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Abstract

We analyze the asymptotic performance of ensembles of random binning Slepian-Wolf codes, where each type

class of the source might have a different coding rate. In particular, we first provide the exact encoder excess

rate exponent as well as the decoder error exponent. Then, using the error exponent expression, we determine

the optimal rate function, namely, the minimal rate for each type class needed to satisfy a given requirement on

the decoder error exponent. The resulting excess rate exponent is then evaluated for the optimal rate function.

Alternating minimization algorithms are provided for the calculation of both the optimal rate function and the

excess rate exponent. It is thus exemplified that, compared to fixed-rate coding, larger error exponents may be

achieved using variable-rate coding, at the price of a finite excess rate exponent.

Index Terms

Slepian-Wolf coding, method of types, error exponents, excess rate exponent, alternating minimization, source

uncertainty.

I. INTRODUCTION

The problem of distributed encoding of correlated sources has been studied extensively since the seminal

paper of Slepian and Wolf [22]. This paper addresses the case, where a memoryless source {(Xi, Yi)}

needs to be compressed by two separate encoders, one for {Xi} and one for {Yi}. In a nutshell, the most

significant result of [22] states that if {Yi} is known at the decoder side, then {Xi} can be compressed at
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the rate of the conditional entropy of {Xi} given {Yi}. Since this is the minimal rate even for the case

where {Yi} is known also to the encoder, then no rate loss is incurred by the lack of knowledge of {Yi}

at the encoder. Early research has focused on asymptotic analysis of the decoding error probability for

the ensemble of random binning codes. Gallager [14] has adapted his well known analysis techniques

from random channel coding [13, Sections 5.5-5.6] to the random binning ensemble of distributed source

coding. Later, it was shown in [9] and [6] that the universal minimum entropy decoder also achieves the

same exponent. Expurgated error exponents were given in [7] assuming optimal decoding (non-universal).

The expurgated exponent analysis was then generalized to coded side information in [5] (with linear

codes) and [18].

More recently, a simple modification of the random binning scheme was suggested [3], [17]1. The idea

was that the encoder may inform the decoder about the type class of the source block using a short header,

of negligible length. Then, a different code can be used for every type class, and in particular, different

rates are possible. However, in both [3], [17] the average coding rate was the main concern. Since the

empirical probability mass function (PMF) of the source tends to concentrate around its true PMF, then in

essence, asymptotically, it is only necessary that the rate constraint will be satisfied for the true type class

of the source (see [3, Thm. 1]). The average rate constraint will continue to be satisfied even if the rate

for other types, distant from the true source type, is arbitrarily large. Naturally, one can increase the rates

of these types up to a point in which any further increase does not improve the decoding error exponent.

This motivates us to take a somewhat different approach and address a more refined figure of merit

for the rate. Specifically, we will be interested in the probability that the rate exceeds a certain threshold.

Indeed, consider an online compression scheme, in which the codeword is buffered at the encoder before

transmitted. If the instantaneous codeword length is larger than the buffer size, then the buffer will overflow.

If the decoder is aware of this event (using a dedicated feed-forward channel, e.g.) then this is an erasure

event. Thus, it is desirable to minimize this probability, while maintaining some given error probability.

In a different case, the buffer length might be larger than the maximal codeword length, but the buffer is

also used for other purposes (e.g. sending status data). If the data codewords have priority over all other

uses, then it is desirable to minimize the occasions of blocking other usage of the buffer.

In this paper, we analyze the trade-off between excess rate probability and the error probability in

the asymptotic regime of large block-length using error exponents. We assume the standard ensemble of

1In [15], the idea of sending the decoder the source type class and then using different codes for each type class was also suggested.

However, [15] assumes fixed coding rate, and seeks improved error exponents for sources allowing zero-error decoding.
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random binning and that source blocks from the same type class have the same coding rate. This allows

us to find the exact excess rate and error exponents for any given allocation of rate. Then, for every

type class, the minimal encoding rate, required to meet a prescribed value of error exponent, is found.

The resulting excess rate performance of the system may then be evaluated. Since calculation of both the

rate for a given type, and the excess rate exponent, lead to optimization problems without a closed-form

solution, we provide alternating minimization algorithms that converge to the optimal solution.

We leave it as an open question whether allocating identical rates to all source blocks in the same type

class provides the optimal trade-off between the excess rate probability and error probability.

The outline of the remaining part of the paper is as follows. In Section II, we establish notation

conventions and define an ensemble of type-dependent variable-length codes. In Section III, we evaluate

the exact random binning error exponent as well as the excess rate exponent for a given rate allocation

for source types. Then, in Section IV, we characterize the optimal rate allocation (in a sense that will

be made precise), under an average error exponent constraint. An alternating minimization algorithm is

suggested for the calculation of the optimal rate, for any given source type class. In Section V, the excess

rate exponent is characterized for the optimal rate function and another alternating minimization algorithm

is suggested for the excess rate exponent calculation. Finally, Section VI demonstrates the results via a

numerical example.

II. PROBLEM FORMULATION

A. Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, specific values they may

take will be denoted by the corresponding lower case letters, and their alphabets will be denoted by

calligraphic letters. Random vectors and their realizations will be denoted, respectively, by capital letters

and the corresponding lower case letters, both in the bold face font. Their alphabets will be subscripted

by their dimensions. For example, the random vector X = (X1, . . . , Xn), (n positive integer) may take a

specific vector value x = (x1, . . . , xn) in X n, the nth order Cartesian power of X , which is the alphabet

of each component of this vector.

The source to be compressed will be denoted by the letter P , subscripted by the names of the relevant

random variables/vectors and their conditionings, if applicable. We will follow the standard notation

conventions, e.g., PX(x), PY |X(y|x), PXY (x, y) and so on. The arguments will be omitted when we address
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the entire PMF, e.g. PX , PY |X and PXY . Similarly, generic sources will be denoted by Q, Q̃, Q∗, and in

other forms, again subscripted by the relevant random variables/vectors/conditioning. An exceptional case

will be ’hat’ notation. For this notation, Q̂x will denote the empirical distribution of a sequence x ∈ X n,

i.e., the vector of relative frequencies Q̂x(x) of each symbol x ∈ X in x. The type class of x ∈ X n,

which will be denoted by T (x), is the set of all vectors x′ with Q̂x′ = Q̂x. When we wish to emphasize

the dependence of the type class on the empirical distribution Q̂, we will denote it by T (Q̂). Similarly,

the empirical distribution of a pair of sequences (x,y) will be denoted by Q̂xy and the joint type class

will be denoted by T (x,y). The empirical conditional distribution induced by (x,y) will be denoted by

Q̂x|y(x|y), and the conditional type class, namely, the set {x′ : Q̂x′y = Q̂xy}, will be denoted by T (x|y).

The set of all type classes of sequences of length n over X will be denoted by Pn(X ), and the joint type

classes over the Cartesian product alphabet X ×Y will be denoted by Pn(X ×Y). The probability simplex

for X will be denoted by S(X ) , and the simplex for the alphabet X×Y will be denoted by S(X×Y). The

entropy of the PMF Q will be denoted by H(Q). The average conditional entropy of QY |X with respect to

(w.r.t.) QX will be denoted by H(QY |X |QX) ,
∑

x∈X QX(x)H(QY |X(·|x)). The information divergence

between two PMFs P and Q will be denoted by D(P ||Q) and the average divergence between QY |X

and PY |X w.r.t. QX will be denoted by D(QY |X ||PY |X |QX) ,
∑

x∈X QX(x)D(QY |X(·|x)||PY |X(·|x)).

In all the information measures above, the PMF may also be an empirical PMF, for example, H(Q̂x),

D(Q̂y|x||PY |X) and so on.

The complement of a set A will be denoted by Ac, and A will be its closure. P(A) will denote

the probability of the event A, and I(A) will denote the indicator function of this event. The expectation

operator will be denoted by EPX
[·] where, again, the subscript will be omitted if the underlying probability

distribution is clear from the context.

The support of a PMF QX will be denoted by supp(QX) , {x : QX(x) 6= 0} ⊆ X . For two positive

sequences, {an} and {bn} the notation an
.
= bn will mean asymptotic equivalence in the exponential scale,

that is, limn→∞
1
n
log(an

bn
) = 0. Similarly, an≤̇bn will mean lim supn→∞

1
n
log(an

bn
) ≤ 0, and so on. The

function [t]+ will be defined as max{t, 0}. Logarithms and exponents will be understood to be taken to

the natural base, thus we will use nats for descriptive purposes.

B. System Model

Let {(Xi, Yi)}ni=1 be n independent copies of a pair of random variables (X, Y ). We assume that

X ∈ X and Y ∈ Y , where X and Y are finite alphabets, are distributed according to a given PMF
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PXY (x, y) = P(X = x, Y = y). It is assumed that supp(PX) = X and that supp(PY ) = Y , otherwise,

remove the irrelevant letters from their alphabet.

A Slepian-wolf (SW) code Cn for sequences of length n is defined by an encoder

fn : X n → {0, 1}∗ (1)

and a decoder

gn : {0, 1}∗ × Yn → X n (2)

where {0, 1}∗ is the set of all finite length binary strings. The encoder maps a source block x into a

binary string fn(x) ∈ {0, 1}∗, and the decoder uses both y and fn(x) to obtain a decoded source block

x̂ = g(f(x),y). For b ∈ {0, 1}∗, the inverse image of fn is defined as

f−1
n (b) = {x ∈ X n : fn(x) = b} . (3)

A random ensemble of SW codes is defined by a random sequence of encoders-decoders (Fn, Gn) with

probability P(Fn = fn, Gn = gn). The error probability for a given code Cn is denoted by en(Cn) = P(X̂ 6=

X), and the average error probability over the random ensemble of codes is defined as ēn = E [en(Cn)] .

The error probability random-binning exponent is defined as

Ēe , lim inf
n→∞

− 1

n
log ēn. (4)

The rate of x ∈ X n is defined as r(x) , |fn(x)|
n

where |fn(x)| is the length of fn(x). For a given target

rate R, we define the excess rate exponent function as

Er(R) , lim inf
n→∞

− 1

n
· logP {r(X) ≥ R} . (5)

A variable-rate code is termed type-dependent variable-length code, if r(x) depends on x only via its

empirical PMF (type class). Namely, for all x, x̃ ∈ X n, and all n, when Q̂x = Q̂x̃ then r(x) = r(x̃).

Throughout, we disregard integer codeword length constraints, as they have negligible effect on the rate,

for large n.

Definition 1. Any finite function R(QX) : S(X ) → R
+ is termed a rate function. A rate function is

called regular if there exists a constant d > 0 and a set V , {QX ∈ S(X ) : D(QX ||PX) < d}, such that



6

R(QX) is continuous in V , and equals a constant R0 for QX ∈ Vc.

We analyze the ensemble performance of type-dependent, variable-length SW codes, that are defined

as follows:

• Codebook generation: For a given rate function R(QX), generate enR(QX) bins for every QX ∈ Pn(X )

and map each bin into a different binary string of length n ·R(QX) nats. Next, assign to each x ∈ X n

a bin by independent random selection with a uniform distribution over all the bins of type class

T (x). Then, assign an index to each type class QX ∈ Pn(X ). The above data is revealed to both the

encoder and the decoder offline.

• Encoding: Upon observing x, determine its type class T (x). Send to the decoder its type index,

concatenated with its bin index (for the current type T (x)).

• Decoding: First, recover the type class T (x) of x. Then, we consider two options.

– Maximum likelihood (ML) decoder: Choose x̃ ∈ f−1
n (fn(x)) that maximizes PX|Y(x̃|y). Since

all x̃ ∈ f−1
n (fn(x)) are in the same type class, they have the same probability PX(x̃), this

decoding rule is equivalent to maximizing PY|X(y|x̃).

– Minimum conditional entropy (MCE) decoder: Choose x̃ ∈ f−1
n (fn(x)) that minimizes H(Q̂x̃|y|Q̂y).

Since all x̃ ∈ f−1
n (fn(x)) have the same empirical entropy H(Q̂x̃), this decoding rule is equivalent

to well-known, maximum mutual information (MMI) decoder (see, e.g., [16, Section IV.B]).

III. EXPONENTS ANALYSIS

It is well known that the ML decoder, which depends on the source statistics PXY, minimizes the error

probability. By contrast, the MCE decoder does not use PXY at all. In the next theorem, we evaluate the

random binning error exponent of the ML decoder, and show that the MCE decoder also achieves the

same exponent, and thus it is a universal decoder. This exponent was initially derived in [6] (for both

decoders), but the proof here is simpler, and also shows that the lower bound on the ML error exponent

is tight, for all rates.

Theorem 2. Let R(QX) be a given rate function, and let the ensemble of SW codes be as defined in

Section II-B. Then for both the ML decoder and the MCE decoder, the limit in (4) exists and equals

Ēe = min
QXY

D (QXY ||PXY ) +
[

R(QX)−H(QX|Y |QY )
]

+
. (6)
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Proof: Suppose that (x,y) was emitted from the source and its joint type is QXY = Q̂xy. Let the

marginals and conditional types be QX = Q̂x, QY = Q̂y, and QX|Y = Q̂x|y.

For the ML decoder, let

So(x,y) ,
{

x̃ ∈ X n : PX|Y(x̃|y) ≥ PX|Y(x|y)
}

. (7)

The conditional error probability, averaged over the random choice of binning is

Π̄e,o(x,y) , P







⋃

x̃∈{So(x,y)∩T (x)}

Fn(x̃) = Fn(x)







(8)

≥ 1

2
min

{

1, e−nR(QX) · |So(x,y) ∩ T (x)|
}

(9)

≥ 1

2
min

{

1, e−nR(QX) · |T (x|y)|
}

(10)

.
= min

{

1, exp
[

−n
(

R(QX)−H(QX|Y |QY )
)]}

(11)

= exp
[

−n
[

R(QX)−H(QX|Y |QY )
]

+

]

(12)

where the first inequality is due to Lemma 19 in Appendix C, and the fact that the bin indices are drawn

independently in a given type class, and the second inequality is because for any pair (x̃,y) ∈ T (x|y),

we have that x̃ ∈ T (x) and that PX|Y(x̃|y) = PX|Y(x|y).

For the MCE decoder, let

Su(x,y) ,
{

x̃ ∈ X n : H
(

Q̂x̃|y|QY

)

≤ H
(

QX|Y |QY

)

}

. (13)

Similarly,

Π̄e,u(x,y) , P







⋃

x̃∈{Su(x,y)∩T (x)}

Fn(x̃) = Fn(x)







(14)

≤ min
{

1, e−nR(QX) · |Su(x,y) ∩ T (x)|
}

(15)

≤ min
{

1, e−nR(QX) · |Su(x,y)|
}

(16)

≤̇ min
{

1, exp
[

−n
(

R(QX)−H
(

QX|Y |QY

))]}

(17)

= exp
[

−n
[

R(QX)−H
(

QX|Y |QY

)]

+

]

, (18)

where the first inequality is by the union bound, and the following equality is because the number of

sequences in any conditional type that belongs to Su(x,y) is exponentially upper bounded by enH(QX|Y |QY )
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and the number of joint types is polynomial |Pn(X × Y)|≤ (n+ 1)|X ||Y| .

It can be seen that on the exponential scale, the lower bound on Π̄e,o(x,y) and the upper bound on

Π̄e,u(x,y) are identical. Thus, when taking expectation w.r.t. the i.i.d. source PXY , the resulting asymptotic

bounds on the error probability are identical (lower bound for the ML decoder, and upper bound for the

MCE decoder). Moreover, since the ML decoder minimizes the error probability, taking expectation w.r.t.

PXY we get

E

{

exp

[

−n
[

R(Q̂X)−H
(

Q̂X|Y|Q̂Y

)]

+

]}

≤̇ E
{

Π̄e,o(X,Y)
}

(19)

≤ E
{

Π̄e,u(X,Y)
}

(20)

≤̇ E

{

exp

[

−n
[

R(Q̂X)−H
(

Q̂X|Y|Q̂Y

)]

+

]}

(21)

so the asymptotic average error probability of both the ML decoder and the MCE decoder is

ēn
.
= E

{

exp

[

−n
[

R(Q̂X)−H
(

Q̂X|Y|Q̂Y

)]

+

]}

(22)

=
∑

QXY ∈Pn(X×Y)

P

(

Q̂XY = QXY

)

· exp
[

−n
[

R(QX)−H
(

QX|Y |QY

)]

+

]

(23)

.
=

∑

QXY ∈Pn(X×Y)

exp
[

−n ·D (QXY ||PXY )− n
[

R(QX)−H
(

QX|Y |QY

)]

+

]

(24)

.
= exp

[

−n · min
QXY ∈Pn(X×Y)

{

D (QXY ||PXY ) +
[

R(QX)−H
(

QX|Y |QY

)]

+

}

]

(25)

where the last inequality is again because |Pn(X × Y)|≤ (n + 1)|X ||Y|. Since the optimal value of the

minimization problem inside the exponent is clearly finite, and the minimization argument is a continuous

function, then

ēn
.
= exp

[

−n ·min
QXY

{

D (QXY ||PXY ) +
[

R(QX)−H
(

QX|Y |QY

)]

+

}

]

. (26)

Remark 3. The MCE decoder is equivalent to a decoder that estimates the unknown PMF PXY for any

candidate source block (generalized likelihood ratio test). Indeed, suppose that the candidate source block

is x, the side information is y and (x,y) has the joint type QXY . The normalized log-likelihood is bounded
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as

1

n
logPX|Y(x|y) = 1

n
logPXY(x,y)−

1

n
logPY(y) (27)

= 1
n

n
∑

i=1

logPXY (xi, yi)−
1

n

n
∑

i=1

logPY (yi) (28)

=
∑

(x,y)∈X×Y

QXY (x, y) · logPXY (x, y)−
∑

y∈Y

QY (y) logPY (y) (29)

= −H(QXY )−D(QXY ||PXY ) +H(QY ) +D(QY ||PY ) (30)

≤ −H(QXY ) +H(QY ) (31)

= −H(QX|Y |QY ) (32)

and equality is achieved when choosing PXY to be the ML estimate PML, which equals to the observed

empirical PMF, i.e. PML = QXY = Q̂xy. Indeed, the MCE decoder chooses the source block x ∈ X n

that minimizes H(QX|Y |QY ).

Next, we consider the excess rate exponent.

Theorem 4. For a regular rate function R(QX)

Er(R) = min
QX :R(QX)≥R

D(QX ||PX). (33)

Proof: The proof is technical and relegated to Appendix B.

It should be mentioned, that the same techniques used in this section also apply to the more general

case of SW coding, where the side information is also encoded. In this case, there are two encoders, fn

encoding x and f ′
n encoding y, while the central decoder gn now uses both codewords fn(x) and f ′

n(y).

Similar encodings may be defined via random binning, and a header including the type for each codeword.

Now, two rate functions RX(QX) and RY (QY ) may be defined accordingly. The resulting error exponent

is given by

Ēe = min
QXY

{

D (QXY ||PXY ) +
[

min{RX(QX)−H(QX|Y |QY ), (34)

RY (QY )−H(QY |X |QX), RX(QX) +RY (QY )−H(QXY )}
]

+

}

and the excess rate exponents clearly depend only on marginal types and rate functions. Nonetheless,

due to the sum-rate term in the inner minimization, a trickle of coordination is required between the two

encoders. Specifically, at least one of the encoders needs to know the current rate (or equivalently, the
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type class of the current source block) of the other encoder. Moreover, solving the optimization problems

needed to determine the optimal rate (cf. next section) requires solving complicated equations. Thus, we

do not pursue this direction here.

IV. OPTIMAL RATE FUNCTIONS

For the system described in Section II-B, a good choice of a rate function R(QX) would achieve an

error exponent requirement Ee using a minimal rate, uniformly for all QX . In this section, we define and

characterize the optimal rate function, which achieves a specified target error exponent Ee, for a given

source PXY .

Definition 5. A rate function R∗(QX ,Ee) is said to be optimal if it achieves an error exponent Ee, and for

every other rate function R(QX ,Ee) that achieves error exponent Ee, we have R∗(QX ,Ee) ≤ R(QX ,Ee),

for all QX .

In the next theorem, we give an expression for the optimal rate function. Notice that D(QX ||PX) is

finite for any QX , since it was assumed that supp(PX) = X .

Theorem 6. The optimal rate function is

R∗(QX ,Ee) =



























0, Ee ≤ D(QX ||PX)

Ee +H(QX)−D(QX ||PX)

−minQ̃Y
minQY |X∈A

{

D
(

QY |X ||Q̃Y |QX

)

+D
(

QY |X ||PY |X |QX

)

}

, otherwise

(35)

where

A ,
{

QY |X : D
(

QX ×QY |X ||PXY

)

< Ee

}

. (36)

Proof: Theorem 2 implies that error exponent of Ee is achieved if for all QXY

Ee ≤ D (QXY ||PXY ) +
[

R(QX)−H(QX|Y |QY )
]

+
. (37)

First, notice that since D (QXY ||PXY ) = D(QX ||PX) + D
(

QY |X ||PY |X |QX

)

≥ D(QX ||PX), then if

D(QX ||PX) ≥ Ee no actual constraint is imposed on the rate, and (37) is satisfied even for R(QX) = 0.

Thus, in this case R∗(QX ,Ee) = 0. Next, assume that D(QX ||PX) < Ee. Similarly, for QY |X ∈ Ac, (37)

is satisfied for R(QX) = 0. If QY |X ∈ A then (37) can only be satisfied if R(QX) > H(QX|Y |QY ). In
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this case,
[

R−H(QX|Y |QY )
]

+
= R(QX) − H(QX|Y |QY ) and then (37) implies that to achieve Ee we

must have

Ee ≤ D (QXY ||PXY ) +R(QX)−H(QX|Y |QY ) (38)

for all QY |X ∈ A. Thus

R∗(QX ,Ee) = Ee − inf
QY |X∈A

{

D (QXY ||PXY )−H(QX|Y |QY )
}

(39)

= Ee +H(QX)− inf
QY |X∈A

{D(QXY ||QX ×QY ) +D (QXY ||PXY )} .

Introducing an auxiliary PMF Q̃Y and using Lemma 22 (Appendix C)

R∗(QX ,Ee) = Ee +H(QX)−min
Q̃Y

inf
QY |X∈A

{

D(QXY ||QX × Q̃Y ) +D (QXY ||PXY )
}

= Ee +H(QX)−D(QX ||PX) (40)

−min
Q̃Y

inf
QY |X∈A

{

D
(

QY |X ||Q̃Y |QX

)

+D
(

QY |X ||PY |X |QX

)

}

= Ee +H(QX)−D(QX ||PX) (41)

−min
Q̃Y

min
QY |X∈A

{

D
(

QY |X ||Q̃Y |QX

)

+D
(

QY |X ||PY |X |QX

)

}

where the last equality is because the value of the inner minimum is finite (as the divergences are non-

negative).

The following theorem provides several properties of the optimal rate function R∗(QX ,Ee).

Theorem 7. The optimal rate function R∗(QX ,Ee) has the following properties:

1) Let Ee,0 , D(QX ||PX). Then, R∗(QX ,Ee) = 0 for Ee ≤ Ee,0 and R∗(QX ,Ee) > 0 for Ee > Ee,0.

2) R∗(QX ,Ee) is strictly increasing for Ee ∈ (Ee,0,∞).

3) Let (Q̃′
Y , Q

′
Y |X) , argmin(Q̃Y ,QY |X){D(QY |X ||Q̃Y |QX) +D(QY |X ||PY |X |QX)}. Then, R∗(QX ,Ee)

is affine with slope 1 for Ee ∈ (Ee,a,∞) where Ee,a , D(QX ||PX) +D(Q′
Y |X ||PY |X |QX).

4) R∗(QX ,Ee) is a concave function for Ee ∈ (Ee,0,∞).

5) R∗(QX ,Ee) is a regular rate function.

Proof: See Appendix B.

It is evident from Theorem 6 that in order to calculate R∗(QX ,Ee), one needs to solve the following



12

Algorithm 1 Iterative alternating minimization algorithm for the solution of (42)

Input: A source PXY , a type class QX , and a target error exponent Ee.

Output: The value of the optimization problem (42) and the optimal solution (Q∗
Y |X , Q̃

∗
Y ).

1) Initialize Q̃Y randomly such that supp(Q̃Y ) = supp(
∑

x∈X QXPY |X).
2) Iterate over the following steps until convergence:

a) If D(Q
1/2

Y |X(y|x)||PY |X |QX) < Ee − D(QX ||PX) then set α = 1/2. Else, use the bisection

method to find α ∈ [1/2, 1] that satisfies

D
(

Q
α

Y |X ||PY |X |QX

)

= Ee −D(QX ||PX). (44)

b) Set Q̃Y (y) =
∑

x∈X QX(x)Q
α

Y |X(y|x).
3) Let the converged variables be α∗ and Q̃∗

Y . Then, set (QY |X , Q̃Y ) = (Q
α∗

Y |X , Q̃
∗
Y ) in (42). Return.

optimization problem:

min
Q̃Y

min
QY |X∈A

{

D
(

QY |X ||Q̃Y |QX

)

+D
(

QY |X ||PY |X |QX

)

}

. (42)

Algorithm 1 describes an iterative minimization algorithm for solving this optimization problem, and the

next lemma asserts its correctness. For a given 0 ≤ α ≤ 1 and Q̃Y , we shall use the following definition

for a conditional PMF Q
α

Y |X

Q
α

Y |X(y|x) , ψxP
α
Y |X(y|x)Q̃1−α

Y (y), (43)

where ψx is a normalization factor, such that
∑

y∈Y Q
α

Y |X(y|x) = 1 for all x ∈ X . In Algorithm 1 (and

other algorithms in this paper), the bisection method (also called binary search) [12, Chapter 9.1] is

used to find the root of a monotonic continuous function f in an interval [a, b], where f(a) and f(b) have

opposite signs. In any iteration of this well-known method, the current interval is halved, and based on the

sign of f in the middle of the interval, the root is known to belong to either the left or right half-interval.

The bisection method always converges, but obviously, any other appropriate root finding method (that

perhaps converges faster) may be used.

Lemma 8. Algorithm 1 outputs the minimal value and the optimal solution of (42).

Proof: See Appendix B.

Remark 9. The right limit of the optimal rate function R∗(QX ,Ee) at its discontinuity point Ee,0 can be

easily evaluated. As Ee ↓ Ee,0 we have A ↓ {PY |X} and there is no need to optimize over QY |X . The
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Algorithm 2 Computation of optimal rate function R∗(QX ,Ee)

Input: A source PXY , a type class QX , and a target error exponent Ee.

Output: The value of the optimal rate function R∗(QX ,Ee).

1) Set Ee,0 = D(QX ||PX).
2) Find (Q̃′

Y , Q
′
Y |X) , argmin(Q̃Y ,QY |X){D(QY |X ||Q̃Y |QX) +D(QY |X ||PY |X |QX)} using the modifi-

cation of Algorithm 1 suggested in Lemma 10, and find Ee,a from Theorem 7 part 3.

3) If Ee ≤ Ee,0 then set R∗(QX ,Ee) = 0. Return.

If Ee,0 < Ee ≤ Ee,a then find α∗ and (Q
α∗

Y |X , Q̃
∗
Y ) using Algorithm 1 and set

R∗(QX ,Ee) = H(QX)−D
(

Q
α∗

Y |X ||PY |X |QX

)

. (47)

Return.

If Ee,a < Ee set

R∗(QX ,Ee) = Ee +H(QX)−D(QX ||PX) + 2 ·
∑

x∈X

QX(x) log

(

∑

y∈Y

√

PY |X(y|x)Q̃′

Y (y)

)

. (48)

Return.

optimal Q̃Y is simply (see the proof of Lemma 8 in Appendix B)

Q̃∗
Y (y) =

∑

x∈X

QX(x)PY |X(y|x) (45)

and from (41) the resulting rate is

lim
Ee↓Ee,0

R∗(QX ,Ee) = H(QX)−D(PY |X ||Q̃∗
Y |QX). (46)

Namely, the resulting rate is the conditional entropy H(QX|Y |QY ) of the PMF QXY = QX × PY |X .

Especially, for QX = PX we have that R∗(PX , ǫ) ≥ H(PX|Y |PY ), for all ǫ > 0, as expected.

Notice that Theorem 7, part 3 implies that for Ee > Ee,a, the optimal rate function is an affine function

of Ee with slope 1. Thus, for Ee > Ee,a a modification of Algorithm 1 can be used to find the optimal rate

function in a simpler way. The next Lemma states how to find the optimal optimal solution (Q∗
Y |X , Q̃

∗
Y )

for this case, and then the resulting procedure for calculating the optimal rate function R∗(QX ,Ee), for

all possible cases of Ee, is summarized in Algorithm 2 . The correctness of this algorithm is asserted in

Theorem 11.

Lemma 10. For Ee > Ee,a, Algorithm 1 converges to the optimal solution (Q
1/2

Y |X , Q̃
∗
Y ) if in step 2a we

always set α = 1/2.

Proof: See Appendix B.
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Theorem 11. Algorithm 2 returns R∗(QX ,Ee).

Proof: See Appendix B.

In Appendix A, we provide two examples for optimal rate functions. Example 17 shows that even in

the simple case of a double binary source X = Y = {0, 1}, where PY |X is a binary symmetric channel,

the calculation of the optimal rate function requires the solution of a non-trivial numerical equation. This

emphasizes the importance of Algorithm 1. Nonetheless, in Example 18 it is shown that for very weakly

correlated sources, an analytic approximation for the optimal rate function is indeed possible, and the

resulting expression is provided.

V. EXCESS RATE PERFORMANCE

In this section, we evaluate the excess rate exponent for the optimal rate function R∗(QX ,Ee), which

we denote by E∗
r (R). Since R∗(QX ,Ee) is a regular rate function (Theorem 7 part 5), then in essence,

Theorem 4 can be used. However, as we have seen, R∗(QX ,Ee) is not given analytically, and performing

the maximization in (33) directly may be prohibitively complex, especially when |X | is large. Thus, in

this section, we describe an indirect method to evaluate E∗
r (R). Throughout, it is assumed that Ee is given

and fixed.

For a given R, the curve E∗
r (R) may be characterized by a condition that verifies whether (R,Er) is

either below or above the curve. While verifying such a condition is still difficult for R∗(QX ,Ee), it can

nonetheless be verified for a surrogate rate function R̂(QX ;R,Er) which has simpler structure, but also

attains (R,Er). Before going into details we mention few properties of E∗
r (R).

Theorem 12. Let R(QX) be a rate function, and Rmax , maxQX
R(QX). Also, if R(QX) is regular

then let R′
max = supQX∈V R(QX). The excess rate exponent Er(R) for the rate function R(QX) has the

following properties:

1) Er(R) = 0 for R ∈ [0, R(PX)].

2) Er(R) = ∞ for R ∈ (Rmax,∞).

3) Er(R) is an increasing function of R in [R(PX),Rmax]. If R(QX) is regular, then R(QX) is strictly

increasing for [R(PX),R
′
max].

4) Er(R) is a continuous function of R almost everywhere in [R(PX),Rmax]. If R(QX) is regular, then

Er(R) is left-continuous for [R(PX),R
′
max].

Proof: See Appendix B.



15

Now, for a given R we define the aforementioned surrogate rate function as2

R̂(QX ;R,Er) ,











R, D(QX ||PX) < Er

R0, otherwise

. (49)

The exact value of R0 is immaterial, as if it is chosen properly, it affects neither the error exponent nor

the excess rate exponent. A precise condition on R0 will be stated in the proof of Proposition 14 that will

appear in what follows. For now, we require that at least

R0 ≥ max
QX :D(QX ||PX)≥Er

R (QX ,Ee) . (50)

Notice that like the optimal rate function, R̂(QX ;R,Er) is also a regular rate function. The next lemma

shows that (R,Er) is achieved simultaneously for both rate functions, R̂(QX ;R,Er) and R∗(QX ,Ee).

Lemma 13. The optimal rate function R∗(QX ,Ee) achieves the pair (R,Er) with an error exponent Ee

iff the rate function R̂(QX ;R,Er) also achieves (R,Er) with an error exponent Ee.

Proof: We show that (R,Er) is achievable by both rate functions simultaneously.

(⇐) Assume that R̂(QX ;R,Er) achieves (R,Er) with an error exponent Ee. Clearly the definition of

optimal rate functions imply that R∗(QX ,Ee) also achieves (R,Er).

(⇒) Assume that R∗(QX ,Ee) achieves (R,Er). If QX satisfies D(QX ||PX) ≥ Er then the condi-

tion on R0 implies that R̂(QX ;R,Er) ≥ R∗(QX ,Ee) . Else, if R∗(QX ,Ee) > R for some QX that

satisfies D(QX ||PX) < Er, then R∗(QX ,Ee) does not achieve (R,Er) using (33). Thus, we must have

R̂(QX ;R,Er) ≥ R∗(QX ,Ee) for all QX and this implies that R̂(QX ;R,Er) also achieves error exponent

Ee. It is easy to see that R̂(QX ;R,Er) satisfies the large deviation constraint (R,Er) directly from its

construction and (33).

Thus, for any given (R,Er) we may construct the proper R̂(QX ;R,Er), and check if (R,Er) is below

or above the curve E∗
r (R), using R̂(QX ;R,Er) instead of R∗(QX ,Ee). The following proposition states a

proper condition.

2Notice that the second argument in this rate function is a target rate and excess rate exponent, unlike the optimal rate function R∗(QX ,Ee)

in which the second argument is a target error exponent.
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Proposition 14. Let

Γ
(

t, QX , QY |X , Q̃Y

)

, D(QX ||PX) +D
(

QY |X ||PY |X |QX

)

+t ·
(

R−H(QX) +D
(

QY |X ||Q̃Y |QX

))

(51)

and

υ(t) , min
QX :D(QX ||PX)≤Er

min
Q̃Y

min
QY |X

Γ
(

t, QX , QY |X , Q̃Y

)

. (52)

Then (R,Er) is achievable for the exponent Ee iff max0≤t≤1 υ(t) ≥ Ee.

Proof: The sufficient and necessary condition on R̂(QX ;R,Er) to achieve Ee in (37) may be restated

as

Ee ≤ min
QXY

max
0≤t≤1

{

D (QXY ||PXY ) + t ·
(

R̂(QX ;R)−H(QX|Y |QY )
)}

. (53)

For QX that satisfies D(QX ||PX) ≥ Er, we can choose large enough R0 that satisfies this requirement.

Thus we are left with

Ee ≤ min
QX :D(QX ||PX)<Er

min
QY |X

max
0≤t≤1

{

D (QXY ||PXY ) + t ·
(

R−H(QX|Y |QY )
)}

(54)

and using Lemma 22, this is equivalent to

Ee ≤ min
QX :D(QX ||PX)<Er

min
Q̃Y

min
QY |X

max
0≤t≤1

{

D(QX ||PX) +D
(

QY |X ||PY |X |QX

)

+t ·
[

R−H(QX) +D
(

QY |X ||Q̃Y |QX

)]}

(55)

The minimization problem in (55) is jointly convex in QX (over the convex set {QX ∈ S(X ) : D(QX ||PX) <

Er}), {QY |X} and Q̃Y . The maximization problem is linear in t (over the convex set [0, 1]), and thus

trivially concave. Therefore, we can interchange the maximization and minimizations [21] order to obtain

the resulting condition max0≤t≤1 υ(t) ≥ Ee.

The maximization over t can be performed via a simple line search, over the finite interval [0, 1] (or

using more sophisticated methods, e.g., Brent’s method [12, Section 10.2]). However, for a given t, υ(t)

needs to be found. Algorithm 3 provides a method to calculate υ(t). The technique is somewhat similar

to Algorithm 1, but here an additional optimization is carried over QX . Its convergence proof is given in
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Algorithm 3 Iterative alternating minimization algorithm for calculation of υ(t)

Input: A source PXY , a target error exponent Ee, a target rate R, a target excess rate Er, and 0 ≤ t ≤ 1.

Output: The value of υ(t).

1) Initialize Q̃Y randomly such that supp(Q̃Y ) = Y .

2) Iterate over the following steps until convergence:

a) If D(Q
0,t

X ||PX) < Er then set λ = 0. Else, use the bisection method to find λ > 0 that satisfies

D(Q
λ,t

X ||PX) = Er.

b) Set Q̃Y (y) =
∑

x∈X Q
λ,t

X (x)Q
1

1+t

Y |X(y|x) for all y ∈ Y .

3) Let the converged variables be λ∗ and Q̃∗
Y . Set υ(t) = Γ(t, Q

λ∗,t

X , Q
1

1+t

Y |X , Q̃
∗
Y ). Return.

the lemma that follows. We shall utilize the the definition in (43) as well as

δ1,t(x) , D

(

Q
1

1+t

Y |X(·|x)||PY |X(·|x)
)

δ2,t(x) , D

(

Q
1

1+t

Y |X(·|x)||Q̃Y

)

and

Q
λ,t

X , ψ · P
1+λ

1+λ+t

X (x) · exp
(

− 1

1 + t+ λ
· δ1,t(x)−

t

1 + t+ λ
· δ2,t(x)

)

, (56)

where ψ is a normalization factor.

Lemma 15. Algorithm 3 outputs υ(t).

Proof: See Appendix B.

It can easily be seen that max0≤t≤1 υ(t) is a non-increasing function of Er. Thus, for any given constraint

on Ee and target rate R, it is easy to search for E∗
r (R) = min {Er : (R,Er) is achievable for Ee}, e.g. using

a simple bisection algorithm.

For the sake of comparison, we mention fixed-rate coding. In this case, to ensure an error exponent of

Ee one must use R(QX) = R
∗
max(Ee) , maxQ′

X
R∗(Q′

X ,Ee) for all QX . Thus, the excess rate exponent is

0 for R < R
∗
max(Ee) and ∞ for R > R

∗
max(Ee).

Remark 16. In many practical cases, there is some uncertainty regarding the source PXY = PX × PY |X .

Clearly, if independence between X and Y is a possible scenario, then in this worst case, the side

information Y n is useless (when no feedback link exists). In other cases, it may be known that PXY ∈

F ⊂ S(X ×Y) for some family of PMFs F . In this case, a possible requirement is that the rate function

R(QX) will be chosen to achieve error exponent of Ee uniformly for all sources in F . With a slight change

and abuse of notation, we define the optimal rate function for the source PXY as R∗(QX ,Ee;PXY ) and
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the optimal rate function for the family F as

R∗ (QX ,Ee;F) , max
PXY ∈F

R∗ (QX ,Ee;PXY ) . (57)

This maximization is (relatively) easy to perform if, e.g., the conditional probability PY |X is known

exactly, and in addition, a nominal P̃X is known such that the actual PX satisfies D(P̃X ||PX) ≤ U,

for some given uncertainty level U > 0 (recall Pinsker’s inequality [4, Lemma 11.6.1] and see also the

discussion in [19]). Observing (41), it is noticed that R∗(QX ,Ee) depends on PX only via D(QX ||PX),

both as an additive factor and in the constraint set A. Nonetheless, the maximum of R∗(QX ,Ee) is obtained

when D (QX ||PX) is maximized. Thus, to perform that maximization (57), the following optimization

problem should be solved

min
PX :D(P̃X ||PX)≤U

D (QX ||PX) (58)

for any given QX . A standard Lagrange method, like the one used in previous sections, results in the

solution P ∗
X,α = αP̃X +(1−α)QX , where α is either chosen to satisfy the constraint D(P̃X ||P ∗

X) = U or

α = 0 (and then the minimum is 0). The value D(QX ||P ∗
X) can be substituted into the optimal rate function

expression instead of D(QX ||PX) in Theorem 6. The calculation of the resulting excess rate exponent

curve E∗
r (R) is more involved, since the minimizer P ∗

X depends on QX . Nonetheless, if in Proposition 14,

we add the dependence in PX to (51), to obtain Γ(t, QX , QY |X , PX , Q̃Y ), then we have that Γ is jointly

convex function of (QX , QY |X , PX , Q̃Y ). Thus, arguments similar to the ones used in Lemma 15, show that

an alternating minimization algorithm can be used, iterating between finding the optimal (QX , QY |X , PX)

for a given Q̃Y , and the optimal Q̃Y for a given (QX , QY |X , PX) (i.e., in Algorithm 3, PX is optimized

after step 2a).

VI. A NUMERICAL EXAMPLE

In this section, we provide a simple numerical example to illustrate the results obtained in previous

sections. Assume the source symbols are generated from the alphabets X = {0, 1} and Y = {0, 1, 2, 3},

where PX is given by PX(0) = 1/4 = 1−PX(1) and PY |X is given by the following transition probability

matrix

PY |X =
1

10
·





4 3 2 1

1 2 3 4



 . (59)
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Figure 1 shows the optimal rate function R∗(QX ,Ee) for QX given by QX(0) = 0.4 = 1 − QX(1) as

a function of Ee. The three parts of the function - zero rate part, a concave part, and an affine part

with a unity slope, are evident. Figure 2 shows the optimal rate function R∗(QX ,Ee) for all possible

types (indexed by QX(0)) for various values of Ee. It can be seen that indeed this optimal function is in

the form of a regular rate function. The excess rate exponent is calculated for the optimal rate function

R∗(QX ,Ee = 10−1), and plotted in Figure 3.

Following Remark 16, suppose that PX is not precisely known, but D(P̃X ||PX) ≤ U for a nominal

PMF P̃X given by P̃X(0) = 1/4 = 1 − P̃X(1), and uncertainty level of U = 10−2. The resulting optimal

rate function and excess rate exponents, are also shown in the aforementioned figures.

It can be verified that Figure 2 and Figure 3 are consistent. Indeed, when there is no uncertainty, it can

be seen in Figure 2 that when the type is QX = PX the rate is R∗(PX , 10
−1) ≈ 0.62 so the excess rate

exponent is E∗
r (0.62) = 0. Then, as QX(0) increases, the rate also increases, up to its maximal value of

R∗(QX , 10
−1) ≈ 0.67, for QX(0) ≈ 0.36. The excess rate exponent is determined by the divergence of

this type from the true source PX , and given by E∗
r (0.67) ≈ D([0.25, 0.75]||[0.36, 0.64]) ≈ 2.8 · 10−2.

This is the maximal value of Er(R) shown in Figure 3, and for larger rates, clearly Er(R) = ∞. For the

case of uncertainty with U = 10−2, it should be observed that any source PX with 0.25 ≤ PX(0) ≤ 0.315

satisfies the uncertainty constraint, and such types result E∗
r (R) = 0. The rate for QX(0) = 0.315 is

R∗(QX , 10
−1) ≈ 0.67, which can be seen in Figure 3 as the minimal rate for which E∗

r (R) > 0. For larger

QX(0) the excess rate is determined by the divergence of QX w.r.t. the worst source in the family F ,

namely P ∗
X(0) = 0.315. For example, in the maximal rate of R∗(QX , 10

−1) ≈ 0.7 the type is QX(0) ≈ 0.4

and E∗
r (0.7) ≈ D([0.315, 0.685]||[0.4, 0.6]) ≈ 1.55 · 10−2.

For the sake of comparison, we also consider fixed-rate coding. First, notice that from Figure 3 for

Ee = 10−1 we have E∗
r (R = 0.65) = 3.75 ·10−3. Second, it can be found that if one uses fixed-rate coding,

with R(QX) = 0.65 for all QX then the error exponent achieved is only Ee = 0.78 · 10−1. Therefore, if

the finite excess rate exponent of variable rate coding is tolerated, then this provides an improvement in

the error exponent.
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Figure 1. Optimal rate function R∗(QX ,Ee) for the type QX = (0.4, 0.6).
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APPENDIX A

EXAMPLES FOR OPTIMAL RATE FUNCTIONS

Example 17 (Double Binary Source). From the proof of Lemma 8 (Appendix B) we may deduce that

the optimal Q̃∗
Y satisfies

Q̃∗
Y (y) =

∑

x∈X

QX(x)Q
∗
Y |X(y|x) (A.1)

or

Q̃∗
Y (y) =

∑

x∈X

QX(x)ψxP
α
Y |X(y|x)Q̃∗1−α

Y (y) (A.2)

for some α. Writing ψx explicitly

Q̃α
Y (y) =

∑

x∈X

QX(x)P
α
Y |X(y|x)

∑

y′∈Y P
α
Y |X(y

′|x)Q̃1−α
Y (y′)

(A.3)

and using the common denominator of the fractions in the right term we get

Q̃α
Y (y) =

∑

x∈X QX(x)P
α
Y |X(y|x)

∏

x′∈X ,x′ 6=x

(

∑

y′∈Y P
α
Y |X(y

′|x′)Q̃1−α
Y (y′)

)

∏

x∈X

(

∑

y′∈Y P
α
Y |X(y

′|x)Q̃1−α
Y (y′)

) . (A.4)
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It can be noticed that the denominator does not depend on y and thus

Q̃α
Y (y) = ψ

∑

x∈X

QX(x)P
α
Y |X(y|x)

∏

x′∈X ,x′ 6=x

(

∑

y′∈Y

Pα
Y |X(y

′|x′)Q̃1−α
Y (y′)

)

(A.5)

for some normalization constant ψ ,

[

∏

x∈X

(

∑

y′∈Y P
α
Y |X(y

′|x)Q̃1−α
Y (y′)

)]−1

. We attempt to solve this

equation in the simple case of X = Y = {0, 1}, and PY |X represents a binary symmetric channel (BSC)

with crossover probability ǫ. In this case, (A.5) is given by

Q̃α
Y (y) = ψ

∑

x∈X

QX(x)P
α
Y |X(y|x)

(

∑

y′∈Y

Pα
Y |X(y

′|x⊕ 1)Q̃1−α
Y (y′)

)

(A.6)

or

Q̃α
Y (0) = ψ

{

Q̃1−α
Y (0) · [ǫ(1− ǫ)]α + Q̃1−α

Y (1) ·
[

QX(0)(1− ǫ)2α +QX(1)ǫ
2α
]

}

(A.7)

Q̃α
Y (1) = ψ

{

Q̃1−α
Y (0) ·

[

QX(0)ǫ
2α +QX(1)(1− ǫ)2α

]

+ Q̃1−α
Y (1) · [ǫ(1− ǫ)]α

}

. (A.8)

Letting ρ = ǫ
1−ǫ

and γ = Q̃Y (0)

Q̃Y (1)
, we get

γ =
γ1−α + [QX(0)ρ

−α +QX(1)ρ
α]

γα−1 + [QX(0)ρα +QX(1)ρ−α]
. (A.9)

In the special cases of α = 1 and α = 1/2 an explicit solution can be found, and it is equal to

γ =
QX(0)ρ

−1 +QX(1)ρ

QX(0)ρ+QX(1)ρ−1
(A.10)

both for α = 1 and α = 1/2. However, generally, (A.9) may only be solved numerically. It also evident

that even in this simple case, the optimal Q̃Y is not necessarily uniform (unless for some simple cases

such as QX(0) = QX(1) = 1/2 or ǫ = 1/2).

Example 18 (Very Weakly Correlated Sources). Consider the case of very weakly correlated sources 3,

namely

PY |X(y|x) = PY (y) · (1 + ǫxy) (A.11)

where for all x ∈ X we have
∑

y∈Y ǫxy = 0 and |ǫxy|≪ 1 for all (x, y) ∈ (X ,Y). Consider again the

3In channel coding, this is referred to as “very noisy channel”.
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minimization problem in (40)

min
Q̃Y

min
QY |X∈A

{

D(QY |X ||Q̃Y |QX) +D
(

QY |X ||PY |X |QX

)

}

. (A.12)

and notice that if X and Y are independent, then the optimal solution is Q̃∗
Y = QY |X = PY for all x ∈ X

and both divergences vanish. A continuity argument then implies that for the low dependence case, the

two divergences at the optimal solution are close to 0. Therefore, we can use the following Euclidean

approximation [10, Theorem 4.1]: For two PMFs PX , QX such that supp(Px) = X and QX ≈ PX we

have that

D(QX ||PX) ≈
1

2
χ2(QX , PX) ,

1

2

∑

x∈X

(QX(x)− PX(x))
2

PX(x)
. (A.13)

Moreover, for another PMF P̃X , if P̃X ≈ PX then

D(QX ||PX) ≈
1

2

∑

x∈X

(QX(x)− PX(x))
2

P̃X(x)
(A.14)

which also shows that D(PX ||QX) ≈ D(QX ||PX). Now, the objective function of the minimization

problem can be approximated as

D(QY |X ||Q̃Y |QX) +D
(

QY |X ||PY |X |QX

)

(A.15)

≈ 1
2
EQX

{

∑

y∈Y

(QY |X(y|X)−Q̃Y (y))2

Q̃Y (y)
+
∑

y∈Y

(QY |X(y|X)−PY |X(y|x))
2

PY |X(y|X)

}

(A.16)

≈ 1
2
EQX

{

∑

y∈Y

(QY |X(y|X)−Q̃Y (y))2+(QY |X(y|X)−PY |X(y|X))
2

PY (y)

}

(A.17)

and similarly the constraint QY |X ∈ A is approximated by

1

2
· EQX

{

∑

y∈Y

(

QY |X(y|X)− PY |X(y|X)
)2

PY (y)

}

≤ Ee −D(QX ||PX). (A.18)

The Lagrangian for a given Q̃Y (ignoring positivity constraints for the moment) is

L
(

QY |X , λ, µx

)

= 1
2
·
∑

x∈X

QX(x)
∑

y∈Y

(QY |X − Q̃Y (y))
2 + (1 + λ)

(

QY |X(y|x)− PY |X(y|x)
)2

PY (y)
(A.19)

+
∑

x∈X

µx

∑

y∈Y

QY |X(y|x)
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with λ > 0 and µx ∈ R for x ∈ X . Differentiating w.r.t. some QY |X(y
′|x′) for x′ ∈ X, y′ ∈ Y we have

∂L

∂QY |X(y′|x′)
=

1

2
·QX(x

′) ·
2
(

QY |X(y
′|x′)− Q̃Y (y

′)
)

+ (1 + λ)2
(

QY |X(y
′|x′)− PY |X(y

′|x′)
)

PY (y′)
+ µx′

(A.20)

and equating the derivative to zero in this case is equivalent to

(

QY |X(y
′|x′)− Q̃Y (y

′)
)

+ (1 + λ)
(

QY |X(y
′|x′)− PY |X(y

′|x′)
)

PY (y′)
+ µ′

x′ = 0. (A.21)

Thus, for some λ > 0

Q∗
Y |X(y|x) =

1 + λ

2 + λ
PY |X(y|x) +

1

2 + λ
Q̃Y (y)−

µ′
x

2 + λ
PY (y). (A.22)

It can be easily seen that µ′
x = 0 for all x ∈ X so

Q∗
Y |X = αPY |X + (1− α)Q̃Y (A.23)

for some α = 1+λ
2+λ

, where α is either chosen to satisfy the constraint or α = 1/2. It is evident that indeed

the solution satisfies the positivity constraints. Now, for any given α the resulting value of the optimization

problem is

[

α2 + (α− 1)2

2

]

∑

x∈X

QX(x)
∑

y∈Y

(

PY |X(y|x)− Q̃Y (y)
)2

PY (y)
(A.24)

and by differentiating w.r.t. some Q̃Y (y
′) for y′ ∈ Y we have

[

α2 + (α− 1)2

2

]

·
∑

x∈X

QX(x)

PY (y′)

[

−2
(

PY |X(y
′|x)− Q̃Y (y

′)
)]

(A.25)

and equating to zero we obtain that the optimal solution is

Q̃∗
Y (y) =

∑

x∈X

QX(x)PY |X(y|x). (A.26)

Notice that the optimal solution Q̃∗
Y does not depend on α. Thus, for a given Ee ≥ Ee,0 the optimal value

of α is given by α∗ ≈ max(α̃, 1/2) where α̃ achieves equality in (A.18),

α̃ = 1−
√

√

√

√

Ee −D(QX ||PX)

1
2

∑

x∈X QX(x)
∑

y∈Y

(PY |X(y|x)−Q̃∗
Y
(y))

2

PY (y)

≈ 1−
√

Ee −D(QX ||PX)

D(PY |X ||Q̃∗
Y |QX)

(A.27)
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using again (A.14). Then, in the case of very weakly correlated sources, the optimal rate function can be

approximated by

R∗(QX ,Ee) ≈ Ee +H(QX)−D(QX ||PX)−
[

α∗2 + (α∗ − 1)2
]

D(PY |X ||Q̃∗
Y |QX) (A.28)

where α∗ is given analytically as a function of Ee. In addition, similar approximations for the unconstrained

minimization problem (B.43) show that

Ee,a ≈ D(QX ||PX) +
1

4
D(PY |X ||Q̃∗

Y |QX). (A.29)

Thus, for Ee,0 ≤ Ee ≤ Ee,a we have α̃ ≤ 1/2 and by substituting α̃ in (A.28) we obtain

R∗(QX ,Ee) ≈ H(QX)− Ee +D(QX ||PX)

−D(PY |X ||Q̃∗
Y |QX) + 2

√

D(PY |X ||Q̃∗
Y |QX) (Ee −D(QX ||PX)).

Notice that D(PY |X ||Q̃∗
Y |QX) is the mutual information of the joint PMF QX × PY |X and thus is a

measure of the independence between X and Y . As D(PY |X ||Q̃∗
Y |QX) → 0 then X and Y become

“more” independent and Ee,a → Ee,0. Thus, in the case of a small D(PY |X ||Q̃∗
Y |QX), the optimal rate

function R∗(QX ,Ee) is affine for almost the entire range Ee ≥ Ee,0. Indeed, in this case, the main error

event is associated with “bad binning”, i.e. at least two source blocks of the same type are mapped to the

same bin by the random binning procedure.

APPENDIX B

PROOFS

Proof of Theorem 4: For a target rate R

P

{

R(Q̂X) ≥ R

}

=
∑

QX∈Pn(X )

P(Q̂X = QX) · I (R(QX) ≥ R) (B.1)

.
= exp

(

−n · min
QX∈Pn(X ):R(QX)≥R

D(QX ||PX)

)

. (B.2)

Because supp(PX) = X then D(QX ||PX) is continuous and finite for all QX and as n→ ∞

lim
n→∞

− 1

n
· logP

{

R(Q̂Xn) ≥ R

}

= min
QX :R(QX)≥R

D(QX ||PX). (B.3)
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Now, for a source block x of type class T (x), the total rate is the sum of the description rate of its type

class index and R(Q̂x). Using the fact that |Pn(X )|≤ (n+ 1)|X | for any given ǫ > 0

Er(R) = lim
n→∞

− 1

n
· logP

{

R(Q̂X) + |X |· log(n+ 1)

n
≥ R

}

≥ lim
n→∞

− 1

n
· logP

{

R(Q̂X) ≥ R− ǫ
}

(B.4)

and similarly

Er(R) ≤ lim
n→∞

− 1

n
· logP

{

R(Q̂X) ≥ R

}

. (B.5)

Thus, to conclude the proof we show that minQX :R(QX)≥RD(QX ||PX) is left continuous as a function of

R, since this will imply that when taking ǫ→ 0, the upper and lower bounds on Er(R) will coincide.

To show this, let δ > 0 be given. Recall that R(QX) is regular, thus there exists V ⊂ S(X ) such that

R(QX) is continuous in V , and equals a constant R(QX) = R0, for QX ∈ Vc. Also, since R(QX) ≥ 0

and S(X ) is a compact set, then exists a minimizer Q∗
X ∈ S(X ) for the right hand side of (B.3). For any

ǫ > 0 we clearly have

min
QX :R(QX)≥R−ǫ

D(QX ||PX) ≤ min
QX :R(QX)≥R

D(QX ||PX) = D(Q∗
X ||PX). (B.6)

To obtain an inequality in the reversed direction, we split the proof into two cases, depending whether

Q∗
X ∈ V or not.

Case 1: Q∗
X ∈ V . Recall that R(QX) is continuous and finite inside the interior of V , and D(QX ||PX)

is continuous function of QX . Now, we may define for any QX ∈ V such that R(QX) ≥ R, the closed

neighborhood

D(QX ,R, ǫ) ,
{

Q̃X : D(Q̃X ||PX) ≥ D(QX ||PX)− δ
}

∩
{

Q̃X : R(Q̃X) ≥ R− ǫ
}

∩ V . (B.7)

Then, the continuity of both R(QX) and D(QX ||PX) implies that there exists a closed ball (e.g. in L1

norm) B(QX , ρ) with center in QX and radius ρ > 0 such that B(QX , ρ) ⊂ D(QX ,R, ǫ). Also, we may

define the set

V ′(R) ,

{

QX ∈ ∂V : lim
Q̃X→QX

R(Q̃X) = R

}

(B.8)

where ∂V = V\V is the boundary of V , and for any QX ∈ V ′(R)

D′(QX ,R, ǫ) , QX ∪ D(QX ,R, ǫ). (B.9)
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Here too, continuity arguments imply that there exists a closed ball B(QX , ρ) with center in QX and

radius ρ > 0 such that B(QX , ρ) ∩ V ⊂ D′(QX ,R, ǫ). Now, consider the set

U , V\













⋃

{QX∈V ′(R)}

D′(QX ,R, ǫ)







∪







⋃

{QX∈V:R(QX)≥R}

D(QX ,R, ǫ)













(B.10)

and let R
′ , maxQX∈U R(QX). Then we must have R

′ < R. To see this, assume by contradiction that

R
′ = R and let QX achieve the maximum, namely, R(QX) = R. Now, either QX ∈ V or QX ∈ ∂V , but

both cases lead to contradiction. Indeed, the definition of U , and the fact that for some ρ > 0 we have

B(QX , ρ)∩ V ⊂ D(QX ,R, ǫ) imply that QX /∈ V . Similar arguments show that QX /∈ ∂V . Now, consider

two sub-cases:

1) R > R0. If we choose ǫ′ = min{ǫ,R− R
′,R− R0} we have

min
QX :R(QX)≥R−ǫ′

D(QX ||PX) ≥ min
Q̃X∈

⋃
QX :R(QX )≥R

B(QX ,R,ǫ)
D(Q̃X ||PX) ≥ D(Q∗

X ||PX)− δ (B.11)

since the right minimization is over a smaller set.

2) R ≤ R0. Since Q∗
X is the minimizer for the right hand side of (B.3) then

min
Q̃X∈Vc

D(Q̃X ||PX) ≥ D(Q∗
X ||PX) (B.12)

and if we choose ǫ′ = min{ǫ,R− R
′} we also have

min
QX :R(QX)≥R−ǫ′

D(QX ||PX) ≥ min
Q̃x∈{⋃QX :R(QX )≥R

B(QX ,R,ǫ)}
D(Q̃X ||PX) ≥ D(Q∗

X ||PX)− δ (B.13)

and thus

min
QX :R(QX)≥R−ǫ′

D(QX ||PX) ≥ min
Q̃X∈Vc∪{⋃QX :R(QX )≥R

B(QX ,R,ǫ)}
D(Q̃X ||PX) ≥ D(Q∗

X ||PX)− δ.

(B.14)

Case 2: Q∗
X ∈ Vc. In this case we clearly have R0 ≥ R. Now, let R , supQX∈V R(QX) and let QX ∈ V

any PMF achieving the supremum. Then we must have that either QX ∈ ∂V or R < R. To see this,

assume by contradiction that both QX ∈ V and R ≥ R. Recall that V , {QX : D(QX ||PX) < d}. This

implies that Q∗
X could be any point on the boundary of V . Now, let

Qα
X , (1− α)PX + αQX . (B.15)
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and since D(Qα
X ||PX) is an increasing function of α (Lemma 20 in Appendix C), then for some α̃ > 1,

we have D(Qα
X ||PX) = d and Qα

X ∈ ∂V . But this implies that while both R(Qα̃
X) = R0 ≥ R and

R(QX) = R ≥ R we have

D(QX ||PX) ≤ D(Q∗
X ||PX), (B.16)

and this contradicts the optimality of Q∗
X . Thus, we must have that either QX ∈ ∂V (for any QX achieving

R) or R < R. Now, we have two sub-cases:

1) If R < R, we can choose ǫ = R− R > 0 and obtain

min
QX :R(QX)≥R−ǫ

D(QX ||PX) ≥ D(Q∗
X ||PX). (B.17)

2) Otherwise, suppose QX ∈ ∂V and R ≥ R. If R > R then similar arguments as before show that this

contradicts the optimality of Q∗
X . If R = R then similar arguments to the ones used in the first case

show that

min
QX :R(QX)≥R−ǫ′

D(QX ||PX) ≥ D(Q∗
X ||PX)− δ (B.18)

for any δ > 0 and small enough ǫ′ > 0.

To conclude, in any of the two cases, for any given δ > 0 we can find ǫ > 0 such that

min
QX :R(QX)≥R−ǫ

D(QX ||PX) ≥ D(Q∗
X ||PX)− δ. (B.19)

This means that minQX :R(QX)≥RD(QX ||PX) is left continuous as a function of R, and the desired result

is obtained.

Proof of Theorem 7:

1) The fact that R∗(QX ,Ee) = 0 for Ee ≤ Ee,0 evident from (35). For Ee > Ee,0, notice that if

Ee > D(QX ||PX) then to satisfy (37) for QY |X = PY |X we must have R∗(QX ,Ee) > H(QX|Y |QY ),

where here QX|Y is induced from QX ×PY |X . If H(QX|Y |QY ) > 0 then we are done. Else, slightly

alter QY |X from PY |X such that D(QX ||PX) +D
(

QY |X ||PY |X |QX

)

< Ee but H(QX|Y |QY ) > 0.

2) Observing (39), we see that R∗(QX ,Ee) equals a linear function of Ee (which is a strictly increasing

function of Ee), minus infQY |X∈A

{

D (QXY ||PXY )−H(QX|Y |QY )
}

, which is a non-decreasing

function of Ee (since as Ee gets larger, the infimum is over a larger set).
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3) Using (41) we get

R∗(QX ,Ee) = Ee +H(QX)−D(QX ||PX) (B.20)

−min
Q̃Y

min
QY |X∈A

{

D
(

QY |X ||Q̃Y |Qx

)

+D
(

QY |X ||PY |X |QX

)

}

≥ Ee +H(QX) (B.21)

−D(QX ||PX)−
{

D
(

Q′
Y |X ||Q̃′

Y |QX

)

+D
(

Q′
Y |X ||PY |X |QX

)

}

and for Ee > Ee,a equality is achieved since Q′
Y |X ∈ A.

4) From (41), the optimal rate function

R∗(QX ,Ee) = Ee +H(QX)−D(QX ||PX) (B.22)

−min
Q̃Y

min
D(QX ||PX)+D(QY |X ||PY |X |QX)≤Ee

{

D
(

QY |X ||Q̃Y |QX

)

+D
(

QY |X ||PY |X |QX

)

}

.

The objective and constraint functions are jointly convex in Q̃Y × QY |X and for Ee ∈ (Ee,0,∞)

the constraint set is feasible. Thus, the conditions of Lemma 21 (Appendix C) are satisfied and

R∗(QX ,Ee) is concave for Ee ∈ (D(QX ||PX),∞).

5) Let V = {QX : D(QX ||PX) < Ee}. Then clearly R∗(QX ,Ee) = 0 for QX ∈ Vc. Also, for any

QX ∈ V there exists a closed neighborhood B of QX such that B ∈ V . Inside B, the optimal

rate R∗(QX ,Ee) is given by the second term in (35). In this second term, both the objective and

constraint are continuous functions of QX , and thus R∗(QX ,Ee) is continuous for QX ∈ V .

Proof of Lemma 8: Notice that (42) is an optimization problem over (QY |X , Q̃Y ) and consider

utilizing an alternating minimization algorithm, where for a given Q̃Y , the minimizer QY |X is found,

and vice versa. We divide the rest of the proof into two main parts. In the first part, we prove that the

alternating minimization algorithm indeed converges to the optimal solution, and in the second part, we

solve the two individual optimization problems (resulting from keeping one of the optimization variables

fixed).

Part 1: In [10, Section 5.2], [11] sufficient conditions were derived for the convergence of an alternating
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minimization algorithm. Specifically, these conditions are met for a minimization problem of the form

inf
P∈P

inf
Q∈Q

D(P ||Q) (B.23)

where P and Q are two positive measures (which may not necessarily sum to 1) over a finite alphabet

Z , and P ,Q are two convex sets. To prove that alternating minimization algorithm converges for the

optimization problem (42), we now show that it can be written in the form of (B.23). The objective

function of (42) is given by

D(QY |X ||Q̃Y |QX) +D(QY |X ||PY |X |QX) =
∑

x,y

QX(x)QY |X(y|x) log
Q2

Y |X(y|x)
Q̃Y (y)PY |X(y|x)

(B.24)

= 2
∑

x,y

QXY (x, y) log
QXY (x, y)

√

Q̃Y (y)PY |X(y|x)QX(x)
.(B.25)

Thus, if we let Z = X ×Y and consider the measures QXY and Q̃XY ,

√

Q̃Y PY |XQX then the objective

function is of the form of (B.23). Now, using the definition of the set A, the feasible set for QXY is

{

QXY :
∑

y∈Y

QXY (x, y) = QX(x), D (QXY ||PXY ) < Ee

}

(B.26)

which is a convex set. Now using Corollary 23 of Lemma 22 (Appendix C), we have that the feasible

region of Q̃Y can be extended from the simplex S(Y) to the set

S̃(Y) ,

{

Q̃Y :
∑

y∈Y

Q̃Y (y) ≤ 1, Q̃Y (y) ≥ 0 for all y ∈ Y
}

(B.27)

which is also a convex set. Now, define the feasible set for the variables Q̃XY as

S̆ =

{

Q̃XY : ∃Q̃Y ∈ S̃(Y) so that Q̃XY (x, y) =
√

Q̃Y (y)PY |X(y|x)QX(x) for all (x, y) ∈ X × Y
}

.

(B.28)

We show that S̆ is also a convex set. Let Q̃i
XY (x, y) =

√

Q̃i
Y (y)PY |X(y|x)QX(x) for Q̃i

Y ∈ S̃(Y), i = 1, 2,

and 0 ≤ α ≤ 1. Then,

Q̃α
XY , αQ̃1

XY + (1− α)Q̃2
XY (B.29)

=
√

PY |XQX ·
(

α

√

Q̃1
Y + (1− α)

√

Q̃2
Y

)

. (B.30)
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Thus, to show that Q̃α
XY ∈ S̆ all is needed to prove is that Q

α

Y ,

(

α
√

Q̃1
Y + (1− α)

√

Q̃2
Y

)2

∈ S̃(Y).

As positivity of Q
α

Y is clear, we only verify that
∑

y∈Y Q
α

Y (y) ≤ 1. Indeed, we have

∑

y∈Y

Q
α

Y (y) =
∑

y∈Y

(

α

√

Q̃1
Y (y) + (1− α)

√

Q̃2
Y (y)

)2

(B.31)

(a)

≤



α

√

∑

y∈Y

Q̃1
Y (y) + (1− α)

√

∑

y∈Y

Q̃2
Y (y)





2

(B.32)

(b)

≤ (α + (1− α))2 (B.33)

= 1 (B.34)

where (a) follows from a variant of Minkowski inequality (Lemma 24 in Appendix C), and (b) is from

the fact that both
√
t and t2 are increasing functions of t ∈ R

+, and Q̃Y ∈ S̃(Y). Thus the optimization

problem (42) is of the form (B.23) and an alternating minimization algorithm converges to the optimal,

unique, solution, which we denote by (Q∗
Y |X , Q̃

∗
Y ).

Part 2: First, suppose that Q̃Y is given. In order to find the minimizer QY |X the Karush-Kuhn-Tucker

(KKT) conditions for convex problems [2, Section 5.5.3] can be utilized. Ignoring positivity constraints

for the moment, and defining the Lagrangian

L
(

QY |X , λ, µx

)

=
∑

x∈X

QX(x)D(QY |X(·|x)||Q̃Y ) +
∑

x∈X

QX(x)D
(

QY |X(·|x)||PY |X(·|x)
)

(B.35)

+λ ·
∑

x∈X

QX(x)D
(

QY |X(·|x)||PY |X(·|x)
)

+
∑

x∈X

µx

∑

y∈Y

QY |X(y|x)

=
∑

x∈X

QX(x)
∑

y∈Y

QY |X(y|x) log
Q2+λ

Y |X(y|x)
Q̃Y P

1+λ
Y |X (y|x)

+
∑

x∈X

µx

∑

y∈Y

QY |X(y|x) (B.36)

where λ ≥ 0 and µx ∈ R for x ∈ X . Differentiating w.r.t. some QY |X(y
′|x′) for x′ ∈ X , y′ ∈ Y

∂L

∂QY |X(y′|x′)
= QX(x

′)

(

(2 + λ) ·
(

logQY |X(y
′|x′) + 1

)

+ log
1

Q̃Y (y′)P
1+λ
Y |X (y′|x′)

)

+ µx′ (B.37)

and equating to zero we get

QX(x
′) · log

Q2+λ
Y |X(y

′|x′)
P 1+λ
Y |X (y′|x′)Q̃Y (y′)

+ µ′
x′ = 0 (B.38)

where µ′
x′ = µx′ + λ + 2. Thus, the argument of the logarithm must not depend on x, and this implies
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that for any x ∈ X such that QX(x) 6= 0 we must have

Q∗
Y |X(y|x) = ψxP

α
Y |X(y|x)Q̃1−α

Y (y) = Q
α

Y |X(y|x) (B.39)

for α = 1+λ
2+λ

, where ψx is a normalization constant, and the definition (43) was used. The value of Q∗
Y |X

for x ∈ X with QX(x) = 0 is immaterial as it does not affect the optimal value of the objective function.

Also, it is evident that the solution Q∗
Y |X is indeed positive.

To find the optimal Q∗
Y |X we need to choose α in order to satisfy the constraint Q

α

Y |X ∈ A. For this,

the complementary slackness condition [2, Section 5.5.2] implies that α should be chosen either to satisfy

D(Q
α

Y |X ||PY |X |QX) = Ee −D(QX ||PX) (B.40)

and 1/2 ≤ α ≤ 1, or α = 1/2 and then

D(Q
1/2

Y |X ||PY |X |QX) < Ee −D(QX ||PX). (B.41)

To find α that satisfies the complementary slackness condition it is noticed that D(Q
α

Y |X ||PY |X |QX)

is a monotonically decreasing function of α. Indeed, it is easy to see that if Q̃Y is initialized such

that supp(Q̃Y ) = supp(
∑

x∈X QX(x)PY |X(y|x)) then this remains true for all iterations. Then, it fol-

lows from Lemma 25 (Appendix C) that for any given x ∈ X such that QX(x) 6= 0 we have that

D(Q
α

Y |X(·|x)||PY |X(·|x)) is a decreasing function of α, and thus their average D(Q
α

Y |X ||PY |X |QX) is also

a decreasing function of α. Thus, if D(Q
1/2

Y |X ||PY |X |QX) < Ee−D(QX ||PX) then α = 1/2. Otherwise, we

have D(Q
1/2

Y |X ||PY |X |QX) > Ee −D(QX ||PX) and D(Q
1

Y |X ||PY |X |QX) = 0 < Ee −D(QX ||PX). Thus, in

the later case, a simple bisection search finds the required α.

Second, assume that QY |X is given. The minimizer Q̃Y can be found using Lemma 22 (Appendix C)

to be

Q̃Y (y) =
∑

x∈X

QX(x)QY |X(y|x). (B.42)

It is easily seen that Algorithm 1 indeed implements the procedure described in this proof.

Proof of Lemma 10: Using Theorem 7 part 3, for Ee > Ee,a, it is sufficient to solve the unconstrained
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minimization problem

min
Q̃Y

min
QY |X

{

D
(

QY |X ||Q̃Y |QX

)

+D
(

QY |X ||PY |X |QX

)

}

. (B.43)

This is equivalent to setting Ee = ∞. Thus, in step 2a of Algorithm 1, we always have

D(Q
1/2

Y |X ||PY |X |QX) < Ee −D(QX ||PX) (B.44)

and thus we need to set α = 1/2.

Proof of Theorem 11: First, consider the case Ee,0 < Ee ≤ Ee,a, and assume that Algorithm

1 has converged to (Q∗
Y |X , Q̃

∗
Y ). Then, we must have D(Q∗

Y |X ||PY |X |QX) = Ee − D(QX ||PX). In-

deed, if D(Q∗
Y |X ||PY |X |QX) < Ee − D(QX ||PX), then (Q∗

Y |X , Q̃
∗
Y ) is a solution of the unconstrained

minimization (B.43). However, since the solution of the unconstrained minimization (B.43) is unique

(since its objective function is strictly convex) then we must have (Q∗
Y |X , Q̃

∗
Y ) = (Q′

Y |X , Q̃
′
Y ), and thus

D(Q∗
Y |X ||PY |X |QX) < Ee − D(QX ||PX) implies Ee > Ee,a, which contradicts the assumption. Now, we

can substitute D(Q∗
Y |X ||PY |X |QX) = Ee −D(QX ||PX) in (35) to obtain (47).

Second, consider the case Ee,a < Ee. In this case, the optimal solution is clearly (Q
′

Y |X , Q̃
′
Y ), regardless

of Ee. Using Lemma 10 we have Q′
Y |X = Q

1/2

Y |X , and substituting this value in (35) provides (48).

Proof of Theorem 12:

1) This stems directly from (B.5) and (B.3) (which are valid even if R(QX) is not regular).

2) This stems directly from (B.4) and (B.3) (which are valid even if R(QX) is not regular), with the

choice 0 < ǫ < R− Rmax.

3) The first statement stems directly from the definition (5). When R(QX) is regular, we may use

(33). Now, let Q∗
X be any minimizer of (33), for a given R < R

′
max. We begin with showing that

R(Q∗
X) = R. Assume by contradiction that R(Q∗

X) > R. Since R < R
′
max then arguments used in

the proof of Theorem (4) show that Q∗
X ∈ V . Now, consider

Qα,X = (1− α)PX + αQ∗
X . (B.45)

Since R(QX) is continuous in V then intermediate value theorem implies that α < 1 must exist such

that R(Qα,X) = R. Using Lemma (20) we have that D(Qα,X ||PX) < D(Q∗
X ||PX) which contradicts
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the fact that Q∗
X is a minimizer of (33). Now, let Q(R) be the collection of all minimizers of (33),

such that for all QX /∈ Q(R) we have either D(QX ||PX) > D(Q∗
X ||PX) or R(QX) < R. Thus, for

any R1 > R we have

min
QX :R(QX)≥R1

D(QX ||PX) > D(Q∗
X ||PX). (B.46)

4) The first statement follows from the fact that monotonic functions are continuous almost everywhere.

The proof of the second is a part of the proof of Theorem 4.

Proof of Lemma 15: Algorithm 3 is an alternating minimization algorithm, that keeps all variables

but one fixed, and optimize over the non-fixed variable. Now, for a given 0 ≤ t ≤ 1, the objective function

in (52) is given by

(1 + t) ·
∑

x,y

QXY (x, y) log
QXY (x, y)

P
1/1+t

XY (x, y)Q̃
t/1+t

Y (y)
+ tR. (B.47)

The exact same technique which was used in the proof of lemma 8 shows that this optimization problem

is of the form (B.23). Thus, an alternating minimization algorithm converges to the optimal solution.

We now turn to the minimization of individual variables, assuming that all other variables are fixed, for

a given t. First, consider the minimization over QXY , which itself can be separated to an unconstrained

minimization over QY |X and constrained minimization over QX . The minimizer Q∗
Y |X can again be found

using similar Lagrange methods as in the proof of Lemma 8. The result is

Q∗
Y |X(y|x) = ψxP

1
1+t

Y |X(y|x)Q̃
t

1+t

Y (y) = Q
1

1+t

Y |X (B.48)

for all x ∈ X such that QX(x) 6= 0 (and arbitrary otherwise, since the value of Q∗
Y |X(·|x) for x ∈ X such

that QX(x) = 0 does not affect the value of the optimization problem). For this optimal choice, using the

definitions of δ1,t(x) and δ2,t(x) we obtain

min
Q̃Y

min
QX :D(QX ||PX)≤Er

{

D(QX ||PX) +
∑

x∈X

QX(x)δ1,t(x) + t ·
(

R−H(QX) +
∑

x∈X

QX(x)δ2,t(x)

)}

.

(B.49)
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Next, we optimize over QX using the KKT conditions. The Lagrangian with λ≥0 and µ is given by

L (QX , λ, µ) , D(QX ||PX) +
∑

x∈X

QX(x)δ1,t(x) + t ·
(

R−H(QX) +
∑

x∈X

QX(x)δ2,t(x)

)

(B.50)

+λ ·D(QX ||PX) + µ ·
∑

x∈X

Qx

= t · R+
∑

x∈X

QX(x)

[

log

(

Q1+t+λ
X (x)

P 1+λ
X (x)

· exp(δ1,t(x) + t · δ2,t(x))
)

+ µ

]

. (B.51)

Differentiating w.r.t. some QX(x
′) for x′ ∈ X we get

∂L

∂QX(x′)
= log

(

Q1+t+λ
X (x′)

P 1+λ
X (x′)

· exp(δ1,t(x′) + t · δ2,t(x′))
)

+ (1 + t+ λ) + µ (B.52)

and equating to zero results

Q∗
X(x) = ψ · P

1+λ
1+λ+t

X (x) · exp
(

− 1

1 + t+ λ
· δ1,t(x)−

t

1 + t+ λ
· δ2,t(x)

)

= Q
λ,t

X (x) (B.53)

where ψ is a normalization constant, and the definition (56). Using the complementary slackness condition

[2, Section 5.5.2], λ is chosen to either satisfy D(Q
λ,t

X ||PX) = Er or λ = 0. To show that a bisection

method can be used to find the desired λ, we use Lemma 25 (Appendix (C)) to show that D(Q
λ,t

X ||PX)

is a monotonic decreasing function of λ. To see that the conditions of Lemma 25 are met, notice that

initializing Q̃Y with support Y implies that in the first iteration supp(Q∗
Y |X) = supp(PY |X) which assures

that δ1,t(x) and δ2,t(x) are finite. As supp(Q
λ,t

X ) = supp(PX) = X for all λ > 0 and t ∈ [0, 1] then

supp(Q̃Y ) = Y for all iterations (cf. (B.58)). Thus, for any t 6= 0 we may express Q
λ,t

X as

Q
λ,t

X (x) = ψ · P
1+λ

1+λ+t

X (x) · P̆
t

1+λ+t

X (x) (B.54)

where

P̆X(x) , ψ̆ · exp
(

−δ1,t(x)
t

− δ2,t(x)

)

(B.55)

and ψ̆ is a normalization factor. Setting α = 1+λ
1+λ+t

we get that D(Q
λ,t

X ||PX) is a decreasing function of

α. Since α is a monotonic increasing function of λ this implies that D(Q
λ,t

X ||PX) is also a decreasing

function of λ. For t = 0 we may write again

Q
λ,0

X (x) = ψ · P
λ

1+λ

X (x) · P̆
1

1+λ

X (x) (B.56)
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where now

P̆X(x) , ψ̆ · exp (−δ1,t(x) + logPX) . (B.57)

Similar arguments show that D(Q
λ,0

X ||PX) is a decreasing function of λ.

The optimal Q̃∗
Y for a given t and QX , QY |X is simply

Q̃∗
Y (y) =

∑

x∈X

QX(x)QY |X(y|x) (B.58)

using Lemma 22.

APPENDIX C

USEFUL LEMMAS

In this appendix, we provide several useful lemmas.

Lemma 19 (Tightness of the union bound). Let A1,A2 . . . ,AM be pairwise independent events from a

probability space. Then

P

{

M
⋃

i=1

Ai

}

≥ 1

2
·min

{

1,
M
∑

i=1

P (Ai)

}

(C.1)

Proof: See [20, Lemma A.2, pp. 109].

Lemma 20. Let P,Q be two PMFs over some alphabet X such that supp(P ) = supp(Q) = X , P 6= Q,

and

Qα , (1− α)P + αQ. (C.2)

Also, let αmax = max{α : Qα ∈ S(X )}. Then, D(Qα||P ) is a strictly increasing function of α for

α ∈ (0, αmax).

Proof: Let 0 < α1 < α2 ≤ αmax. Then,

Qα1 = (1− α1)P + α1Q (C.3)

=
α1

α2

(

α2

α1

− α2 + 1− α1

α1

)

P +
α1

α2

α2Q (C.4)

=
α1

α2

(

1− α2 +
α2 − α1

α1

)

P +
α1

α2

α2Q (C.5)

=
α1

α2

((1− α2)P + α2Q) +
(α2 − α1)

α2

P (C.6)

=
α1

α2

Qα2 +

(

1− α1

α2

)

P (C.7)
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thus Qα1is a convex combination of Qα2 and P with coefficient β , α1

α2
, and 0 < β < 1. Now, since

divergence is strictly convex function then

D(Qα1 ||P ) = D(βQα2 + (1− β)P ||P ) (C.8)

< βD(Qα2 ||P ) + (1− β)D(P ||P ) (C.9)

= βD(Qα2 ||P ) (C.10)

< D(Qα2 ||P ) (C.11)

and thus D(Qα||P ) is strictly increasing in α.

Lemma 21. Let fi(z) : R
N → R be convex functions for i = 1, 2. Consider the optimization problem

W (E) = min
f1(z)≤E

f2(z). (C.12)

assuming that the constraint is feasible for some interval E ∈ J . Then W (E) is a convex function of E

in J and E −W (E) is a concave function E in J .

Proof: This is a standard result. For example, in [1, Theorem 3], this theorem is proved for the case

that f1 and f2 are information divergences. The proof may be used verbatim for any convex functions.

Lemma 22. Let PX × PY |X be a given joint distribution over X × Y . Then the distribution QY that

minimizes D(PX × PY |X ||PX × QY ) is the marginal distribution Q∗
Y corresponding to PY |X namely,

Q∗
Y (y) =

∑

x PX(x)PY |X(y|x).

Proof: See [4, Lemma 10.8.1].

Corollary 23. Let PX × PY |X be a given joint distribution over X × Y . Then the vector QY ∈ R
|Y| that

minimizes D(PX×PY |X ||PX×QY )
4 under the constraint

∑

y∈Y QY (y) ≤ 1 and QY (y) ≥ 0 for all y ∈ Y ,

is Q∗
Y (y) =

∑

x PX(x)PY |X(y|x).

Proof: Suppose that the minimizer vector Q∗
Y satisfies

∑

y∈Y Q
∗
Y (y) < 1. Then for some y′ ∈ Y , we

4Notice that the divergence is well defined even if {QY } do not sum exactly to 1.
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can increase Q∗
Y (y

′) by 1−∑y∈Y Q
∗
Y (y) > 0 and obtain Q̄Y which satisfies

∑

y∈Y QY (y) = 1. But,

D(PX × PY |X ||PX ×Q∗
Y ) =

∑

x,y

PXY (x, y) log
PXY (x, y)

PX(x)Q∗
Y (y)

(C.13)

=
∑

x,y 6=y′

PXY (x, y) log
PXY (x, y)

PX(x)Q∗
Y (y)

(C.14)

+
∑

x

PXY (x, y
′) log

PXY (x, y
′)

PX(x)Q∗
Y (y

′)

>
∑

x,y 6=y′

PXY (x, y) log
PXY (x, y)

PX(x)QY (y)
(C.15)

+
∑

x

PXY (x, y
′) log

PXY (x, y
′)

PX(x)QY (y
′)

and this contradicts the fact that Q∗
Y is a minimizer. Thus, we must have

∑

y∈Y Q
∗
Y (y) = 1. In this case,

Lemma 22 shows that the optimal solution is Q∗
Y (y) =

∑

x PX(x)PY |X(y|x).

Lemma 24 (Variant of Minkowski inequality). Let 0 ≤ λ ≤ 1, and let QX be a PMF over a finite

alphabet X , and let {ax(i)} be a set of non-negative numbers for 1 ≤ i ≤ I and x ∈ X . Then,

I
∑

i=1

(

∑

x∈X

QX(x)ax(i)
λ

)1/λ

≤





∑

x∈X

QX(x)

(

I
∑

i=1

ax(i)

)λ




1/λ

(C.16)

Proof: This variant of Minkowski inequality is stated and proved in [23, Section 3A.1, inequality

(k)].

Lemma 25. Let P1, P2 be two PMFs over some alphabet X , such that supp(P2) ⊆ supp(P1). Define for

any x ∈ X

Qα(x) , ψαP
α
1 (x)P

1−α
2 (x) (C.17)

where α ∈ [0, 1] and ψα is a normalization factor such that Qα ∈ S(X ). Then, D (Qα||P1) is a continuous

function of α whose limit as α → 0 is D(Q′||P ) where

P ′
2(x) =











ψ′ · P2(x) P1(x) > 0

0 P1(x) = 0

(C.18)

for some normalization factor ψ′. Moreover, D (Qα||P1) is monotonic strictly decreasing function of α

unless P ′
2 = P1.
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Proof: This is [8, Ex. 2.14, pp. 30-31] but for completeness, we provide a proof here based on [1].

First, notice that P1(x) = 0 ⇒ Qα(x) = 0 and thus all x ∈ X such that P1(x) = 0 are immaterial to the

divergence, assuming the regular convention, that any summand of the form 0 · 0
0

is 0. Thus it may be

assumed without loss of generality that supp(P1) = X and P ′
2 = P2.

Continuity: Since supp(P1) = X then D (Qα||P1) is a continuous function of Qα in S(X ). As Qα is

a continuous function of α we get that D (Qα||P1) is a continuous function of α.

Limit for α → 0: Since supp(P1) = X we get that supp(Qα) = supp(P2). It is easily seen that as

α → 0 we have Qα(x) → P2(x).

Monotonicity: Consider the following optimization problem

W (E) = min
D(Q||P2)≤E

D(Q||P1). (C.19)

Standard Lagrange techniques, as used in this paper, show that the optimal solution is

Q(x) = ψP
1

1+λ

1 (x)P
λ

1+λ

2 (x) (C.20)

where λ ≥ 0 is either chosen such that the constraint is satisfied with equality, or λ = 0. When λ > 0

defining α , 1
1+λ

we get W (E) = D(Qα||P1). Thus, if we show that W (E) is a monotonic increasing

function of λ, then the proof is finished because α is an increasing function of λ. To this end, notice that:

1) W (E) is a strictly decreasing function of E.

2) Using Lemma 21, W (E) is a strictly convex function of E which implies that
dW (E)
dE

is a strictly

increasing function of E.

3) We have that

dW (E)

dE
= −λ. (C.21)
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To see this relation, suppose that λ is chosen to satisfy the constraint E. Then, we get

W (E) = D (Qα||P1) (C.22)

=
∑

x∈X

Qα(x) · log
Qα(x)

P1(x)
(C.23)

=
∑

x∈X

Qα(x) · log
P λ
2 (x)

Qλ
α(x)

+
∑

x∈X

Qα(x) · log
Q1+λ

α (x)

P1(x) · P λ
2 (x)

(C.24)

= −λE − (λ+ 1) log(ψ) (C.25)

= −λE − (λ+ 1) log

(

∑

x∈X

P
1

1+λ

1 (x)P
λ

1+λ

2 (x)

)

. (C.26)

When differentiating we obtain

dW (E)

dE
= −λ− E

dλ

dE
− dλ

dE
· d
dλ

[

(λ+ 1) log

(

∑

x∈X

P
1

1+λ

1 (x)P
λ

1+λ

2 (x)

)]

, (C.27)

and because d
dλ

[

(λ+ 1) log

(

∑

x∈X P
1

1+λ

1 (x)P
λ

1+λ

2 (x)

)]

= −E we obtain the desired result.

These properties imply that as E increases W (E) decreases and
dW (E)
dE

= −λ increases. This results

that W (E) is a monotonic increasing function of λ, and concludes the proof.

Strict monotonicity can be verified by noticing that all monotonicity relations are strict.
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