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LDPC Codes for Two-Dimensional Arrays

Yuval CassutoMember, IEEE, and Amin ShokrollahiFellow, IEEE

Abstract

Binary codes over two-dimensional arrays are very usefullate storage, where each array column represents a storage
device or unit that may suffer failure. In this paper we pmpa@ new framework for probabilistic construction of codes o
two-dimensional arrays. Instead of a pure combinatoriaswre model used in traditional array codes, we propose admix
combinatorial-probabilistic model of limiting the numbefrcolumn failures, and assuming a binary erasure chanreddh failing
column. For this model we give code constructions and aetaihalysis that allow sustaining a large number of coluniorés
with graceful degradation in the fraction of erasures adatgle in failing columns. Another advantage of the new frauork is
that it uses low complexity iterative decoding. The key comgnt in the analysis of the new codes is to analyze the degodi
graphs induced by the failed columns, and infer the decoderformance as a function of the code design parameterseks w
as the array size and failure parameters. A particularlgr@sting class of codes, called probabilistically MDS yarades, gives
fault-tolerance that is equivalent to traditional MDS grades. The results also include a proof that the two-diieas codes
outperform standard one-dimensional LDPC codes.

I. INTRODUCTION

Linear codes constructed from low density matrices are thestone of contemporary coding theory, with huge impact on
both theoretical research and practical applications.spagsity of the code matrices offers a compelling compjeadtvantage
in implementation, and achieving this low complexity witptionality in redundancy is the great achievement of a larggyb
of deep research. Interestingly, two separate codingryhigelds aim at the above objective of developing low-densitdes
with good information efficiency.
One is the field ofarray codes [3]. Array codes, defined over two-dimensional binary astayse low-density parity-check
matrices to construct codes for erasures or errors of fulirons. The low-density property offers complexity benefits
encoding and decoding operations. Hence the task of arrdgscts to combat column-level erasures/errors, while being
defined by operations over smaller information units (bitsmall groups of bits). The ultimate goal of array-code aecke
is code families that are Maximum Distance Separable (MB&nfthe column perspective, thus having optimal redundancy
for a given column correction requirement. Array codes aigely used in practice, being employed as a central elemient o
RAID (Redundant Arrays of Inexpensive Disks) [14] storagstesms. Each array column then represents an individuago
device, whose failure is modeled as a column erasure.
The second, and better-known low-density coding fielthusdensity parity-check (LDPC) codes under iterative decoding [15].
Without need for detailed introduction, in this area theeahije is to construct low-density (one dimensional) catthes will
decode well under sub-optimal iterative decoding algarih

So far, despite the structural similarities, the two lowsigy coding fields evolved in essential separation. Arragles have
concentrated on algebraic constructions and decodingitiiges that guarantee fixed numbers of column erasures ovall s
array dimensions. In contrast, the theory of iterativelgatied low-density parity-check codes has sought prolstibilcode
constructions that with high probability have good iteratilecoding performance in the limit of large block lengtPevious
work exists where iterative decoding of known array codesr ane-dimensional channels is experimentally examingd4f
but no attempt has been made (to the best of our knowledge)rstract new array codes for iterative decoding over two-
dimensional channels. Such constructions are highly matai/by the current state of matters in array-code theorypaactice.
Algebraic array codes rigidly assume that columns are drasuill, while in practice many storage devices have failonodes
that render only part of their data inaccessible. This gtiemor model introduces significant complexity penaltigith encoding
and decoding complexities that steeply grow with the nundferolumn erasures. Moreover, algebraic array codes gte@an
correction of a certain number of column erasures, with apstransition to failure if the specified number of columnsenaes
is exceeded. These issues have triggered a recent line &faoistructing array codes for combinations of full-coluamd
individual-symbol erasures (and errors) [4], [16].

For the same purpose of targeting more realistic erasuigsiage arrays, the study in this paper proposes the firaefrerk
for construction and analysis of two-dimensional arrayesodnder iterative decoding. The new framework merges tluks fie
array coding and LDPC coding in the sense that it applies #&p @onstruction and analysis tools of LDPC codes to an error
model very natural for array codes. The outcome from thim&aork are codes that can extend the fault tolerance ofggtora
arrays with complexities significantly lower than what ddggac array codes can achieve. The new framework comptises t
main components

1) An erasure model that combines an integer bound on the euoflfailing columns with an erasure probability within
failing columns.
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2) A probabilistic code construction that considers the-timensional array structure when choosing parity groups.
3) Performance analysis using the decoding graphs indugedtasure events under the model in 1.

The majority of the paper is devoted to the theoretical perémce analysis of the new codes over the new channel maadel. T
main challenge to analysis in this framework is the intrdgtucof combinatorial objects (originating from the integeimber of
failing columns) into the probabilistic analysis of codesembles under random erasures. Due to the non-uniformeyasiure
probability across the array bits, the graph observed byd#eoder is substantially different from the graph of theigtresd
code. Hence analysis must accommodate the parametersagfsize and failure cardinality in addition to the parameief
the code itself.

We now detail the paper’'s content and main contributiongti®e Il defines the coding structure as a two-dimensional
array with dimension$ x n. The erasure model for the array allows uprtqout of then) columns to fail, and in each
failing column bits are erased i.i.d. with probability The number of columns is assumed to be a parameter of the code,
and for the sake of analysis, the column sbzis assumed to grow to infinity. This mirrors practical sta&aystems having
a given number of nodes, but whose individual storage ctipa@re large (and constantly growing). In Section Il weegi
code constructions for the two-dimensional erasure madkted. constructions are given as code ensembles, from whidbsco
are drawn at random. The code ensembles have the same flastamdard one-dimensional LDPC ensembles, only with an
important additional property of allowing a check node toéat most one neighbor from each column. This property is the
key to the remainder of the results in the paper. In SectiothB/codes are analyzed over the two-dimensional erasurelmod
The analysis is centered at an object we call the decodieiced graph. The induced graph is a subgraph of the code graph,
obtained by removing the variable nodes in non-failing ools. Unlike one-dimensional codes, to analyze the perfocmaf
the code it is not sufficient to consider the designed codplgrRather, the performance will be determined by the itdgrp
between the code graph (which we can control) and a transtiminduced by the combinatorial process of takingut of
then columns (which is dictated to us by the model). Section I\esds the most attractive feature of LDPC array codes: their
ability to sustain a large number of column failures, whére in-column erasure probabilitythat they can sustain degrades
gracefully withr. This feature is unique to our scheme, in contrast to thel righffered by traditional array codes. Section V
is devoted to a special class of codes correcting anl fraction of erasures im failing columns, with optimal redundancy
of r/n. The importance of this class of codes is that they offertfanlérance that is equivalent to traditional MDS (maximum
distance separable) array codes. Then in Section VI we moabtically that two-dimensional LDPC ensembles are gape
to one-dimensional ones for the studied erasure model. Thewe establish this result is through explicit rate bourats f
one-dimensional and two-dimensional codes, which arequtdo exhibit a gap in favor of two-dimensional codes.

Il. TwWO-DIMENSIONAL ERASUREMODEL

In the main target application for this work — arrays of stmralevices — erasures are not uniformly distributed aciuess t
two-dimensional array. Rather, a few of the columns, cpuading to failing devices, will have a large number of erasuy
and the rest of the columns, corresponding to non-failingods, will have no erasures at all. We now seek to define argene
two-dimensional erasure model that captures this bi-nitydafl erasure probability. But before considering the eltderization
of erasures over the array, we need to define the structuteeddrray itself.

bn bits are organized in a two dimensional artdy= (a; ;), 1 <i < b, 1 < j < n. Note that in practice eadaly ; may not
be a single bit, but a larger information unit. Neverthelegs assume the basic array unit to be a bit throughout therpape
since XOR operations over bits can be easily extended t@dagts of bits. Since the total capacity of the storage degic
much larger than the desirable unit of XOR operations fordbee, the column size (number of XOR units per devicejll
be assumed large, and growing to infinity for the purpose afyais. The number of columns will however be assumed a
fixed integer. This array structure is natural for real ggeraystems, in which the number of devices stay fixed at therord
of roughly 10s of devices, while the capacities of constitugevices grow rapidly with the scaling of storage densitiEhis
chosen array structure is depicted in Figure 1.

A. Mixed probabilistic-combinatorial erasure model
Let I; be an indicator function for the event that columis in failure state.

)1 if column s fails
‘10 otherwise

In a failing column, every bit is erased independently anthwiqual probability. In a non-failing column, none of théshare
erased. Formally, the erasure probability of bits in colun® specified as a function df;:

. {e if F=1 @

0 otherwise

wheree is a global erasure probability applying to all failed colsn



Figure1. Two-dimensional array with dimensiomsx n, wheren is fixed andb — oc.

To the probabilistic intra-column erasure model above w& add a combinatorial column-failure model. Within an array
of n columns, at most columns are failing. Hence

Hi:Fy =1} < 2)

The rest of the paper is thrust toward the correction of eessthat fall under the model defined jointly by (1) and (2).

IIl. ARRAY CODE ENSEMBLES

The usual approach to combat erasures in two-dimensiorslsais to algebraically construct array codes for a prbedri
number of column failures (see for example [5], [1]; and [7] for a more general columasere model). Algebraic array
codes are defined explicitly, by specifying sets of arragiimns with restricted parity values. In addition, algébaaray codes
aim at the extreme case ef= 1, i.e. all bits are assumed erased in a failing column. In this papespiirast, array codes
are constructegrobabilistically, by specifying ensembles of parity restrictions over th@yarMoreover, the case of interest
here ise < 1, which better describes realistic failure modes in storsygems.

For the two-dimensional erasure model specified by (1) afpdw2 now propose a probabilistic array-code construction.
The resulting codes are two-dimensional variants of thel wiebwn LDPC codes, called hereinDPC array codes or
(interchangeablyjwo-dimensional LDPC codes.

Definition 1. [LDPC Array Codes/2D LDPC Codes]An LDPC array code for arrayt = (a; ;) consists of parity constraints
of the form
iy gy + Qiggy + 0+ Aig gy = 0,

where+ represents the binary XOR operation, ah& n is the degree of the parity constraint. The code has thewailp
properties.
1) The parity-constraint degreglsand the array bits;,, ;.. in each constraint are randomly selected according to some
probability distribution.
2) ‘ A parity constraint has at most one bit from each array colqlmn

The key feature of Definition 1 is Property 2 above, assurlmg ho two or more bits from the same column appear in a
parity constraint. The reasoning behind this feature i tialtiple bits from the same column cause correlated eesswithin
a parity constraint in case this column fails. The benefitthif feature are made more precise in Section VI.

In Figure 2 are illustrated two sample parity constraintsi + as2 + a4,3 + a2.4 = 0 (left XOR node) andis ; + a2 +
a3 + as 4 = 0 (right XOR node). As required by the definition of LDPC arraydes, thej indices (column locations) in
both parity constraints are unique. On the basis of the abdefiaition of LDPC array codes, we proceed to define the codes
as Tanner graphs sampled from array-code ensembles.

A. Regular array-code ensembles

An array-code ensemble is calléidd)-regular if every array bit participates irparity constraints, and every parity constraint
consists ofd array bits, each from a distinct column. Array codes are tooted from array-code ensembles by randomly
sampling|E| = nbl edges in a bipartite graph witN = nb variable nodes andf = nbl/d check nodes (assumingdivides
nbl). The number of outgoing edges from the variable nodes amd the check nodes are called variable-node and check-node
degrees, respectively. The sampling process differs from the stashdraph sampling process of one-dimensional LDPC codes
in the restriction on check nodes to have at most one variatidie neighbor from any column. THé d)-regular array-code
ensemble is formally defined in the following construction.
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Figure2. Array parity constraints. Two parity constraints with= n = 4 are shown (each column contributes exactly one bit to each of
the sample parity constraints).

Construction 1. [(I, d)-regular array-code ensemble]Let V; be a set ofN = nb variable nodes from & x n array, each
with | sockets. Le¥/; be a set ofVl check nodes, each with sockets. The total number of socketslin nodes and the total
number of sockets if; nodes each equdlg| = NI = Md. For each of thé&, andV, nodes we label the sockets with the set
E|] ={1,...,|E|}. DefineX to be the set of permutations §i’|]. Define¥X’ C ¥ to be the set of permutations §i|] that
do not connect two or more sockets of a check node to variatglesiin the same column. Ah d)-regular array-code ensemble
consists of all bipartite graphs obtained by connecting/thandVs sockets by permutations ¥, with the uniform probability
distribution on the set.’.

B. Irregular array-code ensembles

As in one-dimensional LDPC codes, better iterative-dengdierformance can be achieved when the degree regularity
constraint is lifted [12]. To specify the ensemble degrestritiutions, we adopt the standard notation used for omexsional
LDPC codes [15]. This notation will be extended and refinethennext sections for the analysis of array-code ensembies.
eachi € {1,...,1,ax}, We denote by_; the probability that a variable node has degre®imilarly, for eachi € {1, ..., dmax},
we denote byR; the probability that a check node has degie®/hen theL; and R; probabilities are viewed as coefficients
of polynomials, we get the variable-degree distributiofypomial L(z) = Z}g"l"‘ L;x*, and the check-degree distribution
polynomial R(x) = Z?g*{* R;x*. Since iterative decoding is analyzed through messagesgam edges, similar distributions
from edge perspective are often useful. These\gge = ;™2 Nz~ andp(z) = 30 p,z'~1. \; is the probability that an
edge is connected to a variable node with degreg is the probability that an edge is connected to a check notledeigree
i. The relations between the node-perspective and edgpqueire degree distributions are given bf) = L'(z)/L’(1) and
p(x) = R'(x)/R'(1), where the operatdrrepresent the function’s first derivative.

As in the one-dimensional case, a simple generalizatioh®fégular construction in Construction 1 gives a constudor

irregular codes.

Construction 2. [L(x), R(x) irregular array-code ensemble]LetV; be a set ofV = nb variable nodes from & x n array.
For each, N L; (assumed to be an integer) variable nodes fignhavei sockets each. Léf, be a set oM check nodes. For
eachi, M R; (assumed to be an integer) check nodes fk@nhavei sockets each. The total number of socket®iimodes and
the total number of sockets Wy nodes each equalE| = NL'(1) = M R'(1). The|E| sockets on th&; side are connected to
the|E| sockets on th&, side by a uniformly selected permutation frath(defined in Constructioft as the set of permutations
that do not connect two or more sockets of a check node tobfandes in the same column).

The regular construction of Construction 1 is clearly a sgdezase of Construction 2 with (z) = 2! and R(x) = x¢.

IV. ANALYSIS OF ITERATIVE ERASUREDECODING

A natural method to decode array codes from the proposedrdneg is by iterative message-passing decoding, alsodcalle
belief propagation (BP) decoding. This is an especiallypténstandard way to decode one-dimensional LDPC codes over
erasure channels. The special property of LDPC array cad#sat the variable nodes in the code graph are partitionted in
two sets: variables in failed columns with erasure prolitghil and variables in non-failed columns with erasure prolitgil
This property has little impact on the decoder implemeatatbut a significant impact on the decoding analysis. Thedieg-
analysis framework developed here for array-code ensenfibllews the adaptation of established tools from one-disienal
LDPC ensembles [15] to the special structure of array-cas®ding graphs. In particular, our main objective is to whBP
decoding thresholds for LDPC array codes under the two-dimensional erasure méde a given array-code ensemble, there
is no longer a single BP threshold, but one for each numbeaibifid columns. Given- failed columnsg,. is defined such
that decoding succeeds with high probability as long as #iled-column erasure probability satisfies< ¢,. In the sequel
whenr is clear from the context, we often omit the indexfrom e,..



A. Induced decoding graphs

Throughout the analysis, we will assume that exaetlgolumns are failing. Figure 3 reveals the relations betwien
code graph and the decoding graph induced byrtf@led columns. As usual, variable nodes are representeitass, and
check nodes as squares. A variable node belonging to a fadlkonn is marked black, and its erasure probability.iA
variable node in a non-failing column is marked white, arsdetasure probability i8. White variable nodes are completely
known, and thus do not appear in the decoding graph. As atreSuémoving the white variable nodes, check nodes may
have lower degrees in the decoding graph compared to thgieds in the code graph — cf. Figure 3(a). Check nodes all of
whose neighbors are white, are also marked white and renfosedthe decoding graph — cf. Figure 3(b). It is observed that
black variable nodes always have the same degree in the eaddexoding graphs, because the only removed check nodes
are those with all-white variable neighbors — cf. Figure)3{idhe structure of decoding graphs inducedrbgolumn failures

(@) (b)

€ € 0 0 0 0
(c)

Figure 3. Sample from a code/decoding graph of an LDPC array codekBRiagable nodes (circles) are from failed columns; whitdalale
nodes are from non-failed columns. The white variable n@desbe removed from the decoding graph because they haveemsbability
0. (a) a check node with degréein the code graph and degr@ein the decoding graph. (b) a check node is removed from thedileg
graph if all its variable neighbors are white. (c) a blackiadle node always has the same degree in the decoding graiphtls code
graph.

is made more precise with the following definitions.
For a given LDPC array code and a given set of failed colummsdefine the decoding graph induced by the failed-column
set.

Definition 2. Given a code grapéi and a set of failing columr® = {i1,...,i,}, we define thénduced decoding graphg™
as the subgraph ¢f containing the variable nodes that reside in the columfi.of

The induced decoding graph will play a central role in thelysia of array-code ensembles. In the sequel, we seek to
characterize the probabilistic structure of induced dewpdraphs. The principal question is to find the distribatad induced
decoding graphs given the code-graph distribution and thaber of column failures. A nice outcome from this approach
is that established analysis tools, such as binary erasizenel (BEC) density evolution, can be applied to two-disi@mal
codes by considering the induced decoding graph ratherttteanode graph itself.

Recall [15] that given an ensemble of one-dimensional LDBGecgraphs, the BEC density-evolution threshalec¢ding
threshold for short) is the supremum efe [0, 1] such that over a BE(€) channel the failure probability of a BP decoder tends
to zero as the block size tends to infinity. We now want to extiwe decoding-threshold analysis to array-code ensentbdes
this purpose, we first characterize the probabilistic ¢ftéacemoving variable nodes in non-failing columns from tlecoding
graph. We start with the following definitions.

Definition 3. Given design degree distributions of variable resp. chedlesL (x), R(x) (from node perspective) or(z), p(x)
(from edge perspective), timduced degree distributionsare the degree distributions of an induced decoding graptatong
only the variable nodes belongingit@rray columns. We denote them as

L(z), R(x)

(from node perspective) and )
Az), plx)

(from edge perspective). We note that given the probaigilistture of Constructio, the induced distributions depend onlygn
and not on the identity of the failed columns inR. For notational convenience, we keep this dependencdmplicit, in cases
where the value of is clear from the context.

Because variable nodes maintain their code degree in theéndgraph (Figure 3 (c)), we always haver) = L(x). Similarly
to the code-graph degree distributions, the induced eéggppctive distributions are related to the node-persatistributions
by \(z) = L'(x)/L'(1) and j(z) = R'(x)/R'(1).
An obvious generalization of one-dimensional density etioh [11] gives that the decoding threshald is the largest
such that
x> el —p(1 —x)), Yze(0,1], (3)



for the A\(z), p(z) given in Definition 3. We can also define the induced rate ofdéeoding graph, which is different from
(lower than) the actual code rate.

Definition 4. Given induced variable resp. check degree distributidns, (z), we define thénduced rate as

L fol ﬁ(z)dm
fol Ax)dz

Explicit calculation of the induced degree distributiorisaoray-code ensembles will be the main tool for analysis @asign
of LDPC array codes in the remainder of the paper.

B. Regular codes with degree-n check nodes

An interesting (and simple) special case of LDPC array casleghen the code is regular with check degree n. The
restriction on the graph connectivity in Construction 2 liep that given check-regularity af = n, every check node has
exactly one variable-node neighbor from each array coluimis.not hard to see that for this case the induced code gaph i
regular as well, but with a check-degreénstead ofn. As a result, the following theorem can be proved.

Theorem 1.An (I, n)-regular array-code ensemble has designlraté/n, and an erasure decoding threshold oflan)-regular
one-dimensional LDPC code ensemble, for any setfafled columns.

Proof: The argument regarding the design rate is identicall{a)-regular one-dimensional LDPC codes. We now prove
the statement on the decoding threshold. After removingralt r)b variable nodes in non-failing columns, the code graph
becomes ar{l, r)-regular graph, with the restriction that each of theeighbors of a check node comes from a different
column. For one-dimensional LDPC ensembles, it is well km¢®b, Ch.3] that after a finite numbérof decoding iterations,
the computation graph of a BP decoder around a given variaide is a tree with probability tending foas the humber of
variable nodes tends to infinity, giving rise to the condhti@®). It thus remains to prove that this property still hofgigen
the restricted sampling of Construction 1. To prove this,make the (incorrect) assumption that all edges connectriahla
nodes in the same column. While this is not the case for the codstruction, this assumption can only increase the pilitya
that the computation graph has cycles, and thus it is valtighfoving the acyclic property. In that case, the random pgation
with column restrictions maps to uniformly distributed peitations on the sockets éfvariable nodes in one column. This
is identical to the uniform permutation sampling in the ahensional case. Since the column slzéends to infinity, the
one-dimensional result carries over to the two-dimengioase. m
The nice consequence of Theorem 1 is that array codes with faig (thanks to the high check-node degrees inctite
graph) have high thresholds (thanks to the low check-node degretiee induced decoding graph). Moreover, the decoding
threshold gracefully decreases as the numbef failed columns grows. Example 1 shows the decoding perémice of a
regular check-node degreearray code ensemble, and compares it with an MDS array cotleeaame rate.

Example 1.Suppose we want to design an array code-fer3 column failures. One alternative is to use a traditional NVdDI@y
code with ratdl — 3/n. Another alternative is to use(8, n)-regular array-code ensemble, which has the same rategime4

the thresholds of both options are plotted foK r < 7. For the MDS code, the threshold is eithefor r < 3, or undefined
forr > 3 (square markers). On the other hand, the array-code enseabltolerate many erasures even for largealues (dot
markers). For = 3 there is a gap in favor of the MDS code, where the array-coderable only achieves a threshold)d$44,
strictly smaller than thé threshold of the MDS array code. The problem with the regefeemble is that at = 3 we get a
threshold of &3, 3)-regular induced graph, which is not an effective faieode. Tightening the gap necessitates the departure
from the(l, n)-regular ensemble family, into more general ensemblesigsgn in the next sub-sections.
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Figure4. Threshold values as a function of the number of failing calandots:(3, n)-regular ensembles, squares: traditional MDS array
codes.



C. Regular codes with general check-node degrees

In the previous sub-section, a code graph with regular cldeckeen induced a regular check-degredan the decoding
graph. Now we want to consider the more general case whepk ctoagles have a general — but still constant — degreen.
As we will see, the induced graph in this case is no longerleggu

Given a set of- failed columns, a check node has betw@esmdr neighbors in the induced graph (assuming d). From
symmetry in the graph sampling of LDPC array codes (spedcifig€onstruction 1), the sets dfdistinct columns neighboring
a check node are uniformly distributed among the sizibsets of 1,...,n}. Hence the induced degree distribution is given

by

()

The numerator is the number of sidesubsets partitioned tbfailed columns and — i non-failed columns. The denominator
is the total number of sizd-subsets. Hence given a uniform column sampling check-node edges, the induced degrees are
distributed according to thBypergeometric distribution [10] 774 It is clear that whenl = n, Ti(”’r’”) degenerates to a
delta functiond[i — r], i.e., Pr(degree i) equals tol wheni = r and0 otherwise (giving the regularity proved in Theorem 1).
Note that ifr + d < n, there is a non-zero probability that a check node has deégie¢he induced graph, in which case it is

removed from the graph. Recall from Section IV-A that theuioed graph remains regular with respect to the variableenod
degrees. Altogether we obtain the following result.

Pr(degree i) =

Theorem 2. An (I, d)-regular array-code ensemble has design tatel/d and an erasure decoding threshold of an irregular
one-dimensional LDPC code ensemble with variable resgictiegree distributions (from node perspective) given by

Lz)=2' , R(z)= Zﬂ("’r’d)xi.
=0

Proof: From (4), the check-degree distribution of the induced kyrspgiven by R(z). The degree distribution of variable
nodes is unchanged in the induced graph, since removedcéddiegre®) check nodes affect only variable nodes outside the
induced graph. To prove that finite-depth computation gsagie trees with high probability we essentially repeat tteop
of Theorem 1. m
Note thatR; # 0 only if d — (n —r) < i < r. The right inequality trivially follows from the fact thahére are no more than
r non-failing columns for a check node to be connected to. Eftdriequality follows from the fact that at most— r edges
out of the check node’d edges are connected to variable nodes in non-failing catumn

Check degre@ < n can improve decoding performance over codes with checkedeby= n with the same rate. This is
because a lower check degree allows to reduce the variabtealevhich in general results in better BP thresholds. Exar
compares two such codes.

Example 2.Forn = 16, we compare two possible ensembles:(thd 2) and(4, 16 = n) regular ensembles. Both have the same
rate = 3/4. Figure5 plots the decoding thresholds 9K r < 6. The(3,12) ensemble (square markers) gives better thresholds
for everyr compared to thé4, 16) ensemble (dot markers).
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Figure 5. Threshold value comparison between degte@lots) and degred < n (squares) ensembles.

Note that unlike check degreeregular codes whose thresholds are only a functioh obdes with check-degrek< n have
thresholds that depend on the lengthas well, due to thd“i(”””’d) coefficients in their induced degree distributions, which
depend om.



D. Irregular codes

The most general array-code ensembles have irregularetenré¢he original code graph as well, and not only in the ieduc
graph as in the previous sub-section. We now examine the@dldecoding graphs of such ensembles./(gf) = Z}g;“ L2t
and R(z) = Zf‘;‘:‘f R4z be the node-perspective variable and check degree distrils, respectively. A given check node
with degreed will have induced degreé according to the distribution in (4). Now considering allsgible degrees in the
degree distributiorR(z), we obtain the induced check-degree distribution

dmax d dmax  dmax
R((E) _ Z Rd Z (n rd) i Z Z Rd . jwi(n,7~7d)7
d=1 =0 =0 d=i

where the last equality is obtained by reversing the ordesunimation. Therefore, thié? coefficient of the induced check-
degree distribution equals in the irregular case

dmax dmax 7‘ (n r)
Ri=>" Rq -1 = ZR (5)
d=1 d

(Starting the summation at= 1 instead ofd = ¢ simplifies the expression without changing the sum.) Theesgion above
leads to the following theorem.

Theorem 3.An (L(z), R(x))-irregular array-code ensemble has designtatel’(1)/R’'(1) and an erasure decoding threshold
of an irregular one-dimensional LDPC code ensemble witfabée and check degree distributions

L(z) = L(z) Z(dnfzz T(’”d)>

1=0

Proof: The induced check-degree distributi&ﬁx) is proved in the preceding analysis. As in the regular cdseyéariable
degree distribution is unchanged in the induced graph.esmemoved check nodes affect only variable nodes outside the
induced graph. Convergence to tree ensembles is provetiddignto Theorem 1. m

TheTi("’T’d) coefficients thus induce a linear transformation on thegihesheck-degree distribution, as formalized in the sequel.
Let R = [Rq,...,R,] be the vector of induced degree-distribution probabditi&hen the inducing distributioiﬁi("’r’d) is
viewed as adpax X (r + 1) matrix 7" = {t4,}, then the induced check-degree distribution is obtainedfthe design

check-degree distributioR = [Ry, ..., R4 by the linear transformation

max]

R=R.T™". (6)

V. PROBABILISTICALLY MDS ARRAY CODES

Array-code ensembles are better thaarasure-correcting MDS codes in tolerating more thamlumn failures. But so far
in the paper, array-code ensembles failed to match thehbie®f ¢, = 1 that MDS codes have withate = 1 — r/n (cf.
Figure 4). It is thus the purpose of this section to close gaip and provide array-code ensembles witte = 1 — r/n and
a threshold approaching = 1. Such codes are called hergirobabilistically MDS codes.

Definition 5. An array-code ensemblepsobabilistically MDS if for some integer, the ensemble rate equals- r /n, and for
anyr failing columns it can recover with high probability fromyaerasure probability, < 1.

It is clear that tolerating arbitrary erasure probabiitie < 1 in » columns cannot be achieved with redundancy smaller than
r/n. Hence similarly to standard MDS codes, probabilisticAllpS codes attain the optimal redundancy for their erasure-
correction capabilities. Formulating the probabilistig®DS property in terms of the threshold gives the follogiproposition.

Proposition4. An array-code ensemble is probabilistically MDS if and offlyt has ratel — r/n and its induced degree
distributions satisfy

M1 = p(1 —z)) ==, Ve (0,1]. 7)

Proof: If (1 — (1 — z)) = z, then multiplying the left-hand side by ary < 1 will give &A1 —p(l —2) < z, as
required by the threshold definition of (3). To show necgssitippose thak(1 — (1 — xo)) > xo for somez, € (0, 1]. Then
by substitutinge, = xo/A(1 — 5(1 — x0)) we get thaie, A\(1 — 5(1 — x0)) = zo, violating the threshold definition of (3)m
The existence of explicit probabilistically MDS array-@dnsembles is proved in the following sub-sections.



A. Check-degree n probabilistically MDS codes

The first probabilistically MDS code construction we prasina check-regular array-code ensemble with check degree
n. It is also the simplest construction, since degreeheck nodes induce degreechecks in the decoding graph. More
general constructions in subsequent sub-sections regoalysis and manipulation of non-trivial combinatoriaéffiients in
the induced degree distribution polynomials.

Proposition 5. The degree distributions given by
pla)=a""1  AMa)=1-(1-a)/V ®
define a probabilistically MDS code ensembleifdailed columns.

Proof: Using the standard formula to calculate the ensemble ratgete

1
d 1
ratezl—ifop(x) le——/nzl—i.

fol Az)dx 1/r n
Now for r failed columns the induced degree distributions are
plr)=2""1 Nz)=1-(1-z)/0D,

It is easy to verify that\(1 — 5(1 — x)) = x, and hencer > e\(1 — (1 — z)) for all ¢ < 1. Hence the ensemble is
probabilistically MDS. m

The array-code ensemble of Proposition 5 has a check-radgdgee distribution (all the check nodes have equal degreand
is a close relative of the check-regular matched distrimgtiused in the construction of capacity-approaching émerkional
LDPC codes [17]. Unlike in the one-dimensional case, hei® bt necessary to modify the distributions (8) to gete > 0.

In the two-dimensional construction, the distribution$ @ly have theirinduced rate equal td), with their ensemble rate
reaching the optimum of — r/n.

It is now interesting to examine the performance of the afmmetioned probabilistically MDS code when the number of
failed columns iss > r. For that, we replace thewith s in the induced check-degree distributipx), but leave the original
(design parameten) in the variable-degree distribution(x). The modified check-degree distribution will be markgdzx).
Now with j(z) = z°~! and\(z) = 1 — (1 — z)Y/("=1) we need to find, as the largest such thatr > eA(1 — j,(1 — z))
for everyz € (0, €]. Substitutingg,, A, we get

eszsup{6:x>e{1—(l—x)% ) V:EE(O,E]}

Theorem 6.Fors > r column failures, a code constructed from the ensemble gfd&ition5 can with high probability recover
from any erasure probability< e; = (r — 1)/(s — 1).

Proof: The cases = r was proved in Proposition 5; now assume> r. We need to find the supremum efsuch that
x>ell—(1- x)%] for everyz € (0, ¢]. For convenience, we change variables= 1 —z ando := (s — 1)/(r — 1). Now
the condition becomes

1—y>ell—y7], Vye[l —¢,1) 9)

Let f(y) =1 —y— (1 —y7). It is easy to verify thatf is convex and thaf (1) = 0. So to getf(y) > 0 for y < 1 (as
required by (9)), it is both sufficient and necessary to hg\{@) < 0 for all 0 < y < 1 (a zero first derivative at somg < 1
implies a local minimum and(y) < 0 for all yo < y < 1). The above gives the condition

fy)=cey’ ' —1<0, ye(0,1),
or
r—1 N
s—1

1
e< —= €s-

ag
]
Note that induced-rate considerations imply the followumper bound or, whens column failures occur:

L (10)

€s < 1 —rate(\(z), ps(z)) = Jo Ma)da s

Therefore, sincér — 1)/(s — 1) < r/s for all s > r, the decoding performance of the check-regular array-estemble
has a lower threshold than what in principle can be achiewshdts induced rate. It is an interesting open problem Wwhet
there exist probabilistically MDS codes that have optirhadsholds fos > r as well (or if tighter than (10) upper bounds exist).
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B. Check-degree d < n probabilistically MDS codes

Before constructively presenting probabilistically MD8des with regular check-degrde< n, we give a result that limits
the parameterd, n, r for which such codes are possible.

Proposition 7. A probabilistically MDS check-regular array-code ensegnblist have > n — r + 1.

Proof: If d <n—r+1, thend—1<n—r, and by (5) we have?, > 0. This also impliess; > 0, which in turn implies
p(0) > 0. Therefore, substituting = 1 in the right-hand side of (7) gives(1 — 5(0)) < 1 = z, in violation with the equality
condition of Proposition 4.m
The next theorem shows that for the special case €f4, the necessary condition in Proposition 7 is also sufficfenthe
existence of regular check-degreée< n probabilistically MDS array codes.

Theorem 8. For anyr < 4, there exists a probabilistically MDS array-code ensemigté regular check degreé, for any
d>n—r+1.

Proof: For a check-regular degrekensemble the node-perspective degree distribution poljaias
R(z) = .
The induced degree distribution, given the parameters is (from Theorem 2):

R(z) = (% Z (’;) (Z B :) 2 (11)

d) i=0

From edge perspective, the induced degree-distributibynpmial is
. ~ R'(z)
i—1
xr) = i L =
12 )

_ ﬁz()@:) 12)

Note that the conditioml > n — r + 1 guarantees thai; = 0, as shown to be necessary in Proposition 7. The next step to
obtain a probabilistically MDS ensemble is to find a variatdgree distributiom\(z) such that

AL - p(l—a)) =,

which will guarantee correcting any < 1 fraction of erasures im columns. The existence of such a degree distribution
polynomial A\(x) can be established with the aid of the following lemma frorg][1

Lemma 9 [13] For a polynomialf (x) = fix + fax? + fzx® with f(1) = 1 andVi, f; > 0, there exists a polynomig|(x) with
g(1) =1 andvi, g; > 0 suchthay(l — f(1 —z)) =« if

2f'(1)f" (1) < f"(1)%
(f' is the standard derivative ¢fx) with respect ta:, and similarlyf” andf"' are the second and third derivatives, respectively.)

Translation of Lemma 9's sufficient condition to a conditiom the coefficients of(z) gives

Lemma 10. For a check (induced) degree-distribution polynom(al) = pox + p3x® + paa® (p(1) = 1, Vi, p; > 0), there exists
a variable degree distribution polynomidl:) (\(1) = 1, Vi, \; > 0) such that\(1 — 5(1 — x)) =  if
3p2pa < P3- (13)

Proof: Taking f = g in Lemma 9 and substituting

F/(1) = p2 + 205 + 350, f"(1) = 255+ 6pa, (1) = 6

gives the sufficient condition (13)m

It is now required to prove that the sufficient condition ofnima 10 is met for any. and d covered by the theorem’s
assumptions.

DenoteZ = (Z)R’(l). If r < 4, ps = 0 and the sufficient condition (13) is met trivially, theredowe assume = 4.
Substitutingr = 4 in (12) gives

. n—4 . n—4 - n—4
202—12((1_2)7 ZP3—12<d_3), ZP4—4<d_4)
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To prove thatps, p3, g4 above satisfy the sufficient condition (13), we derive sesiely simpler equivalent conditions

3p2ps < 3
[}

144 (n —4\ (n—4 144 (n — 4\ (n—4
ﬁ(d—2)<d—4) S ﬁ(d-:&)(d—s)
[}
m—d-1Dln-d-1) o (n—d—2)l(n—d)!
(d—2)!(d—4)! = (d—3)!(d — 3)!

(3
(d=3)(n—-d-1) < (d—2)(n—d)

[}
nd—d*>—d—3n+3d+3 < nd—d®>—2n+2d
(3

3 < n.

All the transitions follow simple arithmetic operations bwth sides of the inequality. Therefore, the conditien> 3 is
equivalent to (13), and is sufficient for the existence of dlesired variable-degree distribution polynomiék:). Since codes
with fewer than3 columns are not very interesting,> 3 is met for every usefull, n parameters.

The final step in proving the probabilistic-MDS property lowing that the rate of the code ensemble equalsr/n. This
fact is established in the following Proposition 1is

Proposition 11. Let p(z) = 29~ induce a check degree distributipfc) as in(12). Let \(z) be a variable-degree distribution
satisfying\(1 — p(1 — x)) = x. Then
_hpr@de | r

fl A(x)dx n
Proof: We first observe that if(1 — p(l - :17)) = z then fo x)dr = fo x)dz. This is seen by rewriting the former as
1—p(1 —x) = A"1(x) and the fact thaﬁ0 (x)dx =1-— fo x)dx. SO we are now to prove the equivalent statement
d
w - (14)

Jo pl@)de 7
The inverses of the numerator and denominator of the leftilsadde are, respectively,
1

fo p(x)dx )
e - oo
where the latter follows from the relatiofy 5(x)dz = 1/R(1) and from (11). We now write
o - wa)6)
- (6
- HE(NG)

= d

= r—.

The sum in (15) counts all column combinations such that ahenen is a fixed failed column,— 1 columns are chosen from
the remaining — 1 failed columns, and — i columns are chosen from the non-failed columns. Sineé takes the full range
from 0 to r — 1, (15) sums all combinations of choosidg- 1 columns from then — 1 columns that are not the fixed failed
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column. Hence the{Z:}) in the subsequent expression. All the other transitionselmmentary arithmetic manipulations.

Now we arrived at the needed res%{ p(x)dz/ fol plx)ydz =r/n m

At the heart of Proposition 11 lies (14), the fact that théoraetween the average degree of a check node in the code graph
(fol p(z)dx)~1, and the average degree of a check node in the induced gfép}ﬁx)dx)‘l, isn/r (same as the ratio between
the number of columns in the code block and the number ohfaitiolumns seen by the decoder). This fact is true for general
p(z), not just regulap(x) as above. However, since Theorem 8 applies to regulay, the simpler proof of the special case
suffices.

VI. COMPARISON WITHONE-DIMENSIONAL LDPC CoDES

The value of LDPC array codes has been demonstrated in piesigctions in two main respects:

1) They correct erasures beyond the designed number ofl fadimns, unlike traditional array codes (Section V).
2) Probabilistically MDS codes attain optimal redundanggction V).

In this section, it is our objective to show, and theoreticgLantify, the value of LDPC array codes in more generdlign in
previous sections. For this analysis, the erasure-caoreperformance of LDPC array-code ensembles will be meaisusing
precise theoretical tools. The generality of the forthammétudy is embodied in its applicability to codes of all paegers,
not just probabilistically MDS ones.

The most natural way to study the performance of LDPC arrajesas through acomparison with one-dimensional
LDPC codes. It is possible that for the two-dimensional error model wedi in Section 1l, one may choose to use a standard
one-dimensional LDPC code, i.e., a graph with variable nodes drawn from a degree-distribution pair withthe one-
neighbor-per-column restriction of Construction 1. Thha key question for the evaluation of LDPC array codes is kdret
they provably outperform the alternative choice of onedtisional LDPC codes, and if so, by how much. As shown in the
remainder of this section, LDPC array codes are provabliebéan one-dimensional LDPC codes for all parameters, and
their advantage can be quantified analytically.

A. Induced tree ensembles

The decoding performance of codes over the proposed twertiional erasure model is determined by the structure of
the decoding graph induced by thefailing columns. For that reason, the performance analysiprevious sections has
made extensive use of the codes’ induced degree distntsutid is apparent that further theoretical understandih¢he
codes’ performance depends on our ability to analyze andpukate induced degree distributions with general paranset
Unfortunately, the coefficients of the hypergeometricribsttion as given in (5) are calculated as multiplications aivisions
of different binomial coefficients, which are difficult to @lewith analytically. To go around this difficulty, we refineiroview
of induced degree distributions by examining timeuced tree ensembles of the codes. Recall [15] that a tree ensemble is
the asymptotic version of the decoding-graph ensemblesistimg of rooted bi-partite trees whose degrees are bliged
according to some variable/check degree-distribution fair notational simplicity, in our discussion on tree anbtes we
focus on regular code ensembles with check degradowever, similar constructs and analysis can be providedrfegular
check degrees as well.

The first tree ensemble we examine is the one induced by thdareGonstruction 1.

Tree Ensemble 1 The constrained random sampling in Constructioimplies that thel variable nodes connected to a check
node reside iml distinct columns, which form a uniformly selected sizsubset of the column sét, ..., n}. Given a set of
failing columns, the intersection sizebetween the size-failing subset and a random sidesubset follows the hypergeometric

distribution
b0 06D
Z (2)
Hence(16) is the induced check-degree distribution of the tree ensemibConstructionl. The superscripf] represents a
two-dimensional ensemble.

(16)

As noted earlier, analyzing Tree Ensemble 1 above is diffiduk to the combinatorial form of (16). For that reason, we
propose Tree Ensemble 2 as a slight variation of Tree Engefnbitat is more amenable to analysis.

Tree Ensemble 2 Instead of choosing the neighboring columns of a check nedézad subsets of1, ..., n}, in the modified
tree ensemble a check node connects to each coludih in. n} i.i.d. with probabilityé = d/n. The result of this modified
tree ensemble is that the intersection sibetween the size-failing subset and the set of neighboring columns in the rtiee
follows the binomial distribution

P = (:) §i(1— )i, 17)

The superscridf] represents a modified two-dimensional ensemble.
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Note that in Tree Ensemble 2 the check degreed amy in expectation, so if we change the graph sampling ofstaiation 1

to obtain Tree Ensemble 2, the code graph becomes notystifatick-regular. Nevertheless, this minor deviation fregularity
does not impose any practical implementation issue.

The last tree ensemble we consider is the one induced by asthrmhe-dimensional LDPC codes drawn with no column
restrictions. It is given in Tree Ensemble 3.

Tree Ensemble 3In a regular check-degreeone-dimensional LDPC code a check node may connect to twadog) variable
nodes in the same column. In particular, given a sisebset of columns, each edge connects to a variable nods sutiset i.i.d.
with probabilitys = r/n. As a result, in the induced tree ensemble of one-dimenkioies, the number of edgésonnecting
to variable nodes in the failing subset follows the binordiatribution

P (d> Bi(1 - )i, (18)

The superscript represents a one-dimensional ensemble.

Note that both Tree Ensemble 2 and Tree Ensemble 3 resulhantial check-degree distributions in the induced grapbs, b
with different parameters. The binomial distributions ©¥) and (18) are well-known approximations [6] for the hygemetric
distribution (16). In the remainder of the section, our chjee is to compare the 2D Tree Ensemble 2 and the 1D Tree
Ensemble 3 in terms of their iterative-decoding perforneanc

B. lterative-decoding analysis of induced tree ensembles

As we replaced the unwieldy hypergeometric distributiqﬁ of (16) with the more manageable binomial distributiBﬁJ
in (17), now we can express the induced check-degree distibpolynomial (from node perspective) of LDPC array code
as

O\ — (T i S\r—iad (1 _ r
R-(x) = ;:0 (2)5 1=0)"""2"'=(1-60+dz)". (19)
In a similar way, the induced check-degree distributionypomial of one-dimensional LDPC codes is
4 rd
H— _ i1 _ Bg\d—i i _ (1 _ d
B =2 ()5 (1= )" = (1= § + )", (20)

Let az; be the average induced check degree in Tree Ensemble 2;ande the average induced check degree in Tree
Ensemble 3. A first attempt to differentiate between Treeelride 2 and Tree Ensemble 3 — based on their average induced
check degree — turns unsuccessful, as shown in the follopiagosition.

Proposition 12. Tree Ensembl@ and Tree Ensembl@ have the same average induced check degree
rd
—

Apm = G- =
Proof: By definition we haven ;o = R™(1) and ap_ = R'~(1). Taking the derivative of (19) and (20) with respectito
and substitutinge = 1, 8 = r/n, § = d/n, we get
RY(1)=R~(1) = rd.
n

|

The fact that the 2D and 1D induced tree ensembles have the aaenage degree means that we cannot use degree-based
arguments to show a performance gap in favor of the 2D caetgiru A more refined quantitative differentiation betweha

1D and 2D induced degree distributions is given in the foilfmwproposition.

Proposition 13. Given code parametetin, andr < d failed columns, the degree distributions of the induced bB 2D tree
ensembles satisfy

R%(z) < R (),
forallz €0,1).

Proof: We substitutey = 1 — z in the degree distribution polynomials at the right-hardksdf (19) and (20); then use the
following lemma.

Lemma 14.For any$ > 3, 4, 8 € (0,1]
(1-06y)” < (1-By)°,
forally € (0,1].
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Proof: We expand the two sides of the inequality using fractionabhiial coefficients.

(1-dy)’ =1- (f>5y+ <§) 5y* — (§>53y3 +o- (21)
(= =1 ({)ow+ (5) o - (5) %+ 22

The expansion of fractional binomial coefficient is given by

(3)  ala- 1)--él(a —0+1)

S (I

A simple observation is that faf > 5, we havey (%) > () for odd ¢, and % (f) < (%) for event. As a result, we have

for odd ¢ 3 1 /8 L /s
¢ _ 1 ¢ 1 ¢ Y
(0)r =5 (0> 5= (1)

where the last inequality follows directly from> 3. This proves that the coefficients of odd powergyadre smaller in (21)
than in (22). In a similar way we have for evén
B 74 0 ¥4
(7)o < ()

which proves that the coefficients of non-zero even powerg afe smaller in (21) than in (22). This proves that

(1—-6y)° < (1-By)°.

and

[ |
To prove the proposition, we recall that

and 5 R
R (z)=R (1-y)=(1-8y"

s0 (1 - dy)? < (1 — By)? from Lemma 14 impliesk® (z) < R~ (z). m
With the proven gap betweeR™(z) and R~ (z) given by Proposition 13, we are now ready to prove the mainlres this
section.

Theorem 15. For any code parameteis d, and a number of failed columms< d, the rate of a 1D check-regular ensemble is
bounded strictly below the rate of a 2D ensemble for the saamiee probability.

Proof: To prove a gap in the maximal rate between 1D and 2D codes we us®wn result from the theory of one-
dimensional LDPC codes.

Lemma 16. [17] For a code ensemble with check-degree distributiorymahial R(z), average check-node degreg, and
average variable-node degiee successful BP decoding is possible if the erasure prababgatisfies

e<2L(1-R®1- o).
agR
Substituting the parameters of the induced decoding grajthd emma 16, we get two upper bounds. One for the 1D code
e< =1 -R(1-¢),
ap_
and one for the 2D code

<81 - RB(1-e)).
aREJ

Substitutingaz = ap_ = % and rearranging, we get

- rde
a - =~ )
TR —R-(1—e)
and
rde
ar[ >

n(l —RP(1—¢)
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The average check degree in ttarle graph is the same for the 1D and 2D construction
ar_ = agm = d.

As a result, the lower bounds aty,_ anda,r readily translate to upper bounds on the respective cods thtough the
relationrate = 1 — 4&

aR )
re
rate;p < 1 — =

n(l—R—(1—¢))

, (23)

and
Te

n(l —RP(1—¢)

Having proved in Proposition 13 th@™(1 — ¢) < R~ (1 — ¢), we establish that the right-hand side of (23) is strictlyaier
than that of (24). A gap between the allowable rates of 1D dbat@des is now provenm

The implication from Theorem 15 is that for the two-dimemsibr, ¢ erasure model proposed in Section I, two-dimensional
codes may give better rates than standard one-dimensiodakdhat ignore the structure of the array. While the above o
shows a gap in the upper bound on the rates, it is possible ristrtmt explicit 2D ensembles with rates that exceed the
upper bound for 1D codes. For example, the special dasen (6 = 1), e = 1, for which we have shown codes with
ratesp = 1 — r/n (Proposition 5), has a strictly smaller rate upper boundlibrcodes.

It is important to note that our re-definition of 2D codes as€TEnsemble 2 instead of Tree Ensemble 1 was done solely
to gain analytic tractability in proving results such as dten 15. In fact, in all the parameters that we checked, we hav
found thatR™(z) < R™(x) < R~ (z) for all z€[0,1), hence the original 2D sampling (Construction 1) givingrie Tree
Ensemble 1 is expected to give even better rates than Tresrihhes 2 analyzed in this section.

rateop < 1 —

(24)

C. Experimental validation

In addition to the theoretical advantage of 2D codes provethé previous sub-section, we now want to see an example
of this advantage on a real code. To get such as example, Weatoarray with dimensiona = 16, b = 1000. With fixed
variable-node degreke= 3 and fixed check-node degrée= 12, we randomly drew a 2D code according to Construction 1,
and a 1D code similarly, only without the column restricdorfror the case of = 6 failing columns, we simulated i.i.d.
erasures within failing columns with varying erasure ptuliges e. For each of the codes we measured the decoding-success
percentage across many channel instances, each randoadgig ther failing columns and the erasures within columns.
Decoding success is defined as recovering the entire erasedfier a fixed number of iterations. The results are given i
Figure 6. It can be seen that the 2D code outperforms the 1B itothanye points, never performing worse. The theoretical
2D threshold forn = 16,1 = 3,d = 12,7 = 6 is marked as a vertical solid line at= 0.56.

100
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60 \

50
40
30
20

10 \m\

. o N
0.52 0.54 0.56 0.58 0.6 0.62
In-column erasure probability

Decoding success [%]

Figure6. Experimental comparison between decoding success of a 2P (giar markers) and a 1D code (square markers). For each
in-column erasure probability the plots mark the percentage of decoding instances thaltedsin full recovery of erased bhits.

VII. CONCLUSION

The results of the paper serve to lay out a new theoreticaidveork for LDPC codes over two-dimensional arrays. From
these results many open questions arise. The main operepraii the constructive side is the search for code ensentiaes t
give optimal decoding performance for multiptevalues. More upper bounds on code rates given correcticenpsters are
also important to come by. From practical perspective, ligseficial to consider similar codes that are systematic.
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