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LDPC Codes for Two-Dimensional Arrays
Yuval Cassuto,Member, IEEE, and Amin Shokrollahi,Fellow, IEEE

Abstract

Binary codes over two-dimensional arrays are very useful indata storage, where each array column represents a storage
device or unit that may suffer failure. In this paper we propose a new framework for probabilistic construction of codes on
two-dimensional arrays. Instead of a pure combinatorial erasure model used in traditional array codes, we propose a mixed
combinatorial-probabilistic model of limiting the numberof column failures, and assuming a binary erasure channel ineach failing
column. For this model we give code constructions and detailed analysis that allow sustaining a large number of column failures
with graceful degradation in the fraction of erasures correctable in failing columns. Another advantage of the new framework is
that it uses low complexity iterative decoding. The key component in the analysis of the new codes is to analyze the decoding
graphs induced by the failed columns, and infer the decodingperformance as a function of the code design parameters, as well
as the array size and failure parameters. A particularly interesting class of codes, called probabilistically MDS array codes, gives
fault-tolerance that is equivalent to traditional MDS array codes. The results also include a proof that the two-dimensional codes
outperform standard one-dimensional LDPC codes.

I. I NTRODUCTION

Linear codes constructed from low density matrices are the keystone of contemporary coding theory, with huge impact on
both theoretical research and practical applications. Thesparsity of the code matrices offers a compelling complexity advantage
in implementation, and achieving this low complexity with optimality in redundancy is the great achievement of a large body
of deep research. Interestingly, two separate coding-theory fields aim at the above objective of developing low-density codes
with good information efficiency.
One is the field ofarray codes [3]. Array codes, defined over two-dimensional binary arrays, use low-density parity-check
matrices to construct codes for erasures or errors of full columns. The low-density property offers complexity benefitsin
encoding and decoding operations. Hence the task of array codes is to combat column-level erasures/errors, while being
defined by operations over smaller information units (bits or small groups of bits). The ultimate goal of array-code research
is code families that are Maximum Distance Separable (MDS) from the column perspective, thus having optimal redundancy
for a given column correction requirement. Array codes are widely used in practice, being employed as a central element of
RAID (Redundant Arrays of Inexpensive Disks) [14] storage systems. Each array column then represents an individual storage
device, whose failure is modeled as a column erasure.
The second, and better-known low-density coding field, islow-density parity-check (LDPC) codes under iterative decoding [15].
Without need for detailed introduction, in this area the objective is to construct low-density (one dimensional) codesthat will
decode well under sub-optimal iterative decoding algorithms.

So far, despite the structural similarities, the two low-density coding fields evolved in essential separation. Array codes have
concentrated on algebraic constructions and decoding algorithms that guarantee fixed numbers of column erasures over small
array dimensions. In contrast, the theory of iteratively decoded low-density parity-check codes has sought probabilistic code
constructions that with high probability have good iterative decoding performance in the limit of large block lengths.Previous
work exists where iterative decoding of known array codes over one-dimensional channels is experimentally examined [9], [2],
but no attempt has been made (to the best of our knowledge) to construct new array codes for iterative decoding over two-
dimensional channels. Such constructions are highly motivated by the current state of matters in array-code theory andpractice.
Algebraic array codes rigidly assume that columns are erased at full, while in practice many storage devices have failure modes
that render only part of their data inaccessible. This strong error model introduces significant complexity penalties,with encoding
and decoding complexities that steeply grow with the numberof column erasures. Moreover, algebraic array codes guarantee
correction of a certain number of column erasures, with a sharp transition to failure if the specified number of column erasures
is exceeded. These issues have triggered a recent line of work constructing array codes for combinations of full-columnand
individual-symbol erasures (and errors) [4], [16].

For the same purpose of targeting more realistic erasures instorage arrays, the study in this paper proposes the first framework
for construction and analysis of two-dimensional array codes under iterative decoding. The new framework merges the fields of
array coding and LDPC coding in the sense that it applies the deep construction and analysis tools of LDPC codes to an error
model very natural for array codes. The outcome from this framework are codes that can extend the fault tolerance of storage
arrays with complexities significantly lower than what algebraic array codes can achieve. The new framework comprises three
main components

1) An erasure model that combines an integer bound on the number of failing columns with an erasure probability within
failing columns.
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2) A probabilistic code construction that considers the two-dimensional array structure when choosing parity groups.
3) Performance analysis using the decoding graphs induced by erasure events under the model in 1.

The majority of the paper is devoted to the theoretical performance analysis of the new codes over the new channel model. The
main challenge to analysis in this framework is the introduction of combinatorial objects (originating from the integer number of
failing columns) into the probabilistic analysis of code ensembles under random erasures. Due to the non-uniformity oferasure
probability across the array bits, the graph observed by thedecoder is substantially different from the graph of the designed
code. Hence analysis must accommodate the parameters of array size and failure cardinality in addition to the parameters of
the code itself.

We now detail the paper’s content and main contributions. Section II defines the coding structure as a two-dimensional
array with dimensionsb × n. The erasure model for the array allows up tor (out of then) columns to fail, and in each
failing column bits are erased i.i.d. with probabilityǫ. The number of columnsn is assumed to be a parameter of the code,
and for the sake of analysis, the column sizeb is assumed to grow to infinity. This mirrors practical storage systems having
a given number of nodes, but whose individual storage capacities are large (and constantly growing). In Section III we give
code constructions for the two-dimensional erasure model.The constructions are given as code ensembles, from which codes
are drawn at random. The code ensembles have the same flavor asstandard one-dimensional LDPC ensembles, only with an
important additional property of allowing a check node to have at most one neighbor from each column. This property is the
key to the remainder of the results in the paper. In Section IVthe codes are analyzed over the two-dimensional erasure model.
The analysis is centered at an object we call the decoderinduced graph. The induced graph is a subgraph of the code graph,
obtained by removing the variable nodes in non-failing columns. Unlike one-dimensional codes, to analyze the performance of
the code it is not sufficient to consider the designed code graph. Rather, the performance will be determined by the interplay
between the code graph (which we can control) and a transformation induced by the combinatorial process of takingr out of
then columns (which is dictated to us by the model). Section IV reveals the most attractive feature of LDPC array codes: their
ability to sustain a large number of column failures, where the in-column erasure probabilityǫ that they can sustain degrades
gracefully withr. This feature is unique to our scheme, in contrast to the rigid r offered by traditional array codes. Section V
is devoted to a special class of codes correcting anǫ = 1 fraction of erasures inr failing columns, with optimal redundancy
of r/n. The importance of this class of codes is that they offer fault tolerance that is equivalent to traditional MDS (maximum
distance separable) array codes. Then in Section VI we proveanalytically that two-dimensional LDPC ensembles are superior
to one-dimensional ones for the studied erasure model. The way we establish this result is through explicit rate bounds for
one-dimensional and two-dimensional codes, which are proved to exhibit a gap in favor of two-dimensional codes.

II. T WO-DIMENSIONAL ERASURE MODEL

In the main target application for this work – arrays of storage devices – erasures are not uniformly distributed across the
two-dimensional array. Rather, a few of the columns, corresponding to failing devices, will have a large number of erasures,
and the rest of the columns, corresponding to non-failing devices, will have no erasures at all. We now seek to define a general
two-dimensional erasure model that captures this bi-modality of erasure probability. But before considering the characterization
of erasures over the array, we need to define the structure of the array itself.
bn bits are organized in a two dimensional arrayA = (ai,j), 1 6 i 6 b, 1 6 j 6 n. Note that in practice eachai,j may not

be a single bit, but a larger information unit. Nevertheless, we assume the basic array unit to be a bit throughout the paper,
since XOR operations over bits can be easily extended to larger sets of bits. Since the total capacity of the storage device is
much larger than the desirable unit of XOR operations for thecode, the column size (number of XOR units per device)b will
be assumed large, and growing to infinity for the purpose of analysis. The number of columnsn will however be assumed a
fixed integer. This array structure is natural for real storage systems, in which the number of devices stay fixed at the order
of roughly 10s of devices, while the capacities of constituent devices grow rapidly with the scaling of storage densities. This
chosen array structure is depicted in Figure 1.

A. Mixed probabilistic-combinatorial erasure model

Let Fi be an indicator function for the event that columni is in failure state.

Fi =

{

1 if column i fails

0 otherwise

In a failing column, every bit is erased independently and with equal probability. In a non-failing column, none of the bits are
erased. Formally, the erasure probability of bits in columni is specified as a function ofFi:

ǫi =

{

ǫ if Fi=1

0 otherwise
(1)

whereǫ is a global erasure probability applying to all failed columns.
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n

b

Figure 1. Two-dimensional array with dimensionsb× n, wheren is fixed andb → ∞.

To the probabilistic intra-column erasure model above we now add a combinatorial column-failure model. Within an array
of n columns, at mostr columns are failing. Hence

|{i : Fi = 1}| 6 r. (2)

The rest of the paper is thrust toward the correction of erasures that fall under the model defined jointly by (1) and (2).

III. A RRAY CODE ENSEMBLES

The usual approach to combat erasures in two-dimensional arrays is to algebraically construct array codes for a prescribed
number of column failuresr (see for example [5], [1]; and [7] for a more general column erasure model). Algebraic array
codes are defined explicitly, by specifying sets of array locations with restricted parity values. In addition, algebraic array codes
aim at the extreme case ofǫ = 1, i.e. all bits are assumed erased in a failing column. In this paper, incontrast, array codes
are constructedprobabilistically, by specifying ensembles of parity restrictions over the array. Moreover, the case of interest
here isǫ < 1, which better describes realistic failure modes in storagesystems.

For the two-dimensional erasure model specified by (1) and (2), we now propose a probabilistic array-code construction.
The resulting codes are two-dimensional variants of the well known LDPC codes, called hereinLDPC array codes or
(interchangeably)two-dimensional LDPC codes.

Definition 1. [LDPC Array Codes/2D LDPC Codes]An LDPC array code for arrayA = (ai,j) consists of parity constraints
of the form

ai1,j1 + ai2,j2 + · · ·+ aid,jd = 0,

where+ represents the binary XOR operation, andd 6 n is the degree of the parity constraint. The code has the following
properties.

1) The parity-constraint degreesd and the array bitsaim,jm in each constraint are randomly selected according to some
probability distribution.

2) A parity constraint has at most one bit from each array column.

The key feature of Definition 1 is Property 2 above, assuring that no two or more bits from the same column appear in a
parity constraint. The reasoning behind this feature is that multiple bits from the same column cause correlated erasures within
a parity constraint in case this column fails. The benefits ofthis feature are made more precise in Section VI.

In Figure 2 are illustrated two sample parity constraints:a2,1 + a3,2 + a4,3 + a2,4 = 0 (left XOR node) anda3,1 + a1,2 +
a1,3 + a5,4 = 0 (right XOR node). As required by the definition of LDPC array codes, thej indices (column locations) in
both parity constraints are unique. On the basis of the abovedefinition of LDPC array codes, we proceed to define the codes
as Tanner graphs sampled from array-code ensembles.

A. Regular array-code ensembles

An array-code ensemble is called(l, d)-regular if every array bit participates inl parity constraints, and every parity constraint
consists ofd array bits, each from a distinct column. Array codes are constructed from array-code ensembles by randomly
sampling|E| = nbl edges in a bipartite graph withN = nb variable nodes andM = nbl/d check nodes (assumingd divides
nbl). The number of outgoing edges from the variable nodes and from the check nodes are called variable-node and check-node
degrees, respectively. The sampling process differs from the standard graph sampling process of one-dimensional LDPC codes
in the restriction on check nodes to have at most one variable-node neighbor from any column. The(l, d)-regular array-code
ensemble is formally defined in the following construction.
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n

b

Figure 2. Array parity constraints. Two parity constraints withd = n = 4 are shown (each column contributes exactly one bit to each of
the sample parity constraints).

Construction 1. [(l, d)-regular array-code ensemble]Let V1 be a set ofN = nb variable nodes from ab × n array, each
with l sockets. LetV2 be a set ofM check nodes, each withd sockets. The total number of sockets inV1 nodes and the total
number of sockets inV2 nodes each equals|E| = Nl = Md. For each of theV1 andV2 nodes we label the sockets with the set
[|E|] = {1, . . . , |E|}. DefineΣ to be the set of permutations on[|E|]. DefineΣ′ ⊂ Σ to be the set of permutations on[|E|] that
do not connect two or more sockets of a check node to variable nodes in the same column. An(l, d)-regular array-code ensemble
consists of all bipartite graphs obtained by connecting theV1 andV2 sockets by permutations inΣ′, with the uniform probability
distribution on the setΣ′.

B. Irregular array-code ensembles

As in one-dimensional LDPC codes, better iterative-decoding performance can be achieved when the degree regularity
constraint is lifted [12]. To specify the ensemble degree distributions, we adopt the standard notation used for one-dimensional
LDPC codes [15]. This notation will be extended and refined inthe next sections for the analysis of array-code ensembles.For
eachi∈{1, . . . , lmax}, we denote byLi the probability that a variable node has degreei. Similarly, for eachi∈{1, . . . , dmax},
we denote byRi the probability that a check node has degreei. When theLi andRi probabilities are viewed as coefficients
of polynomials, we get the variable-degree distribution polynomial L(x) =

∑

lmax

i=1 Lix
i, and the check-degree distribution

polynomialR(x) =
∑

dmax

i=1 Rix
i. Since iterative decoding is analyzed through messages passed on edges, similar distributions

from edge perspective are often useful. These areλ(x) =
∑

lmax

i=1 λix
i−1 andρ(x) =

∑

dmax

i=1 ρix
i−1. λi is the probability that an

edge is connected to a variable node with degreei. ρi is the probability that an edge is connected to a check node with degree
i. The relations between the node-perspective and edge-perspective degree distributions are given byλ(x) = L′(x)/L′(1) and
ρ(x) = R′(x)/R′(1), where the operator′ represent the function’s first derivative.
As in the one-dimensional case, a simple generalization of the regular construction in Construction 1 gives a construction for
irregular codes.

Construction 2. [L(x),R(x) irregular array-code ensemble]Let V1 be a set ofN = nb variable nodes from ab × n array.
For eachi, NLi (assumed to be an integer) variable nodes fromV1 havei sockets each. LetV2 be a set ofM check nodes. For
eachi, MRi (assumed to be an integer) check nodes fromV2 havei sockets each. The total number of sockets inV1 nodes and
the total number of sockets inV2 nodes each equals|E| = NL′(1) = MR′(1). The|E| sockets on theV1 side are connected to
the |E| sockets on theV2 side by a uniformly selected permutation fromΣ′ (defined in Construction1 as the set of permutations
that do not connect two or more sockets of a check node to variable nodes in the same column).

The regular construction of Construction 1 is clearly a special case of Construction 2 withL(x) = xl andR(x) = xd.

IV. A NALYSIS OF ITERATIVE ERASURE DECODING

A natural method to decode array codes from the proposed ensembles is by iterative message-passing decoding, also called
belief propagation (BP) decoding. This is an especially simple standard way to decode one-dimensional LDPC codes over
erasure channels. The special property of LDPC array codes is that the variable nodes in the code graph are partitioned into
two sets: variables in failed columns with erasure probability ǫ, and variables in non-failed columns with erasure probability 0.
This property has little impact on the decoder implementation, but a significant impact on the decoding analysis. The decoding-
analysis framework developed here for array-code ensembles follows the adaptation of established tools from one-dimensional
LDPC ensembles [15] to the special structure of array-code decoding graphs. In particular, our main objective is to obtain BP
decoding thresholds for LDPC array codes under the two-dimensional erasure model. For a given array-code ensemble, there
is no longer a single BP threshold, but one for each number of failing columns. Givenr failed columns,ǫr is defined such
that decoding succeeds with high probability as long as the failed-column erasure probability satisfiesǫ < ǫr. In the sequel
whenr is clear from the context, we often omit the indexr from ǫr.
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A. Induced decoding graphs

Throughout the analysis, we will assume that exactlyr columns are failing. Figure 3 reveals the relations betweenthe
code graph and the decoding graph induced by ther failed columns. As usual, variable nodes are represented ascircles, and
check nodes as squares. A variable node belonging to a failedcolumn is marked black, and its erasure probability isǫ. A
variable node in a non-failing column is marked white, and its erasure probability is0. White variable nodes are completely
known, and thus do not appear in the decoding graph. As a result of removing the white variable nodes, check nodes may
have lower degrees in the decoding graph compared to their degrees in the code graph – cf. Figure 3(a). Check nodes all of
whose neighbors are white, are also marked white and removedfrom the decoding graph – cf. Figure 3(b). It is observed that
black variable nodes always have the same degree in the code and decoding graphs, because the only removed check nodes
are those with all-white variable neighbors – cf. Figure 3(c). The structure of decoding graphs induced byr column failures

ǫǫ 0 0 0 0

(a) (b)

(c)

Figure 3. Sample from a code/decoding graph of an LDPC array code. Black variable nodes (circles) are from failed columns; white variable
nodes are from non-failed columns. The white variable nodescan be removed from the decoding graph because they have erasure probability
0. (a) a check node with degree5 in the code graph and degree2 in the decoding graph. (b) a check node is removed from the decoding
graph if all its variable neighbors are white. (c) a black variable node always has the same degree in the decoding graph asin the code
graph.

is made more precise with the following definitions.
For a given LDPC array code and a given set of failed columns, we define the decoding graph induced by the failed-column

set.

Definition 2. Given a code graphG and a set of failing columnsR = {i1, . . . , ir}, we define theinduced decoding graphGR

as the subgraph ofG containing the variable nodes that reside in the columns ofR.

The induced decoding graph will play a central role in the analysis of array-code ensembles. In the sequel, we seek to
characterize the probabilistic structure of induced decoding graphs. The principal question is to find the distribution of induced
decoding graphs given the code-graph distribution and the number of column failures. A nice outcome from this approach
is that established analysis tools, such as binary erasure channel (BEC) density evolution, can be applied to two-dimensional
codes by considering the induced decoding graph rather thanthe code graph itself.

Recall [15] that given an ensemble of one-dimensional LDPC code graphs, the BEC density-evolution threshold (decoding
threshold for short) is the supremum ofǫ∈ [0, 1] such that over a BEC(ǫ) channel the failure probability of a BP decoder tends
to zero as the block size tends to infinity. We now want to extend the decoding-threshold analysis to array-code ensembles. For
this purpose, we first characterize the probabilistic effect of removing variable nodes in non-failing columns from thedecoding
graph. We start with the following definitions.

Definition 3. Given design degree distributions of variable resp. check nodesL(x), R(x) (from node perspective) orλ(x), ρ(x)
(from edge perspective), theinduced degree distributionsare the degree distributions of an induced decoding graph containing
only the variable nodes belonging tor array columns. We denote them as

L̃(x), R̃(x)

(from node perspective) and
λ̃(x), ρ̃(x)

(from edge perspective). We note that given the probabilistic nature of Construction2, the induced distributions depend only onr,
and not on the identity of ther failed columns inR. For notational convenience, we keep this dependence onr implicit, in cases
where the value ofr is clear from the context.

Because variable nodes maintain their code degree in the induced graph (Figure 3 (c)), we always haveL̃(x) = L(x). Similarly
to the code-graph degree distributions, the induced edge-perspective distributions are related to the node-perspective distributions
by λ̃(x) = L̃′(x)/L̃′(1) and ρ̃(x) = R̃′(x)/R̃′(1).

An obvious generalization of one-dimensional density evolution [11] gives that the decoding thresholdǫr is the largestǫ
such that

x > ǫλ̃(1− ρ̃(1− x)), ∀x∈ (0, 1], (3)
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for the λ̃(x), ρ̃(x) given in Definition 3. We can also define the induced rate of thedecoding graph, which is different from
(lower than) the actual code rate.

Definition 4. Given induced variable resp. check degree distributionsλ̃(x), ρ̃(x), we define theinduced rateas

1−

∫ 1

0
ρ̃(x)dx

∫ 1

0 λ̃(x)dx
.

Explicit calculation of the induced degree distributions of array-code ensembles will be the main tool for analysis anddesign
of LDPC array codes in the remainder of the paper.

B. Regular codes with degree-n check nodes

An interesting (and simple) special case of LDPC array codesis when the code is regular with check degreed = n. The
restriction on the graph connectivity in Construction 2 implies that given check-regularity ofd = n, every check node has
exactly one variable-node neighbor from each array column.It is not hard to see that for this case the induced code graph is
regular as well, but with a check-degreer instead ofn. As a result, the following theorem can be proved.

Theorem 1.An (l, n)-regular array-code ensemble has design rate1− l/n, and an erasure decoding threshold of an(l, r)-regular
one-dimensional LDPC code ensemble, for any set ofr failed columns.

Proof: The argument regarding the design rate is identical to(l, n)-regular one-dimensional LDPC codes. We now prove
the statement on the decoding threshold. After removing all(n − r)b variable nodes in non-failing columns, the code graph
becomes an(l, r)-regular graph, with the restriction that each of ther neighbors of a check node comes from a different
column. For one-dimensional LDPC ensembles, it is well known [15, Ch.3] that after a finite numberℓ of decoding iterations,
the computation graph of a BP decoder around a given variablenode is a tree with probability tending to1 as the number of
variable nodes tends to infinity, giving rise to the condition (3). It thus remains to prove that this property still holdsgiven
the restricted sampling of Construction 1. To prove this, wemake the (incorrect) assumption that all edges connect to variable
nodes in the same column. While this is not the case for the code construction, this assumption can only increase the probability
that the computation graph has cycles, and thus it is valid for proving the acyclic property. In that case, the random permutation
with column restrictions maps to uniformly distributed permutations on the sockets ofb variable nodes in one column. This
is identical to the uniform permutation sampling in the one-dimensional case. Since the column sizeb tends to infinity, the
one-dimensional result carries over to the two-dimensional case.
The nice consequence of Theorem 1 is that array codes with high rate (thanks to the high check-node degrees in thecode
graph) have high thresholds (thanks to the low check-node degreesin the induced decoding graph). Moreover, the decoding
threshold gracefully decreases as the numberr of failed columns grows. Example 1 shows the decoding performance of a
regular check-node degreen array code ensemble, and compares it with an MDS array code ofthe same rate.

Example 1.Suppose we want to design an array code forr = 3 column failures. One alternative is to use a traditional MDSarray
code with rate1 − 3/n. Another alternative is to use a(3, n)-regular array-code ensemble, which has the same rate. In Figure4
the thresholds of both options are plotted for1 6 r 6 7. For the MDS code, the threshold is either1 for r 6 3, or undefined
for r > 3 (square markers). On the other hand, the array-code ensemble can tolerate many erasures even for larger values (dot
markers). Forr = 3 there is a gap in favor of the MDS code, where the array-code ensemble only achieves a threshold of0.844,
strictly smaller than the1 threshold of the MDS array code. The problem with the regularensemble is that atr = 3 we get a
threshold of a(3, 3)-regular induced graph, which is not an effective rate0 code. Tightening the gap necessitates the departure
from the(l, n)-regular ensemble family, into more general ensembles discussed in the next sub-sections.

0 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1.0

ǫr

r

Figure 4. Threshold values as a function of the number of failing columns. dots:(3, n)-regular ensembles, squares: traditional MDS array
codes.
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C. Regular codes with general check-node degrees

In the previous sub-section, a code graph with regular check-degreen induced a regular check-degreer in the decoding
graph. Now we want to consider the more general case where check nodes have a general – but still constant – degreed 6 n.
As we will see, the induced graph in this case is no longer regular.

Given a set ofr failed columns, a check node has between0 andr neighbors in the induced graph (assumingr 6 d). From
symmetry in the graph sampling of LDPC array codes (specifiedin Construction 1), the sets ofd distinct columns neighboring
a check node are uniformly distributed among the size-d subsets of{1, . . . , n}. Hence the induced degree distribution is given
by

Pr(degree i) =

(

r
i

)(

n−r
d−i

)

(

n
d

) , T
(n,r,d)
i . (4)

The numerator is the number of size-d subsets partitioned toi failed columns andd− i non-failed columns. The denominator
is the total number of size-d subsets. Hence given a uniform column sampling ofd check-node edges, the induced degrees are
distributed according to thehypergeometric distribution [10] T (n,r,d). It is clear that whend = n, T (n,r,n)

i degenerates to a
delta functionδ[i− r], i.e.,Pr(degree i) equals to1 wheni = r and0 otherwise (giving the regularity proved in Theorem 1).
Note that ifr+ d 6 n, there is a non-zero probability that a check node has degree0 in the induced graph, in which case it is
removed from the graph. Recall from Section IV-A that the induced graph remains regular with respect to the variable-node
degrees. Altogether we obtain the following result.

Theorem 2. An (l, d)-regular array-code ensemble has design rate1 − l/d and an erasure decoding threshold of an irregular
one-dimensional LDPC code ensemble with variable resp. check degree distributions (from node perspective) given by

L̃(x) = xl , R̃(x) =

r
∑

i=0

T
(n,r,d)
i xi.

Proof: From (4), the check-degree distribution of the induced graph is given byR̃(x). The degree distribution of variable
nodes is unchanged in the induced graph, since removed (induced degree0) check nodes affect only variable nodes outside the
induced graph. To prove that finite-depth computation graphs are trees with high probability we essentially repeat the proof
of Theorem 1.
Note thatR̃i 6= 0 only if d− (n− r) 6 i 6 r. The right inequality trivially follows from the fact that there are no more than
r non-failing columns for a check node to be connected to. The left inequality follows from the fact that at mostn− r edges
out of the check node’sd edges are connected to variable nodes in non-failing columns.

Check degreed < n can improve decoding performance over codes with check degreed = n with the same rate. This is
because a lower check degree allows to reduce the variable degree, which in general results in better BP thresholds. Example 2
compares two such codes.

Example 2.Forn = 16, we compare two possible ensembles: the(3, 12) and(4, 16 = n) regular ensembles. Both have the same
rate = 3/4. Figure5 plots the decoding thresholds for3 6 r 6 6. The(3, 12) ensemble (square markers) gives better thresholds
for everyr compared to the(4, 16) ensemble (dot markers).

æ

æ

æ

æ

à

à

à

à

2 3 4 5 6

0.5

0.6

0.7

0.8

0.9

1.0
ǫ

r

Figure 5. Threshold value comparison between degreen (dots) and degreed < n (squares) ensembles.

Note that unlike check degreen regular codes whose thresholds are only a function ofl, codes with check-degreed < n have
thresholds that depend on the lengthn as well, due to theT (n,r,d)

i coefficients in their induced degree distributions, which
depend onn.
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D. Irregular codes

The most general array-code ensembles have irregular degrees in the original code graph as well, and not only in the induced
graph as in the previous sub-section. We now examine the induced decoding graphs of such ensembles. LetL(x) =

∑

lmax

l=1 Llx
l

andR(x) =
∑

dmax

d=1 Rdx
d be the node-perspective variable and check degree distributions, respectively. A given check node

with degreed will have induced degreei according to the distribution in (4). Now considering all possible degreesd in the
degree distributionR(x), we obtain the induced check-degree distribution

R̃(x) =

dmax
∑

d=1

Rd

d
∑

i=0

T
(n,r,d)
i xi =

dmax
∑

i=0

xi
dmax
∑

d=i

Rd · T
(n,r,d)
i ,

where the last equality is obtained by reversing the order ofsummation. Therefore, theith coefficient of the induced check-
degree distribution equals in the irregular case

R̃i =

dmax
∑

d=1

Rd · T
(n,r,d)
i =

dmax
∑

d=1

Rd

(

r
i

)(

n−r
d−i

)

(

n
d

) . (5)

(Starting the summation atd = 1 instead ofd = i simplifies the expression without changing the sum.) The expression above
leads to the following theorem.

Theorem 3.An (L(x), R(x))-irregular array-code ensemble has design rate1 − L′(1)/R′(1) and an erasure decoding threshold
of an irregular one-dimensional LDPC code ensemble with variable and check degree distributions

L̃(x) = L(x) , R̃(x) =

r
∑

i=0

(

dmax
∑

d=1

Rd · T
(n,r,d)
i

)

xi.

Proof: The induced check-degree distributioñR(x) is proved in the preceding analysis. As in the regular case, the variable
degree distribution is unchanged in the induced graph, since removed check nodes affect only variable nodes outside the
induced graph. Convergence to tree ensembles is proved identically to Theorem 1.
TheT (n,r,d)

i coefficients thus induce a linear transformation on the design check-degree distribution, as formalized in the sequel.
Let R̃ = [R̃0, . . . , R̃r] be the vector of induced degree-distribution probabilities. When the inducing distributionT (n,r,d)

i is
viewed as admax × (r + 1) matrix T n,r = {td,i}, then the induced check-degree distribution is obtained from the design
check-degree distributionR = [R1, . . . , Rdmax

] by the linear transformation

R̃ = R · T n,r. (6)

V. PROBABILISTICALLY MDS ARRAY CODES

Array-code ensembles are better thanr-erasure-correcting MDS codes in tolerating more thanr column failures. But so far
in the paper, array-code ensembles failed to match the threshold of ǫr = 1 that MDS codes have withrate = 1 − r/n (cf.
Figure 4). It is thus the purpose of this section to close thisgap and provide array-code ensembles withrate = 1− r/n and
a threshold approachingǫr = 1. Such codes are called hereinprobabilistically MDS codes.

Definition 5. An array-code ensemble isprobabilistically MDS if for some integerr, the ensemble rate equals1− r/n, and for
anyr failing columns it can recover with high probability from any erasure probabilityǫr < 1.

It is clear that tolerating arbitrary erasure probabilities ǫr < 1 in r columns cannot be achieved with redundancy smaller than
r/n. Hence similarly to standard MDS codes, probabilisticallyMDS codes attain the optimal redundancy for their erasure-
correction capabilities. Formulating the probabilistically MDS property in terms of the threshold gives the following proposition.

Proposition 4. An array-code ensemble is probabilistically MDS if and onlyif it has rate1 − r/n and its induced degree
distributions satisfy

λ̃(1− ρ̃(1 − x)) = x, ∀x∈ (0, 1]. (7)

Proof: If λ̃(1 − ρ̃(1 − x)) = x, then multiplying the left-hand side by anyǫr < 1 will give ǫrλ̃(1 − ρ̃(1 − x)) < x, as
required by the threshold definition of (3). To show necessity, suppose that̃λ(1− ρ̃(1− x0)) > x0 for somex0 ∈ (0, 1]. Then
by substitutingǫr = x0/λ̃(1 − ρ̃(1− x0)) we get thatǫrλ̃(1− ρ̃(1 − x0)) = x0, violating the threshold definition of (3).
The existence of explicit probabilistically MDS array-code ensembles is proved in the following sub-sections.
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A. Check-degree n probabilistically MDS codes

The first probabilistically MDS code construction we present is a check-regular array-code ensemble with check degree
n. It is also the simplest construction, since degreen check nodes induce degreer checks in the decoding graph. More
general constructions in subsequent sub-sections requireanalysis and manipulation of non-trivial combinatorial coefficients in
the induced degree distribution polynomials.

Proposition 5.The degree distributions given by

ρ(x) = xn−1, λ(x) = 1− (1− x)1/(r−1) (8)

define a probabilistically MDS code ensemble forr failed columns.

Proof: Using the standard formula to calculate the ensemble rate weget

rate = 1−

∫ 1

0 ρ(x)dx
∫ 1

0
λ(x)dx

= 1−
1/n

1/r
= 1−

r

n
.

Now for r failed columns the induced degree distributions are

ρ̃(x) = xr−1, λ̃(x) = 1− (1 − x)1/(r−1).

It is easy to verify that̃λ(1 − ρ̃(1 − x)) = x, and hencex > ǫλ̃(1 − ρ̃(1 − x)) for all ǫ < 1. Hence the ensemble is
probabilistically MDS.
The array-code ensemble of Proposition 5 has a check-regular degree distribution (all the check nodes have equal degreen), and
is a close relative of the check-regular matched distributions used in the construction of capacity-approaching one-dimensional
LDPC codes [17]. Unlike in the one-dimensional case, here itis not necessary to modify the distributions (8) to getrate > 0.
In the two-dimensional construction, the distributions (8) only have theirinduced rate equal to0, with their ensemble rate
reaching the optimum of1− r/n.

It is now interesting to examine the performance of the aforementioned probabilistically MDS code when the number of
failed columns iss > r. For that, we replace ther with s in the induced check-degree distributionρ̃(x), but leave the original
(design parameter)r in the variable-degree distributioñλ(x). The modified check-degree distribution will be markedρ̃s(x).
Now with ρ̃s(x) = xs−1 and λ̃(x) = 1 − (1 − x)1/(r−1) we need to findǫs as the largestǫ such thatx > ǫλ̃(1− ρ̃s(1 − x))
for everyx∈ (0, ǫ]. Substitutingρ̃s, λ̃, we get

ǫs = sup
{

ǫ : x > ǫ
[

1− (1 − x)
s−1

r−1

]

, ∀x∈ (0, ǫ]
}

Theorem 6.For s > r column failures, a code constructed from the ensemble of Proposition5 can with high probability recover
from any erasure probabilityǫ < ǫs = (r − 1)/(s− 1).

Proof: The cases = r was proved in Proposition 5; now assumes > r. We need to find the supremum ofǫ such that
x > ǫ[1− (1 − x)

s−1

r−1 ] for everyx∈ (0, ǫ]. For convenience, we change variablesy := 1− x andσ := (s− 1)/(r − 1). Now
the condition becomes

1− y > ǫ[1− yσ], ∀y∈ [1− ǫ, 1) (9)

Let f(y) = 1 − y − ǫ(1 − yσ). It is easy to verify thatf is convex and thatf(1) = 0. So to getf(y) > 0 for y < 1 (as
required by (9)), it is both sufficient and necessary to havef ′(y) < 0 for all 0 < y < 1 (a zero first derivative at somey0 < 1
implies a local minimum andf(y) < 0 for all y0 < y < 1). The above gives the condition

f ′(y) = σǫyσ−1 − 1 < 0, y ∈ (0, 1),

or

ǫ <
1

σ
=

r − 1

s− 1
, ǫs.

Note that induced-rate considerations imply the followingupper bound onǫs whens column failures occur:

ǫs < 1− rate(λ̃(x), ρ̃s(x)) =

∫ 1

0
ρ̃s(x)dx

∫ 1

0 λ̃(x)dx
=

r

s
. (10)

Therefore, since(r − 1)/(s − 1) < r/s for all s > r, the decoding performance of the check-regular array-codeensemble
has a lower threshold than what in principle can be achieved given its induced rate. It is an interesting open problem whether
there exist probabilistically MDS codes that have optimal thresholds fors > r as well (or if tighter than (10) upper bounds exist).
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B. Check-degree d < n probabilistically MDS codes

Before constructively presenting probabilistically MDS codes with regular check-degreed < n, we give a result that limits
the parametersd, n, r for which such codes are possible.

Proposition 7.A probabilistically MDS check-regular array-code ensemble must haved > n− r + 1.

Proof: If d 6 n− r + 1, thend− 1 6 n− r, and by (5) we havẽR1 > 0. This also implies̃ρ1 > 0, which in turn implies
ρ̃(0) > 0. Therefore, substitutingx = 1 in the right-hand side of (7) gives̃λ(1− ρ̃(0)) < 1 = x, in violation with the equality
condition of Proposition 4.
The next theorem shows that for the special case ofr 6 4, the necessary condition in Proposition 7 is also sufficientfor the
existence of regular check-degreed < n probabilistically MDS array codes.

Theorem 8. For anyr 6 4, there exists a probabilistically MDS array-code ensemblewith regular check degreed, for any
d > n− r + 1.

Proof: For a check-regular degreed ensemble the node-perspective degree distribution polynomial is

R(x) = xd.

The induced degree distribution, given the parametersn, r, is (from Theorem 2):

R̃(x) =
1
(

n
d

)

r
∑

i=0

(

r

i

)(

n− r

d− i

)

xi. (11)

From edge perspective, the induced degree-distribution polynomial is

ρ̃(x) =

r
∑

i=1

ρ̃ix
i−1 =

R̃′(x)

R̃′(1)

=
1

(

n
d

)

R̃′(1)

r
∑

i=1

i

(

r

i

)(

n− r

d− i

)

xi−1. (12)

Note that the conditiond > n − r + 1 guarantees that̃ρ1 = 0, as shown to be necessary in Proposition 7. The next step to
obtain a probabilistically MDS ensemble is to find a variable-degree distributioñλ(x) such that

λ̃(1− ρ̃(1− x)) = x,

which will guarantee correcting anyǫ < 1 fraction of erasures inr columns. The existence of such a degree distribution
polynomial λ̃(x) can be established with the aid of the following lemma from [13].

Lemma 9.[13] For a polynomialf(x) = f1x + f2x
2 + f3x

3 with f(1) = 1 and∀i, fi > 0, there exists a polynomialg(x) with
g(1) = 1 and∀i, gi > 0 such thatg(1− f(1− x)) = x if

2f ′(1)f ′′′(1) 6 f ′′(1)2.

(f ′ is the standard derivative off(x) with respect tox, and similarlyf ′′ andf ′′′ are the second and third derivatives, respectively.)

Translation of Lemma 9’s sufficient condition to a conditionon the coefficients of̃ρ(x) gives

Lemma 10.For a check (induced) degree-distribution polynomialρ̃(x) = ρ̃2x+ ρ̃3x
2 + ρ̃4x

3 (ρ̃(1) = 1, ∀i, ρ̃i > 0), there exists
a variable degree distribution polynomialλ̃(x) (λ̃(1) = 1, ∀i, λ̃i > 0) such that̃λ(1− ρ̃(1 − x)) = x if

3ρ̃2ρ̃4 6 ρ̃23. (13)

Proof: Taking f = ρ̃ in Lemma 9 and substituting

f ′(1) = ρ̃2 + 2ρ̃3 + 3ρ̃4, f ′′(1) = 2ρ̃3 + 6ρ̃4, f ′′′(1) = 6ρ̃4

gives the sufficient condition (13).
It is now required to prove that the sufficient condition of Lemma 10 is met for anyn and d covered by the theorem’s
assumptions.
DenoteZ =

(

n
d

)

R̃′(1). If r < 4, ρ̃4 = 0 and the sufficient condition (13) is met trivially, therefore we assumer = 4.
Substitutingr = 4 in (12) gives

Zρ̃2 = 12

(

n− 4

d− 2

)

, Zρ̃3 = 12

(

n− 4

d− 3

)

, Zρ̃4 = 4

(

n− 4

d− 4

)
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To prove thatρ̃2, ρ̃3, ρ̃4 above satisfy the sufficient condition (13), we derive successively simpler equivalent conditions

3ρ̃2ρ̃4 6 ρ̃23
m

144

Z2

(

n− 4

d− 2

)(

n− 4

d− 4

)

6
144

Z2

(

n− 4

d− 3

)(

n− 4

d− 3

)

m
(n− d− 1)!(n− d− 1)!

(d− 2)!(d− 4)!
6

(n− d− 2)!(n− d)!

(d− 3)!(d− 3)!

m

(d− 3)(n− d− 1) 6 (d− 2)(n− d)

m

nd− d2 − d− 3n+ 3d+ 3 6 nd− d2 − 2n+ 2d

m

3 6 n.

All the transitions follow simple arithmetic operations toboth sides of the inequality. Therefore, the conditionn > 3 is
equivalent to (13), and is sufficient for the existence of thedesired variable-degree distribution polynomialλ̃(x). Since codes
with fewer than3 columns are not very interesting,n > 3 is met for every usefuld, n parameters.
The final step in proving the probabilistic-MDS property is showing that the rate of the code ensemble equals1− r/n. This
fact is established in the following Proposition 11.

Proposition 11.Let ρ(x) = xd−1 induce a check degree distributionρ̃(x) as in (12). Let λ(x) be a variable-degree distribution
satisfyingλ(1− ρ̃(1− x)) = x. Then

1−

∫ 1

0
ρ(x)dx

∫ 1

0 λ(x)dx
= 1−

r

n
.

Proof: We first observe that ifλ(1 − ρ̃(1 − x)) = x then
∫ 1

0
λ(x)dx =

∫ 1

0
ρ̃(x)dx. This is seen by rewriting the former as

1− ρ̃(1− x) = λ−1(x) and the fact that
∫ 1

0
λ−1(x)dx = 1−

∫ 1

0
λ(x)dx. So we are now to prove the equivalent statement

∫ 1

0
ρ(x)dx

∫ 1

0 ρ̃(x)dx
=

r

n
. (14)

The inverses of the numerator and denominator of the left-hand side are, respectively,

1
∫ 1

0
ρ(x)dx

= d

1
∫ 1

0
ρ̃(x)dx

=
1
(

n
d

)

r
∑

i=1

i

(

r

i

)(

n− r

d− i

)

,

where the latter follows from the relation
∫ 1

0
ρ̃(x)dx = 1/R̃′(1) and from (11). We now write

1
∫ 1

0 ρ̃(x)dx
=

1
(

n
d

)

r
∑

i=1

i

(

r

i

)(

n− r

d− i

)

=
r
(

n
d

)

r
∑

i=1

i

r

(

r

i

)(

n− r

d− i

)

=
r
(

n
d

)

r
∑

i=1

(

r − 1

i− 1

)(

n− r

d− i

)

(15)

=
r
(

n
d

)

(

n− 1

d− 1

)

= r
d

n
.

The sum in (15) counts all column combinations such that one column is a fixed failed column,i−1 columns are chosen from
the remainingr−1 failed columns, andd− i columns are chosen from the non-failed columns. Sincei−1 takes the full range
from 0 to r − 1, (15) sums all combinations of choosingd− 1 columns from then− 1 columns that are not the fixed failed
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column. Hence the
(

n−1
d−1

)

in the subsequent expression. All the other transitions areelementary arithmetic manipulations.

Now we arrived at the needed result
∫ 1

0
ρ(x)dx/

∫ 1

0
ρ̃(x)dx = r/n

At the heart of Proposition 11 lies (14), the fact that the ratio between the average degree of a check node in the code graph
(
∫ 1

0
ρ(x)dx)−1, and the average degree of a check node in the induced graph(

∫ 1

0
ρ̃(x)dx)−1, is n/r (same as the ratio between

the number of columns in the code block and the number of failing columns seen by the decoder). This fact is true for general
ρ(x), not just regularρ(x) as above. However, since Theorem 8 applies to regularρ(x), the simpler proof of the special case
suffices.

VI. COMPARISON WITH ONE-DIMENSIONAL LDPC CODES

The value of LDPC array codes has been demonstrated in previous sections in two main respects:

1) They correct erasures beyond the designed number of failed columns, unlike traditional array codes (Section IV).
2) Probabilistically MDS codes attain optimal redundancy (Section V).

In this section, it is our objective to show, and theoretically quantify, the value of LDPC array codes in more generalitythan in
previous sections. For this analysis, the erasure-correction performance of LDPC array-code ensembles will be measured using
precise theoretical tools. The generality of the forthcoming study is embodied in its applicability to codes of all parameters,
not just probabilistically MDS ones.

The most natural way to study the performance of LDPC array codes is through acomparison with one-dimensional
LDPC codes. It is possible that for the two-dimensional error model defined in Section II, one may choose to use a standard
one-dimensional LDPC code, i.e., a graph withbn variable nodes drawn from a degree-distribution pair without the one-
neighbor-per-column restriction of Construction 1. Then the key question for the evaluation of LDPC array codes is whether
they provably outperform the alternative choice of one-dimensional LDPC codes, and if so, by how much. As shown in the
remainder of this section, LDPC array codes are provably better than one-dimensional LDPC codes for all parameters, and
their advantage can be quantified analytically.

A. Induced tree ensembles

The decoding performance of codes over the proposed two-dimensional erasure model is determined by the structure of
the decoding graph induced by ther failing columns. For that reason, the performance analysisin previous sections has
made extensive use of the codes’ induced degree distributions. It is apparent that further theoretical understanding of the
codes’ performance depends on our ability to analyze and manipulate induced degree distributions with general parameters.
Unfortunately, the coefficients of the hypergeometric distribution as given in (5) are calculated as multiplications and divisions
of different binomial coefficients, which are difficult to deal with analytically. To go around this difficulty, we refine our view
of induced degree distributions by examining theinduced tree ensembles of the codes. Recall [15] that a tree ensemble is
the asymptotic version of the decoding-graph ensemble, consisting of rooted bi-partite trees whose degrees are distributed
according to some variable/check degree-distribution pair. For notational simplicity, in our discussion on tree ensembles we
focus on regular code ensembles with check degreed. However, similar constructs and analysis can be provided for irregular
check degrees as well.
The first tree ensemble we examine is the one induced by the regular Construction 1.

Tree Ensemble 1The constrained random sampling in Construction1 implies that thed variable nodes connected to a check
node reside ind distinct columns, which form a uniformly selected size-d subset of the column set{1, . . . , n}. Given a set ofr
failing columns, the intersection sizei between the size-r failing subset and a random size-d subset follows the hypergeometric
distribution

P�

i =

(

r
i

)(

n−r
d−i

)

(

n
d

) . (16)

Hence (16) is the induced check-degree distribution of the tree ensemble of Construction1. The superscript� represents a
two-dimensional ensemble.

As noted earlier, analyzing Tree Ensemble 1 above is difficult due to the combinatorial form of (16). For that reason, we
propose Tree Ensemble 2 as a slight variation of Tree Ensemble 1 that is more amenable to analysis.

Tree Ensemble 2 Instead of choosing the neighboring columns of a check node as size-d subsets of{1, . . . , n}, in the modified
tree ensemble a check node connects to each column in{1, . . . , n} i.i.d. with probabilityδ = d/n. The result of this modified
tree ensemble is that the intersection sizei between the size-r failing subset and the set of neighboring columns in the treenow
follows the binomial distribution

P⊡

i =

(

r

i

)

δi(1− δ)r−i. (17)

The superscript⊡ represents a modified two-dimensional ensemble.
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Note that in Tree Ensemble 2 the check degrees ared only in expectation, so if we change the graph sampling of Construction 1
to obtain Tree Ensemble 2, the code graph becomes not strictly check-regular. Nevertheless, this minor deviation from regularity
does not impose any practical implementation issue.
The last tree ensemble we consider is the one induced by standard one-dimensional LDPC codes drawn with no column
restrictions. It is given in Tree Ensemble 3.

Tree Ensemble 3 In a regular check-degreed one-dimensional LDPC code a check node may connect to two (ormore) variable
nodes in the same column. In particular, given a size-r subset of columns, each edge connects to a variable node in this subset i.i.d.
with probabilityβ = r/n. As a result, in the induced tree ensemble of one-dimensional codes, the number of edgesi connecting
to variable nodes in the failing subset follows the binomialdistribution

P−

i =

(

d

i

)

βi(1− β)d−i. (18)

The superscript− represents a one-dimensional ensemble.

Note that both Tree Ensemble 2 and Tree Ensemble 3 result in binomial check-degree distributions in the induced graphs, but
with different parameters. The binomial distributions of (17) and (18) are well-known approximations [6] for the hypergeometric
distribution (16). In the remainder of the section, our objective is to compare the 2D Tree Ensemble 2 and the 1D Tree
Ensemble 3 in terms of their iterative-decoding performance.

B. Iterative-decoding analysis of induced tree ensembles

As we replaced the unwieldy hypergeometric distributionP�
i of (16) with the more manageable binomial distributionP⊡

i

in (17), now we can express the induced check-degree distribution polynomial (from node perspective) of LDPC array codes
as

R̃⊡(x) =
r
∑

i=0

(

r

i

)

δi(1− δ)r−ixi = (1 − δ + δx)r . (19)

In a similar way, the induced check-degree distribution polynomial of one-dimensional LDPC codes is

R̃−(x) =

d
∑

i=0

(

d

i

)

βi(1 − β)d−ixi = (1− β + βx)d. (20)

Let aR̃⊡
be the average induced check degree in Tree Ensemble 2, andaR̃−

be the average induced check degree in Tree
Ensemble 3. A first attempt to differentiate between Tree Ensemble 2 and Tree Ensemble 3 – based on their average induced
check degree – turns unsuccessful, as shown in the followingproposition.

Proposition 12.Tree Ensemble2 and Tree Ensemble3 have the same average induced check degree

aR̃⊡
= aR̃−

=
rd

n
.

Proof: By definition we haveaR̃⊡
= R̃′⊡(1) andaR̃−

= R̃′−(1). Taking the derivative of (19) and (20) with respect tox
and substitutingx = 1, β = r/n, δ = d/n, we get

R̃′⊡(1) = R̃′−(1) =
rd

n
.

The fact that the 2D and 1D induced tree ensembles have the same average degree means that we cannot use degree-based
arguments to show a performance gap in favor of the 2D construction. A more refined quantitative differentiation betweenthe
1D and 2D induced degree distributions is given in the following proposition.

Proposition 13.Given code parametersd,n, andr < d failed columns, the degree distributions of the induced 1D and 2D tree
ensembles satisfy

R̃⊡(x) < R̃−(x),

for all x∈ [0, 1).

Proof: We substitutey = 1− x in the degree distribution polynomials at the right-hand side of (19) and (20); then use the
following lemma.

Lemma 14.For anyδ > β, δ, β ∈ (0, 1]
(1− δy)β < (1 − βy)δ,

for all y ∈ (0, 1].
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Proof: We expand the two sides of the inequality using fractional binomial coefficients.

(1− δy)β = 1−

(

β

1

)

δy +

(

β

2

)

δ2y2 −

(

β

3

)

δ3y3 + · · · (21)

and

(1 − βy)δ = 1−

(

δ

1

)

βy +

(

δ

2

)

β2y2 −

(

δ

3

)

β3y3 + · · · (22)

The expansion of fractional binomial coefficient is given by
(

α

ℓ

)

=
α(α − 1) · · · (α − ℓ+ 1)

ℓ!

= (−1)ℓ−1α

ℓ

(

1−
α

ℓ− 1

)

· · ·
(

1−
α

2

)

(1− α) .

A simple observation is that forδ > β, we have1
β

(

β
ℓ

)

> 1
δ

(

δ
ℓ

)

for odd ℓ, and 1
β

(

β
ℓ

)

< 1
δ

(

δ
ℓ

)

for evenℓ. As a result, we have
for odd ℓ

(

β

ℓ

)

δℓ =
1

β

(

β

ℓ

)

δℓβ >
1

δ

(

δ

ℓ

)

δℓβ >

(

δ

ℓ

)

βℓ,

where the last inequality follows directly fromδ > β. This proves that the coefficients of odd powers ofy are smaller in (21)
than in (22). In a similar way we have for evenℓ

(

β

ℓ

)

δℓ <

(

δ

ℓ

)

βℓ,

which proves that the coefficients of non-zero even powers ofy are smaller in (21) than in (22). This proves that

(1− δy)β < (1 − βy)δ.

To prove the proposition, we recall that
R̃⊡(x) = R̃⊡(1− y) = (1 − δy)βn

and
R̃−(x) = R̃−(1− y) = (1 − βy)δn,

so (1− δy)β < (1− βy)δ from Lemma 14 impliesR̃⊡(x) < R̃−(x).
With the proven gap betweeñR⊡(x) and R̃−(x) given by Proposition 13, we are now ready to prove the main result of this
section.

Theorem 15.For any code parametersn, d, and a number of failed columnsr < d, the rate of a 1D check-regular ensemble is
bounded strictly below the rate of a 2D ensemble for the same erasure probabilityǫ.

Proof: To prove a gap in the maximal rate between 1D and 2D codes we usea known result from the theory of one-
dimensional LDPC codes.

Lemma 16. [17] For a code ensemble with check-degree distribution polynomialR(x), average check-node degreeaR, and
average variable-node degreeaL, successful BP decoding is possible if the erasure probability ǫ satisfies

ǫ <
aL
aR

(1−R(1− ǫ)).

Substituting the parameters of the induced decoding graphsinto Lemma 16, we get two upper bounds. One for the 1D code

ǫ <
aL−

aR̃−

(1 − R̃−(1 − ǫ)),

and one for the 2D code
ǫ <

aL⊡

aR̃⊡

(1 − R̃⊡(1 − ǫ)).

SubstitutingaR̃⊡
= aR̃−

= rd
n and rearranging, we get

aL− >
rdǫ

n(1− R̃−(1− ǫ))
,

and

aL⊡ >
rdǫ

n(1− R̃⊡(1− ǫ))
.
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The average check degree in thecode graph is the same for the 1D and 2D construction

aR− = aR⊡ = d.

As a result, the lower bounds onaL− and aL⊡ readily translate to upper bounds on the respective code rates through the
relation rate = 1− aL

aR
.

rate1D < 1−
rǫ

n(1− R̃−(1− ǫ))
, (23)

and
rate2D < 1−

rǫ

n(1− R̃⊡(1− ǫ))
. (24)

Having proved in Proposition 13 that̃R⊡(1− ǫ) < R̃−(1− ǫ), we establish that the right-hand side of (23) is strictly smaller
than that of (24). A gap between the allowable rates of 1D and 2D codes is now proven.
The implication from Theorem 15 is that for the two-dimensional r, ǫ erasure model proposed in Section II, two-dimensional
codes may give better rates than standard one-dimensional codes that ignore the structure of the array. While the above only
shows a gap in the upper bound on the rates, it is possible to construct explicit 2D ensembles with rates that exceed the
upper bound for 1D codes. For example, the special cased = n (δ = 1), ǫ = 1, for which we have shown codes with
rate2D = 1− r/n (Proposition 5), has a strictly smaller rate upper bound for1D codes.

It is important to note that our re-definition of 2D codes as Tree Ensemble 2 instead of Tree Ensemble 1 was done solely
to gain analytic tractability in proving results such as Theorem 15. In fact, in all the parameters that we checked, we have
found thatR̃�(x) < R̃⊡(x) < R̃−(x) for all x∈ [0, 1), hence the original 2D sampling (Construction 1) giving rise to Tree
Ensemble 1 is expected to give even better rates than Tree Ensemble 2 analyzed in this section.

C. Experimental validation

In addition to the theoretical advantage of 2D codes proved in the previous sub-section, we now want to see an example
of this advantage on a real code. To get such as example, we took an array with dimensionsn = 16, b = 1000. With fixed
variable-node degreel = 3 and fixed check-node degreed = 12, we randomly drew a 2D code according to Construction 1,
and a 1D code similarly, only without the column restrictions. For the case ofr = 6 failing columns, we simulated i.i.d.
erasures within failing columns with varying erasure probabilities ǫ. For each of the codes we measured the decoding-success
percentage across many channel instances, each randomly choosing ther failing columns and the erasures within columns.
Decoding success is defined as recovering the entire erased bits after a fixed number of iterations. The results are given in
Figure 6. It can be seen that the 2D code outperforms the 1D code in manyǫ points, never performing worse. The theoretical
2D threshold forn = 16, l = 3, d = 12, r = 6 is marked as a vertical solid line atǫ = 0.56.
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Figure 6. Experimental comparison between decoding success of a 2D code (star markers) and a 1D code (square markers). For each
in-column erasure probabilityǫ the plots mark the percentage of decoding instances that resulted in full recovery of erased bits.

VII. C ONCLUSION

The results of the paper serve to lay out a new theoretical framework for LDPC codes over two-dimensional arrays. From
these results many open questions arise. The main open problem on the constructive side is the search for code ensembles that
give optimal decoding performance for multipler values. More upper bounds on code rates given correction parameters are
also important to come by. From practical perspective, it isbeneficial to consider similar codes that are systematic.



16

VIII. A CKNOWLEDGEMENT

We would like to thank Uri Gertzek and Gali Granot for the implementation and simulations that led to the results of
Figure 6. We also want to thank Igal Sason for valuable discussions.

REFERENCES

[1] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes with independent parity symbols,”IEEE Transactions on Information Theory, vol. 42, no. 2, pp.
529–542, 1996.

[2] M. Blaum, J. L. Fan, and L. Xu, “Soft decoding of several classes of array codes,” inProc. of the IEEE International Symposium on Info. Theory,
Lausanne, Switzerland, June 2002, p. 368.

[3] M. Blaum, P. Farrell, and H. van Tilborg, “Array codes,”Handbook of Coding Theory, V.S. Pless and W.C. Huffman, pp. 1855–1909, 1998.
[4] M. Blaum, J. Hafner, and S. Hetzler, “Partial-MDS codes and their application to RAID type of architectures,” Arxiv.org, to appear in IEEE Transactions

on Information Theory, http://arxiv.org/abs/1205.0997,Tech. Rep. cs.IT/1205.0997, 2012.
[5] M. Blaum and R. Roth, “New array codes for multiple phasedburst correction,”IEEE Transactions on Information Theory, vol. 39, no. 1, pp. 66–77,

1993.
[6] H. Brunk, J. Holstein, and F. Williams, “A comparison of binomial approximations to the hypergeometric distribution,” The American Statistician, vol. 22,

no. 1, pp. 24–26, 1968.
[7] Y. Cassuto and J. Bruck, “Low-complexity array codes forrandom and clustered 4-erasures,”IEEE Transactions on Information Theory, vol. 58, no. 1,

pp. 146–158, 2012.
[8] Y. Cassuto and A. Shokrollahi, “Array-code ensembles -or- two-dimensional LDPC codes,” inProc. of the IEEE International Symposium on Info.

Theory, St. Petersburg, Russia, July 2011, pp. 518–522.
[9] J. L. Fan, “Array codes as low-density parity check codes,” in Proc. of the Intl. Symp. on Turbo Codes, 2000, pp. 543–546.

[10] W. Feller, An Introduction to Probability Theory and Its Applications Volume I, third edition. Wiley, 1968.
[11] M. Luby, M. Mitzenmacher, and A. Shokrollahi, “Analysis of random processes via and-or trees,” inProc. of the 9th Annual ACM SIAM Symposium on

Discrete Algorithms, 1998, pp. 364–373.
[12] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Efficient erasure correcting codes,”IEEE Transactions on Information Theory, vol. 47,

no. 2, pp. 569–584, 2001.
[13] P. Oswald and A. Shokrollahi, “Capacity-achieving sequences for the erasure channel,”IEEE Transactions on Information Theory, vol. 48, no. 12, pp.

3017–3028, 2002.
[14] D. A. Patterson, G. A. Gibson, and R. Katz, “A case for redundant arrays of inexpensive disks,” inProc. SIGMOD Int. Conf. Data Management, 1988,

pp. 109–116.
[15] T. Richardson and R. Urbanke,Modern coding theory. New York USA: Cambridge University Press, 2008.
[16] R. Roth and P. Vontobel, “Coding for combined block-symbol error correction,” inProc. of the IEEE International Symposium on Info. Theory, Istanbul,

Turkey, July 2013, pp. 1217–1221.
[17] A. Shokrollahi, “New sequences of linear time erasure codes approaching the channel capacity,” inProc. 13th International Symposium on Applied

Algebra, Algebraic Algorithms, and Error-Correcting Codes. Lecture Notes in Computer Science 1719, 1999, pp. 65–76.


	a.pdf
	IRWIN AND JOAN JACOBS




