
Error (RMSE) of the �t is then calculated

DFA (T ) ,

√√√√N−1

N∑
n=1

(Zn (Tbin)− Un (T ))
2

4. The Fano Factor (FF) [25] is de�ned as the variance to mean ratio

FF (T ) ,
σ2
Z (T )

Z̄ (T )
,

5. The Allan Factor (AF) [25] is de�ned as

AF (T ) ,
N−1

∑N
n=1 (Zn (T )− Zn+1 (T ))

2

2Z̄ (T )
.
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6. The �ring rate periodogram, is an estimate of the power spectral density, as used in
[11], namely

S̃Z (f) ,
Tbin

N

∣∣∣∣∣
N∑
n=1

Z̃n (Tbin) e−2πfTbinni

∣∣∣∣∣
2

with Tbin = 1 sec. Note that for N → ∞, this should be a �reasonable� [5, 41]
estimator for the PSD of Zn (T )

SZ (f) , Tbin

∞∑
k=−∞

〈
Ẑn (Tbin) Ẑn+k (Tbin)

〉
e−2πfTbinki (67)

by the Wiener-Khinchin theorem. It is straightforward to show that for periodical
stimulation (i.e., Tm = T∗), we have

SZ (f)

SY (f)
=

{
W , W ≤ 1

W sin2(πfWT∗)
sin2(πfT∗)

,W ≥ 1

where SY (f) is given by Eq. 1, we denotedW , T−1
∗ Tbin, assuming it is an integer.

Note that for f � T−1
bin this gives

SZ (f)

SY (f)
≈
{
W , W ≤ 1

W 3 ,W > 1
. (68)

B.2 Choosing stimulation type in Fig. 5A

Suppose the stimulation is some random point-process, so {Tm} is also a random process.
One prediction we could make relates to the shape of SY T (f), which was not measured in
[11]. Recall Eqs. 32-33. From Eq. 32, if ST (f) and Hext (f) are known then theoretically
we can estimate SY T (f). Unfortunately, it is not easy to estimate SY T (f), due to the
rather large internal �uctuations in the neuron [46, Fig. 6]. Speci�cally, suppose Sest

Y T (f)
is our estimator of SY T (f), then the Normalized Mean Square Error (NMSE, see [4, page
321]) is

NMSE ,

〈
(SY T (f)− Sest

Y T (f))
2
〉

|SY T (f)|2
∝ ST (f)SY (f)

|SY T (f)|2
.

And so, according to Eq. 33,

NMSE ∝ 1 +
|Hint (f)|2

|Hext (f)|2 S2
T (f)

. (69)

Therefore, accurate estimation of SY T (f) (or equivalently, identi�cation of Hext (f)) is
harder than estimation of SY (f) (or equivalently, identi�cation of Hint (f)), for which
the NMSE ∝ O(1) [4].

To overcome the estimation noise problem, we need to increase the �Signal to Noise
Ratio� (SNR) in the system by increasing the �signal strength� (ST (f), the variability in
Tm) in comparison with the �noise� (intrinsic �uctuations), so that∣∣Hext (f)

∣∣ST (f)� |Hint (f)|
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in a certain range of f . In that range, we �nd from Eq. 69 that NMSE = O (1).
As indicated by Fig. 4, we expect that the best SNR would be achieved near 10−2Hz.

In order to test our model, we examine experimental data of a neuron under a �f−α

stimulation�, taken from [12], for which ST (f) is rather large near 10−2Hz, so SY T (f)
can be estimated accurately. In Fig. 5A we see that the estimated SY T (f) is similar to
SY T (f) of the �tted model with the same stimulation.

B.3 The math behind Fig. 5B

A useful method for system identi�cation is to excite the system in all its relevant modes
[16]. In our case this can be done by a sum of sinusoidal inputs. Speci�cally, we examine
an input

T̂m =

L∑
l=1

Tamp sin (2πflT∗m) (70)

in order to identify Hext (f), with fl being some positive �sample� frequencies.
From Eq. 31, the response of the neuron is given by the linear system

Ŷ (f) = Hext (f) T̂ (f) +Hint (f) z (f) .

Recall the response of a linear system to a sine input is a sine output, modulated by the
magnitude and phase of the linear system at the frequency of the sine [34]. Therefore, in
response to the input from Eq. 70,

Ŷm =

L∑
l=1

Tamp

∣∣Hext (fl)
∣∣ sin (2πflT∗m+ ∠Hext (fl)

)
+ F−1 [Hint (f) z (f)] .

The magnitudes of the sines can be found using a Discrete Fourier Transform (DFT) of
Ŷm,

Ŷ n (k) ,
n−1∑
m=0

Ŷme
−2πkmi/n, k ∈ {0, . . . , n− 1} .

Since, for large n,

1

n

∣∣∣Ŷ n (k)
∣∣∣ ≈

L∑
l=1

Tamp

∣∣Hext (fl)
∣∣ sin (π (k/n− flT∗)n)

n sin (π (k/n− flT∗))
+

1

n
|Hint (f) z (f)| f=k/T∗n

n→∞−→
{
Tamp |Hext (fl)| , if k/n ≈ flT∗
0 , else

,

where we used the fact that Hint (f) attains its maximal values for f → 0 (where
Hint (f) ∼ f−α/2/ ln f), and, thus, for k > 0

1

n
|Hint (f) z (f)|f=k/T∗n

≤ 1

n
|Hint (f) z (f)|f=1/T∗n

∝ 1

n

∣∣∣∣ nα/2

ln (1/n)

∣∣∣∣ n→∞−→ 0

for all α ≤ 2. Therefore, if n is large enough, Hext (fl) can always be identi�ed as peaks in∣∣∣Ŷ n (k)
∣∣∣ /nTamp. In Fig. 5B we show that this method seems to work for a simulation of
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the �tted HHMS model, with Tamp = (0.8/L)T∗ and L = 9. An experimental test of this
prediction remains to be done, and would verify the linearity of the neuronal response.
Note that since LTamp = 0.8T∗, this linear response here cannot be considered simply as
a �small signal response�.

C Models

C.1 The HHS model

The HHS model [48] combines the Hodgkin-Huxley equations [20] with Slow sodium
inactivation [6, 10]. The model equations [48], which employ the uncoupled stochastic
noise approximation, are

CV̇ = ḡNasm
3h (ENa − V ) + ḡKn

4 (EK − V ) + ḡL (EL − V ) + I (t) (71)

ṁ = φ [αm (V ) (1−m)− βm (V )m] +
√
N−1φ (αm (V ) (1−m) + βm (V )m)ξm(72)

ṅ = φ [αn (V ) (1− n)− βn (V )n] +
√
N−1φ (αn (V ) (1− n) + βn (V )n)ξn (73)

ḣ = φ [αh (V ) (1− h)− βh (V )h] +
√
N−1φ (αh (V ) (1− h) + βh (V )h)ξh (74)

ṡ = δ (V ) (1− s)− γ (V ) s+
√
N−1 (δ (V ) (1− s) + γ (V ) s)ξs (75)

where V is the membrane voltage, I (t) is the input current, rj are the rapid ion chan-
nel �gating variables�, si are the slow ion channel �gating variables�, ξ are white noise
processes, α (V ) , β (V ) , δ (V ) , and γ (V ) are the voltage dependent kinetic rates of these
gating variables, C is the membrane's capacitance, EK , ENa and EL are ionic reversal
potentials, ḡK , ḡNa and ḡL are ionic conductances, and φ is an auxiliary dimensionless
number, and N are the number of ion channels. Most of the parameters are given their
original values (as in [20, 10]):

VNa = 50 mV, VK = −77 mV, VL = −54 mV,

ḡNa = 120 (kΩ · cm2)−1, ḡK = 36 (kΩ · cm2)−1, gL = 0.3 (kΩ · cm2)−1,

αn(V ) = 0.01(V+55)
1−e−0.1·(V+55) kHz, βn(V ) = 0.125 · e−(V+65)/80 kHz,

αm(V ) = 0.1(V+40)
1−e−0.1·(V+40) kHz, βm(V ) = 4 · e−(V+65)/18 kHz,

αh(V ) = 0.07 · e−(V+65)/20 kHz, βh(V ) =
(
e−0.1·(V+35) + 1

)−1
kHz,

where in all the rate functions V is used in units of mV. In order to obtain the speci�c spike
shape and the latency transients observed in cortical neurons, some of the parameters were
modi�ed to

Cm = 0.5 µF/cm2 , φ = 2,

γ (V ) = 0.51 · (e−0.3·(V+17) + 1)−1 Hz , δ (V ) = 0.05e−(V+85)/30 Hz

N = 106

These speci�c choices were �tted to reproduce the basic experimental results of [11] on
short timescales (latency transients, �ring modes, �ring rates and �ring patterns) for
certain type of neurons (loosely speaking, �non-bursting�) [48].
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C.2 The HHMS model

In this work we focus on the HHMS model (Hodgkin Huxley model with Many Slow
variables). This model is an extension of the HHS model, in which there are many
sodium currents, each with di�erent a slow kinetic variable. The equations are identical
to the HHS model, except that in Eq. 71 ḡNas is replaced by ḡNaM

−1
∑M
k=1 sk, where

s1 has the same equation as s in the HHS model, and for k ≥ 2,

ṡk = [δ (V ) (1− sk)− γ (V ) sk] εk +
√

(δ (V ) (1− sk) + γ (V ) sk)N−1
s,k ε

kξs,k ,

with φs,k = εk and Ns,k = Nsε
νk, where γ (V ) and δ (V ) are taken from the HHS model.

Note that Ns, ν,M and ε < 1 are free parameters. In order to �t the experimental results
in Fig. 3, we set Ns = 104, ν = 0.5,M = 5 and ε = 0.2 so that SY (f) ∼ f−α, with
α ≈ 1.4 (the average measured value in [11]).

D External �uctuation sources

The work in [11] investigated isolated neurons under sparse spike stimulation with �xed
amplitude, as discussed here. As explained in [48], under such stimulation the neuronal
response can be very sensitive to small changes in excitability - both internal or external.
Therefore, it is important to make sure that the observed non-stationary f−α behavior
is not generated by external �uctuation sources that may be present in the experimental
setup (an in-vitro culture of cortical neurons).

For example, such external �uctuation sources may include temperature and ion con-
centration �uctuations, and �uctuations in the electrode-bath interface. These are Com-
mon Non-stationary Fluctuation (CNF) sources since they should a�ect all the neurons
that are being stimulated (in the experiments of [11], several neurons were stimulated
and recorded simultaneously). Additionally, although all synaptic connections were com-
pletely blocked, there is always the possibility that some other weak interactions (e.g.,
gap junctions, ephaptic couplings, glia cells) between di�erent neurons might a�ect the
results.

In this section we explain the controls performed by [11], and perform additional
analysis to corroborate them. These results suggest that the f−α behavior is independent
between neurons and is therefore generated internally.

D.1 Background - experimental controls

To rule out the presence of a CNF, [11] performed two main controls. First, they included
in the analyses only cells which were relatively stable during the long experiment - for
which the spike pro�le remained stable (Fig. 5C in [11]). In these cells the latencies
and response patterns remained repeatable ([11], Fig. 9). Second, they examined the
correlations between di�erent (isolated) neurons in the same experiment, and found that
they were rather low (see [11], Fig. 5E). Additional basic controls have been performed,
but did not appear in the paper (personal communication). For example, to rule out
�uctuations in the interface electrode-baths, the stability of impedance and the shape of
the stimulation pulse were tested - verifying that indeed both have not changed much
from the beginning to the end of the experiment. Lastly, we comment that the culture
was kept under controlled temperature of 37◦c.
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Figure 8: Firing rates for two (green and blue) simulated HHS neuron models with (A)
common and (B) non-common current �uctuations in I0, and for di�erent averaging
windows widths (Tw). Pearson correlation coe�cients (see titles) are ρ ≥ 0.87 when
�uctuations are common and ρ ∼ 0.1 when �uctuations are non-common.

D.2 Common non-stationary �uctuations

Recall that [11] found that correlations between di�erent (isolated) neurons in the same
experiment were rather low (a Pearson correlation coe�cient of ρ ∼ 0.15 or lower). If
the source of the f−α behavior in the experiment is a common noise source which a�ects
several di�erent neurons, one would expect these correlations to be much higher. To verify
this is reasonable, we modeled the CNF as a random walk (symmetric di�usion process)
in I0, the amplitude of the injected current to the HHS model (e.g., such a CNF may
result from accumulating variations in the electrode interface). The step size parameter
of the random walk was �tted so the magnitude of the response �uctuations would be
qualitatively similar to the experimental results of [11], as can be seen in Fig. 8 (compare
with Fig. 5D in [11]).

When the CNF was common (i.e., the same realization of the CNF was used for two
di�erent simulations, Fig. 8A), the correlation coe�cient ρ was typically very close to one,
and always above 0.8 (it is not exactly one, since the model is stochastic). In contrast,
when two simulations had di�erent realizations of the CNF (i.e., di�erent sample paths,
Fig. 8B) then the correlation coe�cient between the �ring rates in both simulations was
ρ ∼ 0.15, similarly to the experiment. Similar results were obtained when the �uctuations
were added instead to the sodium conductance ḡNa (e.g., resulting from CNF in the
temperature, a�ecting the Q10 of the channel), or to the sodium Nernst potential VNa

(e.g., resulting from a CNF in the temperature and sodium ion concentrations).
These simulations provide a strong indication that if indeed the f−α behavior was

generated by a CNF, this would result in strong correlations between the responses of
di�erent neurons in the culture - in contrast to the low correlations observed by [11].
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D.3 Inter-neuronal interactions

Recall again that in [11] the neurons are synaptically isolated. Therefore, in our work
we assumed that any interaction between neurons is negligible in comparison to the
intrinsic neural dynamics and stimulation, as is commonly done when modeling neurons
biophysically. There is additional evidence to suggest this assumption is reasonable.
First, we note that the results reported in [11] do not seem to depend on the density
of the neural culture, or on the number of neurons responding to stimulation (personal
communication). If these interactions were important, we would expect this not to be
the case. Moreover, the correlations between di�erent neurons are low, as we mentioned
in section D.2.

However, as explained in [42], even with such low correlations, signi�cant interactions
might be present. In order to check if there might be other indications to such interactions,
we performed analysis, similar to [42], on an experiment from [11], where six di�erent
neurons where simultaneously stimulated and recorded (using a time bin of 0.05 sec, as the
period of the stimulation). Similarly to [42], we measured Pemp (x) , the empirical binary
`word' frequency observed in the data in each stimulation (e.g., if, after a stimulation,
the �rst four neurons did not respond and the last two did respond, then the resulting
'word' is x = 000011). Then we compared the empirical word probability Pemp (x) with∏
i Pemp (xi), the product of the empirical probability marginals. If the neurons are

completely independent then we expect both to be very similar. This is indeed the case
- as can be seen in Fig. 9 (compare with �g. 2a in [42]).

This indicates that interactions between neurons in the culture in [11] are rather weak,
and supports our assumption that these interactions are negligible in comparison to the
intrinsic neural dynamics and stimulation.
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